THE COMBINATORIAL CHOW RING OF PRODUCTS OF GRAPHS

OMID AMINI

ABSTRACT. In this paper we study the structure of a Chow ring associated to a product of
graphs. This ring naturally arises from the Gross-Schoen desingularization of a product of
regular proper semi-stable curves over discrete valuation rings, for the corresponding family
of dual graphs, and can be viewed as the universal combinatorial part of the Chow ring of
products of semistable curves, when the family of dual graphs is fixed. Moreover, Johannes
Kolb conjectured remarkable vanishing properties in this combinatorial Chow ring, which
he showed to control the behavior of the non-Archimedean height pairing on products of
smooth proper curves over non-Archimedean fields.

Our aim in this paper is to give a fairly complete description of these Chow rings.

- We prove the localization theorem, which describes the Chow ring of the product of
any family of graphs as an inverse limit of the Chow ring of hypercubes (i.e., products of
edges). This shows that the Chow rings of products of graphs form a sheaf for the topology
generated by the products of subrgaphs.

- We provide a complete description of the degree map, leading to a complete description
of the degree of intersection between divisors in the special fiber of the regular semistable
model of any product of curves.

- We prove vanishing theorems in the Fourier dual description of the Chow ring of the
hypercube which confirms the above mentioned vanishing conjectures of Kolb. Combined
with his work, this leads to an analytic formula for the arithmetic intersection number of
adelic metrized line bundles on products of curves over complete discretely valued fields,
which generalizes a previous result of Shou-Wu Zhang in his work on Gross-Schoen cycles
and dualizing sheaves.

1. INTRODUCTION

Let R be a complete discrete valuation ring with an algebraically closed residue field k
and fraction field K, and let X be a smooth proper curve over K. By semi-stable reduction
theorem, replacing K with a finite extension if necessary, we can find a regular proper strict
semi-stable model X of X over the valuation ring. Denote by X; the special fiber of X, and let
G = (V, E) be the dual graph of X,. For each vertex v € V, denote by X, the corresponding
irreducible component of Xs. The intersection products X,.X,, are described by the graph G
as follows:

(1) VeV X, X, — number of edges {u,v} in G %f u # v,
—valg(v) if u =,
where valg(v) is the valence of v in G. The intersection products satisfy the following two
sets of relations:
(/1) For all u,v € V, X, X,, = 0 if {u,v} ¢ E;
(@72) Forallu eV, Xy(3 ey Xo) = 0.
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Consider the polynomial ring Z(G) = Z[C, |v € V] on variables C,, and define the ideal
Frat C Z(Q) of elements rationally equivalent to zero as the ideal generated by the polynomials
CyCy, for {u,v} ¢ E, and Cy(>_,cy Cy) for u € V. Define the Chow ring Chowgs(G) of
the graph G by Chowgs(G) := Z(G)/Hrat, and note that we have a morphism of graded
rings Chowgs(G) — Chow} (X), where Chow% (X) denotes the subring of the Chow ring
with support Chowy, (X) of X with support in X, generated by the irreducible components of
the special fiber (see [12, Chapter 17] or [13, Section 8| for the definition of Chow rings with
support).

For a graph consisting of a single edge e = {u,v} on two vertices, we have Chowgg(e) =
Z[Cy, Cy]/(C2% + C,Cy, C? + C,Cy) ~ 7. & Z.C,, ® 7.0, & 7.C,,C,. For a general graph G, the
structure of Chowgg(G) is completely described by an exact sequence of the form

(2) 0 Chowas(G) — ] Chowas(e) » [ 7z,
eckE {el,eg}EL(G)

where L(G) denotes the line graph of G (see Definition 1.2).

We have a (local) degree map deg : Chowgs(G) — Z which is defined as follows. For
any edge e = {u,v} € E, define the map deg, : Chowgs(e) — Z by sending an element x
of Chowgg(e) to the coefficient of C,C, in x. The degree map deg is then the composition
of the embedding Chowgs(G) — [[.cp Chowgs(e) with the map ) . deg,. By definition,
the degree map coincides with the intersection pairing (1), i.e., for all u,v € V, we have

deg(C,Cy) = Xy X5

Our aim in this paper is to provide a generalization of the above picture for the products
of (an arbitrary number) of proper smooth curves over a complete discretely valued field.

So let X1, ..., X4 be proper smooth curves over K, and, replacing K with a finite extension
if necessary, consider a regular strict semi-stable model X; of X; over the valuation ring for each
i. Starting from the product X1 Xgpec(R) *** XSpec(r) Xd, the Gross-Schoen desingularization
procedure [14] provides a regular proper semi-stable model X of the product X = X; x---x Xy
over the valution ring R. The desingularization depends on the choice of a total order on the
components of the special fiber of each X;.

Denote by Gi1 = (Vi,FE1),...,Gq = (Vy4, E4) the dual graphs of the special fibers of
X1..., Xy, respectively, and suppose that a total order <; on the vertex set V; is given for each
1. The dual complex of the special fiber of the Gross-Schoen model X of X is a triangulation
of the product 4 = G1 x -+ x G4. When ¥ is given by its natural cubical structure with cubes
corresponding to the elements of the product & = Fy X --- X Ey, the triangulation consists
of the union of the standard triangulation of these d-dimensional cubes, compatible with the
fixed total orders on the vertex set of each graph G, see Section 2 for the precise definition.
The vertex set 4 of the simplicial set ¢ is the product 4 = V1 x --- x V; of the vertex sets,
whose elements are in bijection with irreducible components of the special fiber X, of X: for
an element v € ¢, we denote by X the corresponding irreducible component of X;.

Consider the Chow ring with support Chowy,(X). The intersection products between Xy,
for v.€ ¥, in Chowy, (X) verify three types of equations (see (Z1), (#2),(#3) below), given
by Kolb in [18, 19], two of which are higher dimensional analogous of the relations (271) and
(72). This leads to the definition of a Chow ring for the product of graphs, that we describe
next.
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1.1. Definition of the Chow ring Chowgg(¥¢). Denote by Z (%) the polynomial ring with
coefficients in Z generated by the vertices of ¢, namely,

2(9) = Z[Cy |v € D),

where the variables Cy are associated to the vertices (O-simplices) of ¥4. We view Z(¥) as a
graded ring where each variable CY, is of degree one.

The graded ideal #4 of all the elements of Z(%) which are rationally equivalent to zero is
defined as the ideal generated by the following three types of generators:

(#1) Cy,Cy, ...Cy, for k € N and elements v; € ¢ such that vy,..., vy do not form
a simplex in ¥ ;

(%#2) Cu(Zve% Cv> for any vertex u € %; and

(#3) CyuCyw ( Zve%:vi:ui C’V> for any pair of vertices u,w € 4 and any index 1 <i <d
with u; # w;.

Definition 1.1. The combinatorial Chow ring of ¢ is the graded ring Chowgs(¥) :=
2(D)] Fras.

The ring Chowgg(¥) is the universal graded commutative ring with generators indexed
by vertices of ¥ and verifying relations (#1), (#2), (#3) above; in particular we get a
well-defined map

(3) ax : Chowgs(¥4) — Chowgy, (%),

for X the Gross-Schoen desingularization of the products of curves X; x --- x X4 (where for
each 4, the dual graph of the special fiber of X; is isomorphic to G;).

1.2. Statement of the main results. The main contributions of this paper are the structure
Theorem 1.5 which describes the additive structure of the graded pieces of the Chow ring, the
localization Theorem 1.4, which is a generalization of the exact sequence (2) to products of
graphs, the calculation of the degree map, which is a generalization of (1) to higher dimension,
and a vanishing theorem confirming a conjecture of Kolb. We now discuss these results.

1.2.1. Localization. We prove the localization theorem 1.4, a generalization of the exact se-
quence (2) to products of graphs, which shows that the calculations in the ring Chowgg(¥)
can be reduced to calculation in the Chow ring of the hypercubes of dimension d, namely, the
products of d copies of the complete graph Ko on two vertices.

Recall first that a homomorphism of graphs f: H — G isa map f: V(H) — V(G) such
that for any edge {u,v} € E(H), either f(u) = f(v) or {f(u), f(v)} € E(G).

Let Hi,...,Hg be d simple connected graphs. Define & = H; x --- x Hy with the
induced simplicial structure. Suppose that for each i = 1,...,d, a homomorphism of graphs
fi - H; — G is given (such that f; respects also the two fixed orderings on the vertex set of
H; and G;). The product of f; leads to a morphism of simplicial sets f : 7 — ¢, and induces
a morphism of graded rings f* : Z(¥) — Z (), which is defined on the level of generators
by sending C, for v € % to

FC)- Y
ueHH
flu)=v
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It is not hard to see that the map f* sends . (¥) to Fat(#°) and induces a well-defined
map of Chow rings f* : Chowgg(¥) — Chowgs(7), c.f., Proposition 2.4.

Let now Gy = (V1, Ey),...,(Gg, Eg) be a collection of d simple connected graphs, and
9 =11, Gi, as above. Fore € & = Ey x --- x Eg, let Oe = €1 x - -+ X eq4. Regarding each edge
e; as a subgraph of GG isomorphic to K5, and applying the functoriality to the inclusions of the
subgraph e; < G, we get a map 1 : Chowgs(¥) — Chowgs(e) ~ Chowgs(0?) associated
to the inclusion map of simplicial sets

le : He — ¥4.

By definition, the map ¢} is identity on the generators associated to the vertices of Ue, and
is zero otherwise.

Write e; = u;v; for vertices u; < v; of GG; with respect to the total order of G;, and define
the two corresponding facets e o, and [e 1, of Ue associated to u; and v;, respectively, by

De,(]i =e1 X - Xegi—1 X {Uz} X €41 X =+ X €q, and
|:|e711. =e1 X - Xeg—1 X {UZ} X €j41 X+ X eq.
Let te,0; : Ue0, = Ue, and similarly, te 1, : Ue,1; < Ue, the inclusion maps. By functoriality,

we get maps i, : Chowgs(He) — Chowgs(Ueyp,) and ¢f 5, : Chowgs(He) — Chowas(Ue1;)
on the level of Chow rings.

We next recall the definition of the line graph of a give graph.

Definition 1.2. Let G = (V, E) be a given simple connected graph on vertex set V' and edge
set E. The line graph of G denoted by L(G) is the graph on vertex set F and with edge set
consisting of all the pairs {e, e’} C F with e and ¢’ incident edges in G.

Let Gy = (Vi, E1),...,Gq = (Vg, E4) be a collection of d simple connected graphs as before.
For each i = 1,...,d, define the set &; := E1 X -+ X E;_1 X E(L(G;)) X Ej41 X - -+ X E4. Thus,
an element x of &; is a collection e; € Ej, for j # i, and {e;1,e;2} with e;1,e;2 € E; and
e;,1 Nei, # 0. The element x € & therefore gives two hypercubes Oe, and O, in ¢, with
ep = ey X --- X e XeX- - Xeg, for K =1,2. Note that [e, and U, share the facet
Ox :=e1 x -+ xeji—1 X (e1Neg) X €41 X --- X eq. Denote by 11 and tx 2 the inclusion of Oy
in Oe, and Oe,, respectively. Denoting by jx : Chowgg({e, ) X Chowgs([e,) — Chowgs(Cx)
the map which sends the pair («, ) to ¢y ; (o) — 15 o(8), We get a map

d
J: H Chowgs(e) — H H Chowgs(Ox).

ecé i=1x€eé&;
Note that the x-coordinate of j is the composition of j; with the projection from
] Chowes(De) = Chowes(De,) x Chowas (He,).
ecd

Remark 1.3. The map j, and so j, is well-defined only up to the sign consisting in changing
the role of e; and es. In order the get a well-defined map, we can fix a total order on the set
E;, fori=1,...,d, and for any edge {e;1,e;2} of L(G;) require that e; 1 < e; 2 with respect
to this total order. We remark that the choice of the sign is irrelevant for what follows.

With these notations, we can state our localization theorem.



THE COMBINATORIAL CHOW RING OF PRODUCTS OF GRAPHS 5

Theorem 1.4. The map of graded rings [[oce te* : Chowgs(¥) — @ece Chowas(He) is
injective and identifies Chowgs(¥) with the kernel of the map

d
j: [] Chowes(@e) — [ J] Chowas(Dh).

ecs i=1x€d&;

In other words, the ring Chowgg(¥) is the inverse limit of the Chow ring of cubes of ¢ for
the diagram of maps induced by the inclusion of cubes. Endowing the simplicial set ¢ with
the cubical topology with a basis of open sets consisting of the products of subgraphs of G;,
the localization theorem ensures that the Chow rings form a sheaf for the coverings of ¢ with
open sets whose union covers all the simplices of ¥.

1.2.2. Description of the additive structure of Chowgs(%). The proof of the localization the-
orem is indirect, and is based on a structure theorem which provides a description of the
Chow groups in terms of non-degenerate simplices of the product ¢ and specific relations,
taking into account the cubical structure of 4. We now describe this.

The total orders <; on the vertex sets V;, i = 1,...,d, induce a partial order < on %
defined by saying u = (u1,...,uq) < v = (v1,...,vq) if u; <; v; for each 1.

Let u < v be two elements of ¢, such that {u, v} forms a one-simplex. This means that
for each i, we have u; = v; or {u;,v;} € E;, cf. Section 2. Denote by I(u,v) the set of
all indices ¢ with u; < v;, and let ey be the cube of dimension |I(u,v)| formed by all the
vertices z = (z1,...,2q4) in 9 with z; € {u;,v;}, ie, eyy = ngl{ui, v; }.

For any integer k € N, denote by %?d the set of all non-degenerate k-simplices of ¢. Each
element o of %’fd is a sequence up < uj < --- < uy, of vertices u; € ¢ such that {u;,uj41}
is a 1-simplex of ¢, for any 0 < j < k — 1.

Let o be a non-degenerate k-simplex of 4. For two indices 1 < 4,5 < d lying both in
I(ug,up4q) for some 0 <t < k — 1, define

.éo',i’j = Z CW - Z CW.

WEeuy,usy WE€uy up
W;="Ut,i Wj="ut,j

For any k-simplex o € %, denote by C, the product (with multiplicity) of C\, over all vertices

of o, ie., Cy :=]],c, Cv. Using (#1) and (#3), one verifies that Co Ry j € Hat.

For any k € N, denote by Z(¥474) the Z-submodule of Z(¥) generated by all elements C,
for o € %,;‘d. By definition of the simplicial structure, one sees that for an element o € %?d

consisting of vertices ug < --- < uyg, and for 7, j € I(u, u41) as above, the product C, Ry j
lies in Z(%4?). Denote by .#*! the Z-submodule of Z(%!) generated by all the elements
CyRoj, for o € 44 and i, j € I(uy, up+1) as above. We have the following theorem.

Theorem 1.5. For any non-negative integer k, we have
k d d
ChowgE (9) ~ Z(9 %y ) 7.

The existence of a surjection from Z(%d) /.7 to Chow’égl(% ) is a consequence of the
moving lemma, c.f. Theorem 2.7. The proof of the injectivity of this map, on the other hand,
turns out to be particularly tricky and technical. This is given in Section 3. For this we define
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an interesting filtration on Z*+1(%), and then we show by induction that it induces a trivial
filtration on the kernel of the above map. We ignore if this filtration has any geometric origin.

1.2.3. Combinatorics of the degree map. Let 0% = {0,1}% be the d-dimensional hypercube,
which is the d-fold product of the complete graph Ks on two vertices 0 < 1 with its standard
simplicial structure. It follows from the structure theorem that the Chow ring Chowgg (%)
is of rank one in graded degree d + 1, i.e., Chowc(l;gl(Dd) ~ 7, generated by C, for any

non-degenerate d-simplex ¢ of (0. This leads to a well-defined degree map
deg : Chowégl(Dd) — Z.

Combining this with the localization theorem, and the vanishing of Chowlg (%) in degree
1 > d + 2, which follows for example from the structure theorem, or the moving lemma, we
infer that for any collection of simple connected graphs G1 = (V1, E1),...,Gq = (Vg, Eq), we
have Chow‘(ifg1 (4) ~ Z!]. Therefore we get a degree map deg : Chowc(l;gl(%) ~ 7/l - 7, by

aditionning the coordinates in Z/¢1.

Our next result gives a combinatorial formula for the value of the degree map. Combined
with the map ax in (3), this results in a concrete effective description of the local degrees in the
Chow ring Chow% (X) for the Gross-Schoen desingularization X of a product of semi-stable
R-curves Xq,..., X4, generalizing (1) to higher dimension.

Since Chow‘(i;gl(% ) is generated by monomials, we can restrict to the case of a monomial,

and by localization theorem, and the definition of the degree map, it will be enough to treat
the case of the hypercube (1%.

By definition of the simplicial structure, each (possibly degenerate) d-simplex o of 09 is of
the form vi'vi? ... v* with vi < vo < --- < vy, and n; > 1 with Y, n; = d+ 1. We have
0 < |vi| < - < |vi| < d, where for any v € (¢ we denote by |v| the length of v defined as
the number of coordinates of v equal to one. Consider the set [d] := {0,1,...,d}. Let us say
a point |v;| is a neighbor of a point « € [d] \ {|v1|,...,|vi| } if the interval formed by z and
|vi| does not contain any other point of { |vil,...,|vg|} beside |v;|. In this way each point
z € [d]\ {|vi],...,|vk| } has either one or two neighbors among the points |vi|, ..., |vk|.

Assume now that n; chips are placed on the point |v;| in [d]. The total number of chips is
thus ), n; = d+ 1. We assume further that the chips are labelled, and each point |v;| € [d]
chooses, once for all, one of its n; chips that she wants to keep, and decides to give all the
extra remaining chips to n; — 1 of its neighbors in [d] \ {[v1],...,|vk| } in such a way that
at the end, each point of [d] holds precisely one chip. In how many ways this can be done?
The following theorem states that, up to a + sign, the degree of vi'*...v}* in Chowgg(9)
is given by this number.

Theorem 1.6. Notations as above, let Co = CJ1 ... CyF. One of the two following cases can
happen.
(1) If there exists an 1 <1i < k such that ny + --- +n; > |viy1|, then Cy = 0. Similarly,
if there exists an k > i > 2 such that n; + - -+ 4+ ng > d — |v,_1|, then C, = 0.
(2) Otherwise, there exists a sequence of integers yo, T1, Y1, T2, Y2, -+ Th—1, Yk—1, Tk VETI-
fying the following properties
 [vi| =yo.
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e Foralli=2,....k, |vi| = |vic1| + ;s +yi + 1.
en;, =y, 1+x;+1 foralli=1,... k,
and, in this case, we have

deg(C,) = (—1)4+1-F (yo + a:1> <x1 + y1> <y1 + x2> <:ck1 + yk1> <yk1 + xk)
Yo xy Y1 Yr—1 Tk

+ + 1+ A : .
Note that the product (yoy0z1) (“;yl) (y1y1z2) N o 1) (YA T7E) in (2) is precisely the
number of ways the extra (labelled) chips can be placed on the points of [d] \ {¢1,...,¢x} so
that each point receives precisely one chip from one of its neighbors; in case (1), this number

1S zero.

1.2.4. Fourier transform and a vanishing theorem. Identifying the points of (0% with the ele-
ments of the vector space F, it is possible to give a dual description of the Chow ring of the
hypercube using the Fourier duality. So let (,) be the scalar product on Fg defined by

d
Yu,v e Fg, (v,u) := szul € Fs.
i=1

For w € Fg, define Fy by

Fy:= )Y _ (-nv™a,.

veld

By Fourier duality, we have for any v € F4,

1 v,W
Cv=1g > ()Y E.

veld

It follows that the set {Fy}yecne forms another system of generators for the Chow ring
Chowgs(O%)[3] localized at 2, that we call the Fourier dual of the set {Cy }yera-

Denote by 1, and 0, the points of (04 whose coordinates are all equal to one, and zero,
respectively. Let {e1,...,eq} be the standard basis of F4, where e; is the element of F4 which
has i-th coordinate equal to 1, and all the other coordinates equal to 0. Kolb proved in [18]
that the following set of relations are verified by {Fy} in Chowggs(O%):

(%#*1) For any w € F4, we have FyFy, = 0;

(%*2) For any i € [d], and any w,z € F9, we have Fe,(Fyw — Fwie,)(Fz + Fyte;) = 0;

(#*3) For any pair of indices i, j € [d], and any w,z, we have (Fyie;4e; — Fw)(Fate;te; —
F,) = (Ferei - Fw+ej)(FZ+e¢ - FZ+ej)'

We have the following more precise statement. Let %(Dd) be the ideal of Z[Fy]ycod
generated by the relations given by (#£*1), (#£*2), and (#*3) above, and define

Chowas(0) = Z[Fulwers / Feat (O).
Theorem 1.7. The set of relations (#*1), (%#*2), and (#*3) generate the ideal Frar(O4) in

—_——

Z[3)[Cv]vere = Z[3][Fwlwena- In particular, we have Chowgs(O?)[1] = Chowgs(O%)[3].

We now describe a criterion guaranteeing the vanishing of a monomial of the form Fy,, ... Fy,,,
for elements wy, ..., wy € F%.
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Let P ={P,..., P;} be a partition of {1,...,d} into k disjoint non-empty sets. For each
w;, denote by a(w;, P) the number of indices 1 < i < k such that there exists j € P; with
Wj =1.

Theorem 1.8. If Z?:o a(wi, P) < d+k, then we have Fy,, ... Fyw, =0 in the Chow ring.

This property was conjectured by Kolb and is required in [19] in order to get the analytic
description of the local degree map, that we briefly describe in the next section.

1.3. Analytic description of the local intersection numbers. Let X be a smooth proper
curve over a complete discretely valued field K with an algebraically closed residue field. The
Berkovich analytification X" of X is a compact path-wise connected Hausdorff topological
space which deformation retracts to a compact metric graph I' [6, 4, 10]. If X admits a
regular semi-stable model X over the valuation ring of K, the metric graph I" has a model
(G, ¢) given by the dual graph G = (V, E) of X and the edge length ¢ : E(G) — R given by
l(e) =1 for all edges e € E. (So I' is the metric realization of (G, ¢) in the sense that each
edge in G is replaced with an interval of length one, see e.g. [3, 5].)

Any Cartier divisor D on X with support in the special fiber X gives amap f : V — Z, that
we can extend to I' by linear interpolation on interior points of the intervals in I' corresponding
to the edges of G. For two Cartier divisors D1, Dy € Chow%es (%) with functions fi, fo : T' = R,
the degree map given by the pairing (1) gives a number deg(D;Ds), which can be described
analytically as

(4)  deg(DiDs) = (f1, fohon = — /F 13

Here (., .)pir denotes the Dirichlet pairing on piecewise smooth functions on T" [5, 21].

By an approximation argument involving semi-stable models of curves X+ for finite ex-
tensions K'/K, and viewing Cartier divisors with support in the special fibers of semi-stable
models of Xy as piecewise linear functions on I', one can continuously extend the (degree)
pairing between divisors to the full class of piecewise smooth functions on I' such that the
equation above remains valid for this more general class of functions [21].

Motivated by applications in arithmetic geometry, Zhang derived in [23] a generalization
of the analytic formula (4) for the degree pairing in the case of a 2-fold product of a smooth
proper curve X over K. Kolb [19] later generalized this to d-fold products of X assuming
the validity of the vanishing Theorem 1.8. We state his result in the more general setting of
a product of smooth proper curves X, ..., Xy.

Let X1,..., Xy be smooth proper curves over K, that we suppose (up to passing to a finite
extension of K), to have regular strict semi-stable models X1, ..., X4 over the valuation ring R.
Denote by G, ..., Gq the dual graphs of the special fibers of X1, ..., X4, respectively, and let ¢4
be the product G X - - - x G4 with its simplicial structure. The Gross-Schoen desingularization
gives a regular proper strict semi-stable model X of the product X = X x---x Xy with special
fiber X5 having a dual complex isomorphic to &. The geometric realization of ¢ is a locally
affine space which embeds in the Berkovich analytification X" of X (by a general theorem
of Berkovich [7]). Each Cartier divisor D with support in the special fiber X, induces a
metric on the trivial line bundle corresponding to a piecewise affine function on the geometric
realization of ¢ (for metric on lines bundles see e.g. [22]). The intersection pairing given by
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the degree map induces a multi-linear pairing between piecewise affine functions (by passing
to finite extensions of K if necessary), and we have

(fDo> -+ fDy) = deg(Dg ... Dg).

This pairing can be viewed as the local contribution to the intersection product of metrized
line bundles in non-Archimedean Arakelov theory. It is useful to extend this pairing to a larger
class of metrized line bundles. By approximation, for each of the piecewise smooth functions
fi, one may take a sequence of piecewise linear functions converging to f;, and extend the
pairing as the limit of the pairing between piecewise linear functions. This has been carried
out in great detail in [19]. The well-definedness of the extension as well as the analytic
generalization of the Formula (4) is guaranteed if the vanishing condition in Theorem 1.8
holds. To state the theorem, we need to introduce some notations.

For each graph G, denote by I'; the metric graph associated to (G, ¢) with length function

¢ = 1, the constant function. For each n € N, denote by ng) = (Vi(n), (n )) the n-th
subdivision of G;, where each edge e is subdivided into n edges. The pair (G(n),ﬁ(") ) with

(2

length function ¢ = 1/n is a model of the same metric graph I';. A total order on the

vertex set of G; naturally extends to a total order on the vertex set of ng) such that the

(n)

vertices of G; " on each edge e of G form a monotone sequence. Denote by ¢ (") the simplicial

set on the product ng) X oee X Ggln). This provides a triangulation of the topological space
T =T1 x -+ xI'y. The space 7 has a natural affine structure induced by the cubes
Oe ~ [0,1] for each e € &) = Ef") X e X El(in). Define the space CX°( .7) as the space
of functions f : .7 — R which are smooth on simplices of ¢ [19]. This means, for any cube
Oe = [0,1]%, the restriction of f to each triangle A of [0,1]? can be extended to a smooth
function in a neighborhood of A.

For each f € CX(J), denote by ) the piecewise affine function on 7 obtained by
interpolating the values of f on the vertices to all the interior points of o, on each simplex o
of @),

The graphs GZ(-n) are the dual graphs of a semi-stable model 362(-")
finite extension K’ of K, and the simplicial set ¥ corresponds to the dual complex of the

of Xk for an appropriate

Gross-Schoen desingularization of the product %( RIS %Eln). Looking at R-Cartier divisors
with support in the special fiber f{( ) as real valued functions defined on the vertices of 4™

the degree map in the ring Chowx " leads to a pairing ( fo Yy f(gn)> for any collection of
functions fo,..., fq € CX (7). With these preliminaries, combining our Theorem 1.8 with
the results in [19], we get the following generalization of Equation (4).

Theorem 1.9 (Kolb [19]). For any collection of functions fo,..., fa € CX(T), the limit
(oo fa) o= T (£, 5)
exists, and admits the following analytic development

1
o) = 2 X de(] R /D0 v ()

partitions Wo,...,WgEFY

P of [d] ¥ a(wi,P)=d+|P|
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In the above formula the generalized diagonal Diagp is the union of the generalized diag-
onals Diag$ in the hypercubes O, ~ 0O = [0, 1]¢ consisting of all the points (z1,...,24) €
[0,1]? which verify x; = z; for all i,j € [d] belonging to the same element of the partition
P. The term D(‘;V(Z",V%P)(fi) is a partial derivative of f; of order a(w;, P) in the direction of
w; and along the generalized diagonal Diagp. For example, for the partition P of [d] into
singletons, we have a(w,P) = |w| for any w € F4, and on any cube (e =~ [0, 1]¢, we have

OV:’('WZ_’P) = (8%1)“)1 . (a%d)wd. We omit the formal definition and refer to [19] for more
details.

As previously mentioned, the case d = 2 in the above theorem was proved by Zhang in [23],
and, was shown by him there to have interesting applications in arithmetic geometry (see [9]).

Finally, we refer to [8, 15] for a general approach to non-Archimedean Arakelov geometry
using Berkovich theory and tropical geometry.

1.4. Organization of the paper. In Section 2, we give the formal definition of the simplicial
structure of ¢, and prove several basic properties of the Chow ring which will be used all
through the paper. The structure theorem is proved in Section 3. The proof of the localization
theorem is given in Section 3.1. In Section 4, we prove Theorem 1.6. Section 5 is devoted
to the study of the structure of the Chow ring in the Fourier dual basis. In particular, the
vanishing Theorem 1.8 is proved in that section.

2. BASIC DEFINITIONS AND PROPERTIES

In this section, we define the simplicial set structure on products of graphs, and prove basic
results on the structure of the combinatorial Chow ring.

All through this section, by G1 = (V1, E1),...,Gq = (V4, Eq) we denote d simple connected
graphs. All graphs are finite.

2.1. Simplicial set structure on the product of graphs. We view G; as a simplicial set
of dimension one in a natural way. Suppose that for each ¢ = 1,...,d, a total order <g,, or
simply <; if there is no risk of confusion, on the vertices of G; is fixed. We can endow the
product ¢4 := (G1 x --- x G4 with a simplicial set structure of dimension d induced by orders
<;. This works as follows. The set of vertices (0-simplices) of ¥4 is % = V; x --- x V. For
two vertices v = (v1,...,vq) and u = (uy,...,uq) in %, wesay u < v if forany i = 1,...,d,
we have u; <; v;. A 1-simplex of ¢ is a pair of vertices u = (uy,...,uq) and v = (v1,...,v4)
in ¢ such that u < v and such that, in addition, for each 1 < ¢ < d, either u; = v;, or if
u; <; v;, then {u;,v;} is an edge of G;. The set of 1-simplices of ¢ is denoted by ¢. An
element {u,v} € ¢ as above is non-degenerate if u # v. For any l-simplex {u,v} with
u < v, denote by I(u,v) the set of all indices i € {1,...,d} with u; < v;. In particular, if
u = v, we have I(u,v) = 0.

More generally, for k € N, the set ¥, of k-simplices of ¢ is defined as follows. A k-simplex
o is a sequence vg < --- < vy of vertices in 4 such that for each 0 < j < k — 1, the pair
{v;j,Vvjt1} belongs to ¢, and in addition, the sets I(v;,v;j;1) are all pairwise disjoint. We
denote by I(c) the union of all the disjoint sets I(v;,vjt1), for 0 < j <k —1.
We say o is non-degenerate if we have vop < vi < --- < vi. The set of non-degenerate
k-simplices of ¢ is denoted by %<
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Here is an alternative way to describe the simplicial structure of 4. First, for each 1 < ¢ < d,
we orient the edges of G; with respect to the total order <; in such a way that any edge
{u,v} € E; gets orientation uv with u <; v. By an abuse of the notation, we use as well E;
to denote the set of oriented edges of G; given by the total order <;.

Let & = Ey x---x Ey, and for each e = (eq,...,eq) € &, for oriented edges e; € Ey,...,eq €
FE4, denote by Ue the product e; X --- x eq. We identify [Je with the d-dimensional cube
09 with vertices {0,1}¢ via the identification of each oriented edge e; = u;v; with {0, 1},
identifying thus u; with 0 and v; with 1. We endow the hypercube O with its standard
simplicial structure. Namely, identify (0% with the vertex set of the hypercube [0, 1]¢, and for
each element o of the symmetric group &, of order d, define

AwZ{@nnww€MHdOS%mS“'S%wgl}

The non-degenerate d-simplices of (0% are the vertices of A, for any element o € &,.

Notation. All through the paper, we use bold letters u, v, w, etc. to denote a 0-simplex in
a product of graphs. For graphs G4y, ..., G4 with product ¢, if u, v, w, etc. is a vertex in %,
we use u;, v;, Ww;, etc., respectively, to denote the corresponding vertex of the graph G;, so we
have v = (v1,...,vq),u = (u1,...,uq),w = (wi,...,wq), etc.

2.2. Definition of the combinatorial Chow ring. We recall the definition of the Chow
ring given in the introduction, and use the opportunity to introduce a few useful notations.
Denote by Z(%) the free polynomial ring with coefficients in Z generated by the vertices of
¢, namely,

2(9) = Z[Cy | v € D),

where the variables C are associated to the vertices in ¢. We view Z(¥) as a graded ring
where each variable Cy, is of degree one. For k € N, denote by Z*(¥) the graded piece
consisting of homogeneous polynomials of degree k.

Let #a4(9), or simply Z, if there is no risk of confusion, be the graded ideal of all the
elements of Z(%) which are rationally equivalent to zero: this is the (homogenous) ideal
generated by the following generators

(#1) Cy,Cy, ...Cy, for k € N and elements v; € ¢ such that vq,..., vy do not form
a simplex in ¥ ;

(%#2) Cu(Zve% Cv> for any vertex u € %; and

(#3) CyuCyw ( Zve%:vi:ui C’V) for any pair of vertices u,w € 4 and any index 1 <i < d
with u; # w;.
For two elements a, 8 € Z(¥), we write a ~yat 8 iff a — f € Fat.

The combinatorial Chow ring of ¢ is the ring Chowgs(¥) := Z(¥)/Hat- 1t has a natural
grading, and for k € N, we denote by Chowés(% ) the graded piece of degree k.

Remark 2.1. We mention here that there are other types of cohomological rings one can
associate to a product of graphs, e.g., the Stanley ring of the product of graphs (with its
natural cubical structure) [16], the tropical Chow ring of products of (metric) graphs [2, 20],
the Chow ring of matroids [1, 11], and the tropical homology groups associated to tropical
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varieties [17]. It is not clear how these different groups are related. A complete description
of the above Chow rings are not available beside the results proved in [1].

Remark 2.2. As it was mentioned before, the Chow ring Chowgg(¥) comes with a map
ax : Chowgs(¥9) — Chowy, (X) for the Gross-Schoen desingularization X of a product of
regular proper semi-stable curves Xi,..., X4 over discrete valuation ring R where the dual
graph of the special fiber of each X; is G;. It seems natural to expect that under some
genericity condition on the semi-stable curves X; 5, and the regular smoothings X; of X; ,, the
ring Chowgs(%) becomes isomorphic to the subring Chow$ (X) of the Chow ring Chowy, (X)
generated by the irreducible components of the special fiber of X.

It will be useful to introduce the following.

Definition 2.3 (The ideal .#1). Denote by .#; the ideal of the polynomial ring Z(¥¢) =
Z[Cy|v € %] generated by the relations (#1), i.e., by the products Cy, ...Cy, for any k € N
and vi,...,vg € 4 which do not form a simplex.

2.3. Functoriality. Let Hy,...,H; be d simple connected graphs with orders <y, on the
vertices of each H;. Define 5 = Hy x --- x Hy with the induced simplicial structure as
described above. Suppose for each ¢ = 1,...,d, a homomorphism of graphs f; : H; — G;
is given such that f; respects also the two orderings <p, and <g,, namely, for two vertices
u <pg, v of H;, we have f(u) <g, f(v) in G;. By the definition of the simplicial structure,
the product of f; leads to a morphism of simplicial sets f : 57 — ¢. Moreover, f induces
the map of graded rings f* : Z(¢) — Z(), which is defined on the level of generators by
sending C,, for v € 4 to

1 (Cy) = > Cu.
uest
Flu)=v

Proposition 2.4. Notations as above, the map f* sends Frat(9) to Frar(F) and induces a
map of Chow rings f*: Chowgs(¥4) — Chowgs(H).

Proof. We need to prove that generators of #4:(¥) given by (#Z1), (#2) and (#3) are sent

t0 Frat ().

Let £k € N and vy,...,vi € % such that vy,...,vg do not form a simplex in 4. Since
[ — ¢ is a map of simplicial sets, it follows for any set of vertices uy,...,ur € J with
f(uj) = v; for j =1,...,k, the vertices uy,...,u; do not form a simplex in 7. It follows

that f*(Cy,)f*(Cv,) ... [ (Cy,) € Fat(FC).
Let now v € 4. We have

PG (X ) = £ (X £1(Cw)) = FC)( X Cx) € Fu(8).

wEeY we%% xXEHD
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Finally, let v,w € ¢ and ¢ € {1,...,d} such that v; # w;. We have

FeOn( Y G))=FEIrEn( Y. FG)

2€Y0:2i=0; 2E€EYG:zi=;

- Y Yan Y o

ueHA) x€HM yEH
flu)=v f(x)=w fiyi)=v;

(Y Y asYa)

ueMy XEMH yeHt
flu)=v f(x)=w Yi=u;

(X X ac X o)
ucHy xcHp yEHD
flu)=v f(x)=w filyi)=v;
YiF Ui
For u,x € 74 with f(u) = v and f(x) = w, we have u; # wx;. Therefore, we have
CuCx Y yeny Cy € Jrar(JE).

Yi=u;

In addition, for such u,x € J4, and for any y € ¢ with f;(y;) = v; and y; # u;, since v; #
w;, we have y; # x;. Thus, CyCxCy is not a simplex in 7, and we have Cy,CxCy € Fra(IC).

This shows that f* (C’VC’W(Z Cy )) € Fat(H), and the proposition follows. O

2€Y0:2;=;

2.3.1. Permutation of factors. Let 0 € G4 be an element of the permutation group of order
d. Given simple graphs G1,Ga,...,Gy, define &, := Gy 1) X -+ X Gy(q), and denote by ¥;
its vertex set. For any vertex v = (v1,...,v4) € ¥, let vo 1= (Vy(1), -+, Vg(q)). We have an
isomorphic of polynomial rings 7, : Z(¥) — Z(¥,) which sends the generator Cy to Cy, .
The following proposition is immediate.

Proposition 2.5. Notations as above, the map 1, induces an isomorphism of Chow rings
ChOWGs(g) — ChOWGs(go)).

2.4. Intersection maps on the level of Chow groups. For a graph G = (V, E) with a
total order < on its vertex set V', and for any vertex v, we denote by G[< v] (resp. G[< v])
the induced graph on the set of vertices {u|u < v} (resp. {u|u < v}). Let Gi,...,Gq be
simples graphs, and let v = (v1,...,v4) € ¥ with v; € V(G;), for i = 1,...,d. For each
1 <i <d, define

oo Gil<iv]  ifi#Fk

U Grl< k] ifi=k,

and set 4, := Hy x --- x Hy. Denote by 7 ;. the set of vertices of ¥, ;.

For each 4, we have an inclusion V(H;) C V(G;), which induces an inclusion %, C 7.
Total orders <; induce total orders on the vertex set of each H;, from which %, j inherits a
simplicial structure, and the inclusion respects the simplicial structures. Thus, we can write
Yy € ¥ as simplicial sets.

Consider the map of Z-modules 3 = By 1, : Z[74 1| = Z[V] defined by multiplication by Cy

Vie N Vwy,...,w; € %k, B(C’WlCW2 .. CWZ.) = Cw,Cw, ... Cyw,Cy.
We have
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Proposition 2.6. The map B induces a well-defined map of Z-modules  : Chowgs (% k) —
Chowgs(¥9).

Proof. We will prove the three set of relations (#1), (#2), (#3) defining Chowgs(%y 1) vanish
by £ in Chowgsg(¥), from which the result follows.

Using Proposition 2.5, and permuting factors if necessary, we can without loss of generality
assume that k = d.
o (#1) If wi,...,w; € ¥, 4 do not form a simplex in ¥, 4, then obviously, they do not form
a simplex in ¢4, and we have

B(Cy, - . Cw,) = Cyy, . ..Cw.Cy = 0 in Chowgs(%).

o (#2) We show that for any u € %, 4, we have

B(Cu Y. Cw)=0  in Chowcs(¥).

WE'Vvyd

We have in the Chow ring Chowgs(¥),

B(Cu Y Cu)=Cu( Y Cw)Cy=Cu( > Cu)Cy

WEYy . d WEYy 4 zcV
z<v,2zq<vq

= Cu( Z CZ)C’V by (#1) since ug < vg and zg < vg

zeyV
z<v, z4=uq

= (> )l — ()] Cy) CuCy = 0.

zeV zeV
2d=Uq Z2LV , zg=ug<vg

In the last equation above, we have used the vanishing of the first term (Z eV Cz) CuCy =0,
Zd=Uq

implied by (#2) since ug # vq, and the vanishing for any z £ v with zg = ug < vq of the
product C,CyCy , since in this case, z and v cannot form a simplex.

o (#3) We have to show that for all j € {1,...,d} and any u,w € %, g with u; # w;, we have

B(CuCw Y Cy)=0.

ZG'de
Zj=Uj

By (#1), we have CyCwCy, = 0 for any z with z; # uj, w;. It follows that

CuCw > Cp=CuCyw > Co+CuCw Y Cu
z€Yy g z€Yy g z€Vy,a
Zj=u; Zj=w;
Since ﬁ(Cqu ZZE’Vv,d C’Z) = 0 in Chowgg(¥), by (#2) that we just proved, we can assume
further that u; < v;.
If j = d, then since ug, wy < vg, and ug # wg, we have f(CyCyw) = CCWCy = 0 by (Z1)
in Chowgs (%), which directly gives the assertion.
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So we can assume that j # d. We have

B(CuCuw Y. C2) zcuow( 3 cz)cv

z2€¥%% 4 zZE€EYy d
2= Zj=Uj
:Cucw( 3 CZ>C’V _ Cqu( 3 CZ>CV
zeV zeV
Zj=u; 2=
z2Lv, zg<vg
- cucw( 3 CZ)CV— Cucw( 3 cz)cv.
zey zeYV
2j=u; 2j=u;
ZLV, zg=vgq XLV, 2g>v4

Since u; < wj, by (#£3) in Chowgs(¥), the first term in the above sum vanishes, i.e.,

CuCu( Y i)y =0,
xeY
For x £ v with z4 < vg, x and v do not form a simplex, and so the second term in the
sum is also zero, i.e.,

Clw( Y Gi)v =0
zey
Zj=Uj
2LV, z2q<vg
Let now z € ¥ with z £ v and zg = vg. Since z; = u; < w; and zg = vq > wq, we infer
that z and w do not form a simplex, and the third term in the sum vanishes as well, i.e.,

cucw( 3 C’Z)Cv —0.

zey
Zj=Uj
ZEV, 2g=0q
As for the last term, we have z; = u; < v; and zg > vy, so z and v do not form a simplex
) J J J ) plex,
which gives

Clw( Y G)oe=o.

zeY
zZj=u;
XLV, 24>vg

Combining all this, we thus get ﬂ(CuCW Zzer,d C’z) = 0, and the proposition follows. [

Zj=Uj

2.5. Moving lemma. The moving lemma for the Chow ring [18] is the statement that each

graded piece Chovvlgg1 (4) is generated by monomials of the form [],, Cv, for o € ¢

Theorem 2.7. For any k € N, the Chow group Chowlggl(%) s generated by monomials of

the form Cy = Cy, ...Cy,, where o is a non-degenerate simplex of dimension k in ¢ with
vertex set vo,..., V.

We give a proof of this theorem based on Proposition 2.9 below, which will be crucial later
in the proof of the structure Theorem 1.5.
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First we introduce some terminology. For any k-simplex 7 of & with at least two different
vertices, and for ¢ € I(7) and € € {0,1}, let {u;,v;} be the corresponding edge of G; with
u; <; v;, and define the element R: ; of Z (9) by

R;:= > Cw and Rl:= ) Cy.

wEY wEY%
W;=Uq W;=v;

Note that the product C-RZ ; is among the relations (#3) and thus belongs to Zas.

Definition 2.8. Let k, m be two natural numbers, and let 7 € %k"d be a non-degenerate k-
simplex. Define the set A (m) as the collection of all the multisets S of size m consisting of m
(possibly equal) elements (i1,€1),. .., (im, €m) With i1,...,4, € I(7) and €1, ..., €, € {0,1}.

With these notations, we have the following useful proposition.

Proposition 2.9. Let o € 4. be a simplex with vertices vg < --- < vy and with at least two
distinct vertices. There exist an element 8 € F1, and a collection of integers ar g € Z for any
1<1<k, any T € 9™ such that o C 7, and any S € A;(k — 1), such that we have

k
Co =0+ Z Z ar.S Cr H R;l

=1 reynd (i,e)es
s.t.oCrT,
SeA, (k-1)
Proof of Theorem 2.7. By Proposition 2.9, for any simplex o € % with at least two different
vertices, we can write
k
Co = B + Z ar 8 CT H R—er,i)
I=1  regpd (i,e)eX
SeA, (k-1)
for integers a, g and g € S C Hat. Forl # k, and any S € A, (k—I), the term C- H(i76)65 R,
belongs to F;at. It follows that

CO' ~rat Z aT,(Z)CTJ‘

TGGZd

Also note that for any integer £ > 2 and any u € %, we have by (#2)
Cﬁ ~rat — Z Cvcﬁ_lv

vEY
{u,v}egpd
and so applying the previous case, it follows that all the monomials of degree k in Z(¥) are
rationally equivalent to an integral linear combination of the monomials C; for 7 € 4/¢, from
which the theorem follows. u

Proof of Proposition 2.9. The proof goes by induction on k. For the base case k = 1, note
that any 1-simplex with at least two distinct vertices is necessarily non-degenerate, and so
the result trivially holds in this case. Let & > 2 be an integer, and assume the result holds
for all k’-simplices with at least two distinct vertices for any k' < k. We prove it holds as well
for any simplex o € ¢, with at least two distinct vertices.
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We proceed by a reverse induction on the number of different vertices of o. If ¢ is non-
degenerate, i.e., if it has k£ + 1 distinct vertices, the result is obvious. Suppose that 2 <[ < k,
and the result holds for all simplices in %}, with at least [ + 1 distinct vertices. Let o € ¥4

with vertex set vog < v < .-+ < vi such that the set {vq,..., v} is of size [. We prove the
result for o. Denote by u; < us < --- < uy all the different vertices of o, and by nq,...,n; the
multiplicity of uy,...,w in o, respectively. (I.e., the number of times each u; appears among
the vertices vy, ..., vy of 0.) We proceed by (a third) induction on the lexicographical order
on ordered sequences (ni,...,n;). Recall that for two ordered sequences m = (my,...,m;)
and n = (ny,...,n;), we have m >, n if there exists 0 < s <[ such that mgs41 > ngy1, and
my > ny for all t < s.

Consider first the smallest ordered sequence (ni,...,n;) in the lexicographical order, so
that we have ny = ---=ni_y =1, and my =k — 1+ 1> 1 (since | < k). Let i € I(w_1,w).

There exists an element 5y € .#; such that we have
Co =By + Cyy ... Cy,_,CEIH!
=Bo+ Cuy ... Coy , Cl 'Ry ;= Y Cy .. Cyy, O 'Oy

we%

wW>up

n;—1

— Y Cuye G OO
wEeY
w1 <w<u
wi=ug ;

Each term Cy, ... C’ulilC{flI—lCW in the above sum either belongs to .#; or is of the form C
for a k-simplex 7 which has [ + 1 different vertices. Also the term Cy,Cy, . .. 3;‘1 is C; for
a (k—1)-simplex 7 with at least two distinct vertices. Thus the result follows by applying the

induction hypothesis to each term appearing in the right hand side of the above equation.

By symmetry the same reasoning applies to the maximum ordered sequence (nq,...,n;) in
the lexicographical order which has no =---=n; = 1.
Let now n = (ny,...,n;) be an arbitrary ordered sequence. We can assume that n is

neither maximum nor minimum in the lexicographical order. Thus, there exists 1 < h <[
such that n, > 2. Let ¢ € I(up_1,u). Quite similarly as above, there exists 51 € .#; such
that we have

_ ni np m; __ ni Mh—1 mp—1 n; pl
Cp=CM .. Clh . CT =By 4+ CT1 . Chn-iom=l | cmRL
_ ni Nh—1 np—1 n;
S cm L cimtoml L cna,

wEe%
W>up,

ni Mh—1 ~np—1 ng
- Y opLcumiopTt.onc,,.

wEY
up_1<wuy
Wi =Up ;

n

The hypothesis of the induction applies to the first term as Cy! ...C’LL;L‘ZIIC’u;f1 ... Cﬁll has
degree k — 1. In the second term of the equation above, the induction hypothesis applies
to each term CJ! Oyttt 32_1...6‘3wa in the sum: if w = u; for some j > h +1
since the ordered sequence (ni,...,np—1,n, —1,...,n; +1,...,n;) is smaller than n in the
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lexicographical order. If w # u; for all j, then the term is either in .#; or is of the form C,
with o/ € 4, with more than [ distinct vertices.

Similarly, the hypothesis of the induction applies to each term C}}! . .. Cur”} C’G‘{j*l .. Oyl Cy
in the last sum, as each of those terms has [ 4+ 1 distinct vertices. ]

3. PROOFS OF THEOREM 1.5 AND THEOREM 1.4

By Theorem 2.7, we have a surjective map Z(g,?d) — Chowlggl. The structure Theo-
rem 1.5 describes the kernel of this surjection.

First recall that for two elements u < v of ¢ such that {u, v} € 4, we denote by e,y the
cube of dimension |I(u, v)| formed by all the vertices z = (z1, ..., zq) in % with z; € {u;,v;},
ie., euy = [14, {usi, vi}.

Let o be a k-simplex in gknd with vertices ug < u; < --- < ug. For two indices 1 <14,5 <d
lying both in I(us, ug41) for some 0 < ¢ < k — 1, we defined

Rpijo= > Cu— > Cu

WEeuy,up g WEeuy,up g
wi=ug,; wj=u,

Remark that we have

CaRa,i,j = E Cuo e CuthCutH ce Cuk
u<w<ui41
Weeut,ut+17wi:ut,i
- 3 Cuy - CasCoeCyry - - Chay.
u<w<ui41

WEeuy uyy g, Wj=Ut,j
and so Cgéa,i7j € Z(4). Define . as the submodule of Z(¥4?) generated by all the
elements C, R, ; j, for any o,t,4,j as above.
For o,t,1i, 7 as above, we define

Ryij:=R); — R) ;= Z Cw — Z Cw.

wEY wEY
Wi =Ut,i Wi ="Ut,j

Note that we have C, Ry j ~rat 0 by (#3).
The following proposition is straightforward.

Proposition 3.1. Notations as above, there exists B € S such that we have C,Rs;; =
B+ Cgﬁg,i,j.
This shows that ,/k"d C Hat, and therefore, passing to the quotient, we get a surjection
Z(G ) ) 7 — Chowhii!.
In this section, we prove this map is injective, which implies Theorem 1.5.
Let a = ZTEgknd a-Cy € Z(4P?), with a, € Z for all 7 € 4, be an element in the kernel,
so we have o >+ 0. We shall prove that a € fk"d.

Consider the graded piece Z*+1(%) consisting of all polynomials of homogenous degree
k+ 1 with integral coefficients in variables Cy, for v € 4. We define on Z**1(%) a decreasing
filtration F*: F~! = Zk1(9) > FO 5 ... o Fk=1 5 FF as follows.
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Definition 3.2. Define F~! := ZF1(%), FO .= #51(4), and for each 1 <1 < k — 1, define

rat
F! as the set of all elements o which verify the following property: there exists an element

B € #, and for each | <t < k — 1, there are integers a, g associated to any 7 € @ and
S € A;(k —t) such that we have

t=l  rcypd (i,€)eS
SeAT(k t)

Finally, define F* := ,ﬂk”d.
(Note that the inclusion F* C F! is implied from Proposition 3.1.)

Theorem 1.5 is a consequence of the following two lemmas.
Lemma 3.3. Let a € Z(%,;“% s0 that o ~ypat 0. Then we have o € FF—1,
Lemma 3.4. We have Z(4?) N FF—1 = Fk = gnd,

The rest of this section is devoted to the proof of these two lemmas.

Before giving the proof of Lemma 3.3, we introduce few extra notations, and state a useful
proposition.

Let 1 <1 <k —1 be an integer. For any [-simplex 7 € %l”d with vertices ug < --- < wuy, fix
a subset J; of I(7) of size | with the property that |J- NI (u;, ujt1) } =1forall0<j<Il-1.

Define the projection m, : I(7) — J, which projects the subset I(u;,uj;1) C I(o) to the
unique element of the intersection I(uj, w;jyq1) N Jr.

For any set S € A;(k — 1), define 7-(5) as the multiset consisting of all the pairs (7 (i), €)
for any pair (i,¢) € S. We have

Proposition 3.5. Let 1 <1 <k —1 be an integer. For any T € glnd and any S € A-(k —1),
we have

¢, I[ r-c- [ R ert.
(i,€)€S (i,e)em(S)
Proof. Let m = k — [, and denote by (i1,€1),..., (im, €m) all the elements of S. Let j be the

index with ¢; € I(uj,u; +1). We can write

Rj'lll - Rj'lll - Rferlﬂ(zl) + R?W(zl) = (_1)61R7’ i1,m(i1) + RT (in)”

By Proposition 3.1, we have
Cr RTzl, (i1) — Cr RTzl, (41) +/Bv

for some g € .#;. Since C Rzlw(ll) € Z(G"Y), setting S" := S\ {(i1,€1)}, we infer that

ZNT H(“ cs B, € FHL Let S; = SU{(n(i1),€)} \ {(i1,€1)}. Thus, since 7(7(i1)) =
m(i1), we get
c, I[ r,-c- [ Rei=eF*.

(i,e)eS (1,6)€51

,7_
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Proceeding by induction and applying the above reasoning to the set Sy = S;—1 U{(7(¢),€:)}\
{(it,€er)} and (i¢, €¢) € S¢—1, for t > 2, we infer that for each ¢,

¢, I[ rRi-c- J] Reier™
(i,€)eS (i,6)€St
For t = k — [, we have Sy_; = m(S), and the proposition follows. O

The following proposition is a direct consequence of the definition of the simplicial structure
onY.

Proposition 3.6. Let 7 € 9", For any i € I(7), we have
Cr( Z Cv) = Cr(RY; + Ry;) € A1

vEY

With these preliminaries, we are ready to prove Lemma 3.3.

Proof of Lemma 3.5. Let o € Z(47%) be an element with o € 0 = #,(¥). Proceeding by
induction, we will show that for any 1 < < k — 1, we have a € F'; for | = k — 1 we get the
lemma.

For the base of our induction, we need to show that o € F!. Since a ~ya¢ 0, by definition
of the rational equivalence, there are elements 3 € % and ag € Z(¥), and for any o € 4%,
and i € I(0) and € € {0, 1}, there is an element ;. € Z*~1(¥) such that we have

5)  a=B+a(> Cu)t+ > i CoRS,.
wEY oegpd
(t,e)eAs(1)

For any u € %, we compare the coefficient of C¥*1 on both sides of Equation (5). On
the left hand side, the coefficient is zero since « has support in the non-degenerate simplices.
Thus, the coefficient of C5*+! in the right hand side of the equality must be zero, and since all
the monomials in the last sum have at least two distinct variables among C,, we infer that
the coefficient of C{j in ag must be zero. Therefore, we can write ag = By + Zaeglnd Yo Cs
for By € A1, and v, € ZF"1(¥). For any o € 4%, picking an arbitrary i, € I(c), and using
Proposition 3.6, we decompose

Co Y Cw=B,+CoRy,, +CoRyy,.
wEeY
for an element 8, € #,. Therefore, we have

ao( Y Cw) =B+ Y. 1CeRS, .
we%% geglmi
ec{0,1}
for some 3], € 4.
Thus, replacing § of Equation (5) with 5 + /3, and replacing oy, . for each o € %{Ld and
e € {0,1} with as i, c + Vo,i, e, We can ensure to have ag = 0, and get

(6) a=03+ Z Qi e Co Ry ;.
JE%{“’Z
(i,e)€As(1)
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Let 0 € %{‘d and (i,€) € Ay(1). Each monomial in o, ;C, is either in .# or has at
least two distinct vertices. Thus, applying Proposition 2.9 to each of the monomial terms in
Q,i.cCo, for any o € 47, and (i,€) € Ay (1), we finally infer the existence of 8y € .#1, and
for each 1 <t < k —1, the existence of integers a, g associated to 7 € %t”d and S € A.(k—1),
such that we can write

k—1
N ST |
t=1  regpd (i,e)eS
Se A (k—t)

This shows that « € F1.

Assume now that we have o € F! for an integer 1 < | < k — 1. We shall prove that
a € F*1. By definition of F!, there is an element ; € %, and for all | <t < k — 1, there
are integers alT’S € 7 associated to 7 € 4/ and S € A, (k —t), so that we have

k—1
(M a=8+Y_ > agsC [] B

=l regpd (t,e)€S
SeA:(k—t)

In order to prove a € F'*1 it will be enough to show that

> absCr I RreF

regnd (ic)€S
SeA; (k—1)

We show the following stronger statement.

Claim 3.7. We have for any 7 € gl”d
Yoo dgCr [ ReieFT.
SeA, (k—1) (i,e)eS

Fix a non-degenerate [-simplex 7 € 4"¢ with vertices ug < -+ < w;. Let J, C I(7) be the
set of size | which intersects each I(uj,u;41) in a unique element. By Proposition 3.5, we
have

(8) Soodge I] re— D> diser ] B e FT
SeA;(k-1) (i,e)eS SeA; (k1) (J,e)em(S)
Denote by ig, ...,4—1 all the elements of J; with i; € I(u;,uj41) for j =0,...,0—1.
Proposition 3.6 implies that for any 0 < j < [, we have
9)  CR), +C:Ry; —C:R);, —C,R; € 7.

Tyl T, T,

Let B-(k — 1) be the set of all mutisets S of size k — [ such that each element (i,e) € S
belongs to the set of pairs {(io,0), (i1,0), ..., (4-1,0), (-1, 1) }.

Combining (8) and (9), we infer the existence of integers b, g for any S € B, (k —1) so that
we have

(10) S odgc T[] Rei— DD besCr [ R e FU

SeA, (k1) (i,e)€S SEB, (k—1) (i.e)€S
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Thus, Claim 3.7 will be a consequence of the following statement.
Claim 3.8. For any 7 € 9" and any S € B-(k — 1), we have b, g5 = 0.

Each element in B;(k —[) is given by an ordered sequence n = (no,...,n;_1,n;) of mul-
tiplicities of (ip,0),..., (i—1,0), (941, 1), respectively, with the property that ns > 0, and
no+---+n; = k —1[. For such an ordered sequence n, denote by Sy, the element of A, (k —1)
associated to n.

For 7 € %l”d with vertices ug < --- < uj, consider in the sum on the right hand side of
Equation (7), the sum of the monomials which are in the polynomial ring Z[Cly,, ..., Cy,].
This polynomial is precisely

CT Z bT,Sn (Cuo)no (Cuo + C’u1)n1 Ce (Cuo + -+ Cflll—l)nF1 (Cul)m’
n:(no,m,nl)ezlg)l
no+--+n;=k—1l

which must be thus vanishing since « is supported on non-degenerated simplices, and k—1{ > 1.
Since we have an isomorphism of polynomials rings

Z[Cuy:- - - Cu)] 2~ Z[Cuy, Cug + Cuays - -, Cug + ++ + Cuy_y, C ],

it follows that the coefficients b, s, are all zero, which proves Claim 3.8, and finishes the proof
of Lemma 3.3. OJ

We now prove Lemma 3.4, finishing the proof of Theorem 1.5

Proof of Lemma 3.4. Let a € Z(%?d> N F*=1. By definition of the filtration, we can write «
in the form

(11) o= B + Z aT,(i,e)CTR:,i'
TEG_1
(i,e)€Ar(1)

for some 3 € .41, and integers a, (; o) associated to 7 € @gnd and (i,e) € A-(1).
Let 7 € %?_dl with vertex set ug < -+ < ug_1. For each 0 < j < k — 2, define

Prj = Z Ar (i,1)

i€l (u;,u541)
and for each 0 < j < k — 2, define
bri= > Ao
iGI(Uj,Uj+1)

For an integer 0 < s < k — 1, the coefficient of C;Cy, on the right hand side of Equation (11)
is Zj;(l) prj + Zf;f {rj, which, since a € Z(%44,), must be zero. We infer that

s—1 k—2
(12) 0<s<k-1, ZpT,jJrZém-:O.
7=0 j=s

Subtracting these equations for the values of s = j and s = j + 1, we get in particular,

VOS]SI{I—Q, pT,jZET,j'
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Applying Proposition 3.6 to any i € I(7), we infer the existence of 8’ € .#; such that we have

a=8+ " (ar60) —ar@n) B+ (D aren ) (D Cw)

i€l(r) z'el( ) we%

=B+ Y (ar0) — r1)C-RY, + Zﬂm > Cw)
iel(T) weY

=3+ Z r,(3,0) T’(i’l))C’TRgﬂ- (by vanishing Equation (12) for s = k — 1).
1€I(T)

Let J; be the subset of I(7) of size k — 1 which intersects each interval I(u;, us41) in a
single element. By Proposition 3.5, we can further write

a=/p+ Z (ar,i0) — ar,(i,l))CTRg,i

i€I(T)
- B” + Z Qr,(,0) = Qr,(i, 1))C RT,'L,W('L + Z ar( a"f',(i,l))R?-,w(i)’
i€l(r) iel(r)

for an element " € #. For each 0 < j < k — 2, let i; to be the unique element in the
intersection I(7) N J-, so that we have 7(I(uj, u;j41)) = {i;}. We further get

fe—2
a=p"+ Z (ar(i,0) = ar(i.1)) CrRe i (i) + Z Z (ari0) — aT,(i,l))Rg,i]

iel(T) J=04iel(uj,u;j41)
k—2
" D 0

6 + Z Qr (i,0) — T,(i,l))CTRT,i,Tr(i) + (gﬂj - pT,])RT ij
i€l(r) J=0

5” + Z Qr,(i,0) — T,(i,l))CTET,i,TF(i) (by the equality Prj = Z‘I‘,j)'
€l(r)

We finally conclude that 7 = 0 and o € .#*, and the lemma follows. O

3.1. Proof of the localization theorem. We now prove the localization theorem 1.4. We
retain the terminology from the previous sections. For e € & = Fy X -+ X Eg, let Ue =
e; X -+ X eq. Regarding each edge e; as a subgraph of G with the induced total order from
G; on its vertices, and applying the functoriality to the inclusions e; — G;, we get a map
1% : Chowgs(9) — Chowgs(Ce) =~ Chowgg([09) associated to the inclusion map of simplicial
sets

te : Ue — ¥.

By definition, the map ¢} is identity on the generators associated to the vertices of Ue, and
is zero otherwise. For an element a € Z(¥), and for e € &, we denote by a|e € Z([e) the
restriction of o to the hypercube [, i.e., aje = tg(a).

We need the following proposition which follows directly from the definition.

Proposition 3.9. For any collection of connected subgraphs Hi,...,Hy of G1,...,Gg, re-
spectively, let 7 = Hy x --- x Hg with its induced simplicial structure. We have for any
1<k <d, 5p4H) C IYY).
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With these notations, we first prove the injectivity part.
Theorem 3.10. The map of graded rings Chowgs(¥) — [[ece Chowas(De) is injective.

Proof. Let 8 € Chowfg(¥) be an element such that Ble = 0 in Chowfig(Ce) for all e € &.
We show that 8 = 0 in Chowgs(%). By Theorem 2.7, § is represented in Chowfig(4) by an
element a € Z(%?). Consider the element « such that the number of hypercubes e € & with
aje = 0 is maximized. We claim that o = 0 which proves the theorem.

Suppose this is not the case, and consider a hypercube [e with o # 0. Since qe is zero
in Chowgs(Ue), by Theorem 1.5, we get e € S (Oe). Using the inclusion £ (Oe) C
ﬂ,:fl (¢), which follows from Proposition 3.9, we find that aj¢ ~yar 0in . Setting o = =g,
it follows that o ~at @/ in 4. On the other hand, we have ozfe = 0, and for any other e’ with
ajer = 0, we also have ozie/ = 0. This contradicts the choice of «, and finishes the proof of the
theorem. 0

We now move to the proof of the second part of the theorem.

Let (ae) be a collection of elements in Z¥T1(,), for e € &, such that (ae) is in the
kernel of the map j. It follows that for two hypercubes e and €' sharing a facet, we have
Qele'ne ~rat Qe'le/ne 1N Z(Oener). Using Theorem 2.7, and Proposition 2.4, we can assume
that ae € Z(Dg‘p for all e € &. We show the existence of v, € Z(DZi) for any e € & such
that

(1) for any e € &, we have e ~pat e in Ue; and
(#1) for any two hypercubes e and €’ sharing a facet, we have Yelene! = Ve'lene -

Assuming this, we get an element v € Z(%*%) such that the class of (e )ecs in [[, Chowgs(Ce)
is in the image of the restriction map Chowgs(¥) — [[ocs Chowgs(Oe) and the theorem fol-
lows.

Let N = !é?‘, and enumerate all the elements of & as eq,...,ey. Define ve, = ae,.
Proceeding inductively, for each 1 <1 < N — 1, suppose that ve,,...,7e, have been defined,
and (¢) and (i7) are verified for ve,,...,7e,. Consider the hypercube €;41. Denote by d; the
restriction of a,,, — e, to the intersection €41 MNe;. Then 4 is rationally equivalent to zero,
and so by Theorem 1.5 and Proposition 3.9, belongs to .#]"(He,,,ne,) C F"4(¥). Set A =
Qe —01 ~ Qe ,, and note that A1 and ae, coincide on the intersection e;MNe;;1. Proceeding

inductively, for t = 1,...,1, define §; as the restriction of A\;—; —~; to the intersection e;;1Ney,
and note that §; € fk"d(Deleet) C fk”d(%). Define A\py1 := A\t — d;.
Defining ve,., := A1, we get a collection of elements Ve, ..., %e,,, Which verify (i) and

(71) above, and this completes the proof of the second part of Theorem 1.4.

4. COMBINATORICS OF THE DEGREE MAP: PROOF OF THEOREM 1.6

Let 0% = {0,1}¢ be the d-dimensional hypercube with its standard simplicial structure,
which is the d-fold product of the complete graph Ko on two vertices 0 < 1. After stating
some results concerning the structure of the Chow ring Chowgg((1%), we prove Theorem 1.6.

First recall from Section 2 that the elements of (0% = {0,1}% are the vertices of the hyper-
cube [0, 1]d in R?, and the non-degenerate d-simplices o of (1% are in bijection with the elements
p of the permutation group &y, as follows: denoting by e, ..., e4 the standard basis of R?,
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the d-simplex o, associated to p € &4 has vertices 0, €,(1),€,(1) +€,2); - - - €p1) T+ €,(a)-
We have the following corollary of the structure Theorem 1.5.

Proposition 4.1. For any two non-degenerate d-simplices 01,09 € 0%, we have C,, = C,,
d+1

in Chowgg(04), and the Chow group Chowg (O%) is canonically isomorphic to 7.
Proof. Since by Theorem 2.7, the non-degenerate simplices generate the Chow ring, the second
part of the proposition follows from the first part.

So let o1 and o3 be two non-degenerate d simplices of (1%, and denote by p1, p2 the corre-
sponding elements of &4, respectively.

Writing pl_lpg as the product of the transpositions of the form (i, i+ 1), for 1 <i <d—1,
it will be enough to prove the equality of Cy,, and C,, for po = p1(i,i+1). Furthermore, using
the action of &4 on (0% via permutation of the factors and Proposition 2.5, we can further
reduce to prove the equality of Cy, and Cy, for p; =id and pa = (7,7 + 1).

In this case, the vertices of o1 are vo = 0, and v; = e; + --- + e, for j € [d], and the
vertices of g are u;, 0 < j < d with u; =v; for j #¢, andu; =e  +---+e;,_1 +e;41. Let 7
be the d — 2-simplex of (0% with vertices v; =u, for 0 < j < dand j # ¢+ 1. The vanishing
of C,, —Cy, in Chowgg(C?) now follows by observing that C,, —Cy, = C’TET,MH € Fr. O

We define the degree map
d+1/—d
deg : Chow(,£' (O%) — Z
to be the canonical isomorphism of the above proposition.

Corollary 4.2. For any collection Gy = (V1, E1),...,(Gq, Eq) of d simple connected graphs,
we have ChowhE () ~ ZI1.

Proof. This follows from the localization Theorem 1.5 for Chovvé'g1 (¥¢), the previous propo-

sition, and the vanishing of the Chow group Chodeng(Dd_l). O

Definition 4.3 (Degree map). For 4 = G; x ...G4 a d-fold product of simple connected
graphs G1,...,Gg, we define the degree map deg : Chowé*s1 (9) = Z by

deg(z) =) dege(1z(x)),

ecs
for any x € Chovvng1 (¢), where deg, is the degree map of Chow‘ggl(De) o~ Chodeng(Dd).

4.1. Intersection maps for the inclusion of hypercubes. Let £ < d be two natural
numbers, and v € (0 be an element of length |v| =k + 1 < d. Let I = {i1,...,i;,1} be the
support of v, i.e., the subset of [d] consisting of all the indices ¢ with v; = 1. The first k indices
i1,...,i; define an inclusion 7 : OF < ¢ which is given by sending w = (w1, ..., wy) € 0¥ to
the point u = n(w) € 0% with u;; = wj forall j =1,...,k, and u; = 0 for all i ¢ {i1,...,ix}.

Denote as before by Ko the complete graph on two vertices 0 < 1, and let Ky be the
complete graph on a unique vertex 0. Note that K; = K3[< 0] = K3[< 1] in the terminology
of Section 2. We can view the hypercube [OF as the product of graphs Hy, ..., Hy, with
H; = K, for i =iy, ...,ix, and H; = K for all the other values of i. The cube 0% corresponds
to the d-fold product of the complete graph K. In this way the map 1 : 0¥ — ¢ corresponds



26 OMID AMINI

to the inclusion map Hy X - -+ X Hy < Ky X --- X Ko. Consider now the map of Z-modules
B = By : Z[O*] — Z[O%] defined by multiplication by C

Vie NVwy,...,w; € Dk, ,B(Cwlch c. Cwl) = Cn(Wl)Cn(Wz) . C’n(wi)Cv.
As a special case of Proposition 2.6, we get the following useful proposition.

Proposition 4.4. The map (3 induces a well-defined map of Z-modules B : Chowgg(CF) —
Chowgg(09).

With these preliminaries, we are ready to present the proof of Theorem 1.6.

4.2. Proof of Theorem 1.6. Let ¢ be any d-simplex of (04 with vertices vi < va < --- < V},
where each vertex v; has has multiplicity n; in o for numbers n; > 1 with ) . n; =d+1, as
in the theorem. As before, we set C; = C71...Cyf.

We first prove the vanishing result, namely part (1) of the theorem.

Claim 4.5. Assume there exists an 1 <1i < k with ny + --- +mn; > |viy1|. Then Cy = 0.
Claim 4.6. Assume there exists an 1 <1i < k with n; + -+ ng > d — |vi—_1|. Then C, = 0.
We only prove Claim 4.5, as the proof of Claim 4.6 is similar, and follows by symmetry.

Proof of Claim 4.5. We proceed by a decreasing induction on ny + -+ + n; + |vi41|. The
base of our induction is the case i = 1, |ve| = 1, and n; = 2. Since v; < vy, this means
vi = 0. It will be enough to prove that 0\2/1 Cy, = 0. Without loss of generality, and using
Proposition 2.5, we can suppose that vo = e;. By relation (#3) in the Chow ring, we have

Cy,Cyy > Cy=0.

ved
v1=0

Since for all v # 0 with v; = 0, by (#1), we have C\Cy, Cy, = 0, we infer that C2 Cy, = 0.

Let N > 3 be an integer, and suppose that the vanishing C, = 0 holds for any o verifying
condition of the claim for an 1 <4 < k such that n; + --- +n; + |vi41| < N. We show the
vanishing C; = 0 holds for any o verifying hypothesis of the claim for an 1 < i < k with
n1—|—~-~+ni+|vi+1| = N.

The proof is divided into the following three cases, depending on whether ¢ = 1, or ¢ > 2
and n; > 2,or i > 2 and n; = 1.

e Consider first the case i = 1. Thus, we have n; > |vo|. For any j € I(vy,vsa), we have
v1,j = 0,v2; = 1, and by relation (#3) in the Chow ring, we get

(13) Z 0311_10\,0‘7}22 ... Cyg¥ =0, which in turn implies

vend
v;=0
n1 nk n1—1 n2 n ni—1 n2 ng __
(14) Ccmooms S cmTloycnz.opy YD omTle oL O = 0.
velnd veld
vi<v<va,v;=0 v<vy,v;=0

— For v € 04 with vi < v < va, we have the vanishing of the product C’Z}ll_leC\’}; L OyF
by the hypothesis of our induction. Indeed, in this case, we have ny — 1 > |vg| — 1 > |v| and
TL1—1—|—’V2’<N.
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— For v € 0% with v < vy, we again have CVC"’}ll_lC(}g ...Cy* =0 by the hypothesis of our
induction, since we have 1 +n; —1=ng > |va| > |vi| and n; — 1 + |va| < N.

The only remaining term in Equation (14) is C3! ... Cyf which must be thus zero.

e Consider now the case i > 2 and n; > 2. The proof in this case is similar to the above
situation. Namely, take an index j € I(v;, vi41) so that v; ; = 0 and v;y1; = 1. Using the
equation of type (#3),

o .cc;:;ccgfl( 3 cv)cegg O =0,
veld:v;=0
we see as above that all the terms v # v; with v; = 0 contribute zero to the above sum,
ie, OO, CyiZ | CUmIC,Cult] ... CYF = 0, either by (1) if the corresponding sequence
does not form a simplex, or by the induction hypothesis as in the previous case. The only
remaining term in the sum above is for v = v;, and it follows that C3! ... Cc,’; =0.

e Finally, consider the case i > 2 and n; = 1. In this case, we have nqy + -+ + n;_1 =
ny+---+n;—1>|vipr1| —1 > |v;_1] and by the hypothesis of our induction, we again have
Cyr...Cyf =0. O

We now turn to the proof of the second part of the theorem. So suppose there is no
1 <i<kwithng+---4+n; > |viy1], and there isno 2 < ¢ < k with n; +---+ng > d— |v;_1].
Since »  n; = d+ 1, this means that for all 1 <i < k — 1, we have

Vil +1<ng + -+ +n; < |vil,

and, obviously, [vg| +1 <nj+---+ni =d+ 1. We first show the existence of the sequence

x;,y; verifying the properties stated in the theorem. Let yo = |v1|, and define x;,y;, for
1=1,...,k, as follows:
xi=ny+ - +n;— |yl —1, and y; = |vig1| —n1 — - —n,.

Note that x;,y; > 0 for all ¢, and |v;| = |vi—1|+zi+y;+1for2 <i < k,and n; = y;—1+z;+1
for 1 <4 < k. Thus x;,y; verify the three conditions stated in part (2) of the theorem.

Claim 4.7. With the above notations, we have

deg(Cy) = (—1)4H1F <y0 + xl) (Il + y1> (yl + I2) (xk—l + yk—1> (yk—1 + xk)
Yo 11 i Yk—1 Tk

We need to prove some preliminary results, which are all special cases of the above claim.
Proposition 4.8. We have C¢™1 = C3t! = (—1)2.

Proof. By symmetry, we will only need to show C’f“ = (—=1)4. Proceeding by induction, we
show that for any 0 <7 < d — 1, we have

C(li-i'l — (_1)i+1COCe1Ce1+e2 s Cel+"'+eicil_i’

which, for i = d — 1, gives the equality C’f“ = (=1)%, as required. (For i = 0, this means
Ot = — oY)
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First note that by (%2), we have (3}, .2 Cv)C{ = 0, which implies that

Citt = —CoCf - Y~ CvCf.
v#0,1

By vanishing part of Theorem 1.6, that we established in Claims 4.5 and 4.6, we have CVC"li =
0 for all v £ 0,1. This gives

Ol = — o0
Suppose that we have already proved for an 0 < i < d — 1, that
Ol = (—1) 10 Co,Coy ey - - - Coyiote, CL70

By relation (#3) in the Chow ring, we have

(15) COCel Ce1+92 ... Cel"r‘“-i-ei( Z Cv)cffifl —0.

VEDd,Ui+1:1

For any v € 0% with v;;.1 = 1, if e, + - - - +e€; £ v, by the definition of the simplicial structure
of (¢ and the relation (21), we get CoCe,Coytey - - Coptte;CyCE 71 = 0. On the other
hand, for any e; +---+e; +e;11 < v < 1 with v;3.1 = 1, by applying the vanishing criterium
of Theorem 1.6, we get CoCe,Ce,+e, - - - C’e1+...+eiCVCil*i*1 = 0. Indeed, in this situation, we
have |v| > i + 2, which gives the inequality d —i — 1 > d — |v| as required in Claim 4.6. It
follows from these observations and Equation (15) that

C0Co,Coytes - - Corpote;Cf ' = —C9CoyCoytey - - - Cortoter, CU 7,
and the lemma follows. ([l

Let now v € 0% be any element of length 1 < ¢ = |v| < d with support the subset I C [d].
Let i1 € I and i3 ¢ I be two elements of [d], and define I := I\ {i1} and I := I¢\ {iz}.

Let m € N be an integer, and suppose w1, ..., w,, are vertices of 0% with support in I.
Consider an element a1 = Cg}, ... Cgn for a; € N with a1 + -+ + a,, = £.

Similarly, let t € N be an integer, and suppose zi,...,z; € [1¢ are such that for each
1 <j <t IU{ia} C support(z;). Consider an element of the form ay = C;’} ...C’;’fS for
b]’ e Nwithby +---+b;=d— /.

We write a1z, for the element of Chowgg(C1*~1) of degree £ obtained by viewing w1, ..., Wi,
in O (keeping only the coordinates in 1) and keeping the exponents ay, ..., a,,. Similarly,
we write sz, for the element of Chowgs(C0“~1) of degree d — ¢ obtained by restricting z;
to Iy, and keeping the exponents by, ..., bs.

Proposition 4.9. Notations as above, we have
deg(a1Cvarz) = deg(on |1, ) deg(azr, ).

Proof. Choosevg =0 < --- < vy_1 < v with support of v; included in I; foreach 1 <1 < £—1.
It follows from Proposition 4.4 and the fact that Chowgg(C0"1) is one dimensional in degree
¢ generated by Cy, ...Cy, ,Cy that

Ct - . Cyr Oy = deg(ai|r,)Cy,Cy, ... Cy,_, Cy.
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Similarly, chose vp11 < --- < vg4 such that I U {i2} is included in the support of v,y;. We
have
CyCl ... CY = deg(as|r,)CyC

vesr -+ Cvy-
We infer that

a1Cyag = deg(ailr,)Cy, - .. Cy,_, Cyaz
= deg(au]r,) deg(an|r,)CvyCy, - .. Cy,_ CyCy,y,, ... Cyy,
from which the result follows. O

The previous proposition allows to prove the following generalization of Proposition 4.8.

Proposition 4.10. For any v € 0%, we have C4H1 = (=1)4(4).

v
Proof. We proceed by induction on d. The case d = 1 trivially holds. Suppose the statement

holds for d — 1. Let now v € (0% be an element with |v| = . We can suppose that v # 0,1,
since we already treated these cases. We have by (#2)

(16) (). Cw)Ci=0.
weld
For all w # 0,1,v, we have by applying either (#1) or by the vanishing criterium of
Theorem 1.6, that Cy CZ = 0. Therefore, from Equation (16) we get

Cdtl = _Cp0d — Cicy.

Let ¢ € {1,...,d} be an index with v; = 1, and define I := [d] \ {i}. By Proposition 4.4, we
have deg(CoC%) = deg((Cv| I)d), which applying the hypothesis of the induction, gives

deg(CoCy) = deg((Cy|1)?) = (-1)*! (yi_jl)'

Similarly, let j be an index with v; =0, and J = [d] \ {j}. We have

deg(CICH) = deg(Cul?) = (~1)*" (d‘;f).

The result now follows from the standard binomial identity (‘g|) = (d_l) + (d_1 ) O

|v] [v]—1
We are ready to prove Claim 4.7, and complete the proof of Theorem 1.6.

Proof of Claim 4.7. The proof goes by induction on d. So suppose that the statement holds in
all hypercubes (0% for any positive integer d’ < d. We show that it holds also in Chowgg(09).

We already treated the case k = 1 in Proposition 4.10. So we can suppose k > 2.

Suppose first that nqy = 1. In this case we must have vi; = 0, since otherwise, we would
have ng + -+ +ng =d > d — |vy|, and by Claim 4.6, we would have C, = 0. Let now i € [d]
be an index with vo; = 1, and let I = [d] \ {i} and ap = C}2...C5}. By Proposition 4.4,
we get deg(Coae) = deg(az|r), and the statement then follows by the induction hypothesis
in the hypercube 091

So we can suppose that n; > 2. We divide the proof into two parts depending on whether
vi = 0 or not.
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Suppose first that vi # 0. Let ¢ € I(vq,Vv2), so we have v1; = 0 and vp; = 1. By relation
(#3), we get
cuton (Y ow)ow|oion . o =0,
weld w; =0
in the Chow ring, from which we deduce, by developing, and using (#1) and the vanishing

criterium in Theorem 1.6, that

ni Mg n1—1 N ni—1 no ng
CpL O = —CoCt e — Y emTle O L O
vi<v<va
[v|=lvi|+z1

Therefore, we have

(17)  deg(Cyl...C0%) = —deg(CoCyl ... CPF) — Z deg(CP 1Oy CP2 ... CPF).

vi<v<va
[vI=[vi|+z1

Let j be an arbitrary element in the support of v, and set J := [d]\{j}. From Proposition 4.9,

we get

deg(CoCui ... Cur) = deg ((Cu ™. .cm) )

k
— (—1yd (yo + 2 — 1) <x1 + y1) <y1 + xg) (xkl + yk1> <yk1 + Jfk)
Yo—1 1 Y1 Yk—1 Tk
In the last inequality we used the hypothesis of our induction in [,

Now for each vi < v < vy with |v| = |vi|+ 21 =yo+ 21 =n1 — 1, let iy € I(vy,V) be an
arbitrary element, and define Iy ; = support(v) \ {iy1}. Similarly, let iy 2 € I(v,v2) be an

arbitrary element, and define I, o = [d] \ (support(v) U {zv2}> By Proposition 4.9, we have

deg(Cyl ™ CyCy3 .. Cyt) = deg(C 1, 1) deg (€32 - €)1, )

k

_ (—1)m-2 <n1 A (—1)d-lol=k+1 (01 + @2 Tp—1+ Yk—1\ ((Yre—1 + Tk
|v1] Y1 Yk—1 Lk
— (—1)m 2ol =k <Z/0 +T1— 1) <yl + 372) - <$k1 + Z/k1> Yk—1+ xk)
Yo 1 Yk—1 Tk

= (—1)4F (yo T 1) <y1 + x2> <f'3k—1 + yk—l) (%—1 +
Yo Y1 Yk—1 Tk

T1HU1) choices for vi < v < vo with |v] = |vq| 4+ 21.

It finally follows from Equation (17) and the calculation of degrees above that

deg(C,) = (—1)d+17k[ <y0 + 561; 1> N <yo + a1 — 1>] (ml + y1) . <yk—1 + xk)
Yo — Yo T T

— (—1)H1k <y0 + $1> (961 + y1> o (ykl + !Ek:>
Yo g Lk ’

and the theorem follows.

Since |va| = 1 + y1, there are in total (
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In the final case vi = 0, using (#1) and the vanishing criterium in Theorem 1.6, we have,
similarly as in the previous case above, that

n1 neE _ ni—1 ng N
C L. O = N optloyone .o
vi<v<va
[v|=|vi|+21

from which the result again follows by the hypothesis of our induction using a similar argument
as in the previous case vy # 0. O

5. FOURIER TRANSFORM AND A DUAL DESCRIPTION OF Chowggs((0%)

Identify the points of (¢ with the elements of the vector space F¢, and consider the scalar
product (,) on F¢ defined by (v,u) = Zle v;.u; € Ty, for any u, v € F4. Recall that for any
w € F¢, we defined Fy, by

Fy = Z (—1)<V’W>Cv;
vedd

and noticed that by Fourier duality, the set {Fw}wng forms another system of generators for
the localized Chow ring Chowgg(09)[3]. The following set of relations are verified by Fy in
ChOWGs(Dd> [18].
(%#*1) For any w € F4, we have FoFy = 0;
(%*2) For any i € [d], and any w,z € F4, we have Fy,(Fyw — Fwie;)(F + Fate;) = 0;
(#*3) For any pair of indices 7, j € [d], and any w,z, we have (Fwie;+e; — Fw)(Fate;te; —

FZ) = (Fw—i-ei - Fw+ej)(Fz+ei - Fz+ej)-
Consider the ideal ,Zat(Dd) of Z|Fy] generated by (#£*1), (#*2), and (#*3), and define
Chowgg () := Z[Fy]/ Frar(O9).

We now give a proof of these relations in the Chow ring, proving at the same time Theo-

rem 1.7, which shows that Chowgg(0%)[3] = Chowgs(09)[3].

Proof of Theorem 1.7. We shall show that inverting 2, we have %(Dd) = Far(O%), and
Chowgs (%) = Chowgg(C19).
First note that Fy = Zvng Cy, and so for any w, we have

FoFw =Y (—1)<“7W>(Z CV)CU.
uelFyd veFg

This shows that FoFy € Hat, and yields to the proof of (#Z*1). On the other hand, we see
from the above description, and using the Fourier duality, that for any u € F4,

(Z CV>CU - % 3 (-1 Ry Ry

veFyd weld

This shows that any generator (Zv Cv> Cy of type (#2) in F: (0% belongs to the ideal
Frear(O%) of Z[3][Fu].
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Let e = e; for some i € [d]. Note that for any w,z € F4, we have
(18)  Fao—Fwpe=2 >  (-D™™Cy |, F+F..=2 Y (-)V9¢,.
uE]Fg: u;=1 VGIFg: v;=0
For any € € {0, 1}, define

R =Y Cy.

yEFg
Yi=¢€

From Equation (18), we get

(19)  Fe(Fw = Fuwse)(Fz + Fate) = 4( 3 (_1)yicy) (Z (_1)<u,w>cu) (Z (_1)<v,w>cv>

yEFd u€elrd veFRd
u;=1 v; =0
(20) =4 Y (FyTHewra o, R;,

e€{0,1};u,veFd
u;=1,v;=0

Since CyCyR{ € SHat, this implies the relation (#£*2) among the Fy in the Chow ring
ChOWGs(Dd).

Define now the two functions f,g : Fy x F§ x F4 — Z[C,], as follows. For any triple
(e,u,v) € Fy x F¢ x F4, set

CquRf if U; = 1, v = 0

0 otherwise.

fle,u,v) = {

For any triple (0, w,z) € Fo x Fd x F, set

Fo(Fay — Foso)(Fy + Fyio) if =1
9(57 W Z) - Z u,VGFg (_1)<U7W>+<V’Z>CUCVFO if 9 =0.

Ui:L’Ui:O

Note that we have for any (6, w,z) € Fy x F¢ x F4,

g(0,w,z) =4 Z (=1)SeH W) via) £(e y v).
ee{0,1}
u,VGIFg

Indeed, for § = 1 this is identical to Equation (20), and for 6 = 0, both sides of the equations
are equal by definition (the right hand side is a sum of the terms of the form Cy,Cy (R} + RY) =
CuCy (>, Cx) = CuCy Fp. By Fourier duality in ngﬂ, it follows that

1 e+(u,w)+(v,z
f(ea u7V) - W Z (_1)5. Huw) v, >g((5,W,Z)-

2d+1
(0,w,z)€F;

Since g takes values in ,Z;(Dd), this shows that for any €, u, v, we have f(e,u,v) € ,Zat(Dd).
In particular, inverting 2, all the generators of type (#3) in #.(09) belong to F. (O%).
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Finally, to prove (#*3), let ¢,j € [d], and e = e; and € = e;. By an easy computation, we
have

(Fw+e+e’ - Fw)(Fz+e+e’ - Fz)_(Fw+e - Fw+e’)(Fz+e - Fz+e’)
= Z (_1)<u,w)+<v,z)h(ui7 Uyj, Vi, ’Uj)Cqu,

u,veFrd

where h : F§ — Z is the function given by

ha,b,e.d) = (1) = 1) ((~) = 1) = (=1 = (=1)") (=1 = (=),

for any (a,b,c,d) € F3. In particular, we get h(0,1,1,0) = h(1,0,0,1) = 8, and h van-
ishes at all other points of F3. Now, note that for any pair of points u,v € ]Fg such that
{(wi,uy), (vi,v;)} = {(0,1),(1,0)}, since u and v do not form a simplex in 9 we have
CuCy € F1at(O). This proves that the relation (%*3) holds among the Fi.

To conclude, using Fourier duality in F§xF4, we see that for any pair i, j € [d], 22¢h(u;, u;, v—
i,v;)CyuCy is a linear combination with + coeflicient of the terms (Fyteter — Fw)(Fptete —
F,) — (Fwte — Fwie' ) (Fzte — Fyrer), and thus belongs to ,};;(Dd). For u and v which do not
form a simplex in 0%, there are indices i, j € [d], such that {(u;,u;), (vi,v;)} = {(0,1),(1,0)}.
Since 1(0,1,0,1) = 8, we infer that CuCly € Fpar(O7).

This shows all the relations of type (#£1) in #.:(0% belong to %(Dd), which finally
shows that %(Dd) = 1at(0%) in Z[3][Cy] = Z[$][Fw], and the theorem follows. O

5.1. Functoriality of CEE)\W/GS for the inclusion of hypercubes. Let r < d be two in-
tegers. Let Cms(md) be the Chow ring of (¢, with generators F, for u € F4 and with
relations (#2*1), (#*2),(%*3). Similarly, let Ci;)\v;;s(ﬂ’”) be the Chow ring of (", with gen-
crators Fy, for w € F% and with relations (%2*1), (%*2), (%*3).

Let I C {1,...,d} be a subset of size r. Viewing F} as the set of elements of FJ with
support in I, we get an inclusion 7 : 0" — 09,

Proposition 5.1. We have a morphism of graded rings 1. : Chowgs(0") — Cms(Dd)
defined by sending Fyw to Fy(w)-

Proof. Consider the map of polynomial rings Z[Fyw|wer; — Z[Fu]ung induced by 7. The
image by n of any relatiollxof/type (#*1),(%*2),(%#*3) in Chowgs([") is a relation of type
(%*1), (%#*2), (%*%ChowGs(Dd/).\E follows that passing to the quotient, we get a well-
defined map 7, : Chowgs(C0") — Chowgs (%) of Chow rings. O
Corollary 5.2. The inclusion n : O — 0% induces a map of localized Chow rings

0 ChowGs(D’")[%] N ChOWGs(Dd)[%].
Proof. This follows from the previous proposition and the isomorphism of Theorem 1.7. [

The morphism 7 : 0" — ¢ is induced from a morphism of graphs 7; : H; — Ko, for
1 =1,...,r, with K9 the complete graph on two vertices 0 < 1, and H; = G; for ¢ € I, and
H; = Ky[< 1] ~ K, for i ¢ I. Tt follows from Proposition 2.4 that we have a morphism of
Chow rings n* : Chowgs(O)[2] — Chows(O%)[3].
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Proposition 5.3. The composition morphism n* o n, of ChowGS(DT)[%] is the identity.
Proof. It will be enough to prove this in degree one. Let w € [I". We have
70 e (Fw) = 1" (Fyiw)) = n( D (=1)V1Cy)

veFRd
=Y ()M cy) = > (-1)EMC, = Fy,.
veFg z€F}

0

5.2. Vanishing theorem. In this section, we prove the vanishing Theorem 1.8. So consider
elements wo, ..., wy € F4. Let P = {P}, ..., P.} be a partition of [d] into k disjoint non-empty
sets. Recall that for each w;, we denote by a(w;, P) the number of indices 1 < i < k such
that there exists an index j € P; with w; = 1. Suppose that the condition in Theorem 1.8 is
verified, namely, Z?:o a(w;, P) < d+ k. We have to prove that Fy, ... Fyw, = 0.

We first reformulate the condition in the theorem as follows. Let wy, ..., w, € F4, possibly
with w; = w; for i # j. We construct a bipartite graph H = H(P;wy,...,wq) as follows.
The graph H has the vertex set partitioned into two separate parts W and V of size d+ 1 and
d, respectively. Let W = {wy,...,wq} be d + 1 vertices on one side, and V' = {1,...,d} the
d vertices on the other side. There is an edge between w; € W and j € V if the j-coordinate
of w; is one. We have the following proposition.

Proposition 5.4. The following three conditions are equivalent

(1) The graph H is disconnected;
(13) There exists a partition P = {P1, P2} of {1,...,d} such that Z?:O a(w;,P) <d+2;
(tit) There exists an integer k € N and a partition P = {Py, Ps, ..., Py} such that

d
Za (wi, P) < d+k.
=0

Proof. To show that (i) implies (i7), note that if H is disconnected, then we can write W =
Wi U Ws and V = Vi U V5 such that all the edges of H join a vertex of W; to a vertex of V;,
for i = 1,2. In this case, let P = {V1,Va}. Then we have 3% a(wy, P) < [Wi| + [Wa| =
d+1<d+2.

Obviously, (i) implies (4i7).

Finally, let P = {P1, P», ..., Py} be a partition of V' such that Zf ga(w;, P) <d+k. Let
H be the graph obtained from H by contracting each P; into a single vertex. The number
of edges of H is precisely E (wz,P) On the other hand, the number of vertices of H is
d+ 1+ k. Since |[E(H)| < |V( H)| — 1, the graph H is not connected, which shows that H
cannot be connected neither. O

Let now wy, ..., wy be a sequence of elements of the hypercube such that the associated
graph H is not connected. Thus, there exists a decomposition W = W UWs and V = ViU V5
such that there is no edge between V; and W; provided that ¢ # j.

Since |Wh| 4 |[Wa| > |Vi| + | V2|, we can suppose without loss of generality that |W;| > |Vi].
Let r := |V4], and note that 0 < r < d. We have the following proposition, which clearly
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implies the vanishing theorem above. (Recall that for an element w € Fg, the support of w
is the set of all j € [d] with w; = 1.)

Proposition 5.5. Let r be a non-negative integer. Let wy,...,w, be elements of Fg with
support in a subset Vi of V = [d] of size r. Then for any v € F%, we have

Fug ... Fo, Fy = 0.
We need the following useful lemma, proved in [18, Proposition 4.29].
Lemma 5.6. We have Fe, Fe, ... Fo,Fe 4. te; = (—4)%C0Ce,Ce,tey - - - Ceytotey-

Proof of Proposztwn 5.5. Consider the inclusion 7 : Fy — F4 induced by the subset V;, and

let 7, : ChOWGs(Dr) — ChOWGS(Dd) be the induced map on the level of Chow rings given by
Proposition 5.1.

Since Chowgg(O") is one dimensional in degree r + 1, using Lemma 5.6, we infer the exis-
tence of a rational number a € Z[ | such that we have Fwon1 .. FWT = cLFe1 .. FeTFelJr teps
where, by an abuse of the notation, ey, ..., e, denote the basis of F, — Fg corresponding to
the elements of V;. It follows that we have

FW() e FWT = (IFel e FerFel+...+eT

in the Chow ring ChowGs(Dd)[%], and it will be enough to prove that for any v € % we
have

Fe, ... Fe,Fei4..ke, Fy =0.
We prove this by induction on 7.

e For the base of our induction r = 1, we need to prove that F2 Fy, = 0.
We have 2Fe21FV = Fe,(Fe, + Fo)(Fy — Fyte,) + Fe,(Fe, — Fy)(Fy + Fyie,) = 0, which
proves the claim.
e Suppose r > 2 and assume that the statement holds for » — 1, we show it for r.
Write

OFa, ... Fo Forioio,Fy =Fo, ... Fo,_ Fo Fortio (Fy — Fute,)
+ Fey ... Fe,  Fe, Feytote, (Fv + Fyye,)
=Fe, ... Fo,_ Fe, (Fe,4-te, + Fertoterr ) (Fv — Fuie,)
+ Foy oo Foo  Fo,(Foytte, = Feytote, 1) (Fv + Fute,),

which is zero by the relation (%*3) satisfied by the generators Fy of Chowgg((09). In the
last equalities, we used the induction assumption that Fe, ... Fe | Fe,4.te, Fe, =0. O

Remark 5.7. It would be interesting to find a combinatorial formula for the degree with
respect to the dual basis Fy,. For any collection of d+ 1 elements (wy, ..., wq) € (F$)9!, we
have
deg(Fuy - - Fay) = Y (1) deg(Cly, . .. Clu,).
ug,...,Uq
So the question can be reformulated in asking for the Fourier transform in (F$)4*! of the
degree map on (F9)?*! given by Theorem 1.6.
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