
A SPECTRAL LOWER BOUND FOR THE DIVISORIAL GONALITY OF

METRIC GRAPHS

OMID AMINI AND JANNE KOOL

Abstract. Let Γ be a compact metric graph, and denote by ∆ the Laplace operator on Γ

with the first non-trivial eigenvalue λ1. We prove the following Yang-Li-Yau type inequality

on divisorial gonality γdiv of Γ. There is a universal (explicit) constant C such that

γdiv(Γ) ≥ C
µ(Γ).`geo

min(Γ).λ1(Γ)

dmax
,

where the volume µ(Γ) is the total length of the edges in Γ, `geo
min is the minimum length of

edges in the minimal model of Γ, and dmax is the largest valency of points of Γ. Along the

way, we also establish discrete versions of the above inequality concerning finite simple graph

models of Γ and their spectral gaps.

1. Introduction

Let M be a compact Riemann surface, equipped with a metric of constant curvature in
its conformal class, and denote by λ1(M) and µ(M) the first non-trivial eigenvalue of the
Laplacian and the volume of M , respectively. Denote by γ(M) the gonality of M , which is
by definition, the minimum degree of a branched covering M → P1(C). It follows from the
work of Yang-Yau [43] (see Li-Yau [34] for a refinement concerning the conformal invariant of
Riemannian manifolds) that for any Riemann surface M , the following inequality holds

λ1 µ(M) ≤ 8πγ(M).

This result has been quite useful for applications in arithmetic geometry, for instance in the
study of rational points of bounded degree on smooth proper curves over a number field K, see
for example [1, 26]. Indeed a theorem of Faltings-Frey [28] implies that curves of large gonality
have only finite number of points defined over finite extensions of K of bounded degree, and
the Yang-Li-Yau inequality above provides a practical lower bound on the gonality in terms
of geometric invariants of a complexification of the curve.

It is quite desirable to have analogous type of estimates for smooth proper curves defined
over other base fields, e.g., over global function fields. A geometric object manageable to
work with is the analytification of the curve over any place of the global field. For any
non-Archimedean place ν of a global field K, the Berkovich analytification of the curve over
the completion of the algebraic closure of K with respect to ν is a separated compact path-
wise connected topological space, which deformation retracts to a finite metric graph, which
is called a skeleton of the Berkovich analytification [14]. This finite metric graph captures
important arithmetic and geometric aspects of the original curve, see e.g. [44, 17, 15, 42, 9, 5]
for background on arithmetical and algebraic geometric properties of the skeleton of Berkovich
analytic curves, and applications.
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For metric graphs there are two different notions of gonality; geometric gonality, which is
formulated in terms of finite harmonic maps from Γ to a metric tree T , and divisorial gonality,
which is defined in terms of the divisor theory. In this paper we prove a Yang-Li-Yau type
inequality for the divisorial gonality in general metric graphs. Since the divisorial gonality
is a lower bound for geometric gonality of metric graphs, our results improve the previous
Yang-Li-Yau type inequality of [18], and provides a generalization to arbitrary metric graphs.
The result in [18] was already used there to obtain a linear lower bound in the genus for the
gonality of Drinfeld modular curves, which allowed to lower bound the modularity of elliptic
curves over function fields, to obtain finiteness results of rational points of bounded degree
on Drinfeld modular curves, and to get uniform bounds on isogenies and torsion points of
Drinfeld modules.

The proof of our result is built on the fundamental notion of tree-decomposition in graph
minor theory. The link between gonality of graphs and their tree-decompositions was con-
jectured in [25]. This could be an indication that graph decompositions methods and minors
could be useful for further understanding of algebraic geometry of metric graphs, and for
potential applications in arithmetic geometry.

Our theorem can be stated as follows. Let Γ be a metric graph, and denote by γdiv the
divisorial gonality of Γ, which is by definition, the smallest integer d such that there exists
a divisor of degree d and rank one on Γ (we review all the basic definitions later in this
introduction).

Let ∆ be the (continuous) Laplacian of Γ, and λ1 the first non-trivial eigenvalue of ∆.
Denote by µ(Γ) the total length of Γ, and by dmax the maximum valency of points of Γ
(which is the maximum degree of any simple graph model of Γ). For a simple graph model G
of Γ, let `min(G) be the minimum length of edges in G, and define `min(Γ) as the maximum
of `min(G) over all simple graph models G of Γ.

Theorem 1.1. There exists a constant C such that for any compact metric graph Γ of total
length µ(Γ) with first non-trivial eigenvalue λ1(Γ) of the Laplacian ∆, the following holds

γdiv(Γ) ≥ Cλ1(Γ)`min(Γ)µ(Γ)

dmax
.

Our method gives a constant C which is equal to 1
1024 , however, in order to simplify the

presentation, we do not try to optimize the constant.
Note also that we have 1

2`
geo
min ≤ `min ≤ `geo

min, for `geo
min defined as the minimum length of edges

in the minimal model of Γ, which gives the statement in the abstract up to a change in the
value of the constant.

The proof of our theorem goes as follows. Generalizing a result of J. van Dobben de
Bruyn [25], we first prove a theorem which relates the divisorial gonality of a metric graph to
the existence of a particular structure in the metric graph that we call a topological bramble.
We then relate topological brambles to structures called strong brambles in simple graph
models of Γ. We provide a dual notion for strong brambles, which is a relaxed version of
tree-decomposition of graphs, that we call weak tree-decompositions. An inequality between
the weak tree-width and the tree-width of finite graphs allows to use a spectral lower bound
on tree-width to get a spectral lower bound for the divisorial gonality in terms of a finite
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simple graph model of Γ. A particular choice of a finite simple graph model G of Γ allows us
to finish the proof of our theorem.

As a consequence of our methods, we get the following theorem, c.f. Section 5.2.

Theorem 1.2. • The divisorial gonality of a random Erdös-Rényi graph G(n, p) is
Θ(n) asymptotically almost surely in the range p >> 1

n . More generally, the divi-
sorial gonality of any metric graph whose model is a random G(n, p) is Θ(n).
• The divisorial gonality of a random d-regular graph is Θ(n) asymptotically almost

surely, for d ≥ 3.

(Recall that the notation f = Θ(g) for two functions f and g means the existence of
constants c1, c2 > 0 such that c1g ≤ f ≤ c2g.)

Finally, we would like to mention two independent simultaneous works [19] and [20]. In [19]
the authors prove the above mentioned conjecture of [25], and they extend it to metric graphs.
Namely they show that the divisorial gonality of a metric graph Γ is lower bounded by the
treewidth of any simple graph model of Γ. Combining their theorems and our methods, it is
possible to improve the current constant in Theorem 1.1 by a factor of two. Moreover, in [20],
the authors obtain a sharper estimate on the divisorial gonality of random Erdös-Rény graphs.
More precisely, they show that the divisorial gonality of a random G(n, p) is asymptotically
almost surely n− o(n), assuming pn→∞, with an estimate they provide on the error term.

In the rest of this introduction, we provide necessary definitions and background on al-
gebraic geometry and harmonic analysis on metric graphs, and recall the concept of tree-
decompositions. We also discuss some direct consequences of our main theorem.

1.1. Algebraic geometry of metric graphs. In this section, we provide some background
on algebraic geometry of metric graphs. More details can be found in the survey papers [2, 10],
or [11, 37, 9, 5, 6].

1.1.1. Metric graphs. A metric graph (Γ, `) is a compact connected metric space, such that
for every p ∈ Γ there is a non-negative integer n and a radius rp ∈ R>0 and a neighborhood

Up around p which is isometric to the star shaped domain S(n, rp) := {re2πim/n : 0 ≤ r <
rp, 1 ≤ m ≤ n} ⊂ C equipped with the path-metric. We set S(0, rp) := {0}. The integer n is
called the valency of p and is denoted by val(p). A point of valency different from 2 is called
an essential vertex of Γ: they are of two types, v with val(v) ≥ 3 which are called branching
points, and v for which val(v) = 1 which are called ends of Γ. We will usually drop the metric
` from the notation and simply refer to Γ as the metric graph. We use the notation Tp(Γ) to
denote the set of all unit tangent vectors emanating from p in Γ (which gets identified with

the unit vectors e2πim/val(p) in C under the isometry of Up with S(val(p), rp)).

For a function f : Γ→ C, a point p ∈ Γ and a unit tangent vector w ∈ Tp(Γ), the directional
derivative dwf(x) of f at p in the direction of w, which we simply call the (outgoing) slope
of f at p along w, is defined by:

dwf(x) = lim
t↓0

f(x+ tw)− f(x)

t
,



4 OMID AMINI AND JANNE KOOL

if the limit exists. Note that the above expression makes sense by (isometrically) identifying
a small enough neighborhood Up of p with a star shaped domain S(val(p), rp) in C, and by
restricting f to Up = S(val(p), rp).

Let Γ be a metric graph. A vertex set V (Γ) is a finite subset of the points of Γ which
contains all the essential points of Γ. An element of a fixed vertex set V (Γ) is called a vertex
of Γ, and the closure of a connected component of Γ \V (Γ) is called an edge of Γ. We denote
by E(Γ) the set of all edges of Γ with respect to the vertex set V (Γ). The (combinatorial)
graph G = (V (Γ), E(Γ)) is called a model of Γ. A model G of Γ is simple if there is no loop
edge in E. Since Γ is a metric graph, we can associate to each edge e of a model G = (V,E)
its length `(e) ∈ R>0.

The model G = (V,E) of a metric graph Γ with V the set of all essential points of Γ is
called the minimal model of Γ. In the case that Γ is a circle, and so there are no essential
vertices, we define the minimal model to be a vertex (any point of Γ) with a loop edge. We
denote by `geo

min the minimum length of the edges in the minimal model of Γ. The volume µ(Γ)
of Γ is the sum of the edge lengths in any model G of Γ. We denote by dmax the maximum
valency of points of Γ.

1.1.2. Divisor theory on metric graphs and divisorial gonality. We recall some basic definitions
concerning the divisor theory of metric graphs and the notion of divisorial gonality. See [11, 37]
for more details.

For a metric graph Γ, let Div(Γ) be the free abelian group on points of Γ. An element D
of Div(Γ) is called a divisor on Γ and can uniquely be written as

D =
∑
v∈Γ

av(v), with av ∈ Z,

where all but finitely many av are zero. The degree of D is deg(D) =
∑

v∈Γ av. A divisor D
is effective if D(v) ≥ 0 for all v ∈ Γ.

The set of points v for which av is nonzero is called the support of D and is denoted by
supp(D).

A rational function on Γ is a continuous piecewise linear function on Γ whose slopes are all
integers. The set of all rational functions on Γ is denoted by R(Γ). The order of a rational
function f at a point p of Γ, denoted by ordp(f), is the sum of the slopes of f along the
tangent directions in Tp(Γ). As f is piecewise linear, and Γ is compact, the order of f is zero
on all but finitely many points of Γ, and one gets a map

div : R(Γ)→ Div(Γ), f 7→
∑
p

ordp(f)(p).

A divisor in the image of div is called a principal divisor. Two divisors, D and D′ are called
linearly equivalent, written D ∼ D′, if they differ by a principal divisor, i.e., there is a rational
function such that D = div(f)+D′. The (complete) linear system |D| of a divisor D is defined
to be the set of all effective divisors which are linearly equivalent to D:

|D| := {E ∈ Div(Γ) : E ≥ 0, E ∼ D}.

We denote by R(D) := {f ∈ R(Γ) : D + div(f) ≥ 0} the “set of all global sections of D”.
Note that R(D) is closed under addition by constants and under taking maximum, i.e., for
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f, g ∈ R(D) and c ∈ R, one has c + f ∈ R(D) and max(f, g) ∈ R(D), in other words, R(D)
is a so called tropical semi-module.

The rank of a divisor D, denoted by r(D) is defined by

r(D) := min
{E:E≥0,|D−E|=∅}

deg(E)− 1.

The divisorial gonality γdiv(Γ) of a metric graph Γ is defined by

γdiv(Γ) := min{d : there exists a D ∈ Div(Γ), with deg(D) = d and r(D) = 1}.

1.1.3. Reduced divisors. Basic technical tool in the study of divisors on metric graphs are
reduced divisors that we recall now.

A closed and connected subset X of Γ is called a cut in Γ. We denote by ∂X, the boundary
of X: the finite set of points of X which are in the closure of the complement of X in Γ. For
a point p ∈ ∂X, we denote by degoutX (p) the number of tangent directions in Tp(Γ) leaving
X at p; in other words, this is the maximum number of disjoint segments in Up \ X whose
closures have p as an endpoint, where Up is a neighborhood of p in Γ.

A boundary point p of a cut X is called saturated with respect to a divisor D ∈ Div(Γ) if
degoutX (p) ≤ D(p).

A divisor D is called reduced with respect to a fixed point p0 ∈ Γ if it satisfies the following
properties:

(1) for all p 6= p0, D(p) ≥ 0,
(2) for every cut X ⊂ Γ such that p0 6∈ X, there exist a p ∈ ∂X which is not saturated.

Every divisor on a metric graph is equivalent to a unique p0-reduced divisor, see e.g., [3,
Theorem 2].

Note that if the rank of a divisor D is non-negative, then for any p ∈ Γ the reduced divisor
Dp is effective.

1.1.4. Geometric gonality of metric graphs. We refer to [5] for standard definitions regarding
the morphisms between metric graphs and the corresponding tropical curves.

Recall that a tropical curve C is called d-gonal if there exists a tropical morphism C → TP1

of degree d. A metric graph Γ has geometric gonality d, if the tropical curve associated to Γ
is d-gonal, and d is the smallest integer satisfying this condition. The geometric gonality of a
metric graph is denoted by γgm(Γ).

It is easy to see that the fibers of any finite harmonic morphism from a metric graph Γ to
a finite tree are linearly equivalent, and define a linear equivalence class of divisors on Γ of
rank at least one. It thus follows that

γgm(Γ) ≥ γdiv(Γ)

for any metric graph Γ. Our Theorem 1.1 thus provides a spectral lower bound for the
geometric gonality of a metric graph.

1.1.5. Specialization of divisors from curves to metric graphs. Let X be a smooth proper curve
over an algebraically closed complete non-Archimedean field K with a non-trivial valuation.
Recall (c.f. [13], see also [14, 23, 24, 41]) that a semistable vertex set of the Berkovich analytic
curve Xan is a finite subset V of type-2 points of Xan such that Xan \ V is a disjoint union
of open balls and (a finite number of) open annuli. (Semistable vertex sets are in bijection
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with semistable models of X over the valuation ring of K.) To each semistable vertex set,
a skeleton Σ(X,V ) of the Berkovich curve Xan is associated, which is a finite metric graph.
These metric graphs are tropically equivalent, and thus varying the semistable vertex set
defines a tropical curve C associated to X [6].

Fixing a semistable vertex V for Xan, one gets a deformation retraction τ : Xan → Σ(X,V ).
Identifying X(K) with points of type 1 on Xan, this induces a morphism τ∗ : Div(X) →
Div(Σ(X,V )) which is called the specialization map, and which coincides with the definition
of the specialization map without reference to the analytification in [17, 44, 9].

Let X be a smooth proper curve over K and let Γ be a metric graph associated to X.
Baker’s specialization lemma [9] states that for any divisor D on X one has r(D) ≤ r(τ∗(D)).
(Formulated in terms of the analytification of the curve, the statement is a consequence of
the Poincaré-Lelong formula [13, 42, 44], see [4].)

In particular, it follows that the gonality of a smooth proper curveX over a non-Archimedean
field K is bounded below by the divisorial gonality of the corresponding metric graph. Ap-
plying our main theorem, we get

Theorem 1.3. Let X be a smooth proper curve over a non-Archimedean field K, and let Γ
be a metric graph associated to X. We have

γ(X) ≥ Cµ(Γ)`min(Γ)λ1(Γ)

dmax
.

Here C is the constant provided by Theorem 1.1.

1.2. Harmonic analysis on metric graphs. We recall the definitions of the Laplacian on a
metric graph, and refer to [44, 12, 27] for more details on harmonic analysis on metric graphs.

For a metric graph Γ with a model G = (V,E), one has a Lebesgue measure on each
edge which gives rise to a well-defined Lebesgue measure on Γ denoted by dx. The Lebesgue
measure does not depend on the choice of the model.

The space Zh(Γ) is the space of all continuous functions f : Γ→ R where f is piecewise C2

and f ′′(x) ∈ L1(Γ). The subspace Zh0(Γ) ⊂ Zh(Γ) consists of all functions f which satisfy∫
Γ fdx = 0. The Laplacian ∆ is the measure valued operator on Zh(Γ) whose value on a

function f ∈ Zh(Γ) is the measure

∆(f) := −f ′′(x)dx−
∑
p∈Γ

 ∑
w∈Tp(Γ)

dwf(p)

 δp(x),

where δp the Dirac measure at the point p.
The eigenvalues of ∆ form a discrete subset λ0 = 0 < λ1 < λ2 < . . . of R≥0. The behavior

of λi(Γ) under the scaling of the edge lengths of a model G is easily seen to be as follows: if
the metric graph Γ′ with the same model G is obtained from Γ by scaling the length in Γ of
each edge e ∈ E(G) with a factor β ∈ R>0, then λi(Γ

′) = 1
β2λi(Γ) [12].

The smallest non-zero eigenvalue of ∆, λ1(Γ), has the following variational characterization

λ1(Γ) = inf
f∈Zh0(Γ)

∫
Γ |f

′|2dx∫
Γ f

2dx
.
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1.3. Tree-decompositions. Let G = (V,E) be a connected graph. A tree-decomposition of
G is a pair (T,X ) where T is a finite tree on a set of nodes I, and X = {Xi : i ∈ I} is a
collection of subsets of V , subject to the following three conditions:

(1) V = ∪i∈IXi,
(2) for any edge e in G, there is a set Xi ∈ X which contains both end-points of e,
(3) for any triple i1, i2, i3 of nodes of T , if i2 is on the path from i1 to i3 in T , then

Xi1 ∩Xi3 ⊆ Xi2 , or equivalently, for any vertex v in G, the set of nodes i of T with
v ∈ Xi form a connected subtree of T .

Note that the point (3) in the above definition simply means that the subgraph of T induced
by all the nodes i which contain a given vertex v of the graph G is connected. (The vertices
of T are called nodes in order to distinguish them from the vertices of G.)

The width of a tree-decomposition (T,X ) is defined as w(T,X ) = maxi∈I |Xi| − 1. The
tree-width of G, denoted by tw(G), is the minimum width of any tree-decomposition of G.

There is a useful duality theorem concerning the tree-width which allows in practice to
bound the tree-width of graphs. The dual notion for tree-width is called bramble (as named
by Reed [38]): a bramble in a finite graph G = (V,E) is a collection of connected subsets of
V (i.e., those inducing a connected subgraph) such that the union of any two of these subsets
form again a connected subset of G. The order of a bramble F in G is the minimum size
of a hitting set for F , i.e., the minimum size of a subset of vertices which has non-empty
intersection with any element of F . The bramble number of G denoted by bn(G) is the
maximum order of any bramble in G.

Theorem 1.4 (Seymour-Thomas [40]). For any graph G, tw(G) = bn(G).

To give an example of the applications of the duality theorem, let H be an n×n grid. It is
easy to see that bn(H) = n by taking the bramble consisting of all crosses in the grid. This
shows that grid graphs can have large tree-width, and so the tree-width can take arbitrary
large values on planar graphs.

Duality theorems are part of Robertson-Seymour graph minor theory [39]. For a discussion
of the different duality theorems and diverse generalizations see [8, 22].

2. Topological brambles and divisorial gonality

In this section we provide a lower bound on the divisorial gonality in terms of a topological
variant of the notion of bramble in finite graphs.

Definition 2.1 (Topological bramble). Let Γ be a metric graph. A topological bramble (or
simply top-bramble) in Γ is a finite family F of non-empty closed connected metric subgraphs
of Γ such that any two elements X and Y in F have a non-empty intersection. The order of
a top-bramble F is the minimum size of a hitting set for F , i.e., the minimum size of a set
S ⊂ Γ such that S ∩X 6= ∅ for any X ∈ F . The topological bramble number of Γ denoted by
tbn(Γ) is the maximum order of any topological bramble on Γ.

Theorem 2.2. Let Γ be a metric graph. The divisorial gonality of Γ is lower bounded by its
top-bramble number tbn(Γ).
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Remark 2.3. In the next section, we will provide a link between topological brambles and a
special kind of brambles in finite simple graph models of Γ, called strong brmables. In view
of this link, this theorem can be seen as a generalization of a theorem of J. van Dobben de
Bruyn [25] to metric graphs.

Proof. In order to prove the theorem, we need to show that there cannot exist any divisor of
degree k and rank at least one in Γ provided that there exists a top-bramble F in Γ of order
k+ 1. For the sake of a contradiction, let F be a top-bramble of order k+ 1 for Γ and assume
there exists a divisor D with deg(D) = k and r(D) ≥ 1. In particular, for any point x of Γ,
the reduced divisor Dx has x in its support.

Consider the linear equivalence class |D| of D. By replacing D by another divisor E ∈ |D|
if necessary, we can assume that D is effective, and, in addition, that D is a divisor in the
linear equivalence class |D| whose support supp(D) has the maximum number of non-empty
intersections supp(D) ∩X with elements X in F .

Since ord(F) = k+1 > |supp(D)|, there exists an element X in F such that X∩ supp(D) =
∅. Let v be an arbitrary point of X, and consider the unique v-reduced divisor Dv ∼ D. Let
f be a rational function on Γ which gives div(f) + D = Dv. Since r(D) ≥ 1, we have
v ∈ supp(Dv), while by the choice of X, we have v /∈ supp(D).

The structure of the proof is as follows: we consider a specific path Dt in |D| (parameterized
by t) from Dv to D. Since supp(Dv) ∩X 6= ∅ while supp(D) ∩X = ∅, by compactness of X,
there exists a maximum value h of t such that supp(Dh) ∩X 6= ∅. Denote by X1, . . . , Xn all
the different elements of F which have non-empty intersections with supp(D). Note that the
support of Dh intersects X, and X is not among the Xi’s, so by the choice of D, as the one
maximizing the number of non-empty intersections with elements in F , there should exist an
element Y = Xi such that Y ∩ supp(Dh) = ∅. We will show that Y ∩X = ∅, which will be in
contradiction with the definition of a topological bramble.

For any real number t, define a function ft on Γ by ft(x) := max(f(x), t) for any x ∈ Γ.
Since both f , and the constant function t lie in R(D) and R(D) is a tropical semi-module it
follows that ft ∈ R(D) for all t. In other words, the divisor Dt := D+div(ft) is in |D|. Denote
now by min f and max f the minimum and maximum value of f on Γ respectively. Define
the map [min f,max f ]→ |D| which assigns to any point t in the interval [min f,max f ], the
divisor D + div(ft). Since fmin f = f and fmax f is the constant function max f , this defines
a path in |D| from Dv to D.
For any real number t denote by f−1(t) := {x ∈ Γ | f(x) = t} the level set at t, and define the
upper level set Γt := {x ∈ Γ | f(x) ≥ t}.

Next, we prove the following claim.

Claim (1). For any real number t, we have ∂f−1(t) ⊆ supp(Dt).

Proof of Claim (1): First note that writing f = (f − ft) + ft, we have Dv = D + div(f) =
div(f − ft) + div(ft) + D = div(f − ft) + Dt, which shows that f − ft ∈ R(Dt). Note also
that f − ft is constant on Γt and coincides with f − t outside Γt. Consider now a point
x ∈ ∂f−1(t), in other words, f does not restrict to a constant function on any neighborhood
of x. If x ∈ ∂Γt since f (and so f − ft) is strictly decreasing along any out-going branch e
from Γt at x, the slope of f − ft at x along e is strictly negative. Since f − ft ∈ R(Dt), this
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shows that x ∈ supp(Dt), and the claim follows. If x 6∈ ∂Γt, since f is not a constant function
locally at x, then f is strictly increasing along one of the branches at x, and so again, since
ft takes its minimum value at x, D is effective, and Dt = D + div(ft), we conclude that
x ∈ supp(Dt), and the claim follows.

Consider now the path in |D| defined by all the divisors Dt = D+ div(ft), for the values of
t ∈ [min f,max f ]. Let h be the maximum value in [min f,max f ] such that supp(Dh)∩X 6= ∅.

Claim (2). We have X ∩ Γh ⊂ f−1(h).

Proof of Claim (2): The claim trivially holds if f is constant on X. So suppose that f|X is not
constant. It will be enough to show that max f|X = h. First, note that for any t > max f|X ,
since supp(Dt)\supp(D) ⊆ Γt, and Γt∩X = supp(D)∩X = ∅, the intersection supp(Dt)∩X
is empty. This shows that h ≤ max f|X . Now, since −f ∈ R(Dv) it follows from [3, Lemma
7] that the minimum of f is taken at v. Hence, any path P in X from v to a point in
f−1(max f|X) ∩ X intersects ∂f−1(max f|X), which combined with Claim (1), implies that
supp(Dmax f|X ) intersects X. This shows that max f|X = h, and the claim follows.

Let now Y be an element of F with the property that Y ∩ supp(Dh) = ∅ while Y ∩
supp(D) 6= ∅. The following claim implies that Y ∩X = ∅, which contradicts the definition
of a topological bramble, and our theorem follows.

Claim (3). We have Y ⊆ Γh \ f−1(h), in other words, f|Y > h.

We make the following observation which will be used in the proof of the above claim.

Observation. Let y be a point in the intersection Y ∩ supp(D) (which is by assumption
non-empty). Since y 6∈ supp(Dh), the point y is not a local minimum of fh, i.e., not all the
slopes of fh along the adjacent branches at y can be non-negative. In particular, Y cannot
be entirely contained in f−1(h).

Proof of Claim (3): First, note that Y ∩Γh 6= ∅: indeed, otherwise, this would mean that the
restriction f |Y < h, and so any point of Y would be a local minimum for fh, contradicting the
above observation. Second, we show that Y ⊂ Γh, i.e., min f|Y ≥ h. Otherwise, there would
exist a point z ∈ Y such that f(z) < h. By connectivity of Y , and by taking a path P ⊂ Y
from z to a point in Γh∩Y , we would obtain that ∂f−1(h)∩Y 6= ∅, which by Claim (2) would
lead to supp(Dh) ∩ Y 6= ∅, contradicting the choice of Y . Combining this with the above
observation, since Y is not entirely contained in f−1(h), we infer that Y ∩ (Γh \ f−1(h)) 6= ∅.
We finish the proof of Claim (3) by showing that Y ∩f−1(h) = ∅: suppose there is an element
in Y ∩ f−1(h), then, by connectivity of Y , there would exist a path P in Y from that element
to a point in Y ∩ (Γh \ f−1(h)). This path would contain a point in ∂f−1(h), which by Claim
(2) would imply that supp(Dh) ∩ Y 6= ∅, contradicting again the choice of Y . This finishes
the proof of the claim, and our theorem follows. �

3. Topological brambles in metric graphs vs strong brambles in graphs

Let G = (V,E) be a finite simple graph on vertex set V and with edge set E. We gave
the definition of a bramble in Section 1.3, and mentioned that it provides a dual notion for
tree-width. A strong bramble is a specific kind of bramble in a finite graph defined as follows:
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C
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B D
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A

B D

F

E

Figure 1. An example of a graph together with a strong bramble F =
{{A,B,D}, {A,C,E}, {D,E, F}}. The minimum hitting set is {D,E}, and
the strong bramble number is 2.

Definition 3.1 (Strong bramble). A strong bramble in G is a finite collection F of connected
subsets of G such that for any two elements B and C, one has B∩C 6= ∅. Figure 1 illustrates
an example of a graph with a strong bramble.

Note in particular that for any two elements B and C in F , the union B ∪ C is obviously
connected. In other words, a strong bramble is a bramble.

The order of a strong bramble is its order as a bramble, i.e., the minimum size of a hitting
set for F in V . The strong bramble number of a finite graph G, denoted by sbn(G), is the
maximum order of any strong bramble in G.

Let Γ be a metric graph with a simple graph model G = (V,E). For any subset X of V ,
we denote by G[X], resp. Γ[X], the subgraph of G, resp. the metric subgraph of Γ, defined
by X: it contains all the edges of G, resp. all the metric edges of Γ, which connect a vertex
in X to another vertex of X. (Note that in general neither G[X] nor Γ[X] are connected.)

The link between strong and topological brambles is provided in the following proposition.

Proposition 3.2. (1) Let Γ be a metric graph with a simple graph model G = (V,E).
For any strong bramble F in G, the collection Γ[F ] = {Γ[X] |X ∈ F} is a topological
bramble for Γ of the same order.

(2) For any topological bramble FΓ for Γ, there exists a simple graph model G of Γ and a
strong bramble F for G such that FΓ = Γ[F ].

(3) The topological bramble number of Γ is given by supG sbn(G) where the supremum is
over all simple graph models G of Γ and sbn(G) is the strong bramble number of G.

In addition, the topological bramble number of any metric graph is finite, in other words,
the supremum is a maximum.

Proof. (1) Let F be a strong bramble for a simple graph model G of Γ. Obviously, for any
X ∈ F , the subset Γ[X] is a connected metric subgraph of Γ. In addition, for any two
elements X,Y ∈ F , we have Γ[X]∩Γ[Y ] ⊃ X ∩Y 6= ∅ which shows that Γ[F ] is a topological
bramble for Γ. To see that ord(Γ[F ]) = ord(F), note first that since any hitting set for F is
also a hitting set for Γ[F ], we obviously have ord(Γ[F ]) ≤ ord(F). To prove the equality, it is
enough to show there exists a hitting set S for Γ[F ] of minimum size such that S ⊂ V (G) (S
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is then a hitting set for F). Let S be a hitting set for Γ[F ] of minimum size. For any point x
in S \ V which lies in the interior of an edge ex of G, choose one of the two extremities vx of

ex and replace x with vx to obtain a set S̃ of the same size |S|. Note that a metric subgraph
of the form Γ[X] in Γ[F ] which contains the point x ∈ S \ V contains both the end-points

of the edge ex, and has non-empty intersection with S̃. An element of Γ[F ] which intersects

S ∩ V has also non-empty intersection with S̃. It follows that S̃ is a hitting set for Γ[F ], and
the claim follows.

(2) Let FΓ be a topological bramble for Γ, and let G0 = (V0, E0) be a simple graph model for
Γ. Consider the set ∪X∈FΓ

∂X of all points of Γ which lie on the boundary of a set X ∈ FΓ

and define V1 = V0∪∪X∈FΓ
∂X. Consider the model G1 = (V1, E1) of Γ defined by V1. Finally,

subdivide each edge e of G1 by adding a new vertex in the middle of e to obtain a model
G = (V,E) of Γ. Let F = {V ∩X |X ∈ FΓ}. It is not hard to see that F is a strong bramble
and Γ[F ] = FΓ.

(3) The equality of the topological bramble number and the supremum supG sbn(G), for G a
model of Γ, formally follows from the two assertions (1) and (2). Finiteness of the topological
bramble number of a metric graph is a consequence of Theorem 2.2, since by the Brill-Noether
bound (or simply Riemann-Roch) for metric graphs, the divisorial gonality of any metric graph
is finite. �

4. Strong brambles and weak tree-decompositions

In this section, we provide the dual notion to strong brambles: we introduce a new class of
graph decompositions that we call weak tree-decompositions. We will then show that strong
brambles of given order are the dual obstructions for the existence of weak tree-decompositions
of given order, see Theorem 4.3 below for a precise formulation.

Let G = (V,E) be a connected graph. A weak tree-decomposition of G, illustrated in
Figure 2, is a pair (T,S) where T is a finite tree on a set of nodes I, and S = {Si : i ∈ I} is
a collection of subsets of V , subject to the following three conditions:

(1) ∪i∈ISi = V ,
(2) for any edge e in G with extremities v and w, there is an edge {i, j} in T such that
{v, w} ⊂ Si ∪ Sj .

(3) for any vertex v in G, the set of nodes i of T with v ∈ Si form a connected subtree of
T .

C

A

B D

F

E

{A} {B,C} {D,E} {F}

Figure 2. The same graph as above with a weak tree-decomposition of width 2.
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For any vertex v ∈ V , we denote by Tv the (connected) subtree of T which is induced by
all the nodes i of T with v ∈ Si.

Note that the only difference with the usual definition of a tree-decomposition is in point
(2) where we impose a weaker condition. In particular, it might happen that an edge e of G
is not necessarily contained in any set Si ∈ S.

The width of a weak tree-decomposition (T,S) is defined as w(T,S) = maxi∈I |Si|. The
weak tree-width ofG, denoted by wtw(G), is the minimum width of any weak tree-decomposition
of G. Note that, similar as in the definition of tree-width, the weak tree-width is defined in
such a way that trees themselves have weak tree-width equal to one.

Lemma 4.1. Let (T,S) be a weak tree-decomposition of a graph G = (V,E). For any two
adjacent vertices u and v, Tu ∪ Tv is connected. In particular, for any connected subset X of
G, the union ∪v∈XTv is a connected subtree of T .

Proof. By property (2) of a weak tree-decomposition, the edge {u, v} is contained in the union
of two sets Si and Sj in S for an edge {i, j} of T . This means that either Tu∩Tv 6= ∅ or i and j
do not belong to the same tree among Tu and Tv. In any of the two cases, Tu∪Tv is connected.
The second statement obviously follows by connectivity of X and the first assertion. �

The following proposition is straightforward from the definition.

Proposition 4.2. • Let (T,S) be a weak tree-decomposition of a graph G = (V,E), and
let U be a subset of V . The restriction of (T,S) to U defined by replacing any Si in
the decomposition with Si ∩ U is a weak tree-decomposition of G[U ].
• Let (T,S) be a weak tree-decomposition of a graph G = (V,E), and i and t two nodes

of T . Let v ∈ St, and for any node j on the unique path between i and t, define
S′j = Sj ∪ {v}. For all the other nodes j of T , define S′j = Sj. Then (T,S ′ = {S′j}) is
a weak tree-decomposition of G.

Proof. The first assertion is obvious from the definition. For the second one, we only need to
verify the property (3) for the vertex v. The tree T ′v associated to (T,S ′) is the union of Tv
and the unique path in T between i and t. Since t also belongs to Tv, T

′
v is connected. �

The following theorem is a duality theorem, in the spirit of the duality theorems in graph
minor theory, which relates strong brambles to weak tree-decompositions. It does not seem
to follow from the generalized forms of duality established in [8, 22], so we provide a proof.

Theorem 4.3. A finite graph G has a weak tree-decomposition of width k if and only if there
is no strong bramble of order strictly larger than k in G. In other words, wtw(G) = sbn(G).

The proof mimics the well-known proof of the duality theorem between tree-width and
bramble order [21, 40], and is based on the use of Menger’s theorem in graph theory. We thus
start by recalling the statement of Menger’s theorem.

Let G = (V,E) be a finite simple graph and consider two subsets X,Y ⊆ V . An (X,Y )-
separator in G is a subset S ⊂ V such that there is no path in G \ S between any point in
X \ S and Y \ S.

The connectivity of the pair (X,Y ) is the maximum number of vertex disjoint path between
X and Y (a point v ∈ X ∩ Y is considered as a path between X and Y of length zero).
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Consider a set of k vertex disjoint paths between X and Y . Obviously any (X,Y ) separator
in G should contain at least one point on each of the k paths. In other words, the size of
any (X,Y ) separator is at least the connectivity of the pair (X,Y ) in G. Menger’s theorem
asserts the equality of these two quantities.

Theorem 4.4 (Menger [36]). The connectivity of a pair (X,Y ), X,Y ⊆ V , is equal to the
minimum size of an (X,Y )-separator in G.

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. We first show that sbn(G) ≤ wtw(G). Let (T,S) be a weak tree-
decomposition of G. Consider a strong bramble F for G. We show that there exists a node
i such that Si intersects any element X ∈ F , i.e., Si is a hitting set for F . This proves the
claimed inequality. For the sake of a contradiction, suppose this is not the case. This means
that for any node i in T , there exists Xi ∈ F such that Xi∩Si = ∅, in other words, Tv does not
contain node i for any v ∈ Xi. Thus, the union Ti = ∪v∈XiTv does not contain i. In addition,
by Lemma 4.1, Ti is a connected subtree of T . This implies that Ti is entirely included in one
of the connected components of T \ i. Let j be the unique node of this connected component
which is adjacent to i, and give the orientation ij to the edge {i, j} of T . Doing this for
any node i of T , we give the size of V (T ) orientations to the edges of T . Since T contains
|V (T )| − 1 edges, there exists an edge {i, j} which gets both the orientations ij and ji. This
precisely means that the two trees Ti and Tj are disjoint, which implies that Xi ∩ Xj = ∅,
contradicting the defining property of a strong bramble.

To prove wtw(G) ≤ sbn(G), we show the existence of a weak tree-decomposition of G
of order at most k := sbn(G). The proof goes by an induction procedure as follows. We
claim that for any graph G and for any strong bramble F in G, there exists a weak tree-
decomposition (T,S) such that for any node i of T , either |Si| ≤ k or, otherwise if |Si| > k,
then Si is not a hitting set for F . The proof of this latter statement is by a reverse induction
on |F| for any strong bramble F in G. Once this has been proved, for the empty strong
bramble F = ∅, since every set is a hitting set for F , we get a weak tree-decomposition of G
of width at most k, and the theorem follows.

Since there is no strong bramble of size larger than 2|G| in G, the base of the induction
holds trivially for strong brambles of size 2|G| + 1 (which do not exist). Suppose that the
statement is true for an integer N and any strong bramble F of size |F| = N in G, we show
that it also holds for all strong brambles of size N − 1.

For the sake of a contradiction, suppose that the statement does not hold for N − 1. Let
F be a strong bramble with |F| = N − 1 for which the statement does not hold. Consider a
hitting set S of F in G of size equal to the order of F . Note that |S| ≤ k.

Let C1, . . . , Cl be all the connected components of G \ S, and for any integer 1 ≤ a ≤ l,
consider the induced subgraph Ga of G with vertex set S ∪ V (Ca). We will show that there
exists a weak tree-decomposition (T a,Sa = {Saj }j∈V (Ta)) of Ga such that

(i) there is a node ia in T a such that Saia = S;
(ii) for any node j of T a with |Saj | > k, Saj is not a hitting set for F .

Once this statement is proved, we obtain a weak tree-decomposition of the whole graph by
gluing the trees T a on the node ia to obtain a tree T , and by defining for any node j of the
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tree T , which is thus a node of one of the trees T a for some a, Sj := Saj . Since Saia = S,
these sets are well-defined, and it is easy to verify that they form a weak tree-decomposition
of the whole graph G. In addition, by Property (ii) above, any Sj of size strictly larger than
k belongs is not a hitting set for F . Thus, (T,S) is a weak tree-decomposition for G which
satisfies the required property with respect to F , and this leads to a contradiction with our
choice of F .

We are thus left to prove the above claim. Consider one of the graphs Ga. There are two
cases to consider:

(1) Either Ca is not a hitting set for F .

In this case, we get a weak tree-decomposition (T a,Sa) of Ga by taking a path of length
two T a on two vertices ia and j, and by defining Saia = S and Saj = Ca. Obviously (i) and

(ii) are verified.

(2) Or Ca is a hitting set for F .

Since Ca is connected, this precisely means that Fa = F ∪ {Ca} is a strong bramble in G.
Note that S is a hitting set for F and S ∩ Ca = ∅, so Fa 6= F , and thus |Fa| = |F|+ 1 = N .
By the hypothesis of our induction, there exists a weak tree-decomposition (T,S) for G such
that any Si, for a node i in T , with |Si| > k is not a hitting set for Fa. By the choice of
F , the weak tree-decomposition (T,S) has a node ia in T with |Sia | > k such that Sia is a
hitting set for F . We must have Sia ∩ Ca = ∅ (otherwise, Sia would be a hitting set for Fa).

We would like to restrict this weak tree-decomposition to Ga, which by Lemma 4.2, is a
weak tree-decomposition of Ga. However, the restriction does not necessarily verify properties
(i) and (ii), in particular, Sia 6= S, so we use Menger’s theorem in order to slightly modify
the restriction of (T,S) to Ga, making it satisfy (i) and (ii).

By applying Menger’s theorem, we first show that there are |S| vertex disjoint paths from
S to Sia in G. Consider thus an (S, Sia)-separator A in G. We are reduced to proving that
|A| ≥ |S|. Suppose this is not the case and so |A| < |S|. Since the order of F is equal to |S|,
A is not a hitting set for F , and there exists an element X ∈ F such that A ∩ X = ∅. To
obtain a contradiction, note that X is connected and thus there exists a path in X from a
vertex in X ∩ S 6= ∅ to a vertex in X ∩ Sia 6= ∅. This path does not contain any point of A
contradicting the choice of A as an (S, Sia)-separator.

We thus have a collection of |S| vertex disjoint paths between S and Sia in G. Denote the
unique path with endpoint v ∈ S with Pv. Note that since the number of paths is |S| and
they are vertex disjoint, we have S ∩ Pv = {v}.

Since the other end-point of Pv is in Sia and Sia ∩Ca = ∅, this in particular shows that the
path Pv intersects Ga only at v.

We now define the weak tree-decomposition (T a,Sa) as follows. Let T a = T , and for
any v ∈ S, pick a node tv of T with tv ∈ Tv (i.e., v ∈ Stv), and for any node j of T on
the unique path from ia to tv, add v to Sj . By Proposition 4.2, this leads to a weak tree-
decomposition (T,S ′) of G. Define (T a,Sa) as the restriction of (T,S ′) to Ga, which, again
by Proposition 4.2, is a weak tree-decomposition of Ga.

Note that since S′ia = Sia ∪ S and Sia ∩ Ca = ∅, we have Saia = S′ia ∩ V (Ga) = S, and so
Property (i) holds. We now show that Property (ii) above holds too, which finishes the proof
of our theorem.
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We first show that for any node j, |Sj | ≥ |Saj |, or equivalently, |Sj ∩ S| ≥ |Saj ∩ S|. Since

the paths Pv for v ∈ S ∩ Saj are vertex disjoint and intersect V (Ga) only at S ∩ Saj , in order

to prove |Sj ∩ S| ≥ |Saj ∩ S|, it will be enough to show that for any v ∈ S ∩ Saj , Sj contains
at least one vertex in Pv. Consider a vertex v ∈ Saj ∩ S. By the definition of Saj , this means
that either v ∈ Sj , or j lies on the unique path between ia and tv in T . In the former case, we
obviously have {v} ⊂ Sj ∩ Pv. In the latter case, both the sets Sia and Stv have non-empty
intersections with Pv (which we recall is a path from v ∈ Stv to a vertex in Sia). This means
that ia and tv both belong to

⋃
u∈Pv

Tu, which is a connected subtree of T by Lemma 4.1. This
in particular means that the unique path between ia and tv is contained in

⋃
u∈Pv

Tu, in other
words, there is a vertex u on Pv such that j ∈ Tu. Reformulating this, we get u ∈ Sj ∩ Pv,
which is what we wanted to prove.

To show (ii), let now j be a node of T with Saj of size strictly larger than k. Since |S| ≤ k,

this means Saj \ S 6= ∅. Since Saj ⊂ Ca ∪ S, this shows that Saj ∩ Ca 6= ∅. By what we

just proved, |Sj | ≥ |Saj |, so Sj is not a hitting set for Fa = F ∪ {Ca}. On the other hand,

Saj ⊆ Sj ∪S, and Saj has non-empty intersection with Ca, which shows that Sj ∩Ca 6= ∅. This

means there exists X ∈ F such that Sj ∩X = ∅. We show that Saj ∩X = ∅, which implies
that Saj is not a hitting set for F .

Suppose this is not true, and so Saj ∩X 6= ∅. Since Sj ∩X = ∅, and Saj ⊂ Sj ∪ S, a point v
in Saj ∩X should belong to S. In other words, j is on the unique path between ia and tv in

T . To get a contradiction, note that X intersects Sia (Sia is a hitting set for F), it intersects
Stv (v ∈ X ∩ Stv), but it does not intersect Sj . This is in contradiction with Lemma 4.1.

The proof of Theorem 4.3 is now complete. �

5. Proof of the spectral lower bound on divisorial gonality

Using the results of the previous section, we are now ready to give the proof of Theorems 1.1
and 1.2.

The following is a direct corollary of Theorem 4.3, Proposition 3.2, and Theorem 2.2.

Corollary 5.1. Let Γ be a metric graph. The divisorial gonality of Γ is lower bounded by the
weak tree-width of any simple graph model G = (V,E) of Γ.

Proposition 5.2. Let G be a simple finite graph. We have 2wtw(G) ≥ tw(G) + 1.

Proof. Let (T,S) be a weak tree-decomposition of G of order wtw(G), i.e., |Si| ≤ wtw(G) for
any node i of T . We build a tree-decomposition (T, Y ) for G of width at most 2wtw(G)− 1
out of (T,S).

Fix a node r of T , and consider T as being rooted at r. Any node i 6= r has a unique parent
pi in the r-rooted tree T , which, we recall, is the unique neighbor of i in the unique path from
i to r in T . For any node i of T different from r, define Yi := Xi ∪Xpi . Furthermore, define
Yr = Xr. Let Y = {Yi}i∈V (T ). It is easy to check that (T,Y) is a tree-decomposition of G. In
addition, we have |Yi| ≤ 2wtw(G), from which the proposition follows. �

5.1. Spectral lower bound for tree-width. We will need the following slight simplification
of a spectral lower bound for tree-width proved by Chandran-Subramanian [16].

Recall the definition of the discrete Laplacian LG on a connected graph G = (V,E). For a
function f : V → R, LG(f) is the real-valued function on V whose value at a given vertex v



16 OMID AMINI AND JANNE KOOL

is given by

LG(f)(v) =
∑
u∼v

f(v)− f(u),

where the sum is taken over all vertices u adjacent to v. Denote by λ1(G) the smallest
non-trivial eigenvalue of LG.

Theorem 5.3 (Chandran-Subramanian [16]). For any connected graph G = (V,E), the fol-
lowing holds

tw(G) + 1 ≥ |V |λ1(G)

12 dmax
,

where dmax is the maximum valency of vertices of G.

For the sake of completeness, we include the short proof of the above theorem. First recall
the following variational characterization of λ1:

λ1 = inf
f :V→Rwith

∑
v f(v)=0

∑
uv∈E

(
f(u)− f(v)

)2∑
v∈V f(v)2

.

Let Y and Z be two disjoint non-empty subsets of V . Applying this to the (test) function f
defined by f(z) = 1

|Z| for z ∈ Z, f(y) = − 1
|Y | for y ∈ Y and f(w) = 0 for any w ∈ V \ (Y ∪Z),

which satisfies
∑

v∈V f(v) = 0, we get

(1) λ1 ≤
(
|E| − |E(Y )| − |E(Z)|

)( 1

|Y |
+

1

|Z|

)
,

where E(A) denotes the set of all edges with both endpoints in A. This is used repeatedly in
the proof.

Proof of Theorem 5.3. Denote by n the number of vertices of G. For the sake of a contradic-
tion, assume the inequality does not hold and let (T,S = {Si}) be a tree decomposition of G
such that

|Si| ≤
nλ1

12 dmax
.

for any vertex i of T . Denote by ρ the quantity in the right hand side of the above equation.
The following argument, used also in the proof of Theorem 4.3, shows the existence of a subset

Si ∈ S (thus, of size at most ρ) such that each component of G \Si has size at most 2(n−|Si|)
3 .

Suppose such a set Si does not exist. Consider a node i of T . For each neighbor j of i in
the tree, let Ai(j) be the union of all the Sk with k being a node in the subtree of T \ {i}
which contains j. Our assumption implies one of the sets Ai(j) \ Si, for j adjacent to i in T ,

has size strictly larger than 2(n−|Si|)
3 . Give the orientation i → j to the edge e = {i, j} of T .

Doing this for any node i, we give orientations to the edges of the tree exactly |V (T )| times.
Since T has |V (T )| − 1 edges, at least one edge {i, j} gets orientated twice, which means

|Ai(j) \Si| > 2(n−|Si|)
3 and |Aj(i) \Sj | > 2(n−|Sj |)

3 . Since ρ ≤ n
12 , this leads to a contradiction:

indeed, the union of the two disjoint sets Ai(j) \ Si and Aj(i) \ Sj would have more than
4n
3 −

4ρ
3 > n vertices.

Let S be a set of size at most ρ such that all the connected components Y1, . . . , Ys ofG\S has

size at most 2(n−|X|)
3 . Applying Inequality (1) to the disjoint sets Yi and Zi = V \(X∪Yi), and
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noting that the quantity |E|−|E(Yi)|−|E(Zi)|) is bounded by |S|dmax, and |Zi| ≥ n−|S|
3 ≥ |Y |2 ,

we get λ1 ≤ ρdmax
3
|Y | = nλ1

4|Y | . This shows that each Yi has size at most n
4 .

Consider now the smallest j such that Y j = Y1 ∪ · · · ∪ Yj has size at least n
4 . Since each Yi

has size at most n
4 , Y j has size at most n

2 . Since |S| ≤ ρ ≤ n
12 , we have |Zj | ≥ n

2 −
n
12 = 5n

12 .

Applying now Inequality (1) to Y j and Zj = V \ (X ∪ Y j), we get λ1 ≤ ρdmax( 4
n + 12

5n) =
n
12( 4

n + 12
5n)λ1, which is a contradiction since λ1 is strictly positive. �

The following result is a direct consequence of Corollary 5.1, Proposition 5.2 and Theo-
rem 5.3.

Theorem 5.4. Let Γ be a metric graph and G = (V,E) a simple graph model of Γ. The
divisorial gonality of Γ satisfies the inequality

γdiv(Γ) ≥ |V |λ1(G)

24dmax
.

5.2. Divisorial gonality of random graphs. In this section we discuss some direct con-
sequences of Theorem 5.4 above when the underlying graph of the metric graph is a random
graph (according to some model), and the edge lengths are arbitrary.

Let G = (V,E) be a simple graph, and Γ any metric graph with G as a model. The set of
vertices of G form a rank-determining set for Γ [33, 35], it follows that the divisor

∑
v∈V (v)

has rank at least one. In other words, γdiv(Γ) ≤ n. As we discuss now, in well-known classes
of random graphs, we obtain that the divisorial gonality is Θ(n) with probability tending to
one as n goes to infinity.

Let G ∈ G(n, p) be a Erdös-Rényi random graph on n vertices where any pair of two vertices
are joined with an edge independently with probability p. The threshold for the connectivity

of G is log(n)
n . For p >> log(n)

n , a random graph in G(n, p) is with high probability connected,
has, by Chernoff bound, maximum degree dmax = O(np), and has λ1 ∼ pn by [32]. Thus, it
follows from our results that γdiv(Γ) = Θ(n)

On the other hand, for p < logn
n the random graph G ∈ G(n, p) is not necessarily connected.

However, the threshold for the existence of a (unique) giant connected component in G (i.e.,
of size linear in n) is 1

n . If in addition, we assume that p >> 1
n , it follows from [31] that the

tree-width of a random graph in G(n, p) is greater than βn for some constant β > 0, which
in particular implies that a random Erdös-Rényi random graph with p >> 1

n has divisorial
gonality again Θ(n).

Corollary 5.5. The divisorial gonality of an Erdös-Rényi random graph in G(n, p) is Θ(n)
with probability tending to one as n goes to infinity, provided that pn >> 1.

It should be certainly possible to obtain sharper results. One might expect that when pn is
above a certain threshold, the divisorial gonality of a random graph in G(n, p) is (1− o(1))n
with high probability.

Let d ≥ 3 be an integer, and let ε > 0 be any small enough constant. A random d-
regular graph on n vertices is asymptotically almost surely connected, and by Friedman’s
theorem [30], has λ1 lower bounded by d− 2

√
d− 1− ε. It follows that

Corollary 5.6. The divisorial gonality of a random d-regular graph is Θ(n) with probability
tending to one as n goes to infinity.
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Again, it should be possible to obtain better bounds (and convergence theorems) for the
divisorial gonality of a random d-regular graph as a function of the degree d.

5.3. Proof of Theorem 1.1. In this final section, we present the proof of our main theorem.
Let Γ be a metric graph and let G be a simple graph model of Γ with `min(G) = `min(Γ).

Rescaling Γ by a factor of β = 1
`min

, we get a simple graph model G′ of Γ′ = βΓ where

each edge of G′ has length at least one. Note that λ1(βΓ) = 1/β2λ1(Γ), while µ(βΓ) = βµ(Γ)
and `min(βΓ) = β`min(Γ), so that the quantity λ1(.)µ(.)`min(.) is scale free for a metric graph.
The divisorial gonality of a metric graph is also easily seen to be scale free, which means in
proving the inequality of Theorem 1.1, rescaling Γ with a factor of β if necessary, we can
assume that `min(Γ) = 1, and the simple graph model G of Γ has minimum edge length equal
to one.

We now subdivide the simple graph model G = (V,E) of Γ in the following way. For
any edge e = {u, v} of G of length `(e), let u1 and u2 be the two points of Γ on e at
distance 1

16 degG(u) and 1
16 degG(v) from u and v, respectively. Consider a set of points Ae

in the interval [u1, v1] on the edge e, including u1 and v1, such that the distance between
any two points of Ae in the interval is at least 1

4 . Taking Ae of maximum size, we see that
4`(e)− 1 ≤ |Ae| ≤ 4`(e) + 2 ≤ 6`(e).

Let G = (V ,E) be the subdivision of G at all the points in the union of Ae, for e an edge
of G. We see that

|V | ≥
∑
e∈E
|Ae| ≥

∑
e∈E

(4`(e)− 1) ≥
∑
e∈E

3`(e) = 3µ(Γ).

(Note that we also have

|V | = |V |+
∑
e∈E
|Ae| ≤ 2|E|+

∑
e∈E
|Ae| =

∑
e∈E

(|Ae|+ 2) ≤
∑
e∈E

(4`(e) + 4) ≤
∑
e∈E

8`e = 8µ(Γ),

which together give 3µ(Γ) ≤ |V | ≤ 8µ(Γ).)

We now claim that

Claim 5.7. There is a constant c1, independent of Γ, such that λ1(Γ) ≤ c1λ1(G).

Here, λ1(G) is the first non-trivial eigenvalue of the discrete Laplacian of G. In the proof
we will get c1 = 128, however, we do not try to optimize the constant.

Once this has been proved, applying Theorem 5.4, we get

γdiv(Γ) ≥ |V |λ1(G)

24dmax
≥ 3µ(Γ)λ1(Γ)

24c1dmax
.

Since we assume `min(Γ) = 1, this leads to the proof of Theorem 1.1 for the constant C = 1
1024 .

We are thus left to prove the above claim.

Proof of Claim 5.7. Recall that

λ1(Γ′) = inf
f∈Zh0(Γ′)

∫
Γ′ |f ′|2dx∫
Γ′ f2dx

.
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Recalling the variational characterization of λ1(G), let g : V → R with
∑

v∈V g(v) = 0 and

λ1(G) =

∑
e={u,v}∈E

(
g(u)− g(v)

)2∑
v∈V g(v)2

.

For each vertex v in V of degree deg(v), consider the disk B(v) of radius 1
16 deg(v) around

v in Γ. Note that B(v) has volume 1/16 for any vertex v in G.
Note also that by the choice of Ae, Γ \

⋃
v∈V B(v) is a disjoint collection of segments of

length at least 1
8 (and at most 1

2 , by the maximality of each Ae).

Define the function f : Γ → R as follows: first for any vertex v ∈ V , define f on the
disk B(v) to be the constant function taking value g(v). Extend f to whole Γ by linear
interpolation on any segment of Γ \

⋃
v B(v). Let m = 1

µ(Γ)

∫
Γ fdx and consider the function

f −m which lies in Zh(Γ). We thus have

(2) λ1(Γ) ≤
∫

Γ f
′2dx∫

Γ(f −m)2dx
.

The function f − m can be written as a sum f1 + f2 where f1 is the restriction of f to⋃
v B(v) extended by zero to whole of Γ, and f2 = f −m− f1.

We have
∫

Γ f1dx =
∑

v

∫
B(v) f1dx =

∑
v g(v)µ(B(v)) = 1/16

∑
v g(v) = 0, and so

∫
Γ f2 = 0,

as well.
In addition, since f2 restricts to the constant function −m on

⋃
v B(v), we have

∫
Γ f1.f2 = 0,

which gives

(3)

∫
Γ
(f −m)2 =

∫
Γ
f2

1 +

∫
Γ
f2

2 ≥
∫

Γ
f2

1 =
∑
v∈V

g(v)2µ(B(v)) =
1

16

∑
v

g(v)2.

We now give an estimate of
∫

Γ f
′2. Each connected component in Γ \

⋃
v B(v) is a (unique)

segment Ie lying in the interior of an edge e = {u, v} G, and is adjacent to the two disks B(u)
and B(v).

The function f is affine linear with slope g(u)−g(v)
`(I) . Thus, we have∫

Γ
f ′2 =

∑
e∈E

∫
Ie

f ′2dx =
∑

e={u,v}∈E

(
g(u)− g(v)

)2
`(Ie)

.

Given that the length of Ie is at least 1
8 , we get

(4)

∫
Γ′
f ′2dx ≤ 8

∑
e={u,v}∈E

(
g(u)− g(v)

)2
.

Equations (2), (3) and (4) together give

λ1(Γ) ≤ 128λ1(G),

which is what we wanted to prove. �

Remark 5.8. We refer to the paper of Cohen-Steiner and the first author [7] for a complement
to Claim 5.7, and for an inequality in the other direction.
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[31] Y. Gao, Treewidth of Erdös-Rényi random graphs, random intersection graphs, and scale-free ran-

dom graphs, Discrete Appl. Math. 160 (2012), 566–578.

[32] F. Juhász, The asymptotic behaviour of Fiedler’s algebraic connectivity for random graphs, Discrete

Mat. 96 (1991), 59–63
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