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Abstract

A digraph is m-labelled if every arc is labelled by an integer in {1, . . . , m}. Motivated by wave-
length assignment for multicasts in optical networks, we introduce and study n-fibre colourings of
labelled digraphs. These are colourings of the arcs of D such that at each vertex v, and for each
colour α, in(v, α)+out(v, α) ≤ n with in(v, α) the number of arcs coloured α entering v and out(v, α)
the number of labels l such that there is at least one arc of label l leaving v and coloured with α.
The problem is to find the minimum number of colours λn(D) such that the m-labelled digraph
D has an n-fibre colouring. In the particular case when D is 1-labelled, λ1(D) is called the di-
rected star arboricity of D, and is denoted by dst(D). We first show that dst(D) ≤ 2∆−(D) + 1,
and conjecture that if ∆−(D) ≥ 2, then dst(D) ≤ 2∆−(D). We also prove that for a subcu-
bic digraph D, then dst(D) ≤ 3, and that if ∆+(D), ∆−(D) ≤ 2, then dst(D) ≤ 4. Finally, we
study λn(m, k) = max{λn(D) | D is m-labelled and ∆−(D) ≤ k}. We show that if m ≥ n, then
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for some constant C. We conjecture that

the lower bound should be the right value of λn(m,k).

1 Introduction

The origin of this paper is the study of wavelength assignment for multicasts in star networks. We are
given a star network in which a central node is connected by optical fibres to a set of nodes V . The nodes
of V communicates together using a technology called WDM (wavelength-division multiplexing), which
allows to send different signals at the same time through the same fibre but on different wavelengths.
The central node or hub is an all-optical transmitter which can redirect a signal arriving from a node
on a particular wavelength to some (one or more) of the other nodes on the same wavelength. It means
that the central node is able to duplicate a message incoming on a wavelength to different fibres without
changing its wavelength. Therefore if a node v sends a multicast to a set of nodes S(v), v should send
the message to the central node on a set of wavelengths so that the central node redirect it to each node
of S(v) using one of these wavelengths. The aim is to minimise the total number of used wavelengths.
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We refer to Brandt and Gonzalez [4] for a more complete description of the model and for some partial
results. In what follows, we will briefly explain the main contributions of this paper.

We first study the basic case when there is a unique fibre between the central node and each node
of V and each vertex v sends a unique multicast M(v) to a set S(v) of nodes. In this case, the problem
becomes equivalent to directed star colouring: let D be the digraph with vertex set V such that the
outneighbourhood of a vertex v is S(v). We note that D is a digraph and not a multidigraph, i.e., there
are no parallel arcs in D, as S(v) is a set. The problem is then to find the smallest k such that there
exists a mapping φ : A(D) → {1, . . . , k} satisfying the following two conditions:

(i) For all pair of arcs uv and vw, φ(uv) 6= φ(vw);

(ii) For all pair of arcs uv and u′v, φ(uv) 6= φ(u′v).

Such a mapping is called directed star k-colouring. The directed star arboricity of a digraph D, denoted
by dst(D), is the minimum integer k such that there exists a directed star k-colouring. This notion has
been introduced by Guiduli in [6] and is an analog of the star arboricity defined by Algor and Alon in [1].

The indegree of a vertex v, d−(v), corresponds to the number of multicasts that v receives. A sensible
assumption on the model is that a node receives a bounded number of multicasts. Hence, Brandt and
Gonzalez [4] studied the directed star arboricity of a digraph D with regards to its maximum indegree.
The maximum indegree of a digraph D, denoted by ∆−(D) or simply ∆− when D is clearly understood
from the context, is max { d−(v) | v ∈ V (D) }. Brandt and Gonzalez showed that dst(D) ≤ ⌈5∆−/2⌉.
This upper bound is tight if ∆− = 1, because odd circuits have directed star arboricity three. However,
as we will show in Section 2, the upper bound can be improved for larger values of ∆−.

Theorem 1 Every digraph D satisfies dst(D) ≤ 2∆− + 1.

We conjecture that

Conjecture 2 Every digraph D with maximum indegree ∆− ≥ 2 satisfies dst(D) ≤ 2∆−.

This conjecture would be tight as Brandt [3] showed that for every ∆−, there is an acyclic digraph D∆−

with maximum indegree ∆− and dst(D∆−) = 2∆−. His construction is the special case for n = m = 1
of the construction given in Proposition 17. We settle Conjecture 2 for acyclic digraphs in Section 2. So
combined with Brand’s construction, 2∆− is the best bound we can expect for acyclic digraphs.

Remark 3 Let us note at this point that we restrict ourselves to simple digraphs, i.e., we allow circuits
of length two but multiple arcs are not permitted. When multiple arcs are allowed, all the bounds above
do not hold. Indeed, given an integer ∆−, the multidigraph T∆− with three vertices u, v and w, and ∆−

parallel arcs to each of uv, vw and wu satisfies dst(T∆−) = 3∆−. Moreover, this example is extremal
since every multidigraph satisfies dst(D) ≤ 3∆−. This can be shown by induction: pick a vertex v with
outdegree at most its indegree. (Such a vertex exists since

∑

u∈V (D) d+(u) =
∑

u∈V (D) d−(u).) If v has
no inneighbour, then v is isolated, and we can remove v and apply induction. Otherwise, we consider
any arc uv. The colour of uv must be different from the colours of the d−(u) arcs entering u, the d+(v)
arcs leaving v, and the d−(v)− 1 other arcs entering v, so at most 3∆− − 1 arcs in total. Hence, we may
remove the arc uv, apply induction to obtain a colouring of D \ uv. Extending this colouring to uv, we
obtain a directed star colouring of D with at most 3∆− colours.
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Note that to prove Conjecture 2, it will be enough to consider the two cases ∆− = 2 and ∆− = 3.
To see this, let D be a digraph with maximum indegree ∆− ≥ 2 and k = ⌊∆−/2⌋. For every vertex v,
let (N−

1 (v), N−
2 (v), . . . , N−

k (v)) be a partition of N−(v) such that |N−
i (v)| ≤ 2 for all 1 ≤ i ≤ k − 1 and

|N−
k (v)| ≤ 2 if ∆− is even and |N−

k (v)| ≤ 3 if ∆− is odd. Then the digraph Di with vertex set V (D)
and such that N−

Di
(v) = N−

i (v) for every vertex v ∈ V (D), has maximum indegree at most two except if
i = k and ∆− is odd, in which case Dk has maximum indegree at most three. If Conjecture 2 holds for
every Di then it would also hold for D.

We next consider the directed star arboricity of a digraph with bounded maximum degree. The degree
of a vertex v is d(v) = d−(v) + d+(v). This corresponds to the degree of the vertex in the underlying
multigraph. (We have edges with multiplicity two in the underlying multigraph each time there is a
circuit of length two in the digraph.) The maximum degree of a digraph D, denoted by ∆(D), or simply
∆ when D is clearly understood from the context, is max { d(v), v ∈ V (D) }. Let us denote by µ(G), the
maximum multiplicity of an edge in a multigraph. By Vizing’s theorem [11], one can colour the edges
of a multigraph with ∆(G) + µ(G) colours so that two edges have different colours if they are incident.
Since the multigraph underlying a digraph has maximum multiplicity at most two, for any digraph D,
dst(D) ≤ ∆ + 2. We conjecture the following:

Conjecture 4 Let D be a digraph with maximum degree ∆ ≥ 3. Then dst(D) ≤ ∆.

This conjecture would be tight since every digraph with ∆ = ∆− has directed star arboricity at least ∆.
In Section 3, we prove that Conjecture 4 holds when ∆ = 3.

Theorem 5 Every subcubic digraph has directed star arboricity at most three.

A first step towards Conjectures 2 and 4 would be to prove the following weaker statement.

Conjecture 6 Let k ≥ 2 and D be a digraph. If max(∆−, ∆+) ≤ k then dst(D) ≤ 2k.

This conjecture holds and is far from being tight for large values of k. Indeed Guiduli [6] showed that
if max(∆−, ∆+) ≤ k, then dst(D) ≤ k + 20 log k + 84. Guiduli’s proof is based on the fact that, when
both out- and indegrees are bounded, the colour of an arc depends on the colour of few other arcs. This
bounded dependency allows the use of the Lovász Local Lemma. This idea was first used by Algor and
Alon [1] for the star arboricity of undirected graphs. We also note that Guiduli’s result is (almost) tight
since there are digraphs D with max(∆−, ∆+) ≤ k and dst(D) ≥ k + Ω(log k) (see [6]).
As for Conjecture 2, it is quite straightforward to check that it is sufficient to prove Conjecture 6 for
k = 2 and k = 3. In Section 4, we prove that Conjecture 6 holds for k = 2. By the above remark, this
implies that Conjecture 6 holds for all even values of k.

Theorem 7 Let D be a digraph. If ∆− ≤ 2 and ∆+ ≤ 2, then dst(D) ≤ 4. In particular, Conjecture 6
holds for all even values of k.

Next, we study the more general and more realistic problem in which every vertex of V is connected to
the hub by n optical fibres. Moreover each node may send several multicasts. We note M1(v), . . . , Ms(v)(v)
the s(v) multicasts that node v sends. For 1 ≤ i ≤ s(v), the set of nodes to which the multicast Mi(v)
is sent is denoted by Si(v). The problem is still to find the minimum number of wavelengths used
considering that all fibres are identical.
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We model this as a problem on labelled digraphs: We construct a multidigraph D on vertex set V . For
each multicast Mi(v) = (v, Si(v)), v ∈ V , 1 ≤ i ≤ s(v), we add the set of arcs Ai(v) = {vw, w ∈ Si(v)}
with label i. The label of an arc ~a is denoted by l(~a). Thus for every ordered pair (u, v) of vertices and
label i there is at most one arc uv labelled by i. If each vertex sends at most m multicasts, there are
at most m labels on the arcs. Such a digraph is said to be m-labelled. One wishes to find an n-fibre
wavelength assignment of D, that is a mapping Φ : A(D) → Λ×{1, . . . , n}× {1, . . .n} in which every arc
uv is associated a triple (λ(uv), f+(uv), f−(uv)) such that :

(i) For each pair of arcs uv and vw, (λ(uv), f−(uv)) 6= (λ(vw), f+(vw));

(ii) For each pair of arcs uv and u′v, (λ(uv), f−(uv)) 6= (λ(u′v), f−(u′w));

(iii) For each pair of arcs vw and vw′, if l(vw) 6= l(vw′), then (λ(vw), f+(vw)) 6= (λ(vw′), f+(vw′)).

Here Λ is the set of available wavelengths, λ(uv) corresponds to the wavelength of uv, and f+(uv) and
f−(uv) are the fibres used in u and v, respectively. We can describe the above equations as follows:

• Condition (i) corresponds to the requirement that an arc entering v and an arc leaving v should
have either different wavelengths or different fibres;

• Condition (ii) corresponds to the requirement that two arcs entering v should have either different
wavelengths or different fibres; and finally

• Condition (iii) corresponds to the requirement that two arcs leaving v with different labels have
either different wavelengths or different fibres.

The problem is to find the minimum cardinality λn(D) of Λ such that there exists an n-fibre wavelength
assignment of D.
The crucial part of an n-fibre wavelength assignment is the function λ which assigns colours (wavelengths)
to the arcs. It must be an n-fibre colouring, that is a function φ : A(D) → Λ, such that at each vertex v,
for each colour ω ∈ Λ, in(v, ω) + out(v, ω) ≤ n where in(v, ω) denotes the number of arcs coloured by ω
entering v and out(v, ω) denotes the number of labels l such that there exists an arc leaving v coloured
by ω. Once we have an n-fibre colouring, one can easily find a suitable wavelength assignment. For every
vertex v and every colour ω, this is done by assigning a different fibre to each arc of colour ω entering
v, and to each set of arcs of colour ω of the same label that leave v. We conclude that λn(D) is the
minimum number of colours such that there exists an n-fibre colouring.
We are particularly interested in λn(m, k) = max{λn(D) | D is m-labelled and ∆−(D) ≤ k}, that is the
maximum number of wavelengths that may be necessary if there are n fibres, and each node sends at most
m multicasts and receives at most k multicasts. In particular, λ1(1, k) = max{dst(D) | ∆−(D) ≤ k}.
(So our above mentioned results show that 2k ≤ λ1(1, k) ≤ 2k + 1.) Brandt and Gonzalez showed that

for n ≥ 2 we have λn(1, k) ≤
⌈

k
n−1

⌉

. In Section 5, we study the case when n ≥ 2 and m ≥ 2. We show

in Proposition 17 and Theorem 24 that
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We conjecture that the lower bound is the right value of λn(m, k) when m ≥ n. We also show in
Proposition 17 and Proposition 25 that

if m < n, then
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The lower bound generalises Brandt and Gonzalez [4] results which established this inequality in the
particular cases when k ≤ 2, m ≤ 2 and k = m. The digraphs used to show this lower bound are
all acyclic. We show that if m ≥ n then this lower bound is tight for acyclic digraphs. Moreover the
above mentioned digraphs have large outdegree. Generalising the result of Guiduli [6], we show that for
an m-labelled digraph D with both in- and outdegree bounded by k only few colours are needed when
m ≥ n:

λn(D) ≤
k

n
+ C′m

2 log k

n
for some constant C′.

Finally, in Section 6, we consider the complexity of finding the directed star arboricity of a digraph,
and prove that, unsurprisingly, this is an NP-hard problem. More precisely, we show that determining
the directed star arboricity of a digraph with in- and outdegree at most two is NP-complete. We then give
a very short proof of a theorem of Pinlou and Sopena [9], showing that acircuitic directed star arboricity
of subcubic graphs is at most four (see Section 6 for the definitions).

2 Directed Star Arboricity of Digraphs with Bounded Indegrees

In this section, we give the proof of Theorem 1 and settle Conjecture 2 for acyclic digraphs.
An arborescence is a connected digraph in which every vertex has indegree one except one, called root,

which has indegree zero. A forest is the disjoint union of arborescences. A star is an arborescence in
which the root dominates all the other vertices. A galaxy is a forest of stars. Clearly, every colour class of
a directed star colouring is a galaxy. Hence, the directed star arboricity of a digraph D is the minimum
number of galaxies into which A(D) may be partitioned.

It is easy to see that a forest has directed star arboricity at most two. Hence, an idea to prove
Conjecture 2 would be to show that every digraph has an arc-partition into ∆− forests. However this
statement is false. Indeed a theorem of Frank [5] (see also Chapter 53 of [10]) characterises all digraphs
which have an arc-partition into k forests. Let D = (V, A). For any U ⊂ V , the digraph induced by the
vertices of U is denoted D[U ].

Theorem 8 (A. Frank) A digraph D = (V, A) has an arc-partition into k forests if and only if ∆−(D) ≤
k and for every U ⊂ V , the digraph D[U ] has at most k(|U | − 1) arcs.

This theorem implies that every digraph D has an arc-partition into ∆− + 1 forests. Indeed for any
U ⊂ V , ∆−(D[U ]) ≤ min{∆−, |U |− 1}, so D[U ] has at most min{∆−, |U |− 1}× |U | ≤ (∆− +1)(|U |− 1)
arcs. Hence, every digraph has directed star arboricity at most 2∆− + 2.

Corollary 9 Every digraph D satisfies dst(D) ≤ 2∆− + 2.

Theorem 1 states that dst(D) ≤ 2∆−+1. The idea to prove this theorem is to show that every digraph
has an arc-partition into ∆− forests and a galaxy G. To do so, we prove a stronger result, Lemma 10
below.

We need some extra definitions. A sink is a vertex with outdegree 0. A source is a vertex with indegree
0. A multidigraph D will be called k-nice if ∆− ≤ k, and if the tails of parallel arcs, if any, are sources.
A k-decomposition of D is an arc-partition into k forests and a galaxy G such that every source of D is
isolated in G. Let u be a vertex of D. A k-decomposition of D is u-suitable if no arc of G has head u.

Lemma 10 Let u be a vertex of a k-nice multidigraph D. Then D has a u-suitable k-decomposition.
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Proof. We proceed by induction on n + k by considering (strong) connectivity of D:

• If D is not connected as graph, we apply induction on every component.

• If D is strongly connected, every vertex has indegree at least one. (Recall that there are no parallel
arcs.) Let v be an outneighbour of u. There exists a spanning arborescence T with root v which
contains all the arcs with tail v. Let D′ be the digraph obtained from D by removing the arcs of
T and v. Observe that D′ is (k − 1)-nice. By induction, it has a u-suitable (k − 1)-decomposition
(F1, . . . , Fk−1, G). Note that each Fi, for 1 ≤ i ≤ k − 1, T and G contain all the arcs of D except
those with head v. By construction, G′ = G ∪ uv is a galaxy since no arc of G has head u. Let
u1, . . . , ul−1 be the inneighbours of v distinct from u, where l ≤ k. Let F ′

i = Fi ∪ uiv, for all
1 ≤ i ≤ l − 1. Each F ′

i is a forest, so (F1, . . . , Fk−1, T, G′) is a u-suitable k-decomposition of D.

• In the only remaining case, D is connected but not strongly connected. We consider a terminal
strongly connected component D1 of D. Set D2 = D \ D1. Let u1 and u2 be two vertices of D1

and D2, respectively, such that u is one of them.

If D2 has a unique vertex v (thus u2 = v), since D is connected and D1 is strong, there exists a
spanning arborescence T of D with root v. Now D′ = D \A(T ) is a (k−1)-nice multidigraph, so by
induction it has a u-suitable (k−1)-decomposition. Adding T to this decomposition, we obtain a u-
suitable k-decomposition. If D2 has more than one vertex, it admits a u2-suitable k-decomposition
(F 2

1 , . . . , F 2
k , G2), by induction. Moreover the digraph D′

1 obtained by contracting D2 to a single
vertex v is k-nice and so has a u1-suitable k-decomposition (F 1

1 , . . . , F 1
k , G1). Moreover, since v is a

source, it is isolated in G1. Hence G = G1 ∪ G2 is a galaxy. We now let Fi be the union of F 1
i and

F 2
i by replacing the arcs of F 1

i with tail v by the corresponding arcs in D. Then (F1, . . . , Fk, G) is
a k-decomposition of D which is suitable for both u1 and u2.

�

Theorem 1 is an immediate consequence of Lemma 10.

2.1 Acyclic Digraphs

It is not very hard to show that dst(D) ≤ 2∆− when D is acyclic, but we will prove this result in a more
constrained way. For n ≤ p, a cyclic n-interval of {1, 2, . . . , p} is a set of n consecutive numbers modulo
p. Now for the directed star colouring, we will insist that for every vertex v, the (distinct) colours used
to colour the arcs with head v are chosen in a cyclic k-interval of {1, 2, . . . , 2k}. Thus, the number of
possible sets of colours used to colour the entering arcs of a vertex v drastically falls from

(

2k
d−(v)

)

when

every set is a priori possible, to at most 2k ×
(

k
d−(v)

)

. Note that having consecutive colours on the arcs

entering a vertex corresponds to having consecutive wavelengths on the link between the corresponding
node and the central one. This may of importance for issues related to grooming in optical networks.
For details about grooming, we refer the reader to the two comprehensive surveys [7, 8].

Theorem 11 Let D be an acyclic digraph with maximum indegree k. Then D admits a directed star
2k-colouring such that for every vertex, the colours assigned to its entering arcs are included in a cyclic
k-interval of {1, 2, . . . , 2k}.

To prove this theorem, we first state and prove the following result on sets of distinct representatives.
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Lemma 12 Let I1, . . . , Ik be k non necessarily distinct cyclic k-intervals of {1, 2, . . . , 2k}. Then I1, . . . , Ik

admit a set of distinct representatives forming a cyclic k-interval.

Proof. We consider I1, . . . , Ik as a set of p distinct cyclic k-intervals I1, . . . , Ip with respective multiplicity
m1, . . . , mp such that

∑p
i=1 mi = k. Such a system will be denoted by ((I1, m1), . . . , (Ip, mp)). We shall

prove the existence of a cyclic k-interval J , such that J can be partitioned into p subsets Ji, 1 ≤ i ≤ p,
such that |Ji| = mi and Ji ⊂ Ii. This proves the lemma (by associating distinct elements of Ji to each
copy of Ii).

We proceed by induction on p. The result holds trivially for p = 1. We have to deal with two cases:

• There exist i and j such that |Ij \ Ii| = |Ii \ Ij | ≤ max(mi, mj).

Suppose without loss of generality that i < j and mi ≥ mj . We apply the induction hypothesis to
((I1, m1), · · · , (Ii, mi + mj), · · · , (Ij−1, mj−1), (Ij+1, mj+1), · · · , (Ip, mp)), in order to find a cyclic
interval J ′, such that J ′ admits a partition into subsets J ′

r, such that for any r different from i and
j, the set J ′

r ⊂ Ir is a subset of size mr, and J ′
i ⊂ Ii is of size mi + mj . We now partition J ′

i into
two sets Ji and Jj with respective size mi and mj , in such a way that (Ii \ Ij) ∩ J ′

i ⊆ Ji. Remark
that this is possible precisely because of our assumption |Ij \ Ii| = |Ii \ Ij | ≤ mi. Since Ji ⊂ Ii and
Jj ⊂ Ij , this refined partition of J ′ is the desired one.

• For any i, j we have |Ij \ Ii| = |Ii \ Ij | ≥ max(mi, mj) + 1.

Each Ii intersects exactly 2mi − 1 other cyclic k-intervals on less than mi elements. Since there
are 2k cyclic k-intervals in total and

∑p
i=1(2mi − 1) = 2k − p < 2k, we conclude the existence of a

cyclic k-interval J which intersects each Ii in an interval of size at least mi.

Let us prove that one can partition J in the desired way. By Hall’s matching theorem, it suffices
to prove that for every subset I of {1, . . . , p}, we have |

⋃

i∈I Ii ∩ J | ≥
∑

i∈I mi.

Suppose for the sake of a contradiction that a subset I of {1, . . . , p} violates this inequality. Such
a subset will be called contracting. Without loss of generality, we assume that I is a contracting
set with minimum cardinality and that I = {1, . . . , q}. Observe that by the choice of J , we have
q ≥ 2. The set K :=

⋃

i∈I Ii ∩J consists of one or two intervals of J , each containing one extremity
of J . By the minimality of I, K must be a single interval (if not, one would take I1 (resp. I2),
all the elements of I which contains the first (resp. the second) extremity of J . Then one of
I1 or I2 would be contracting). Thus, one of the two extremities of J is in every Ii, i ∈ I.
Without loss of generality, we may assume that (I1 ∩ J) ⊂ (I2 ∩ J) ⊂ · · · ⊂ (Iq ∩ J). Now,
for every 2 ≤ i ≤ q, |Ii \ Ii−1| = |(Ii ∩ J) \ (Ii−1 ∩ J)| ≥ max(mi, mi−1) + 1 ≥ mi + 1. But
|
⋃

i∈I Ii ∩ J | = |(I1 ∩ J)| +
∑q

i=2 |(Ii ∩ J) \ (Ii−1 ∩ J)|. So |
⋃

i∈I Ii ∩ J | ≥
∑q

i=1 mi + q − 1, which
is a contradiction.

�

Proof of Theorem 11. By induction on the number of vertices, the result being trivial if D has one
vertex. Suppose now that D has at least two vertices. Then D has a sink x. By the induction hypothesis,
D \ x has a directed star 2k-colouring c such that for every vertex, the colours assigned to its entering
arcs are included in a cyclic k-interval. Let v1, v2, . . . , vl be the inneighbours of x in D, where l ≤ k
because ∆−(D) ≤ k. For each 1 ≤ i ≤ l, let I ′i be a cyclic k-interval which contains all the colours of the
arcs with head vi. We set Ii = {1, . . . , 2k} \ I ′i. Clearly, Ii is a cyclic k-interval and the arc vix can be
coloured by any element of Ii. By Lemma 12, I1, . . . , Il have a set of distinct representatives included in
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a cyclic 2k-interval J . Hence assigning J to x, and colouring the arc vix by the representative of Ii gives
a directed star 2k-colouring of D. �

Theorem 11 is tight : Brandt [3] showed that for every k, there is an acyclic digraph such that
∆−(Dk) = k and dst(Dk) = 2k. His construction is the special case for n = m = 1 of the construction
given in Proposition 17.

3 Directed Star Arboricity of Subcubic Digraphs

Recall that a subcubic digraph is a graph with degree at most three. In this section, we give the proof of
Theorem 5 which states that the directed star arboricity of a subcubic digraph is at most three.

To do so, we need to establish some preliminary lemmas which will enable us to extend a partial
directed star colouring into a directed star colouring of the whole digraph. To state these lemmas, we
need the following definition. Let D = (V, A) be a digraph and S be a subset of V ∪ A. Suppose that
each element x of S is assigned a list L(x). A colouring c of S is an L-colouring if c(x) ∈ L(x) for every
x ∈ S.

Lemma 13 Let C be a circuit in which every vertex v receives a list L(v) of two colours among {1, 2, 3}
and each arc ~a receives the list L(~a) = {1, 2, 3}. The following two statements are equivalent:

• There is no L-colouring c of the arcs and vertices such that c(x) 6= c(xy), c(y) 6= c(xy), and
c(xy) 6= c(yz), for all arcs xy and yz.

• C is an odd circuit and all the vertices have the same list.

Proof. Assume first that every vertex is assigned the same list, say {1, 2}. If C is odd, it is a simple
matter to check that we can not find the desired colouring. Indeed, among two consecutive arcs, one has
to be coloured 3. If C is even, we colour the vertices by 1 and the arcs alternately by 2 and 3.

Now assume that C = x1x2 . . . xkx1 and x1 and x2 are assigned different lists. Say L(x1) = {1, 2} and
L(x2) = {2, 3}. We colour the arc x1x2 by 3, the vertex x2 by 2 and the arc x2x3 by 1. Then we colour
x3, x3x4, . . . , xk greedily. It remains to colour xkx1 and x1. Two cases may happen: If we can colour
xkx1 by 1 or 2, we do it and colour x1 by 2 or 1 respectively. Otherwise the set of colours assigned to xk

and xk−1xk is {1, 2}. Hence, we colour xkx1 with 3, x1 by 1, and recolour x1x2 by 2 and x2 by 3. �

Lemma 14 Let D be a subcubic digraph with no vertex of outdegree two and indegree one. Suppose that
every arc ~a has a list of colours L(~a) ⊂ {1, 2, 3} such that:

• If the head of ~a is a sink s (in which case, ~a will be called a final arc), |L(~a)| ≥ d−(s).

• If ~a is not a final arc and the tail of ~a is a source (in which case, ~a will be called an initial arc),
|L(~a)| ≥ 2.

• In all the other cases, |L(~a)| = 3.

In addition, assume that the followings hold:

• If a vertex is the head of at least two initial arcs ~a and ~b, the union of the lists of colours L(~a) and

L(~b) contains all the three colours.
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• If all the vertices of an odd circuit are the tails of initial arcs, the union of the lists of colours of
these initial arcs contains all the three colours.

Then D has a directed star L-colouring.

Proof. We colour the graph inductively. Consider a terminal strong component C of D. Since D has
no vertex with indegree one and outdegree two, C induces either a singleton or a circuit.

1) Assume that C is a singleton v which is the head of a unique arc ~a = uv. If u has indegree zero,
we colour ~a with a colour of its list. If u has indegree one, and thus total degree two, we colour ~a
by the colour of its list and remove this colour from the list of the arc with head u. If u is the head
of ~e and ~f , observe that L(~e) and L(~f) have at least two colours and their union have all the three

colours. To conclude, we colour ~a with a colour in its list, remove this colour from L(~e) and L(~f),

remove ~a, and split u into two vertices, one with head ~e and the other with head ~f . Now, we choose
different colours for the arcs ~e and ~f in their respective lists to form the new list L(~e) and L(~f).

2) Assume that C is a singleton v which is the head of several arcs, including ~a = uv. In this case, we
reduce L(~a) to a single colour, remove this colour from the other arcs with head v and split v into
v1, which becomes the head of ~a, and v2 which becomes the head of the other arcs.

3) Assume that C is a circuit. Every arc entering C has a list of at least two colours. We can apply
Lemma 13 to conclude.

�

Proof of Theorem 5. Assume for the sake of a contradiction that the digraph D has directed star
arboricity more than three and is minimum for this property with respect to the number of arcs. Observe
that D has no source, otherwise we simply delete it with all its incident arcs, apply induction and extend
the colouring. This is possible since arcs leaving from a source can be coloured arbitrarily. Let D1 be the
subdigraph of D induced by the vertices of indegree at most 1. We denote by D2 the digraph induced
by the other vertices, and by [Di, Dj] the set of arcs with tail in Di and head in Dj . We claim that D1

contains no even circuit. If not, we simply remove the arcs of this even circuit, apply induction. We can
extend the colouring to the arcs of the even circuit since every arc of the circuit has two colours available.

A critical set of vertices of D2 is either a vertex of D2 with indegree at least two in D1, or an odd
circuit of D2 having all its inneighbours in D1. Observe that critical sets are disjoint. For every critical
set S, we select two arcs entering S from D1, called selected arcs of S.

Let D′ be digraph induced by the arc set A′ = A(D1) ∪ [D2, D1]. We now define a conflict graph on
the arcs of D′ in the following way:

• Two arcs xy, yv of D′ are in conflict, called normal conflict at y.

• Two arcs xy, uv of D′ are also in conflict if there exists two selected arcs of the same set S with
tails y and v. These conflicts are called selected conflicts at y and v.

Let us analyse the structure of the conflict graph. Observe first that an arc is in conflict with three arcs :
one normal conflict at its tail and at most two (normal or selected) at its head. We claim that there is no
K4 in the conflict graph. For the sake of a contradiction, suppose there is one. This means that there are
four arcs ~a,~b,~c and ~d pairwise in conflict. Since each of these arcs have degree three in K4, each of these
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arcs should have a normal conflict at its tail, and so the digraph induced by these four arcs contains a
circuit. This circuit cannot be of even length (two or four) so it has to be of length three. It follows that

the four arcs ~a,~b,~c and ~d are as in Figure 1 below (modulo a permutation of the labels). Let D∗ be the

digraph obtained from D by removing the arcs ~a,~b,~c, ~d and their four incident vertices. By minimality
of D, D∗ admits a directed star 3-colouring which can be extended to D as depicted below depending if
the two leaving arcs are coloured the same or differently. This proves the claim.

2
1

3

3

1
12

2

3

1

2
1

3

3

1
21

2

3

2

a b

c

d

a b

c

d

Figure 1: A K4 in the conflict graph and the two ways of extending the colouring.

Brooks Theorem asserts that every subcubic graph without K4 is 3-colourable. So the conflict graph
admits a 3-colouring c. This gives a colouring of the arcs of D′. Let D′′ be the digraph obtained from
D, and let L be the list-assignment on the arcs of D′′ defined simultaneously as follow:

• Remove the arcs of D1 from D,

• Assign to each arc of [D2, D1] the singleton list containing the colour it has in D′,

• For each arc uv of [D1, D2], there is a unique arc tu in A(D′). Assign to uv the list L(uv) =
{1, 2, 3} \ c(tu).

• Assign the list {1, 2, 3} to the other arcs.

• If there are vertices with indegree one and outdegree two (they were in D1), split each of them into
one source of degree two and a sink of degree one.

Note that there is a trivial one-to-one correspondence between A(D′′) and A(D) \ A(D′). By the
definition of the conflict graph and D′′, one can easily check that D′′ and L satisfies the condition of
Lemma 14. Hence D′′ admits a directed star L-colouring which union with c is a directed star 3-colouring
of D, a contradiction. The proof of Theorem 5 is now complete. �

4 Directed Star Arboricity of Digraphs with Maximum In- and

Outdegree Two

The goal of this section is to prove Theorem 7: Every digraph with outdegree and indegree at most two
has directed star arboricity at most four. However, the class of digraphs with in- and outdegree at most
two is certainly not an easy class with respect to directed star arboricity, as we will show in Section 6.1.
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In order to prove Theorem 7, it suffices to show that D contains a galaxy G which spans all the
vertices of degree four. Indeed, if this is true, then D′ = D − A(G) has maximum degree at most 3 and
by Theorem 5, dst(D′) ≤ 3. So dst(D) ≤ 4. Hence Theorem 7 is directly implied by the following lemma:

Lemma 15 Let D be a digraph with maximum indegree and outdegree two. Then D contains a galaxy
which spans the set of vertices with degree four.

To prove this lemma, we need some preliminaries.
Let V be a set. An ordered digraph on V is a pair (≤, D) where:

• ≤ is a partial order on V ;

• D is a digraph with vertex set V ;

• D contains the Hasse diagram of ≤. I.e., when x ≤ y ≤ z implies x = y or y = z, then xz is an arc
of D;

• If xy is an arc of D, the vertices x, y are ≤-comparable.

The arcs xy of D thus belong to two different types: the forward arcs, when x ≤ y, and the backward
arcs, when y ≤ x.

Lemma 16 Let (≤, D) be an ordered digraph on V . Assume that every vertex is the tail of at most one
backward arc and at most two forward arcs, and that the indegree of every vertex of D is at least two,
except possibly one vertex x with indegree one. Then D contains two arcs γα and βλ such that α ≤ β ≤ γ,
β ≤ λ and γ 6≤ λ, all four vertices being distinct except possibly α = β.

Proof. For the sake of a contradiction, let us consider a counterexample with minimum |V |.
An interval is a subset I of V which has a minimum m and a maximum M such that I = {z :

m ≤ z ≤ M}. An interval I is good if every arc with tail in I and head outside I has tail M and every
backward arc in I has tail M .

Let I be an interval of D. The digraph D/I obtained from D by contracting I is the digraph with
vertex set (V \ I) ∪ {vI} such that xy is an arc if and only either vI /∈ {x, y} and xy ∈ A(D), or x = vI

and there exists xI ∈ I such that xIy ∈ A(D), or y = vI and there exists yI ∈ I such that xyI ∈ A(D).
Similarly, the binary relation ≤/I obtained from ≤ by contracting I is the binary relation on (V \ I)∪

{vI} such that x ≤/I y if and only if either vI /∈ {x, y} and x ≤ y, or x = vI and there exists xI ∈ I such
that xI ≤ y, or y = vI and there exists yI ∈ I such that x ≤ yI . We claim that if I is good then ≤/I is
a partial order. Indeed suppose it is not, then there are two elements u and t such that u ≤/I vI , vI ≤ t
and u 6≤/I t. Then M 6≤ t. Let α ∈ I be the maximal element of I such that α ≤ t, λ be a successor of α
in I, and γ a successor of α not in I (it exists as t /∈ I and α ≤ t and maximal in I with this property).
Then λ and γ are incomparable, and αγ and αλ are in the Hasse diagram of ≤. Because I is good, it
follows that γα and αλ are arcs of D, which is impossible as D is supposed to be a counterexample.

Hence, if I is a good interval, then (≤/I , D/I) is an ordered digraph. Note that if x ≤/I vI , then
x ≤ M with M the maximum of I. The crucial point is that if I a good interval of D for which the
conclusion of Lemma 16 holds for (≤/I , D/I), then it holds for (≤, D). Indeed, suppose there exists two
arcs γα and βλ of D/I such that α ≤/I β ≤/I γ, β ≤/I λ, and γ 6≤/I λ. Note that since I is good, we
have vI 6= γ. Let M be the maximum of I.
If vI /∈ {α, β, γ, λ}, then γα and βλ gives the conclusion for D.
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If vI = α, then γM is an arc. Let us show that M ≤ β. Indeed, let x be a maximal vertex in I such that
x ≤ β and let y be a minimal vertex such that x ≤ y ≤ β. Since the Hasse diagram of ≤ is included in
D, xy is an arc, and so x = M (since I is good). Thus γM and βλ are the desired arcs.
If vI = β, then Mλ is an arc and α ≤ M , so γα and Mλ are the desired arcs.
If vI = λ, then there exists λI ∈ I such that βλI , so γα and βλI are the desired arcs.

Hence to get a contradiction, it is sufficient to find a good interval I such that (≤/I , D/I) satisfies
the hypotheses of Lemma 16.

Observe that there are at least two backward arcs. Indeed, if there are two minimal elements for ≤,
there are at least three backward arcs entering these vertices (since one of them can be x). And if there
is a unique minimum m, by letting m′ minimal in V \ m, at least two arcs are entering m, m′.

Let M be a vertex which is the tail of a backward arc and which is minimal for ≤ for this property.
Since two arcs cannot have the same tail, M is not the maximum of ≤ (if any). Let Mm be the backward
arc with tail M .

We claim that the interval J with minimum m and maximum M is good. Indeed, by the definition
of M , no backward arc has its tail in J \ {M}. Moreover, any forward arc βλ with its tail in J \ {M}
and its head outside J would give our conclusion (with α = m and γ = M), a contradiction.

Now consider a good interval I with maximum M which is maximal with respect to inclusion. We
claim that if x ∈ I, then there is at least one arc entering I, and if x /∈ I, there are at least two arcs
entering I with different tails.

Call m1 the minimum of I and m2 any minimal element of I \m1. First assume that x is in I. There
are at least three arcs with heads m1 or m2. One of them is m1m2, one of them can be with tail M , but
there is still one left with tail not in I. Now assume that x is not in I. There are at least two arcs with
heads m1 or m2 and tails not in I. If the tails are different, we are done. If the tails are the same, say v,
observe that vm1 and vm2 are both backward or both forward (otherwise v would be in I). Since both
cannot be backward, both vm1 and vm2 are forward. Hence the interval with minimum v and maximum
M is a good interval, contradicting the maximality of I. This proves the claim.
This in turn implies that (≤/I , D/I) satisfies the hypotheses of Lemma 16, yielding a contradiction. �

Proof of Lemma 15. Let G be a galaxy of D which spans a maximum number of vertices of degree
four. Suppose for the sake of a contradiction that some vertex x with degree four is not spanned.

An alternating path is an oriented path ending at x, starting by an arc of G, and alternating with arcs
of G and arcs of A(D) \A(G). We denote by A the set of arcs of G which belong to an alternating path.

Claim 1 Every arc of A is a component of G.

Proof. Indeed, if uv belongs to A, it starts some alternating path P . Thus, if u has outdegree more
than one in G, the digraph with the set of arcs A(G)△A(P ) is a galaxy and spans V (G) ∪ x. �

Claim 2 There is no circuits alternating arcs of A and arcs of A(D) \ A.

Proof. Assume that there is such a circuit C. Consider a shortest alternating path P starting with
some arc of A in C. Now the digraph with arcs A(G)△(A(P )∪A(C)) is a galaxy which spans V (G)∪ x,
contradicting the maximality of G. �

We now endow A∪x with a partial order structure by letting a ≤ b if there exists an alternating path
starting at a and ending at b. The fact that this relation is a partial order relies on Claim 2. Observe
that x is the maximum of this order.
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We also construct a digraph D on vertex set A∪ x with all arcs uv → st such that us or vs is an arc
of D (and uv → x such that ux or vx is an arc of D).

Claim 3 The pair (D,≤) is an ordered digraph. Moreover an arc of A is the tail of at most one backward
arc and two forward arcs, and x is the tail of at most two backward arcs.

Proof. The fact that the Hasse diagram of ≤ is contained in D follows from the fact that if uv ≤ st
belongs to the Hasse diagram of ≤, there is an alternating path starting by uvst, in particular, the arc
vs belongs to D, and thus uv → st in D.

Suppose that uv → st, then vs or us is an arc of D. If vs is an arc, because there is no alternating
circuit, st follows uv on some alternating path, and so uv ≤ st. In this case, uv → st is forward.
If us is an arc of D, we claim that st ≤ uv. Indeed, if an alternating path P starting at st does not
contain uv, the galaxy with arcs (A(G)△A(P )) ∪ {us} spans V (G) ∪ x, contradicting the maximality of
G. In this case, uv → st is backward.

It follows that an arc uv of A is the tail of at most one backward arc (since this arc and uv are the two
arcs leaving u in D), and uv is the tail of at most two forward arcs (since v has outdegree at most two).
Furthermore, since x has outdegree at most two, it follows that x is the tail of at most two backward
arcs. �

Claim 4 The indegree of every vertex of D is two.

Proof. Let uv be a vertex of D which starts an alternating path P . If u has indegree less than two,
and thus does not belong to the set of vertices of degree four, the galaxy with arcs A(G)△A(P ) spans
more vertices of degree four than G, a contradiction. Let s and t be the two inneighbours of u in D.
An element of A∪ x should contain s, since otherwise, the galaxy with arcs (A(G)△A(P )) ∪ {su} spans
V (G) ∪ x and contradicts the maximality of G. Similarly an element of A ∪ x contains t.

Observe that the same element of A∪ x cannot contain both s and t (either the arc st or the arc ts),
otherwise the arcs su and tu would be both backward or forward, which is impossible. �

At this stage, in order to apply Lemma 16, we just need to insure that the backward outdegree of
every vertex is at most one. Since the only element of D which is the tail of two backward arcs is x, we
simply delete any of these two backward arcs. The indegree of a vertex of D decreases by one but we are
still fulfilling the hypothesis of Lemma 16.

Hence according to this lemma, D contains two arcs γα and βλ such that α ≤ β ≤ γ, β ≤ λ and
γ 6≤ λ. Recall that α, β, γ, λ are elements of A∪x. In particular, there is an alternating path P containing
α, β, λ (in this order) which does not contain γ. Setting α = α1α2 and γ = γ1γ2, note that the backward
arc γα corresponds to the arc γ1α1 in D. We reach a contradiction by considering the galaxy with arcs
(A(G)△A(P )) ∪ {γ1α1} which spans V (D′) ∪ x. The proof of Lemma 15 is now complete. �

5 Multiple Fibres

In this section we consider the general problem with n ≥ 2 fibres, and give lower and upper bounds on
λn(m, k). Let us start by proving a lower bound on λn(m, k).

13



Proposition 17 For all m, n, k ∈ N , we have λn(m, k) ≥

⌈

m

n

⌈

k

n

⌉

+
k

n

⌉

Proof. Consider the following m-labelled digraph Gn,m,k with vertex set X ⊔ Y ⊔ Z such that :

• |X | = k, |Y | = k2(m+1)k and |Z| = m
(

|Y |
k

)

.

• For any x ∈ X and y ∈ Y , there is an arc xy (of whatever label).

• For every set S of k vertices of Y and any integer 1 ≤ i ≤ m, there is a vertex zi
S in Z which is

dominated by all the vertices of S via arcs labelled i.

Suppose there exists an n-fibre colouring of Gn,m,k with c <
⌈

m
n

⌈

k
n

⌉

+ k
n

⌉

colours. For y ∈ Y and
1 ≤ i ≤ m, let Ci(y) be the set of colours assigned to the arcs labelled i leaving y. For 0 ≤ j ≤ n,
let Pj be the set of colours used on j arcs entering y (and necessarily with two different fibres). Then
∑n

j=0 j|Pj | = k as k arcs enter y. Moreover
∑n

j=0 |Pj | = c, since (P0, P1, . . . , Pn) is a partition of the set
of colours. Now each colour of Pj may appear in at most n − j of the Ci(y), so

m
∑

i=1

|Ci(y)| ≤
n

∑

j=0

(n − j)|Pj | = n

n
∑

j=0

|Pj | −
n

∑

j=0

j|Pj | = cn − k.

Because |Y | > (k−1)2cm, there is a set S of k vertices y of Y having the same m-tuple (C1(y), . . . , Cm(y)) =
(C1, . . . , Cm). Without loss of generality, we may assume |C1| = min{|Ci| | 1 ≤ i ≤ m}. Hence
|C1| ≤ cn−k

m . But the vertex z1
S has indegree k, so |C1| ≥ k

n . Since |C1| is an integer, we have
⌊

cn−k
m

⌋

≥ |C1| ≥
⌈

k
n

⌉

. So c ≥ m
n

⌈

k
n

⌉

+ k
n . Since c is an integer, we get c ≥

⌈

m
n

⌈

k
n

⌉

+ k
n

⌉

, a con-
tradiction. �

Note that the graph Gn,m,k is acyclic. The following lemma shows that, if m ≥ n, one cannot expect
better lower bounds by considering acyclic digraphs. Indeed Gn,m,k is the m-labelled acyclic digraph
with indegree at most k for which an n-fibre colouring requires the more colours.

Lemma 18 Let D be an acyclic m-labelled digraph with ∆− ≤ k. If m ≥ n, then λn(D) ≤
⌈

m
n

⌈

k
n

⌉

+ k
n

⌉

.

Proof. Since D is acyclic, its vertex set admits an ordering (v1, v2, . . . , vp) such that if vjvj′ is an arc,
then j < j′.

By induction on q, we shall find an n-fibre colouring of D[{v1, . . . , vq}] together with sets Ci(vr) of
⌈ k

n⌉ (potential) colours, for 1 ≤ i ≤ m and 1 ≤ r ≤ q, such that assigning a colour in Ci(vr) to an arc
labelled i leaving vr (in the future) will fulfil the condition of an n-fibre colouring at vr.

Starting the process is easy. We may let Ci(v1)’s to be any family of ⌈ k
n⌉-sets such that a colour

appears in at most n of them.
Suppose now that we have an n-fibre colouring of D[{v1, . . . , vq−1}], and that, for any 1 ≤ i ≤ m and

1 ≤ r ≤ q − 1, the set Ci(vr) is already determined. Let us colour the arcs entering vq. Each of these
arcs vrvq may be assigned one of the ⌈ k

n⌉ colours of Cl(vrvq)(vr). Since a colour may be assigned to n
arcs (using different fibres) entering vq, one can assign a colour and a fibre to each such arc. It remains
to determine the sets Ci(vq), 1 ≤ i ≤ m.

For 0 ≤ j ≤ n, let Pj be the set of colours assigned to j arcs entering vq. Let N =
∑n

i=0(n − j)|Pj |
and (c1, c2, . . . , cN ) be a sequence of colours such that each colour of Pj appears exactly n− j times and
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consecutively. For 1 ≤ i ≤ m, set Ci(vq) = {ca | a ≡ i mod m}. As n ≤ m, a colour appears at most
once in each Ci(vq). Moreover, N = n

⌈

m
n

⌈

k
n

⌉

+ k
n

⌉

− k ≥ m
⌈

k
n

⌉

. So for 1 ≤ i ≤ m, |Ci(vq)| ≥
⌈

k
n

⌉

. �

Lemma 18 shows that the lower bound of Proposition 17 is tight for acyclic digraphs. In fact, we
conjecture that the lower bound remains tight for digraphs in general:

Conjecture 19 λn(m, k) =

⌈

m

n

⌈

k

n

⌉

+
k

n

⌉

We now establish an upper bound on λn(m, k) for general digraphs. Note that the graphs Gn,m,k

requires lots of colours but have very large outdegree. We first give an upper bound on λn(D) for m-
labelled digraphs with bounded in- and outdegree. In this case, on can show that only ”few” colours are
needed. This is derived from the following theorem of Guiduli.

Theorem 20 (Guiduli [6]) If ∆−, ∆+ ≤ k, then dst(D) ≤ k + 20 log k + 84. Moreover, D admits
a directed star colouring with k + 20 log k + 84 colours such that for each vertex v, there are at most
10 log k + 42 colours assigned to its leaving arcs.

As we will show below, Guiduli’s Theorem can be extended to the following statement for m-labelled
digraphs.

Theorem 21 Let f(n, m, k) =

⌈

k + (10m2 + 5) log k + 80m2 + m + 21

n

⌉

and let D be an m-labelled di-

graph with ∆−, ∆+ ≤ k. Then λn(D) ≤ f(n, m, k). Moreover, D admits an n-fibre colouring with
f(n, m, k) colours such that for each vertex v and each label l, the number of colours assigned to the arcs
labelled l and leaving v is at most g(m, k) = ⌈(10m + 5) log k + 40m + 21⌉.

As one can notice, Theorem 21 in the case n = m = 1 is slightly better than Theorem 20 (for
∆−, ∆+ ≤ k, Theorem 21 gives dst(D) ≤ k + 15 log k + 102). But this is superficial and is only due to
the upper bound given in Lemma 1, which is better than the upper bound 3∆ used by Guiduli. Indeed,
the methods are identical.

We recall the following definition: given a family of sets F = (Ai, i ∈ I), a transversal of F is a family
of distinct elements (ti, i ∈ I) with ti ∈ Ai for all i ∈ I.

Lemma 22 Let D be an m-labelled digraph with ∆− ≤ k. Suppose that for each vertex v, there are m
disjoint lists L1

v, ..., L
m
v of c colours each being a subset of {1, ..., k + c}. If for each vertex v, the family

{

Li
y | yx ∈ E(D) and yx is labelled i

}

has a transversal, then there is a 1-fibre colouring of D with
k + (2m2 + 1)c + m colours such that for each vertex v and each label l, at most (2m + 1)c + 1 colours
are assigned to arcs labelled l that leave v.

Proof. Using the transversal to colour the entering arcs at each vertex, we obtain a colouring with few
conflicts. Indeed there is no conflict between arcs entering a same vertex. So the only possible conflicts
are between an arc entering a vertex v and an arc leaving v. Since arcs leaving v use at most mc colours
(those of L1

v ∪ ...∪Lm
v ), there are at most mc arcs entering v having the same colour as an arc leaving c.

Removing such entering arcs for every vertex v, we obtain a digraph D′ for which the colouring with the
k + c colours is a 1-fibre colouring. We now want to colour the arcs of D − D′ with few extra colours.
Consider a label 1 ≤ l ≤ m and let D′

l be the digraph induced by the arcs of D − D′ labelled l. Then
D′

l has indegree at most mc. By Theorem 1, we can partition D′
l in 2m.c + 1 star forests. Thus D can
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be 1-fibre coloured with k + c + m(2mc + 1) colours. Moreover, in the above described colouring, arcs
labelled l which leave a vertex v have a colour in Ll

v or corresponding to one of the 2mc + 1 star forests
of D′

l. So at most (2m + 1)c + 1 colours are assigned to arcs labelled l leaving v. �

We will also need the following theorem.

Theorem 23 (Alon, McDiarmid and Reed [2]) Let k and c be positive integers with k ≥ c ≥ 5 log k+
20. Choose independent random subsets S1, . . . , Sk of X = {1, . . . , k + c} as follows. For each i, choose
Si by performing c independent uniform samplings from X. Then the probability that S1, . . . , Sk do not
have a transversal is at most k3− c

2

Proof of Theorem 21. It suffices to prove the result for n = 1. Indeed we can extend a 1-fibre
colouring satisfying the conditions of the theorem into an n-fibre colouring satisfying the conditions by
replacing all the colours qn + r with 1 ≤ r ≤ n by the colour q + 1 on fibre r.

Let c = ⌈5 log k + 20⌉. We can assume k ≥ mc. For all vertices x, select mc different ordered elements
e1, e2, · · · , emc independently and uniformly. For all 1 ≤ i ≤ m, let Li

x = {eci+1, · · · , ec(i+1)}. Each set
has the same distribution a set of c elements chosen uniformly and independently.

Let Ax be the event that the family
{

Li
y | yx ∈ E(D) and yx is labelled i

}

fails to have a transversal.

By Theorem 23, P (Ax) ≤ k3−c/2. Furthermore, the event Ax is independent of all Ay for which there is
no vertex z such that both zx and zy are in E(D). It follows that the dependency graph for these events
has degree at most k2, and so we can apply Lovász Local Lemma to obtain that there exists a family of
lists satisfying conditions of Lemma 22. This lemma gives the desired colouring. �

For general digraphs, when we do not have ∆−, ∆+ ≤ k, we may use the following trick to obtain an
upper bound. Any digraph D may be decomposed into an acyclic digraph Da and an Eulerian digraph
De (i.e., in De, for every vertex v, d−De

(V ) = d+
De

(v)). (To see this, consider an Eulerian subdigraph De of
D which has a maximum number of arcs. Then the digraph Da = D − De is necessarily acyclic.) Hence
by Lemma 18 (applied to Da) and Theorem 21 (applied to De), we have

if m ≥ n, then λn(D) ≤

⌈

m

n

⌈

k

n

⌉

+
k

n

⌉

+ f(n, m, k),

for f(n, m, k) the function given in Theorem 21. But, as we will show now, it is possible to lessen this
bound by roughly k

n .

Theorem 24 If m ≥ n, then

λn(m, k) ≤

⌈

m

n

⌈

k

n

⌉

+
k

n

⌉

+ 2m
⌈(10m + 5) log k + 40m + 21⌉

n
.

Proof. Let D be an m-labelled digraph with ∆−(D) ≤ k. Consider a decomposition of D into an acyclic
digraph Da and an Eulerian digraph De. We first apply Theorem 21 to find an n-fibre colouring of the
arcs of De with f(n, m, k) colours such that, in addition, at most g(m, k) colours are assigned to the arcs
leaving each vertex.
We shall extend the n-fibre colouring of De to the arcs of Da in a way similar to the proof of Lemma 18.
I.e., we will assign to each vertex v, sets Ci(v), 1 ≤ i ≤ m of ⌈ k

n + mg(m, k)⌉ colours such that an arc
labelled i leaving v will be labelled using a colour in Ci(v).
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Let (v1, . . . , vn) be an ordering of the vertices of A such that if vjvj′ is an arc then j < j′. We start
to build the Ci(v1) with the colours assigned to the leaving arcs of v1 labelled i. The vertex v1 has at
most k entering arcs. Each of them forbid one type (colour, fibre). In the colouring of De induced by
Theorem 21, there are at most mg(m, k) types assigned to the arcs leaving v1. So there are at least
⌈

mk
n2

⌉

+
⌈

k
n

⌉

+ 2m g(m,k)
n − k − mg(m, k) ≥ m

⌈

k
n

⌉

+ mg(m, k) types unused at vertex v1. Since m ≥ n,

we can partition these types into m sets of size at least k
n such that no two types having the same colour

are in the same set. These sets are the Ci(v1).
Suppose that the sets have been defined for v1 up to vq−1, and that all the arcs vivj for i < j < q

have been assigned a colour. We now give a colour to each arc vivq for i < q.
There are ke arcs entering vq in De which are already coloured. So it remains to give a colour to

ka ≤ k − ke arcs. Each uncoloured arc may be assigned a colour in a list of size at least
⌈

k
n + mg(m, k)

⌉

.

This gives a choice between n
⌈

k
n + mg(m, k)

⌉

different types. ke types are forbidden by the entering arcs
in De while at most mg(m, k) types are forbidden by the leaving arcs in De. Hence, it remains at least
n

⌈

k
n + mg(m, k)

⌉

− ke − mg(m, k) ≥ ka types for the entering arcs of Da. So one can assign distinct
available colours to each of the ka arcs entering vq. We then build the Ci(vq) as we did for v1.

Once this process is finished, we obtain an n-fibre colouring of D using
⌈

mk
n2

⌉

+
⌈

k
n

⌉

+ 2m g(m,k)
n colours.

�

Theorem 24 gives an upper bound on λn(m, k) when m ≥ n. We now give an upper bound for the
case m < n.

Proposition 25 If m < n then λn(m, k) ≤
⌈

k
n−m

⌉

.

Proof. Let D be an m-labelled digraph with ∆− ≤ k. We should show the existence of a proper n-fibre

colouring with
⌈

k
n−m

⌉

. For each vertex v, we give to each of its entering arcs a colour such that none of

the colours is used more than n − m times. This is possible since there are at most k ≤ (n − m)
⌈

k
n−m

⌉

arcs entering v. So we now have in(v, λ) ≤ n−m. Moreover each arc vw is given a colour by w. Since D
is m-labelled, a colour λ can be used to colour an arc of at most m different labels, i.e., out(v, λ) ≤ m.
Consequently in(v, λ) + out(v, λ) ≤ n. This gives a proper n-fibre colouring. �

6 Concluding Remarks

One question arising naturally from the previous sections is the complexity of calculating λn(D) for an
m-labelled digraph D. As we will show in the first subsection, unsurprisingly, this problem is NP-hard
even for the simpler problem of directed star arboricity and even for restricted class of digraphs of in-
and outdegree bounded by two. We end this section by showing how a similar approach to the one in
Section 3 allows us to give a very short proof of a recent result of Pinlou and Sopena [9].

6.1 Complexity

The digraphs with directed star arboricity one are the galaxies, so one can decide in polynomial time if
dst(D) = 1. Deciding whether dst(D) = 2 or not is also easy since we just have to check that the conflict
graph (with vertex set the arcs of D, two distinct arcs xy, uv being in conflict when y = u or y = v) is
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bipartite. However for larger values, as expected, it is NP-complete to decide if a digraph has directed
star arboricity at most k. This is illustrated by the next result:

Theorem 26 The following decision problem is NP-complete:
Instance: A digraph D with ∆+(D) ≤ 2 and ∆−(D) ≤ 2.
Question: Is dst(D) at most 3?

Proof. The proof is by a reduction from 3-edge-colouring of 3-regular graphs, which is known to be
NP-complete.
Let G be a 3-regular graph. It is easy to see that G admits an orientation D such that every vertex has
in- and outdegree at least one (i.e., D does not have neither sink nor source).

Let D′ be the digraph obtained from D by replacing every vertex with indegree one and outdegree
two by the subgraph H depicted in Figure 2 which has also one entering arc (namely ~a) and two leaving

arcs (~b and ~c). It is quite easy to check that in any directed star 3-colouring of H , the three arcs ~a, ~b and

a
1

b

c2

1

3

3

22

3

1

2

3

1

Figure 2: The graph H and one of its directed star 3-colouring

~c get different colours. Moreover, if these three arcs are precoloured with three different colours, we can
extend this to a directed star 3-colouring of H . Such a colouring with ~a coloured 1, ~b coloured 2 and ~c
coloured 3 is given in Figure 2. Furthermore, in a directed star 3-colouring, a vertex with indegree two
and outdegree one must have its three incident arcs coloured differently. So dst(D′) = 3 if and only if G
is 3-edge colourable. �

6.2 Acircuitic Directed Star Arboricity

A directed star colouring is acircuitic if there is no bicoloured circuits, i.e., circuits for which only two
colours appear on its arcs. The acircuitic directed star arboricity of a digraph D is the minimum number
k of colours such that there exists an acircuitic directed star k-colouring of D.

In this last section, we give a short alternative proof of the following theorem.

Theorem 27 (Pinlou and Sopena [9]) Every subcubic oriented graph has acircuitic directed star ar-
boricity at most 4.

Indeed, it is possible to apply our Theorem 5 directly to derive this theorem. However, there is a
shorter proof using the following lemma.
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Lemma 28 Let D be an acyclic subcubic digraph. Let L be a list-assignment on the arcs of D such that
for every arc uv, |L(uv)| ≥ d(v). Then D admits a directed star L-colouring.

Proof. We prove the result by induction on the number of arcs of D, the result holds trivially if D has
no arcs.
Since D is acyclic, it has an arc xy with y a sink. Let ω be a colour in L(xy). For any arc ~a distinct
from xy, set L′(~a) = L(~a) \ {ω} if ~a is incident to xy (and thus has head in {x, y} since y is a sink), and
L′(~a) = L(~a) otherwise. Then in D′ = D − xy, we have |L′(uv)| ≥ d(v) for any arc uv 6= xy. Hence,
by induction hypothesis, D′ admits a directed star L′-colouring that can be extended to a directed star
L-colouring of D by colouring xy with ω. �

Proof of Theorem 27.
Let V1 be the set of vertices of outdegree at most one and V2 = V \ V1. Every vertex of V2 has

outdegree at least two (and so indegree at most one).
Let M be the set of arcs with tail in V1 and head in V2. We colour all the arcs of M with colour 4.
Moreover for every circuit C in D[V1] or in D[V2], we choose an arc ~a(C) and colour it by 4. Note that,
by definition of V1 and V2, the arc ~a(C) is not incident to any arc of M , and in addition, C is the unique
circuit containing ~a(C). Let us denote by M4 the set of all arcs coloured by 4. It is easily seen that M4

is a matching and D − M4 is acyclic.
We shall now find a directed star colouring of D − M4 with colours {1, 2, 3} that does not create any
bicoloured circuit. In any colouring of the arcs, if such a circuit existed, 4 would be one of its colour
because D−M4 is acyclic, and moreover, all the arcs of this circuit coloured by 4 would be in M , because
each arc in M4 \ M is in a unique circuit and this unique circuit has a unique arc coloured by 4. Hence
we just have to be careful when dealing with arcs in the digraph induced by the endvertices of the arcs
of M .
Let us denote the arcs of M by xiyi, 1 ≤ i ≤ p, and set X = {xi, 1 ≤ i ≤ p} and Y = {yi, 1 ≤ i ≤ p} (we
have then xi ∈ V1 and yi ∈ V2). Let E′ be the set of arcs with tail in Y and head in X . Let H be the
graph with vertex set E′ such that an arc yixj is adjacent to an arc ykxl if

(a) Either k = l,

(b) Or j = k and i > j and l > j.

Since a vertex of X has indegree at most two and a vertex of Y has outdegree at most two, H has
maximum degree three. Moreover H contains no K4, because two arcs of E′ with same tail yk are
not adjacent in H . Hence, by Brooks Theorem, H has a vertex-colouring with colours {1, 2, 3}, and
this colouring corresponds to a colouring c of the arcs of E′. Since (a) is satisfied, c is a directed star
colouring. Moreover, this colouring creates no bicoloured circuits. Indeed, a circuit contains a subpath
yixjyjxl, with i > j and k > j, whose three arcs are coloured differently by (b).
Let D′ = D − (M4 ∪ E′). For any arc uv in D′, let L(uv) = {1, 2, 3} \ {c(wv) | wv ∈ E′}. The set L(uv)
is the set of colours in {1, 2, 3} that may be assigned to uv without creating any conflict with the already
coloured arcs. The digraph D′ is acyclic and |L(uv)| ≥ d(v), so by Lemma 28, it admits a directed star
L-colouring. We infer that D has an acircuitic directed star colouring with colours in {1, 2, 3, 4} and the
theorem follows. In addition, we note that in this colouring, the arcs coloured by 4 form a matching. �
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