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Abstract

In this paper we study a combinatorial optimization problem arising from
on-board networks in satellites. In these kinds of networks the entering signals
(inputs) should be routed to amplifiers (outputs). The connections are made
via expensive switches with four available links. The paths connecting inputs
to outputs should be link-disjoint. More formally, we call a (p, λ, k)−network
an undirected graph with p + λ inputs, p + k outputs and internal vertices of
degree four. A (p, λ, k)−network is valid if it is tolerant to a restricted number
of faults in the network, i.e., if, for any choice of at most λ faulty inputs and
k faulty outputs, there exist p edge-disjoint paths from the remaining inputs
to the remaining outputs.

Our optimization problem consists in determining N(p, λ, k), the minimum
number of vertices in a valid (p, λ, k)−network. We present validity certifi-
cates and a quasi-partitioning technique from which we derive lower bounds
for N(p, λ, k). We also provide constructions, and hence upper bounds, based
on expanders. The problem is shown to be sensitive to the order of λ and k.
For instance, when λ and k are small compared to p, the question reduces to
the avoidance of some forbidden local configurations. For larger values of λ

and k, the problem is to find graphs with a good expansion property for small
sets. This leads us to introduce a new parameter called α-robustness. We use
α-robustness to generalize our constructions for larger values of k and λ. In
many cases, we provide asymptotically tight bounds for N(p, λ, k).

Keywords: Fault Tolerant Networks, Switching Networks, Network Design,
Concentrators, Routing, Connectivity, Disjoint paths, Expanders.

1 Introduction

Motivation. In this paper we study a network-design combinatorial optimization
problem. Our problem, originally posed by Alcatel Space Industry, comes from
the design of efficient on-board networks in satellites (also called Traveling Wave
Tube Amplifiers). The satellites under consideration are used for TV and video
transmission (like the Eutelsat or Astra series) as well as for private applications.
Signals incoming to a telecommunication satellite through ports have to be routed
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through an on-board network to amplifiers. A first constraint is that the network
should be built with switches having four links. But other constraints appear. On
the one hand, the amplifiers may fail during the satellite’s life time and can not be
repaired. On the other hand, as the satellite is rotating, not all the ports are well
oriented and hence available. So more amplifiers and ports are needed than the
number of signals which have to be routed. Notice that in this context, contrary to
the classical networks, we do not consider link and switch failure. As a matter of fact
the links are just big tubes and the switches are very reliable rotating mechanical
systems.
One can easily construct a network fulfilling these constraints by using a permuta-
tion network or two concentrators of any fixed degree. However, to decrease launch
costs, it is crucial to minimize the network physical weight, i.e., to minimize the
number of switches. Switches are also expensive to build, so it is worth saving even
one. Space industries are interested in designing such networks for specific values
of the parameters, however the general theory is of interest by itself. Also, due to
the increasing launch capacities and the decreasing switch sizes, larger networks
will be used in a near future.

Problem. A network can be seen as a graph with a set of inputs and outputs.
The vertices of this graph represent the switches. We define a (p, λ, k)−network
as a network with p + λ inputs and p + k outputs. A (p, λ, k)−network is said to
be valid if it can tolerate up to λ faults in inputs and up to k faults in outputs.
More formally for any choice of p inputs and p outputs, there exist p edge-disjoint
paths linking all the chosen inputs to all the chosen outputs. By symmetry, we may
assume in the following that k ≥ λ and we denote the total number of outputs by
n := p + k. Figure 1 gives an example of a (12,4,4) valid network with 20 switches
(the inputs are represented with arrows, the outputs with squares and the switches
with black vertices).

The problem is to find N(p, λ, k), the minimum number of switches in a valid
(p, λ, k)−network, and to give constructions of such networks. Note that finding
minimal networks is a challenging problem and even testing the validity of a given
network is hard (see related work). We study the case where the switches of the
network have degree four (although the theory can be generalized to any degree)
which is of primary interest for the applications.

Related Work. This study of a new kind of networks should be considered in the
spirit of the well studied theory of superconcentrators. A (p+k, p)-concentrator [31]
is a directed acyclic graph G = (V, E) with p + k designated input vertices and p
designated output vertices (k ≥ 0), such that for each subset of p input vertices,
there exist p edge-disjoint (or, depending on the context, vertex-disjoint) paths
from the input vertices to the output vertices. A selector, first introduced in [9],
is a (p, 0, k)-network (λ = 0). A general theory of selectors can be found in [12],
where several results are obtained for small values of k. A selector can be seen as
an undirected version of a (p + k, p)-concentrator by changing the role of inputs
and outputs (and by adding the degree condition). An n-superconcentrator [28]
is a directed acyclic graph G = (V, E) with n designated input vertices and n
designated output vertices such that, for any set S of p ≤ n inputs and any set T of
p outputs, there exist p edge-disjoint (or, vertex-disjoint depending on the context)
paths connecting S to T . There is a vast theory of superconcentrators (see the
seminal work of Pippenger [28] for an introduction, [2, 3, 5, 30] for constructions,
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and [14] for complexity issues).
In this way, (p, λ, k)-networks generalize the concept of selectors as supercon-

centrators generalize concentrators. It is also clear that taking a superconcentrator
(resp. (p + k, p)−concentrator) and forgetting the orientations provides a valid
(p, λ, k)-network (resp. selector) for every value of k = λ (resp. any k and λ = 0),
once the degree condition is respected. So one can try to use superconcentrators
to construct efficient on-board satellite networks, but, not surprisingly, this does
not give minimal networks in general. The major difference between the supercon-
centrators and the general valid networks, beside the degree condition, is that in a
valid network the number of inputs and outputs that may become out of service is
bounded (in our case, given a failure probability, no more than k failures will occur
during the satellite lifetime). Finding a minimum network (a superconcentrator of
low density or having a minimum number of vertices) is a challenging problem and
is an active area of research. From the algorithmic point of view, one can show
that the problem of testing if a graph is a (p + k, p)-concentrator or a supercon-
centrator is coNP-complete. In fact, this is coNP-complete even when restricted
to the important special case of graphs of size linear in the number of inputs (see
[14]). By the same arguments one can prove that the problem of deciding if a given
(p, λ, k)-network is valid or not is coNP-complete.

In [12] the authors consider a variant of selectors where some signals have pri-
ority and should be sent to amplifiers offering the best quality of service. In [8]
the authors study the case where all the amplifiers are different and where a given
input has to be sent to a dedicated output. This problem is related to permutation
networks.

In [11, 21], the authors present exact values of N(p, λ, k) for small values of k and
λ and arbitrary values of p. For instance N(p, 2, 1) = N(p, 1, 2) = N(p, 2, 2) = p+2
and also for k ∈ {3, 4} and 0 < λ ≤ 4, N(p, λ, k) = ⌈ 5n

4 ⌉.

Figure 1: A valid (12,4,4)-network with the minimum number of switches. Switches,
vertices of the corresponding graph, are represented by •.

Results. In this paper we are primarily interested in large networks, i.e., where
n = p+k tends to infinity and also k is large enough. We present several upper and
lower bounds for the minimum number of switches in a valid (p, λ, k)−network. In
many cases these bounds are asymptotically tight. Since forgetting the orientation
of superconcentrators provides valid (p, λ, k)−networks, these results also provide
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lower bounds on the size of a superconcentrator. To obtain the lower bounds we
present a new technique, quasi-partitioning. We give here the very first applica-
tions of this lemma, but we think it may have several applications in other related
problems (for example bisection-width, see [24]).

To obtain upper bounds we propose several constructions. The construction
of optimal valid networks will heavily rely on expanders (see Section 4.1). Using
these, we are able to construct, for a special class of networks called simplified
networks, networks with 2n switches as soon as n is large enough and k ≤ c1 log n
for some constant c1 (Section 4.3). In Section 6 we also give a lower bound of order
2n(1− ǫ(k)) where ǫ(k) tends to zero when k tends to infinity (but we do not need
k ≤ c1 log n). Thus for simplified networks the problem is asymptotically solved for
k ≤ c1 log n. For general networks, using bipartite expanders, we obtain an upper
bound of n + 3

4n when k ≤ c2 log n for some constant c2. The lower bound we
obtain is (n + 2

3n)(1 − ǫ(λ, k)), and we conjecture that n + 3
4n should be the right

value. We also give a construction of selectors (case λ = 0) of size n + n
2 , in which

case we get also a tight lower bound.
To extend the results to larger values of k, we define a local expansion property

of graphs that we call α−robustness (see [4, 16] for some related notions). Intu-
itively, the α−robustness of a graph G is a local version of the expansion factor.
It is the maximum integer rα such that for small subsets the expansion factor is α
but for larger subsets, the minimum number of outgoing edges is required to be at
least rα. In our constructions, we only need our graph to be an expander for small
subsets, but for larger subsets all we need is a minimum constant edge-connectivity
to the rest of the graph. This notion is also interesting in its own right, and con-
tains several expansion-invariants such as bisection-width and Cheeger’s constant
as special cases (see [18]). As random graphs are very good expanders, we study the
α−robustness of random graphs. In this way we generalize Bollobàs’ result on the
expansion factor of random 4-regular graphs (see [15]) to obtain related results for
α−robustness of random 4-regular graphs. As far as we know it is the first time in
the literature that this new concept of local expanders is defined and investigated.
Using this we present a construction of valid (p, λ, k)−networks with 3n switches
for λ ≤ k ≤ n

7 .

2 Preliminaries

In this section, we define more formally the design problem and introduce notation
used throughout the paper. We state a cut criterion (Proposition 1): this criterion
is fundamental because it characterizes the validity of (p, λ, k)−networks. It is ex-
tensively used to prove that networks are valid —in particular for the networks of
Section 4. In Section 6 we also use the cut criterion to detect forbidden patterns
leading to lower bounds for the number of switches of valid networks. Proofs of
lower and upper bounds are simplified by the use of the last notion introduced here,
the associated graph of a network (see Section 4.2 and Section 6.1).

Notation. Given a function f , we define f(A) :=
∑

a∈A f(a) for any finite set A.
For a subset W of vertices of a graph G = (V, E), let us denote by ∆(W ) the set of
edges connecting W and W = V \W and by Γ(W ) the set of vertices of W adjacent
to a vertex of W . If a set is denoted by an upper case letter, the corresponding
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lower case letter denotes its cardinality (for example δ(W ) = |∆(W )|).

(p, λ, k)−Networks and Valid (p, λ, k)−Networks. A (p, λ, k)−network is a
triple N = {(V, E), i, o} where (V, E) is a graph and i, o are non-negative integer
functions defined on V called input and output functions, such that for any v ∈ V ,
i(v) + o(v) + deg(v) = 4. The total number of inputs is i(V ) = Σv∈V i(v) = p + λ,
and the total number of outputs is o(V ) = Σv∈V o(v) = p+k. We can see a network
as a graph where all vertices but the leaves have degree four, and in which inputs
and outputs are leaves. A non-faulty output function is a function o′ defined on V
such that o′(v) ≤ o(v) for any v ∈ V and o′(V ) = p. A used input function is a
function i′ defined on V such that i′(v) ≤ i(v) for any v ∈ V and i′(V ) = p. A
(p, λ, k)-network is said valid if for any non-faulty output function o′ and any used
input function i′, there are p edge-disjoint paths in G such that each vertex v ∈ V
is the initial vertex of i′(v) paths and the terminal vertex of o′(v) paths.

Design Problem and Simplified Design Problem. Let N(p, λ, k) denote the
minimum number of switches of a valid (p, λ, k)-network. The Design Problem con-
sists of determining N(p, λ, k) and constructing a minimum (p, λ, k)-network, or at
least a valid (p, λ, k)-network with a number of switches close to the optimal value.
We introduce a variation of the problem, the Simplified Design Problem, which is to
find minimum networks having p + λ switches with one input and one output and
k − λ switches with only one output. Networks of this kind are especially good for
practical applications, as they simplify the routing process, minimize path lengths
and lower interferences between signals.

Excess, Validity and Cut Criterion. To verify if a network is valid, instead
of solving a flow/supply problem for each possible configuration of output failures
and of used inputs, it is sufficient to look at an invariant measure of subsets of the
network, the excess, as expressed in the following proposition.

Proposition 1 (Cut Criterion) A (p, λ, k)−network is valid if and only if, for
any subset of vertices W ⊂ V the excess of W , defined by

ε(W ) := δ(W ) + o(W ) − min(k, o(W )) − min(i(W ), p),

satisfies ε(W ) ≥ 0.

The intuition is that the signals arriving in W (in number at most min(i(W ), p))
should be routed either to the valid outputs of W (in number at least o(W ) −
min(k, o(W ))) or to the links going outside (in number δ(W )). The omitted formal
proof reduces to a supply/demand flow problem. Note that, for the cut criterion, it
is sufficient to consider only connected subsets W with connected complement W
(this comes from the submodularity of ε).

Associated Graph. Vertices x ∈ V of degree two with i(x) = o(x) = 1 play an
important role. We call them doublons. A switch that is not a doublon is called an
R-switch. Remark that for k ≥ 3 no paths has three or more consecutive doublons.
Indeed if we consider the set W consisting of these doublons we have δ(W ) = 2 and
o(W ) = i(W ) ≥ 3. The cut criterion would give a contradiction.

Let N be a (p, λ, k)−network. We build a graph R associated with N . Its
vertices are the R-switches of N . Consequently the edges of R are of three kinds,
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respectively E0, E1 and E2: the edges of N between two R−switches, the edges
corresponding in N to a path of length two with a doublon in the middle and those
corresponding to a path of length three with two doublons in the middle.

3 Summary of Main Results

The aim of this short section is to provide an overview of the results obtained in
the upcoming sections.

The design problem is treated in Sections 4 and 5. For relatively small values of
k and λ, we provide construction of valid networks for the general design problem,
the design problem when λ = 0 (selectors) and the simplified design problem. More
precisely, we prove the following theorems:

Theorem 2 of Section 4 (General Design Problem). Let n = p + k, k ≤ 1
15 log n,

for n large enough, we have: N(p, λ, k) ≤ n + 3
4n

Theorem 3 of Section 4 (Selectors, λ = 0). Let n = p + k, k ≤ 1
48 log2 n, for n

large enough, we have:

N(p, 0, k) ≤ n +
n

2
.

Theorem 1 of Section 4 (Simplified Design Problem). Let n = p+k, k ≤ 1
6 log n,

for n large enough, we have: N(p, λ, k) ≤ 2n.

In Section 5, we provide a general framework to extend the above mentioned
results to larger values of λ and k. We define a new parameter, which we call
robustness, which captures the local expansion property of a given graph. We
study the robustness of random regular graphs and use these graphs for the design
problem. In particular, we prove

Theorem 4 of Section 5. Random 4-regular graphs have 1-robustness at least
n
14 with high probability, i.e., with probability 1 −O( log n

n ).

Corollary 1 of Section 5. For k ≤ n
7 , there exist (p, λ, k)−valid networks of size

3n (remember that n = p + k).

The lower bounds, confirming the tightness of the above results in many cases,
are provided in Section 6. We first prove a technical quasi-partition lemma:

Lemma 4 of Section 6. Let q be a positive integer and let G be a connected
graph of order at least q

3 . Then G admits a q-quasi-partition (for the definition see
Section 6).

Using this lemma, we prove the following general theorem:

Theorem 5. In a valid network N of size N , with k ≤ n
2 , we have

N ≥
(

3

2
n − (k − λ) − 4 − 12√

k

)(

1 − 9

2
√

k
+ O

(

1

k

))

+
d

2

(

1 +
9

2
√

k
+ O

(

1

k

))

.
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where n = p + k and d is the number of doublons, i.e., switches with exactly one
input and one output.

Corollaries of this theorem are

Theorem 8 of Section 6 (General case). When λ → ∞ and k → ∞, any valid
network has size at least n+ 2

3n+O( n√
λ
). In particular, N(p, λ, k) ≥ n+ 2

3n+O( n√
λ
).

Theorem 6 of Section 6 (Selectors). In a valid selector N of size N , when k → ∞
with k ≤ n

2 , we have

N ≥ n +
n

2
+ O(

n√
k

).

In other words
N(p, 0, k) ≥ n +

n

2
+ O(

n√
k
).

Theorem 7 of Section 6 (Simplified case). In the simplified case, when k →
∞ with k ≤ n

2 , every valid network has size at least 2n + O( n√
k
), i.e., we have

N(p, λ, k) ≥ 2n + O( n√
k
) in the simplified case.

4 Upper Bounds: The Design Problem

In this section, we give constructions that rely heavily on expanders. We present
here three constructions with 2n, n + 3

4n and n + n
2 switches respectively for the

simplified design problem, the design problem (any λ) and for the design problem
when λ = 0. All these constructions are valid for k ≤ c · log n (where c is a constant
depending only on the expansion factor of 3 and 4−regular graphs).

4.1 Expanders

An expander (see [26, 27] for surveys) is a highly connected sparse graph. They
are used in various fields of computer science and mathematics. For example they
are valuable in constructions of error-correcting codes with efficient encoding and
decoding algorithms, derandomization of random algorithms, and embeddings of
finite metric spaces. But they also have applications in areas directly related to
the subject of this paper as in the design of explicit superefficient networks and the
explicit construction of graphs with large girth (length of the smallest cycle). We
present here known results about expanders that are used in proofs of Sections 4.3,
4.4 and 4.5. The formal definition of an expander is as follows: an (n, r, c)-E-
expander is a finite r-regular graph G = (V, E) with n vertices such that for any
set A of vertices of G with |A| ≤ |V |/2 we have δ(A) ≥ c|A|. Well known examples
of expanders are Ramanujan graphs (for more on Ramanujan graphs see [25] and
the book [19]). Explicit constructions of Ramanujan graphs are known for r of the
form r = q + 1, with q a prime power (in particular for r = 3 and r = 4, which are
of special interest in our case). More precisely there exist explicit constructions of
an infinite family Gi = (Vi, Ei) of Ramanujan graphs such that |Vi| →

i→∞
∞ with an

expansion factor c ≥ 1 − 4(r−1)
r2 . It gives c ≥ 1

4 for 4−regular graphs and c ≥ 1
9 for

3-regular graphs. The girth of the graphs of this family satisfies: g(Gi) ≥ 2
3 logq |Vi|.

There also exists a family Hi = (Wi, Fi) of explicit bipartite Ramanujan graphs of
girth g(Hi) ≥ 4

3 logq |Wi|. Probabilistic arguments show the existence of graphs, for
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any large order of networks (and not only for the specific values of both families),
with the same properties of girth and even better expansion factor: for 4-regular
graphs, expanders with c ≥ 11

25 exist (see [15]).
We also need a vertex-expansion version of expanders:

Definition 1 (V -Expander) An (n, r, d)-V -expander is a finite r-regular graph G =
(V, E) with |V | = n (|V1| = |V2| = n in case of a bipartite graph and V = V1 ∪ V2)
such that for any subset A of vertices (A ⊂ V1 when G is bipartite), the set of
neighbors of A, Γ(A) = {v ∈ V |(v, u) ∈ E for some u ∈ V } satisfies

|Γ(A)| ≥ |A| + d(1 − |A|/n)|A|.

4.2 Cut Criterion for the Associated Graph

To simplify the proofs of validity of Sections 4.3, 4.4 and 4.5, it is sometimes
better to work directly on the associated graph R of the (p, λ, k)−network N =
((V, E), i, o). More precisely, it means that, when applying the cut criterion on N ,
it would be sufficient to consider only subsets of R.

We introduce another notion of excess, ε′, defined for all W ⊂ V as ε′(W ) :=
δ(W ) + o(W ) − min(k, o(W )) − i(W ). Note that ε′(W ) ≤ ε(W ). Hence, if, for all
W ⊂ V , ε′(W ) ≥ 0, the network is valid, but we no more have an equivalence. The
good property of ε′ is that, if a switch x is a doublon, ε′(W ∪ {x}) ≤ ε′(W ). So
it is enough to verify the cut criterion for subsets W of N consisting of a set of
R−switches plus all the doublons on the edges of type E1 and E2 incident to the
R−switches.

4.3 Simplified Design Problem - Upper Bound 2n

In this subsection, we use the existence of expanders presented in Section 4.1 to
construct valid (p, λ, k)−networks with 2n = 2(p + k) switches for large n and
k ≤ c1 log n (c1 depending on the expansion factor of 4−regular expanders, c1 = 1

6
when using explicit Ramanujan graphs). Furthermore we will show in Section 6 a
lower bound of the same order for the simplified design problem.

Theorem 1 Let n = p + k, k ≤ 1
6 log n, for n large enough, we have: N(p, λ, k) ≤

2n.

Proof The results on expanders presented in Section 4.1 state the existence of an
(n, 4, c = 1

4 )−E-expander, G = (V, E), of girth g, g ≥ 2
3 log n. Let k ≤ c · g and

p = n − k. We claim that in a 4−regular graph there exists a family of vertex-
disjoint cycles covering all vertices of G. For now, suppose this is true and call
this disjoint union of cycles F . We add n new vertices, one on each edge of F
by subdividing each edge of F into two edges. On each new vertex, we add an
output and input creating a doublon. We now have a (p, k, k)−network N with 2n
switches.

Let us prove that the constructed network is valid. We use the cut criterion on
R, which, in that case, is exactly G. Notice first that the network is symmetric
in inputs and outputs and that for any subset W ⊂ V of vertices, i(W ) = o(W ).
Hence we have

ε′(W ) = δ(W ) − min(k, o(W )).
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Furthermore, note that when a network is symmetric, it is sufficient to verify the
cut criterion only for subsets W with |W | ≤ |V |/2.

- If |W | ≥ k
c then, by the expansion property, there are at least k edges between

W and W and so ε′(W ) ≥ 0.

- Otherwise, if |W | < k
c ≤ g, we have |W | < g and thus W is acyclic. There

are at most |W | − 1 edges inside W and, as G is 4-regular, we have δ(W ) ≥
2|W |+2. Let eF (W ) be the number of edges of F incident to a vertex of W ; by
construction o(W ) = eF (W ). As the cycles of F are disjoint, eF (W ) ≤ 2|W |.
Hence δ(W ) ≥ eF (W ) = o(W ), that is ε′(W ) ≥ 0.

The (p, k, k)−network is valid. We can derive (p, λ, k)−networks for any λ ≤ k by
deleting k − λ inputs.

The only remaining point now is to prove the claim. We prove it for any 2r-
regular graph. Let G = (V, E) be a 2r−regular graph. Since G is Eulerian, we
can give to G an orientation, such that each vertex has in-degree and out-degree r.
Let D = (V, A) be the corresponding digraph. Now consider the following bipartite
graph: H = (V × {1} ∪ V × {2}, E′) where E′ = {((x, 1), (y, 2))|(x, y) ∈ A}. It is
clear that H is a bipartite r-regular graph, and so it admits a perfect matching.
Let F be the edges of G given by this perfect matching. It is easy to check that
F is a 2-regular graph covering all the vertices, i.e., F is a disjoint union of cycles
covering all the vertices.

�

4.4 General Design Problem - Upper Bound n + 3
4
n

In this subsection, we construct general N(p, λ, k)−networks for large n, k ≤ c2 log n
(where c2 depends on the expansion factor of 3−regular expanders). Theorem 2
gives an n + 3

4n upper bound for such networks. Constructions are based on 3-
regular bipartite expanders.

Definition 2 Two edges are at distance at least d if any path that contains both
of them is of length at least d + 2. A vertex is at distance at least d of an edge if
any path that contains both of them is of length at least d + 1.

Lemma 1 Let G be a 3−regular bipartite graph G = (V1 ∪ V2, E) of large girth
(g = Θ(log |V1|)) which is a (2|V1|, 3, c)-E-expander and suppose 2k ≤ cg. Let F be
a set of selected edges, such that any two edges of F are at distance at least 3. The
network N obtained from G by adding a doublon on each edge of F , an input on
each vertex of V1 and an output on each vertex of V2 is a valid network.

Proof
We use the cut criterion on the associated graph following Section 4.2. As

the construction is symmetric in inputs and outputs, it is sufficient to consider

connected subsets W ∈ V with |W | ≤ ⌈ |V |
2 ⌉. The cut criterion is implied by

ε′(W ) = δ(W ) + o(W ) − min(o(W ), k) − i(W ) ≥ 0.

We now distinguish two cases for W .
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• case 1: |W | ≤ 2k
c ≤ g.

As o(W ) − min(o(W ), k) ≥ 0, we have

ε′(W ) ≥ δ(W ) − i(W ).

Hence it is sufficient to prove δ(W ) ≥ i(W ). As |W | ≤ g, there are no cycles
inside W and therefore there are |W | − 1 edges inside; G is 3−regular, so
δ(W ) = |W |+2. Furthermore, i(W ) = |V1∩W |+d, so we have to prove that
|V2 ∩ W | + 2 ≥ d.

Consider a doublon D incident to W and its associated edge e(D) = {v1(D), v2(D)}
with v1(D) ∈ V1 and v2(D) ∈ V2. If v2(D) ∈ W , associate D with v2(D). If
v2(D) /∈ W , then v1(D) ∈ W . Associate to D a neighboor of v1(D) ∈ W . As
the distance of two edges of F is at least 3, different doublons have different
associate vertices in V2 ∩ W . So |V2 ∩ W | ≥ d.

• case 2: |W | ≥ 2k
c . By definition of ε′ we have

ε′ ≥ δ(W ) + o(W ) − k − i(W ).

– If i(W ) − o(W ) ≤ k, by the expansion property, we have δ(W ) ≥ 2k ≥
i(W ) − o(W ) + k.

– If i(W ) − o(W ) ≥ k, since the graph is bipartite, there are at least
3(i(W )−o(W )) outgoing edges. So ε′(W ) ≥ 2(i(W )−o(W ))−k ≥ k > 0.

�

Theorem 2 (Construction) Let n = p + k, k ≤ 1
15 log n, for n large enough, we

have: N(p, λ, k) ≤ n + 3
4n.

Proof Take H = (A, B, E), a bipartite (2|A|, 4, c′)-E-expander with girth g =
4
3 log n. Let k, k ≤ c′ · g ≤ 4

3 log n (for existence see Section 4.1). Take a complete

matching F in the bipartite complement H = (A, B, E) of H , that is, every edge
{u, v} ∈ F , has u and v in different parts of H , i.e. u ∈ A and v ∈ B OR u ∈ B and
v ∈ A, and u, v are not adjacent in H . For each edge e = {a, b} of F , a ∈ A and
b ∈ B, replace a and b by three vertices a1, a2, a3 and b1, b2, b3, add edges {a1, b1},
{a1, b2}, {a1, b3}, {a2, b1} and {a3, b1}. Finally join a2 (resp b2) to two neighbors
of a (resp b) and a3 (resp b3) to the two other neighbors. See Figure 2. We obtain
a 3-regular bipartite graph G, which, one can verify, is a (6|A|, 3, c

5 )−E−expander.
Note that by construction the edges of type {a1, b1}, with {a, b} ∈ F , form a selected
set F of edges, that are pairwise at distance 3. We can apply Lemma 1 to G with
F as selected set. All together we have 6|A|+ |F| = 7|A| switches, |V1|+ |F| = 4|A|
inputs, |V2| + |F| = 4|A| outputs. So, with n = p + k, N(p, k, k) = 7|A| = 7

4n. We
can now derive (p, λ, k)−networks for any λ ≤ k by deleting k − λ inputs. �

4.5 Design Problem: λ = 0 - Upper Bound n + n

2

In this subsection, we study selectors (the case λ = 0). In Theorem 3 we construct
valid (p, 0, k)−networks with n+ n

2 switches for n large and k ≤ c3 log n (c3 depends
on the vertex-expansion of 3-regular expanders). Such networks are built from
bipartite 3−regular vertex-expanders.
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v7v6v5 v8

v1

v6v5

v4 v4v3

v8v7

e ∈ F

v1 v2 v3

D

B

A V1

V2

v2

a

b

a3a1 a2

b1 b2 b3

Figure 2: Replacement of a selected couple of a bipartite graph (A, B, E).

A1

S
X

Γ(A1)
v ∈ Su ∈ S

X

F (X)

= X ∪ Γ(A1)

\S
X

Figure 3: Sketch of proof of Theorem 3.

Theorem 3 Let n = p + k, k ≤ 1
48 log2 n. For n large enough, we have:

N(p, 0, k) ≤ n +
n

2
.

Proof Let us take G = (V1 ∩ V2, E) a bipartite (n, 3, d = 1
12 ) − V −expander of

large girth g ≥ 4
3 log n (for existence see Section 4.1). Let α = 4

d = 48 and k such
that k ≤ d · g

2 ≤ g
12 and k.(2αk + 1) ≤ n.

To each vertex of V1, we connect a vertex with one input and two outputs. Such
a switch is said to be of type T . To each vertex of V2, we connect an input. We
choose a subset S of k vertices in V2 such that the distance between any two of
them is at least α·k (see Definition 2). By the choice of k we can choose the vertices
in S one by one after removing all the vertices at distance less than αk of already
chosen vertices (at each step we remove at most 2αk + 1 new vertices). We remove
the inputs of all vertices of S obtaining a (p = n − k, 0, k)−network that we call
N = (V, E, i, o).

We now prove that this network is valid. Let X be a connected subset of V . Let
X = V1∪V2\X , A1 = X∩V1, SX = S∩Γ(A1)∩X. We define Z(X) = X∪Γ(A1)\SX

(Figure 3).
Z = Z(X) is connected. We also have ε(Z) ≤ ε(X), making it sufficient to

verify the cut criterion for Z (same principles as in Section 4.2). Let A2 = Z ∩ V2.
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We distinguish four cases for |A1|:
• |A1| ≤ k

2 :

as o(Z) = 2|A1| ≤ k and ε(Z) ≥ δ(Z) − i(Z), we have δ(Z) ≥ 3|A2| − 3|A1|
and i(Z) ≤ |A2| + |A1|. Furthermore there is no cycle in Z so |A2| ≥ 2|A1|.
Hence ε(Z) ≥ 0.

•
k
2 ≤ |A1| ≤ k

d ≤ g
2 :

we have ε = δ(Z)+o−i−k and i ≤ |A1|+|A2|. So ε(Z) ≥ δ(Z)−|A2|+|A1|−k.
As Z contains no cycle δ(Z) ≥ 3|A2| − 3|A1| so ε ≥ 2|A2| − 2|A1| − k ≥
2|A1| − k ≥ 0. We use again that |A2| ≥ 2|A1|.

•
k
d ≤ |A1| ≤ n − k

d :

in this case, ε ≥ δ(Z)−|A2|+|A1|−k and δ(Z) ≥ 3(|A2|−|A1|) = |A2|−|A1|+
2(|A2| − |A1|), so we have ε ≥ 2(|A2| − |A1|) − k. Furthermore |A2| − |A1| ≥
ΓG(A1)−k, because at most k vertices of ΓG(A1) are in S\A2 (where ΓG(A1)
is the neighborhood of A1 in G). By the expansion property, we have:

|ΓG(A1)| ≥ |A1| + d(1 − |A1|/n)|A1|.
In this case d(1− |A1|/n) ≥ 2k. So |ΓG(A1)| − |A1| ≥ 2k. So |A2| − |A1| ≥ k.
It implies ε ≥ 0.

• n − k
d ≤ |A1|:

we can assume that Z is connected (see the remarks on Proposition 1). As
the vertices of S are at distance at least αk with αk > k

d , Z contains at most
one vertex of S. Hence i ≥ |A2| − k +1 + |A1| and ε ≥ δ(Z)− |A2|+ |A1| − 1.
Because of the connectivity of Z and the 3−regularity |A2| > |A1|. So ε ≥ 0.

�

5 Graph Robustness: A New Approach to the De-

sign of Valid Networks

The construction of valid networks is related to a more general expansion property
of graphs, more precisely to what can be seen as a ’bounded expansion property’ or
expansion property only for sets of bounded size. We call this property robustness.

Definition 3 (α-robustness) The α-robustness, robα, of a graph G is the maximum

value r, such that, for every subset X ⊂ V (G) with |X | ≤ |V |
2 , we have δ(X) ≥

min(r, α|X |).
For α = 1 we simply say robustness. There are two main problems: on the one

hand we want to understand the behavior of the robustness for a general graph,
which means to give some upper bounds which can be done by showing the exis-
tence of subsets which violate the α−robustness. This problem covers in particular
the classical problem of bisection-width, which has several important applications,
see for example [1] and [24]. On the other hand, for many applications, one would
like to be able to find graphs of large robustness (α−robustness). The first ex-
amples of such graphs are expanders of expansion factor c which give graphs with
c−robustness at least n

2 where n is the number of vertices. For d-regular graphs we
have:
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- if G is d-connected, robd = 1 and robd−1 = 2. robd−2 = g where g is the
double girth of the graph (minimum size of a cycle with a chord);

- for α ≤ 1
2 (d − 2

√
d − 1), robα ≥ n

2 for Ramanujan graphs;

- for α > d
2 − c

√
d, where c is some absolute constant depending only on d,

α−robustness is strictly smaller than n
2 (see Alon [1]);

- for α > 1
3 + ǫ the α−robustness of a 3-regular graph is strictly smaller than

n
2 , the same is true for α > 4

5 + ǫ and for 4-regular graphs (see Monien-Preis
[24]).

Remark that, since it is NP-hard to compute the double girth of a graph, computing
rob2(G) is an NP-hard problem. The same is true for any α.

Remark 1 Before going through the study of robustness we would like to stress
that the concept of robustness is closely related to the concept of general selectors.
A general selector is a selector without degree conditions. More precisely we have
a graph G, such that the set of vertices V (G) is partitioned into three subsets: I
the set of vertices with one input, O the set of vertices with one output and S the
set of normal vertices with neither input nor output, with |I| = p + k and |O| = p.
We say that G is a general selector (or is a

(

p+k
p

)

-network) if for any subset of I
of size p, there exist p edge-disjoint paths, each one joining one different input to
one different output.

Selectors also provide a very natural framework for constructing general valid
networks, i.e., valid networks without degree constraints. For instance, for any
(p, λ, k), we can construct a general valid (p, λ, k)-network as follows: take two
selectors, a

(

p+k
p

)

-network, A, and a
(

p+λ
p

)

-network, B. Let G be the graph
obtained by taking the disjoint union of A and B, deleting the outputs connected
to them, joining the two sets O(A) and O(B) by a matching and replacing the
inputs connected to I(B) by outputs. The resulting network is a general valid
(p, λ, k)-network in which I(A) is the set of vertices with one input and I(B) is the
set of vertices with one output.

In the following, rα denotes the maximum α-robustness of a 4-regular graph.

5.1 Robustness of random 4-regular graphs

In this section G(k, n) is the probability space of all graphs on n vertices that
are the union of k disjoint Hamiltonian cycles, all graphs occurring with the same
probability. By Gk,n we denote an element of G(k, n). This probability space is
”equivalent” to the probability space of random 2k-regular graphs, see [22].

Theorem 4 Random 4-regular graphs have 1-robustness at least n
14 with high prob-

ability, i.e. with probability 1 −O( log n
n ).

Corollary 1 For k ≤ n
7 , there exist (p, λ, k)−valid networks of size 3n (remember

that n = p + k).

Proof Suppose that a 4−regular Hamiltonian graph G of robustness n
7 on 2n

vertices is given. Extract a complete matching from a Hamiltonian cycle and add
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a doublon to every edge of this matching. It is now straightforward to show that
the resulting network is valid. This gives a valid (p = n − k, k, k)-network with 3n
switches. �

Remark 2 The method of the proof of Theorem 4 can be also used to obtain lower
bounds for α-robustness of random 4-regular graphs for other values of α. Some
numerical results are given below for some special values of α:

- r 11
25

= n
2 (See Bollobàs [15] for another proof of this result).

- r 11
20

≥ n
2.6 , r 4

5
≥ n

5.7 , r 2
3
≥ n

3.6 , r 3
5
≥ n

3 .

Proof [ of Theorem 4] We first give preliminary results on the unions of k disjoint
Hamiltonian cycles. The results for 4-regular graphs are then a direct application
with k = 2. Let G be a graph of G(k, n) and S be a subset of V with s vertices. On
the cycles C1, C2, . . . Ck constituting G, S can be described as a set of continuous
intervals. For i = 1, . . . k, let mi(S) be the number of intervals that S defines on
Ci. Then δ(S) = 2

∑

i=1,2,...k mi(S).
For a given cyclic permutation π, if I(s, m) denotes the number of sets of s

elements defining m segments on the cycle associated to π, we have:

Claim 1

I(s, m) =

(

s − 1

m − 1

)(

n − s

m

)

+

(

n − s − 1

m − 1

)(

s

m

)

=

(

s

m

)(

n − s

m

)(

m

s
+

m

n − s

)

.

(1)

Proof
The number of ways to write a number t as the ordered sum of p non-negative

integers is cut(t, p) =
(

t+p−1
p−1

)

. Also, the number of ways to write t as the ordered

sum of p positive integers is cut(t − p, p) =
(

t−1
p−1

)

.
Starting from the vertex 0 of the cycle, the set S can be encoded by giving two

sequences of numbers : the ordered list of the lengths of the segments in S and the
ordered list of the lengths of the segments in S. There are two cases, depending on
wether the first interval belongs to S or to S.

• If 0 belongs to S, then S is associated with exactly m segments on the path,
all having length at least 1, and S is associated to m + 1 segments, all but
the last one having length at least 1 (the last segment can have length 0).

So S can be encoded by dividing |S|−m = n−s−m into m+1 non-negative
integers. There are exactly cut(n − s − m, m + 1) ways of doing it.

We should also write S as the ordered sum of m non null numbers, there are
cut(s − m, m) =

(

s−1
m−1

)

possibilities.

This gives a contribution of cut(n−s−m, m+1) ·cut(s−m, m) =
(

s−1
m−1

)(

n−s
m

)

to I(s, m).

• If 0 is in S, the situation is symmetric, with n − s instead of s: we replace
cut(n− s−m, m + 1)cut(s−m, m) by cut(s−m, m + 1)cut(n− s−m, m) =
(

s
m

)(

n−s−1
m−1

)

.

The total contribution is the sum of the partial contributions, and the claim follows.
�
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Given a set S with s elements, we denote by P (s, m) the probability that for a
random cyclic permutation π, S defines m segments on the cycle associated to π.
Since the probability does not depend on S, but only on s, P (s, m) is well defined.
We have:

Claim 2

P (s, m) = I(s, m)/

(

n

s

)

=

(

s
m

)(

n−s
m

)

(m
s + m

n−s )
(

n
s

) . (2)

Proof Consider a bipartite graph whose vertices are the sets of s elements and the
(n−1)! cyclic permutations. We put an edge between a set and a cyclic permutation
if the set defines m segments on the cycle associated to the permutation. This
graph is a “regular bipartite graph”, where sets have degree ∆ and permutations

have degree I(s, m). Counting the edges of the graph, we get ∆ = (n−1)!I(s,m)

(n

s)
.

Now, the probability for a set to be adjacent to a permutation is ∆/(n−1)!. So,
given a set S with s elements, the probability that S defines exactly m segments
on a cycle C is I(s, m)/

(

n
s

)

. Then Equation 1 gives the result. �

Claim 3

Prob(δ(S) = 2x) =
∑

k1,...,kk|k1+k2+...+kk=x

∏

I(s, ki)/

(

n

s

)k

. (3)

Proof The result follows from the three points below:

• the probability that S defines ki segments on a random cycle Ci is I(s, ki);

• the cycles constituting Gk,n are independent

• δ(S) = 2
∑

1,2,...,k ki.

�

We say that a set is bad if δ(S) < min(s, n − s, r). By the above equations we can
estimate the probability of having bad sets. The following two lemmas complete
the proof of our Theorem. �

Lemma 2 (Robustness for small sets) Any set with size s ≤ n
14 has border at

least s with probability 1 −O( log n
n ).

Proof
The number of cycles is two for 4-regular graphs. Let W (n, s) be the probability

that there is a set of size s ≤ r = n
14 with border less than s:

W (n, s) ≤
(

n

s

)

∑

r≤s/2

∑

m1+m2=r

I(s, m1)I(s, m2)/

(

n

s

)2

.

Since I(s, m1)I(s, m2) ≤ I(s, m1+m2

2 ), we have

W (n, s) =
∑

r≤s/2

∑

m1+m2=r

I(s, m1)I(s, m2)/

(

n

s

)

≤
∑

r≤s/2

r(I(s, r/2))2/

(

n

s

)

.
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Now, since r ≤ s/2, we have I(s, r/2) ≤ I(s, s/4) and W (n, s) ≤ s2

8 (I(s, s/4))
2
/
(

n
s

)

.
Replacing I(s, s/4) by its value we get:

W (n, s) ≤ s2

8

(

s

s/4

)2 (
n − s

s/4

)2

/

(

n

s

)

.

For the following we need the following rather sharp form of Stirling’s formula
proved by Robbins(1955):

n! =
(n

e

)n √
2πneαn ,

where 1
12n+1 < αn < 1

12n .
Putting this formula in the above inequality we obtain:

W (n, s) ≤ s3s(n − s)3n−3s

( s
4 )s(3s

4 )
3s
2 (n − 5s

4 )2n− 5s
2 nn

β,

where β =
16 (n−s)

√
s(n−s)

3π
√

2πn (4n−5s)
.eγ with

γ = 3αs + 3αn−s − 4α s
4
− 2α 3s

4
− 2αn− 5s

4
− αn,

αi being a real number in the interval [ 1
12i+1 , 1

12i ]. Let

X(n, s) :=
s3s(n − s)3n−3s

( s
4 )s(3s

4 )
3s
2 (n − 5s

4 )2n− 5s
2 nn

β.

Suppose n = a · s. Then we have:

X(n, s) =

(

(a − 1)3(a−1)

1
4 .(3

4 )
3
2 .(a − 5

4 )2a− 5
2 .aa

)s

β.

If we note

g(a) :=
(a − 1)3(a−1)

1
4 .(3

4 )
3
2 .(a − 5

4 )2a− 5
2 .aa

,

we have
X(n, s) = g(a)s.β.

Remember that

β =
16 (n − s)

√

s(n − s)

3π
√

2πn (4n − 5s)
.eγ .

It is now easy to see that g is decreasing. As g(13.80 · · · ) = 1, we have g(14) < 1.
Hence

• For s ∈ [− 4 log n
log(g(14)) ,

n
14 ] we have

X(n, s) ≤ C.
1

n4
β = O(

1

n2
),

for some constant C. Hence for some other constant C,

W (n, s) ≤ C.
1

n2
.
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• For s ≤ − 4 log n
log(g(14)) we have a ≥ C. n

log n (for some constant C). Hence

X(n, s) ≤ C.(n/s)−
s
2 .β.

It is clear that for s ≥ 4, we have X(n, s) ≤ C. 1
n for some constant C.

• It is easy to show that W (n, s) = 0 for s = 1, 2, 3, as the edge connectivity of
a random 4-regular graph is 4 with very high probability.

Then we have
∑

s≤ n
14

W (n, s) ≤
∑

− 4 log n

log(g(14))
≤s≤ n

14

X(n, s) +
∑

s≤− 4 log n

log(g(14))

X(n, s)

< C.n.
1

n2
+

C. log(n)

n
= O(

log n

n
).

�

Lemma 3 (Robustness for large sets) For n large enough, any set of size s ∈
[ n
14 , 13n

14 ] has border at least n
14 with probability 1 −O( 1

n ).

Proof
A set larger than n

14 is bad when its border is smaller than n
14 . Let W ′(n, s)

be the probability that there exists a set of size s ≥ r = n
14 with border less than

r = n
14 . We have

W ′(n, s) ≤
∑

i≤ n
28

∑

k1+k2=i

I(s, k1)I(s, k2)/

(

n

s

)

.

Hence W ′(n, s) ≤ ( n
14 )2

8

(

I(s, n
56 )
)2

/
(

n
s

)

.

Let define δ(a) for a ∈ [ 1
14 , 1 − 1

14 ] as

δ(a) =

(

(

a.n
n
56

)(

(1−a)n
n
56

)

)2

(

n
a.n

) .

Then

W ′(n, an) ≤ 1

8

( n

14

)2

δ(a).

Again, using methods similar to the ones of last section, we obtain W ′(n, a) ≤
h(a)nβ′, where β′ is a rational function on n and a, and h is defined below:

h(a) =
a3a (1 − a)3−3a

( 1
56 )

1
14 (a − 1

56 )2a− 1
28 (1 − a − 1

56 )2−2a− 1
28

β′.

Since h( 1
14 ) < 1, with h decreasing,

W ′(n, an) ≤ h(
1

14
)nβ′.

As β′ is rational, we have for n large enough W ′(n, an) < 1
2n2 , and so W ′(n, s) =

O( 1
n ). So

∑

s∈[ n
14 , 13n

14 ]

W ′(n, s) = O(
1

n
),

and the lemma is proved. �
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6 Lower Bounds

In this section we distinguish switches according to their number of inputs and
outputs. Figure 4 defines the different set of switches: S, Si, So, Vi, Vo, D and
T . For example, a switch v is in D if i(v) = o(v) = 1. Remember that we called
such a switch a doublon and that all switches that are not a doublon are called
R-switch. Remark that direct applications of the cut criterion show that no other
types of switches are possible and that, as soon as λ ≥ 1, switches of kind T are
forbidden. Recall the convention that a lower case letter in the notations indicates
the cardinality of the set denoted by the corresponding upper case letter.

DViS Si So Vo T

Figure 4: Kinds of switches.

Fundamental equations are linking the different kinds of switches: Equation 4
(switch partition equation) which counts the number N of switches of the network,
Equation 5 (input equation) which counts the number of inputs and Equation 6
(output equation) which counts the number of outputs.

N = s + si + so + d + vi + vo + t (4)

p + λ = si + 2vi + d + t (5)

p + k = so + 2vo + d + 2t (6)

In Subsection 6.1, we prove a fundamental preliminary theorem, Theorem 5. Its
main point is that N(p, λ, k) ≥ 3

2n + d
2 − ε(n) (where d is the number of doublons

and where ε(n) goes to zero when n goes to infinity). Direct applications of this
theorem give lower bounds for general and simplified networks (Theorems 6 and
7). We succeed in obtaining a better bound of n + 2

3n − ε(n) for two cases: when
λ goes to infinity (Theorem 8) and when some kinds of switches are not allowed
in the networks (Theorem 9). Finally (Theorem 10), we succeed to obtain a tight
bound n + 3

4n − ε(n) for another family of networks using majority arguments.

6.1 Preliminary Theorem

The idea to find and prove lower bounds is first to obtain local information on
possible switch configurations. The methodology is to use the cut criterion (Propo-
sition 1) to infer equations linking the numbers of switches of different kinds. Then,
we use the existence of a quasi-partition (Lemma 4) to obtain bounds for the whole
network.

Definition 4 (q-quasi-partition) Let G = (V, E) be a graph and q be a positive
integer. A q-quasi-partition of G is a family Q = {A1, A2, . . . , Am} of subsets of
V , such that :
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(i) for every 1 ≤ i ≤ m, the subgraph G[Ai] induced by Ai is connected;

(ii) for every 1 ≤ i ≤ m, q
3 ≤ |Ai| ≤ q;

(iii) V =
⋃m

i=1 Ai and
∑m

i=1 |Ai| ≤ |V | + |{Ai; |Ai| > 2q
3 }| + 1.

Lemma 4 ([20]) Let q be a positive integer and G be a connected graph of order
at least q

3 . Then G admits a q-quasi-partition.

Remark 3 • If G has several connected components, each of size at least q
2 ,

applying the lemma to each component and using the additivity of both sides
of Equation (iii) gives us a q−quasi-partition of G.

• Let Q be a quasi-partition of G as in Lemma 4. Let t = |{Ai, |Ai| ≥ 2q
3 }| and

v = |V |. Then we have: m ≤ 3(v+t+1)
q and t ≤ v+1

2q

3 −1
.

Proof The lemma as stated in [20] is slightly incorrect. Hence we restate it here
and give a new proof. Since every connected graph G contains a spanning tree, it is
sufficient to prove the result for trees. We prove this by induction on the size of the
trees. Let T be a tree. If T contains less than q elements, then the result trivially
holds. So suppose that |T | ≥ q. An edge e of T is called a q-balanced separator, if
removing e separates the tree into connected components of sizes at least q. Let Eq

be the subgraph consisting of all q-balanced edges. If there is no q-balanced edge in
the tree, a q-separator vertex exists, that is a vertex v such that all the connected
components of T \ {v} have less than q vertices. Let us take l to be a leaf of Eq if
some q-balanced edges exist or to be a q-separator vertex if Eq = ∅. T \ (Eq ∪ {l})
has r connected components, say C1, . . . , Cr, such that |C1| ≥ |C2| ≥ · · · ≥ |Cr|.
By the choice of l, and our hypothesis on the size of T (|T | > q), we have |Ci| < q
and

∑r
i=1 |Ci| ≥ q. The following cases can appear.

• |C1| ≥ q
3 and T \ C1 has at least q

3 vertices. Then by induction it has a q-
quasi partition {A1, . . . , Am−1}. Adding Am = V (C1) to this family provides
a q-quasi partition for T .

• |C1| < q
3 . We have r ≥ 3. Let s be the largest integer such that

∑

i≤s |Ci| ≤ q.

As |Cs+1| ≤ |C1| < q
3 , we have s ≥ 3 and

∑

i≤r |Ci| ≥ 2q
3 (by maximality of

s).

So we can suppose that
∑

i≤r |Ci| ≥ 2q
3 . If the connected tree T \ ⋃i≤s Ci

has more than q
3 elements, for example if Eq 6= ∅, by induction it admits a

q-quasi partition {A1, . . . , Am−1}. Adding Am =
⋃

i≤s Ci ∪ {l} to this family
provides a q-quasi partition for T .

• T has less than q + q
3 vertices, Eq is empty and we can find a vertex l such

that each |Ci| has less than q
3 vertices. Let t be the smallest integer such

that
∑

i≤t |Ci| ≥ q
3 . We claim that T \⋃i≤t Ci has at most q and at least q

3
vertices. The first one is true because T has at most q+ q

3 vertices and
⋃

i≤t Ci

has at least q
3 vertices. The second one is true, because of the minimality of

t. Indeed,
⋃

i≤t−1 Ci has at most q
3 vertices, Ct has at most q

3 vertices, and
so because |T | ≥ q + 1, T \⋃i≤t Ci has at least q

3 vertices. It is now easy to
check that

⋃

i≤t Ci ∪ {l} and T \⋃i≤t Ci form a q-quasi partition of T .
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�

For the proof of Theorem 5 we need to define large and small H−components
of R, the associated graph of N .

Definition 5 [H-component, large and small H-components, adjacent H-
components] We consider a (p, λ, k)-network and its associated graph R (see Sec-
tion 2 for definition). We take H the subgraph of R which contains only the edges of
type E0. An H-component of R is a connected component of H. An H-component
is said large (respectively small) if it has more than (resp. strictly less than) q
switches, with q the greatest integer satisfying 2(q +(2q +2)q)+2 ≤ k− 1. Remark

that q ∼
√

k
2 . Two H-components C1 and C2 are said adjacent if there exists an

edge of R with one R−switch in C1 and the other one in C2.

Proposition 2 1. A small H-component has no outgoing edge of kind E2.

2. A small H-component has no input inside.

3. Two small H-components are not adjacent.

Proof Let C be a small H-component. We apply the cut criterion of Section 4.2
to the set C̃ of N obtained from C by adding in N the doublons of the edges of
type E1 and E2 incident to R−switches of C.

As k ≤ p and |C| ≤ q ≈
√

k
2 , we have o(C) ≤ k

2 ≤ p. Hence the cut criterion
reduces to

δ(C̃) ≥ i(C̃).

Let e1 (resp. e2) be the number of outgoing edges of kind E1 (resp. E2) incident
to R−switches of C.

- By definition of H and of the small components, δ(C̃) = e1 + e2. We have
i(C̃) ≥ e1 + 2e2 + i(C). So by the cut criterion, e2 = 0 proving point 1) and
i(C) = 0 proving point 2).

- Let C′ be an other small H−component. If C and C′ are joined by f ≥ 1
edges, then let W = C̃∪C̃′, we have i(W ) ≥ e1+e′1−f and δ(W ) ≤ e1+e′1−2f
so δ(W ) < i(W ), which gives a contradiction.

�

Theorem 5 (Preliminary Theorem) In a valid network N with k ≤ n
2 , we have

N ≥
(

3

2
n − (k − λ) − 4 − 12√

k

)(

1 − 9

2
√

k
+ O

(

1

k

))

+
d

2

(

1 +
9

2
√

k
+ O

(

1

k

))

,

where n = p + k.

Proof According to Lemma 4 and Remark 3, the union of the large H-compo-
nents of R admits a q-quasi-partition Q = {A1, . . . , Am}. So each Aj is connected
and of size q

2 ≤ |Aj | ≤ q. We say that an edge with doublons (i.e. an edge of type
E1 or E2) is of type:
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• R if it is between an Aj and a small H−component,

• M if it is between two distinct sets: Aj and Ak,

• N if it is inside an Aj .

Aj

rj

Bj ej

Mj

Nj

Ak

AlAm

Figure 5: Sketch of proof of Theorem 5

For each Aj , we introduce the set Bj consisting of Aj and all the small H−components
adjacent to it. We define new quantities as shown on Figure 5:

• rj is the number of edges between Aj and its small H-components.

• ej is the number of outgoing edges of Bj incident to one of its small compo-
nents.

• Mj is the number of doublons on the edges of type M .

• Nj is the number of doublons on the edges of type N .

As two small components can not be adjacent, remark that all rj and ej edges are
of type R.

Let us now apply the cut criterion to Bj. δ(Bj) + o(Bj) − min(k, o(Bj)) −
min(i(Bj), p) ≥ 0. As k ≤ n

2 , we have i(Bj) ≤ p. We first show that o(Bj) < k.
Indeed, if o(Bj) ≥ k, the cut criterion reduces to δ(Bj) ≥ k. Furthermore Aj is
connected and of size less than q, so it has at most 2q + 2 outgoing edges and the
number of small H−components of Bj is at most 2q + 2. As the size of a small
H−component is less than q, the number of vertices in Bj is at most q + (2q + 2)q.
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Hence the number of outgoing edges δ(Bj) is at most 2(q + (2q + 2)q) + 2. By our
choice of q it gives k ≤ δ(Bj) ≤ 2(q + (2q + 2)q) + 2 ≤ k − 1, a contradiction.
Consequently o(Bj) < k.

The cut criterion is now equivalent to δ(Bj) ≥ i(Bj). Noting δ′ the number
of outgoing edges of Bj incident to Aj , we have δ(Bj) = δ′(Bj) + ej . Using the
definitions of switch kinds (Figure 4), we have

δ′ = 4|Aj | − 2e(Aj) − rj − 2Nj − si − so − 2vi − 2vo − 3t.

Since Aj is connected, e(Aj) ≥ |Aj | − 1, we get

δ′ ≤ 2|Aj | + 2 − rj − 2Nj − si − so − 2vi − 2vo − 3t.

For the number of inputs in Bj we have

i(Bj) = ej + rj + Mj + Nj + si + 2vi + t.

The cut criterion (Proposition 1) then implies:

2|Aj | + 2 ≥ 2si + so + 4vi + 2vo + 4t + 3Nj + 2rj + Mj. (7)

The total number of doublons is d. All doublons are of type R, M or N . The
doublons in M are counted for two different Aj and Ak. So

∑m
j=1 Mj +3Nj +2rj ≥

2d. Hence taking the sum of Equation 7 over all j we obtain

2
m
∑

j=1

|Aj | + 2m ≥ 2si + so + 4vi + 2vo + 4t + 2d.

The input and output equations (Equations 5 and 6) give 2si + 4vi + 2t + 2d =
2n − 2(k − λ) and so + 2vo + 2t = n − d. Hence

2
m
∑

j=1

|Aj | + 2m ≥ 3n − d − 2(k − λ). (8)

The family {Aj} forms a q-quasi-partition of R. Let t := |{Aj , |Aj | ≥ 2q
3 }| and v the

number of vertices of R. Then, by Remark 3, we have m ≤ 3(v+t+1)
q and t ≤ v+1

2q

3 −1
.

By definition of a quasi-partition:
∑m

i=j |Aj | ≤ v + |{Aj , |Aj | ≥ 2q
3 }| = v + t + 1.

Putting all these equations into Equation 8 gives:

2v

(

1 +
1

2q
3 − 1

)

≥ q

q + 3
[(3n − d − 2(k − λ)) − 2(q + 3)

q
− 6

q
− 2].

2v ≥ q

q + 3

2q − 3

2q
[3n − d − 2(k − λ) − 2(q + 3)

q
− 6

q
− 2]

= [3n − d − 2(k − λ) − 2(q + 3)

q
− 6

q
− 2]

(

1 − 9

2q + 6

)

.

Using N ≥ v + d, we obtain

N ≥
(

3

2
n − (k − λ) − 4 − 12

q

)(

1 − 9

2q + 6

)

+
d

2

(

1 +
9

2q + 6

)

.
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Finally,

N ≥
(

3

2
n − (k − λ) − 4 − 12√

k

)(

1 − 9

2
√

k
+ O

(

1

k

))

+
d

2

(

1 +
9

2
√

k
+ O

(

1

k

))

.

�

6.2 Lower Bounds

Here we apply Theorem 5 to prove lower bounds for the number of switches of min-
imal valid networks. Let us remind the reader that l ≤ k is assumed for symmetry
reasons and that n := p + k.

Theorem 6 (Selector: λ = 0) In a valid network N , when k → ∞ with k ≤ n
2 ,

we have
N ≥ n +

n

2
+ O(

n√
k

).

In other words,

N(p, 0, k) ≥ n +
n

2
+ O(

n√
k
).

In particular, we obtain a tight bound for networks with λ = 0 (see Theorem 3).

Proof The proof follows directly from Theorem 5. �

Theorem 7 (Simplified case) In the simplified case, when k → ∞ with k ≤ n
2 ,

we have N(p, λ, k) ≥ 2n + O( n√
k
).

In particular, we obtain a tight bound for the simplified case (see Theorem 1).

Proof First recall that a direct application of the cut criterion shows that as soon
as λ ≥ 1, T is empty (see definition of switch types in Figure 4, p. 18). This means
that in this proof and the following we will not consider switches of T . Now the
proof follows from Theorem 5 and from d = n − (k − λ) in the simplified case.

�

Theorem 8 (General case) When λ → ∞ and k → ∞, N(p, λ, k) ≥ n + 2
3n +

O( n√
λ
).

Proof We first give a bound for the number of switches of types Vi and Vo using
the following Lemma:

Lemma 5 When λ → ∞ and k → ∞,

{

vi ≤ N − 3
2n − d

2 − k−λ
2 + λO( n√

k
),

vo ≤ N − 3
2 (n − k + λ) − d

2 + k − λ−k
2 + O( n√

λ
).
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Figure 6: When λ = 0, switches of kind Vi may be removed.

Proof Imagine we have a valid (p, λ, k)−network with N switches and vi switches
in Vi. We obtain a valid (p, 0, k)−network after removing any λ inputs. This new
network has at least vi −λ switches of kind Vi. By Remark 4 we may remove these
switches and obtain a valid (p, 0, k)−network with N − vi + λ switches. Theorem 5
gives

N − vi + λ ≥ 3

2
n +

d

2
+

k − λ

2
+ O(

n√
k

).

So the result holds. Symmetry (in the sense of swapping inputs and outputs gives
a valid (p, k, λ)−network) gives the second equation. �

The switch partition equation and Equations 5 and 6 give here

N = 2n − (k − λ) − vi − vo − d + s.

Lemma 5 gives

N ≥ 2n − (k − λ) − d + s − 2N + 3n + d

+ O(
n√
k

) + O(
n√
λ

) − 3

2
(k − λ) − λ − k.

N ≥ 5

3
n + O(

n√
k

) + O(
n√
λ

) − 5

2
k +

λ

2
.

�

Theorem 9 When λ ≥ 1 and no switches of kinds Vi and Vo are allowed, when
k → ∞ with k ≤ n

2 , we have N(p, λ, k) ≥ n + 2
3n + O( n√

k
).

Proof Let us first remark the following:

Remark 4 Notice that when λ = 0, switches of type Vi are not present in a
minimal valid (p, λ, k)−network. As shown in Figure 6, they may be removed to
form a new valid (p, λ, k)−network with vi less switches.

Proof Direct by the cut criterion. �

When vi = vo = 0, the input equation (Equation 5) becomes n = d + si and the
output equation (Equation 6) becomes n = d + so. So si = so and the switch
partition equation (Equation 4) gives

N = 2n − d. (9)

Theorem 5 gives

2n − d ≥ 3

2
n +

d

2
+ O(

n√
k

)
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n

3
≥ d + O(

n√
k

).

Equation 9 gives

N ≥ 5

3
n + O(

n√
k

).

�

To sum up, in the general case, we proved a lower bound of type n + 2n/3. Let
us remind the reader that we obtained an upper bound with n + 3n/4 switches
(Theorem 2). We conjecture that the later is the right answer to the problem. We
are able to prove this with some extra conditions on the network using majority
arguments:

Theorem 10 Let N be a network of N switches with the associated graph R =
(V = A ∪ B, E) such that R is bipartite, all vertices of A have exactly one output
and all vertices of B exactly one input in the original network.

N ≥ n +
3

4
n + O(

n√
k
).

Proof We are given a ternary bipartite graph R = (V = A ∪ B, E) such that all
vertices of A have an output and all vertices of B have an input. The vertices of
B are partitioned in two sets B1 and B0. A vertex of B1 is adjacent to an edge of
type E1 or E2, while the vertices of B0 are not.

For a subset X ⊂ A we use the following notations : Bi(X) = Γ(X)∩Bi, i = 0, 1
and bi = |Bi|.

Let X be a subset of A such that F (X) = X ∪Γ(X) is connected and 6|X | ≤ k.
X has less than k outputs. To fullfill the cut criterion for small subsets (less than
k outputs), we need

b0(X) ≥ b1(X) − 3 + 3cF (X), (10)

where cF (X) is the feedback edge set of the subgraph induced by F (X).

The goal is to prove that this can happen only if b0 + O( 1√
k
) ≥ 2b1.

Let Y be a set of y vertices of B0 such that Y ∪ Γ(Y ) is connected. We have
|Γ(Y )| = 2y + 1− cF (Y ). There are 3y + 3− 3c edges comming out of F (Y ), say αy
toward vertices of type B0 and 3y+3−3c−αy toward vertices of type B1. In G we
consider the connected subgraph induced by Z = F (Y )∪ (Γ(F (Y ))∩B1). We have
(6− α)y + 3− 3cF (Y ) edges inside Z, so the number of vertices in Γ(F (Y )) ∩B1 is
(6 − α)y + 3 − 3cF (Y ) − y − (2y + 1− cF (Y )) − cZ = (3 − α)y + 2 − 2cF (Y ) − cZ . If
we take X = Γ(Y ), Equation 10 gives

(α + 1)y ≥ b0(X) ≥ b1(X) − 3 + 3cF (X)

≥ (3 − α)y + 2 − 2cF (Y ) − cZ − 3 + 3cF (X)

≥ (3 − α)y − 1 − 2cF (Y ) + 2cF (X)

where in the last inequality we use the fact that cZ ≤ cF (X). As cF (Y ) ≤ cF (X), we
have:

α ≥ 1 − 1

2y
.

We consider all the connected components of the graph induced by B0 ∪A and
we take a q-quasi-partition of the big components for some q, q = O(k) such that
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all components are of the form F (Y ) for some Y subset of B0. Now we count the
edges going to B0 and B1.

For one component D of the quasi-partition with y vertices of B0, we find at
least (3 + α)y ≥ 4y − 1

2 edges toward B0 and at most 2y + 7
2 edges toward B1 with

one extremity in D.
Globally, if m is the number of components and up to some small number of

recounting (Quasi-partition arguments) we get 4|A| − m
2 = 3b0 edges toward B0

and 2A + 7m
2 = 3b1 edges toward B1.

Hence b0 ≥ 2b1 + O( 1√
k
). �

7 Conclusion

In this paper we proposed constructions of valid (p, λ, k)−networks and gave lower
bounds on their size. The design problem appears to be driven by two constraints:
a local one in which small patterns are forbidden and another one which is related
to some global expansion property of the network. This led us to define an expan-
sion parameter of a graph: the α−robustness. This parameter is a generalization of
the usual edge-expansion. Using graphs of 2−robustness equal to Θ(log n) we con-
structed almost optimal simplified networks. Similarly when k ≤ n

7 , using graphs of
large 1−robustness we proposed good simplified networks. Despite many answers
for small values of k (k ≤ n

7 ), little is known when k is larger.
To obtain our lower bounds, we presented a powerful technique: quasi-partitioning.
We think that this technique can potentially have other applications to derive lower
bounds for problems of the same kind.

Some interesting open questions remain

- For a fixed α, find explicit constructions of nice α-robust graphs, graphs
having large α−robustness.

- Is there a very explicit construction such as the “Zig-Zag product”of [29] and
“lift”of [13] providing nice robust graphs? Does the Zig-Zag product preserve
robustness?

- What is the maximum bisection-width of a 4-regular graph? In [24] the
maximal bisection width of 4-regular graphs on n vertices is shown to be at
most 2n

5 . This leads to an α−robustness < n
2 when α > 4

5 . Is it possible to
obtain the same kinds of results for larger values of α ensuring a maximal
robustness of size at most n

3 , for example?

- What is the minimum number of switches or edges in an n-superselector? (See
[23, 30] for some constructions.)
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tres francophones sur les aspects algorithmiques de télécommunication (Algotel),
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