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Abstract

We use the Clemens–Griffiths method to construct smooth projective threefolds, over
any field k admitting a separable quadratic extension, that are k-unirational and k-
rational but not k-rational. When k = R, we can moreover ensure that their real locus
is diffeomorphic to the real locus of a smooth projective R-rational variety and that all
their unramified cohomology groups are trivial.

1. Introduction

The Lüroth problem aims at understanding when a variety X over a field k is k-rational, that is,
birational to Pnk . It is natural to restrict to classes of varieties that are close to being k-rational,
such as k-unirational varieties, which admit a dominant rational map Pnk 99K X.

Over the field k = C of complex numbers, unirational surfaces are rational; examples of non-
rational unirational threefolds were discovered almost simultaneously by Artin–Mumford [AM72],
Clemens–Griffiths [CG72] and Iskovskikh–Manin [IM71]. We refer to [Bea16] for a beautiful sur-
vey of their methods and their rich legacy.

Over a non-algebraically closed field k with algebraic closure k, it is interesting to investigate
the k-rationality of varieties that are k-rational. Significant works in this direction include Cheval-
ley’s example of a torus over Qp that is not Qp-rational [Che54, § V] and Swan’s counter-example
to Noether’s problem over Q (see [Swa69, Theorem 1]).

The strategies used by Iskovskikh and Manin (the Noether–Fano method of analyzing bira-
tional automorphism groups) and by Artin and Mumford (based on the study of Brauer groups)
have both been employed to construct interesting examples of k-rational varieties that are not
k-rational. Early applications to surfaces are, respectively, due to Segre (smooth cubic surfaces
of Picard rank 1 are never k-rational [Seg51, Theorems 3 and 5], see also [KSC04, Theorem 2.1])
and to Manin (see for instance [Man66, Theorem 2.5]).

The main goal of this paper is to show that it is also possible to use the strategy of Clemens
and Griffiths (relying on the theory of intermediate Jacobians) to construct varieties over k that
are k-rational but not k-rational. Here are concrete new examples that we obtain in this way.

Theorem 1.1 (Corollary 3.6 and Example 3.8). Let k be a field of characteristic different from 2.
If α ∈ k∗ \ (k∗)2, the k-variety defined by the affine equation

{
s2 − αt2 = x4 + y4 + 1

}
is k-

unirational and k
(√
α
)
-rational but not k-rational.
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The Clemens–Griffiths method over non-closed fields

Theorem 1.2 (Corollary 3.9 and Example 3.10). Let k be a field of characteristic 2. Let α ∈ k and
β ∈ k\k be such that β2+β = α. The k-variety with affine equation

{
s2+st+αt2 = x3y+y3+x

}
is k-unirational and k(β)-rational but not k-rational.

Constructions of intermediate Jacobians over other fields than the field C of complex numbers
have been provided by Deligne [Del72], Murre [Mur73, Mur85] and Achter, Casalaina-Martin
and Vial [ACV17, ACV20], in various degrees of generality. In Section 2, building on these
works and using in an essential way Bloch’s Abel–Jacobi map [Blo79], we associate with any
smooth projective k-rational threefold X over a perfect field k a principally polarized abelian
variety J3X over k (our contribution being the construction of the principal polarization). We
verify in Corollary 2.8 that it gives rise to an obstruction to the k-rationality of X generalizing
the one considered by Clemens and Griffiths [CG72]: if X is k-rational, then J3X is isomorphic
to the Jacobian of a (possibly disconnected) smooth projective curve over k.

Over algebraically closed fields, several techniques have been used to detect that an inter-
mediate Jacobian is not a Jacobian: the geometry of its theta divisor [CG72], its automorphism
group [Bea12] or the zeta function of one of its specializations over a finite field [MR18]. To give
examples of k-rational varieties that are not k-rational, we need a criterion of a more algebraic
nature which can distinguish between Jacobians of curves and their twists. Such a criterion is es-
tablished in Proposition 3.2 as a consequence of the Torelli theorem. It is especially easy to apply
when X itself is a twist of a k-rational variety (see Proposition 3.1), as in Theorems 1.1 and 1.2.

Our results are of particular interest over the field k = R of real numbers, with Galois group
G := Gal(C/R) ' Z/2Z. The real locus of an R-rational smooth projective variety is non-empty
and connected. That this yields obstructions to R-rationality goes back to Comessatti ([Com12,
§ 5], see also [Col18, Théorème 1.1]).

In dimension at most 2, there are no further obstructions to the R-rationality of a C-rational
variety. The case of curves is easy since a real conic with a real point is isomorphic to P1

R, and it
is a theorem of Comessatti that a smooth projective C-rational surface over R whose real locus
is non-empty and connected is R-rational (see [Com12, § 6, pp. 54–55] or the modern proof of
Silhol [Sil89, VI, Corollary 6.5]).

In dimension at least 3, all known examples of smooth projective C-rational varieties over R
that are not R-rational rely on a real analogue of the Artin–Mumford invariant (the Brauer
group) or on its higher-degree generalizations given by unramified cohomology [CO89, Pey93].
(The latter take into account the obstructions induced by the number of connected components
of the real locus by [CP90, Main Theorem].) We give the first example of an irrational smooth
projective C-rational variety over R that does not rely on the above-mentioned invariants, dashing
any hope for a simple R-rationality criterion for C-rational varieties in dimension at least 3.

Theorem 1.3 (Theorem 5.4). There exists a smooth projective threefold X over R that is not
R-rational but is C-rational and R-unirational, such that X(R) is diffeomorphic to

(
P1×P2

)
(R)

and such that for any G-module M and any i > 0, we have H i(G,M)
∼−→ H i

nr(X,M).

The variety X used in our proof of Theorem 1.3 is the one described in Theorem 1.1 for
α = −1. It is its intermediate Jacobian that shows that it is not R-rational. The last statement
of Theorem 1.3 asserts that the unramified cohomology groups of X cannot be used to show
that X is not R-rational. To contrast with Theorem 1.3, we provide in Theorem 5.7 an example
of a smooth projective C-rational and R-unirational threefold over R whose real locus is dif-
feomorphic to the real locus of a smooth projective R-rational variety and whose intermediate
Jacobian is trivial but that is not R-rational thanks to the Artin–Mumford invariant.
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A new specialization technique introduced by Voisin [Voi15] has recently led to tremendous
progress in rationality problems (see [Pey19] for a survey of this method and its applications).
However, these specialization arguments cannot provide examples of C-rational varieties over R
that are not R-rational, for the reason that all non-trivial valuations on R have algebraically
closed residue fields. In particular, such arguments cannot be used to prove Theorem 1.3.

Let us now explain and develop the last statement of Theorem 1.3, which concerns unramified
cohomology. One can associate with any smooth projective variety X over R an abelian group
H i

nr(X,M) for every integer i > 0 and every G-module M (see Section 4.1). If X is R-rational,
these unramified cohomology groups are trivial in the sense that the natural pull-back maps
H i(G,M)→ H i

nr(X,M) are isomorphisms (Proposition 4.2). Relying on Bloch–Ogus theory, we
study these invariants in Section 4. Our main contribution is a complete understanding of when
they can be used to show that a C-rational threefold is not R-rational, yielding a proof of the
last assertion of Theorem 1.3.

Theorem 1.4 (Theorem 4.3). Let X be a smooth projective threefold over R that is C-rational.
The following are equivalent:

(1) For any i > 0 and any G-module M , we have an isomorphism H i(G,M)
∼−→ H i

nr(X,M).

(2) The variety X satisfies

(i) X(R) has exactly one connected component,
(ii) Pic(XC) is a permutation G-module,
(iii) the cycle class map clR : CH1(X)→ H1(X(R),Z/2Z) is surjective.

We have already discussed condition (i) in Theorem 1.4. Manin [Man66, Theorem 2.2] and
Voskresenskĭı [Vos70, Theorem 1] noticed that there are restrictions on the Galois module struc-
ture of the geometric Picard group of smooth projective k-rational varieties. When k = R, this
specializes to condition (ii) in Theorem 1.4, where a permutation G-module is a G-module that
is a direct sum of G-modules isomorphic to Z[G] or to the trivial G-module Z. In view of the
Hochschild–Serre spectral sequence (4.3), condition (ii) is equivalent, for smooth projective C-
rational varieties satisfying condition (i), to the assertion that the pull-back Br(R) → Br(X) is
an isomorphism, that is, to the triviality of the real analogue of the Artin–Mumford invariant.

Soulé and Voisin observed in [SV05, Lemma 1] that the validity of the integral Hodge con-
jecture for 1-cycles is a necessary condition for the C-rationality of a smooth projective variety
over C. Condition (iii) is an analogue over R of this condition, in which the Borel–Haefliger cycle
class map clR : CH1(X)→ H1(X(R),Z/2Z), defined in [BH61], associates with an integral curve
j : Z ↪→ X with normalization π : Z̃ → Z the homology class (j ◦ π)∗

[
Z̃(R)

]
∈ H1(X(R),Z/2Z).

That condition (iii) holds for R-rational varieties was already noticed, in the stronger form
of an approximation theorem, by Bochnak and Kucharz [BK99, Theorem 1.1]. It is possible that
condition (iii) is satisfied for all smooth projective rationally connected threefolds (see the more
general [BW20a, Question 3.4]). Since this applies to C-rational threefolds, this would allow one
to remove condition (iii) from the statement of Theorem 1.4. Condition (iii) is known to hold if X
is birational to a conic bundle over a C-rational surface [BW20b, Corollary 6.5] or to a del Pezzo
fibration of degree δ ∈ {9, 8, 7, 6, 5, 3} over P1

R (see [BW20b, Theorem 8.1 and Proposition 8.4]).

Notation and conventions. We fix a field k. Everywhere except in part of Section 3.3, we
assume that k is perfect. We fix an algebraic closure k of k and let Γk = Aut(k/k) be the absolute
Galois group of k. A variety over k is a separated scheme of finite type over k. If X is a variety
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over k, we let CHc(Xk)alg ⊂ CHc(Xk) be the subgroup of algebraically trivial codimension c
cycle classes.

If M is an abelian group and n is an integer, we let M [n] ⊂M be the n-torsion subgroup. If `
is a prime number, we will consider the subgroup M{l} := lim−→ν

M [`ν ] of `-primary torsion of M
and the `-adic Tate module T`M := lim←−νM [`ν ] of M . If M is a free Z`-module (respectively,
Z-module) of finite rank, we let M∨ = Hom(M,Z`) (respectively, M∨ = Hom(M,Z)).

When k = R, we set G := ΓR ' Z/2Z, generated by the complex conjugation σ ∈ G. For

j ∈ Z, we consider the G-module Z(j) :=
(√
−1
)jZ ⊂ C and set M(j) := M ⊗Z Z(j) for any

G-module M .

2. Intermediate Jacobians

In Section 2, we study intermediate Jacobians of smooth projective threefolds.

2.1. Principally polarized abelian varieties. A principally polarized abelian variety (ppav)
over k is a pair (A, θ) consisting of an abelian variety A over k and of a class θ ∈ NS(Ak)

Γk

induced by an ample line bundle on Ak whose associated isogeny Ak → Âk (see [Mum70, § 13,
Corollary 5, p. 131]) is an isomorphism. A morphism p : (A′, θ′) → (A, θ) of ppavs over k is a
(necessarily injective) morphism p : A′ → A of abelian varieties such that p∗θ = θ′. One says that
(A′, θ′) is a sub-ppav of (A, θ).

Let C be a smooth projective curve over k, and let (Ci)i∈I be the connected components
of Ck. The Jacobian J1C of C is the identity connected component of the Picard scheme of C. It
parametrizes line bundles on C that have degree 0 on all of the Ci. There is a natural isomorphism
J1Ck

∼−→
∏
i∈I J

1Ci. If we denote by Θi ⊂ J1Ci a theta divisor and by pi : J
1Ck → J1Ci the

projection, the line bundle
⊗

i∈I p
∗
iOJ1Ci(Θi) endows J1C with the structure of a ppav over k.

A ppav over k is indecomposable if it is non-zero and is not isomorphic to the product of two
non-zero ppavs. A ppav (A, θ) over k is isomorphic to the product of its indecomposable sub-
ppavs. This is proved in [CG72, Lemma 3.20, Corollary 3.23] if k = C, and the proof still works if
k = k, as explained in [Mur73, Lemma 10]. One deduces the result in general by Galois descent:
the indecomposable sub-ppavs of (A, θ), viewed over k, are exactly the products of a Γk-orbit of
indecomposable sub-ppavs of (Ak, θ). We deduce that any morphism p : (A′, θ′)→ (A, θ) of ppavs
over k induces a decomposition (A, θ) ' (A′, θ′)× (A′′, θ′′) of (A, θ) as a product of ppavs over k.

The Jacobian J1C of a smooth projective connected (but not necessarily geometrically con-
nected) curve C over k is indecomposable. If k = k, this follows from the irreducibility of the
theta divisor. In general, the connected components Ci of Ck are permuted transitively by Γk
because C is connected, so that the factors J1Ci of the decomposition J1Ck =

∏
i J

1Ci as
a product of indecomposable ppavs over k are permuted transitively by Γk, showing that J1C is
indecomposable.

2.2. Codimension 2 algebraic cycles. In this paragraph, we study substitutes over k for the
complex Abel–Jacobi map, with an emphasis on codimension 2 cycles.

2.2.1. Murre’s intermediate Jacobian. With a smooth projective variety X over a perfect field k
is associated an abelian variety Ab2X over k, called the algebraic representative for algebraically
trivial codimension 2 cycles on X. (The construction of Murre over k, see [Mur85, § 1.9, Theo-
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rem A], as corrected by Kahn [Kah20], has been shown by Achter, Casalaina-Martin and Vial
to descend to any perfect field [ACV17, Theorem 4.4].) It is characterized by the existence of a
surjective Γk-equivariant map

φ2
X : CH2(Xk)alg → Ab2X(k) (2.1)

that is initial among regular homomorphisms with values in an abelian variety over k (see
[ACV17, Definition 3.1 and Theorem 4.4]).

Let X and Y be smooth projective varieties over k and g : Yk → Xk be a morphism over k.
By the universal property of φ2

X , the composition φ2
Y ◦ g∗ : CH2(Xk)alg → Ab2Y (k) factors as

g+(k) ◦ φ2
X for a unique morphism g+ : Ab2Xk → Ab2Yk. Since φ2

X is surjective and φ2
X and φ2

Y

are Γk-equivariant, the map g 7→ g+(k) is Γk-equivariant, and hence so is the map g 7→ g+.
In particular, if g = fk for a morphism f : Y → X of varieties over k, then g+ descends to
a morphism f+ : Ab2X → Ab2Y of abelian varieties over k.

The same argument shows that if X and Y are equidimensional of the same dimension and
f : Y → X is a morphism of varieties over k, there exists a unique morphism f+ : Ab2Y → Ab2X
of abelian varieties over k such that φ2

X ◦ f∗ = f+(k) ◦ φ2
Y .

2.2.2. Bloch’s Abel–Jacobi map. If X is a smooth projective variety over k, Bloch has defined
for all prime numbers ` that are invertible in k and all c > 0 a morphism

λc : CHc(Xk){`} → H2c−1
ét (Xk,Q`/Z`(c)) (2.2)

called Bloch’s `-adic Abel–Jacobi map [Blo79, § 2], which is Γk-equivariant by construction and
compatible with the action of correspondences [Blo79, Proposition 3.5]. The map λc is bijective
if c = 1 by Kummer theory [Blo79, Proposition 3.6] and injective if c = 2 as a consequence of
the Merkurjev–Suslin theorem [CSS83, Corollaire 4]. The composition of λc with the last arrow
in the exact sequence

0→ H2c−1
ét (Xk,Z`(c))⊗Q`/Z` → H2c−1

ét (Xk,Q`/Z`(c))→ H2c
ét (Xk,Z`(c))

is, up to a sign, the `-adic cycle class map [CSS83, Corollaire 4]. Since the cycle class map
vanishes on algebraically trivial cycles, λc restricts to a Γk-equivariant map

λc : CHc(Xk)alg{`} → H2c−1
ét (Xk,Z`(c))⊗Q`/Z` . (2.3)

This map is obviously still injective if c 6 2, and it is still surjective if c = 1: indeed, a codimen-
sion 1 algebraic cycle of `-primary torsion that has trivial `-adic cycle class is algebraically trivial,
in view of the inclusion NS(Xk)⊗ Z` ⊂ H2

ét(Xk,Z`(1)) induced by the Kummer exact sequence
(see [SZ08, § 2.2, (2)]).

2.2.3. Varieties with few zero-cycles. We will use the following classical definition.

Definition 2.1. If X is a smooth projective variety over k, we say that CH0(X)Q is supported
in dimension i if there exists a closed subvariety V ⊂ X of dimension at most i such that for
all algebraically closed field extensions k ⊂ Ω, the push-forward map CH0(VΩ)Q → CH0(XΩ)Q
is surjective.

Lemma 2.2. Let f : X 99K X ′ be a birational map of smooth projective varieties over k. If
CH0(X)Q is supported in dimension i, then so is CH0(X ′)Q.

Proof. Let V be as in Definition 2.1, let Γ ⊂ X ×X ′ be the closure of the graph of f , let W ⊂ Γ
be a subvariety of dimension at most i dominating V , and let V ′ ⊂ X ′ be the image of W . Let
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k ⊂ Ω be an algebraically closed field extension. As any closed point of ΓΩ can be moved, by
a rational equivalence, to any dense open subset of ΓΩ (choose a general curve passing through
the point and normalize it), the push-forward maps CH0(ΓΩ)Q → CH0(XΩ)Q and CH0(ΓΩ)Q →
CH0(X ′Ω)Q are compatible with the isomorphism CH0(XΩ)Q ' CH0(X ′Ω)Q described in [Ful98,
Example 16.1.11]. Hence the surjectivity of the push-forward CH0(WΩ)Q → CH0(XΩ)Q implies
that of CH0(WΩ)Q → CH0(X ′Ω)Q, hence that of CH0(V ′Ω)Q → CH0(X ′Ω)Q.

Codimension 2 algebraic cycles on varieties with small Chow groups of zero-cycles behave par-
ticularly well. The following proposition applies, for instance, if Xk is rationally chain connected
[Kol96, IV, Definition 3.2].

Proposition 2.3. Let X be a smooth projective variety over k such that CH0(X)Q is supported
in dimension 1. Then the following hold:

(i) The morphism φ2
X : CH2(Xk)alg → Ab2X(k) of (2.1) is bijective.

(ii) The morphism λ2 : CH2(Xk)alg{`} → H3
ét(Xk,Z`(2)) ⊗ Q`/Z` of (2.3) is bijective for all

prime numbers ` invertible in k.

Proof. This follows from the decomposition of the diagonal technique of Bloch and Srinivas
[BS83]. Assertion (i) is [BS83, Theorem 1(i) and its proof], where one may replace the hypothesis
on resolution of singularities by De Jong’s alteration theorem [dJo96, Theorem 4.1]. Indeed, in
the notation of [BS83, proof of Theorem 1(i)], if D̃ is now allowed to be any smooth projective
variety over k endowed with a surjective generically finite map of degree m > 1 to D, one
may replace Γ1, Γ2, N with mΓ1, mΓ2, mN to ensure that [Γ2]∗ still factors through Pic0

(
D̃
)
.

Assertion (ii) is proved in exactly the same way as assertion (i). More precisely, we have already
seen that the map (2.3) is injective if c = 2 with no hypothesis on X. Given the fact that (2.3)
is surjective if c = 1, the decomposition of the diagonal argument shows that its cokernel is
N -torsion for some N > 0. Being a quotient of H3

ét(Xk,Z`(2)) ⊗ Q`/Z`, it is also N -divisible,
hence it vanishes.

2.3. The intermediate Jacobian. Let X be a smooth projective threefold over k such that
CH0(X)Q is supported in dimension 1. Applying the `-adic Tate module functor T` to the
morphisms (2.1) and (2.3), which are bijective by Proposition 2.3, taking the identification
T`Ab2X(k) = H1

ét

(
Ab2Xk,Z`

)∨
into account and using, for M = H3

ét(Xk,Z`(2)), the isomor-

phism M/(M{`}) ∼−→ T`(M ⊗ Q`/Z`), valid for all finitely generated Z`-modules M , yields an
isomorphism

T`
(
λ2 ◦

(
φ2
X

)−1)
: H1

ét

(
Ab2Xk,Z`

)∨ → H3
ét(Xk,Z`(2))/(torsion) . (2.4)

We will consider the following property of the smooth projective threefold X over k (under
the hypothesis that CH0(X)Q is supported in dimension 1).

Property 2.4. There exists a θ ∈ NS
(
Ab2Xk

)
satisfying the following assertions:

(i) For all prime numbers ` invertible in k, the image c1,`(−θ) of −θ by the `-adic first Chern
class

c1,` : NS
(
Ab2Xk

)
↪→ H2

ét

(
Ab2Xk,Z`(1)

)
=

( 2∧
H1

ét

(
Ab2Xk,Z`

))
(1)
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corresponds, via the isomorphism (2.4), to the cup product map

2∧
H3

ét(Xk,Z`(2))
^−→ H6

ét(Xk,Z`(4))
deg−−→ Z`(1) .

(ii) The class θ ∈ NS
(
Ab2Xk

)
is a principal polarization of Ab2Xk.

Property 2.4 depends only on Xk. Hence, whenever we need to verify it, we may replace k
with k and X with Xk.

A class θ as in Property 2.4(i) is unique since c1,` is injective (by [SZ08, § 2.2, (2)] and since
NS
(
Ab2Xk

)
has no torsion). Being unique, it must be Γk-invariant, by the Γk-equivariance of

c1,`, of φ2
X , of λ2 and of the cup product map. Consequently, if X satisfies Property 2.4, then(

Ab2X, θ
)

is a ppav over k, which we denote by J3X and call the intermediate Jacobian of X.

Although we will not use it further on in this paper, the following proposition, which applies
if k has characteristic 0 and Xk is rationally connected, is a motivation for Property 2.4 (and its
proof is a justification for the notation J3X).

Proposition 2.5. A smooth projective threefold over a field k of characteristic 0 such that
CH0(X)Q is supported in dimension 0 satisfies Property 2.4.

Proof. Since Property 2.4 depends only on Xk, we may assume that k = k. By the Lefschetz
principle, using in particular that the formation of Ab2X commutes with extensions of alge-
braically closed fields of characteristic 0 (see [ACV17, Theorem 3.7]), one may further assume
that k = C. By decomposition of the diagonal, one has H0

(
X,Ω1

X

)
= H0

(
X,Ω3

X

)
= 0 (see

[Lat98, Corollary 1.10]).

Let us temporarily denote by J3X Griffiths’ intermediate Jacobian of X, that is, the complex
torus J3X := H2

(
X,Ω1

X

)
/ Im

(
H3(X(C),Z(2))

)
(see [CG72]). The transcendental Abel–Jacobi

map AJ2 : CH2(X)alg → J3X(C) is surjective by its compatibility with Bloch’s `-adic Abel–
Jacobi map (2.2), see [Blo79, Proposition 3.7], and by Proposition 2.3(ii). It then follows from
[Mur85, § 1.11, Theorem C] that AJ2 satisfies the universal property (2.1) of φ2

X , yielding an
identification J3X ' Ab2X.

Let γ ∈ H2
(
J3X(C),Z(1)

)
=
(∧2H1

(
J3X(C),Z

)∨)
(1) be such that −γ corresponds, un-

der the identification H1

(
J3X(C),Z

)
= H3(X(C),Z(2))/(torsion), to the cup product map∧2H3(X(C),Z(2))

^−→ H6(X(C),Z(4))
deg−−→ Z(1). We claim that γ is the first Chern class

of a principal polarization θ on Ab2(X) = J3X. To see this, one has to show that γ is unimodu-
lar and that its associated Hermitian form is positive definite (see [BL99, §§ 2.1 and 4.1]). These
assertions are consequences of, respectively, Poincaré duality and the Hodge–Riemann relations
[Voi02, Théorème 6.32].

That θ has the required properties follows from comparison between `-adic and Betti co-
homology, from the fact that we identified Ab2X and J3X using φ2

X and AJ2 and from the
compatibility of AJ2 and λ2; see [Blo79, Proposition 3.7].

We do not know whether Proposition 2.5 always holds if k has positive characteristic. We
will verify it if X is k-rational in Corollary 2.8.

Remark 2.6. Over the field k = R of real numbers, there is a more general and much easier way
to construct intermediate Jacobians than Proposition 2.5. Indeed, let X be a smooth projective
threefold over R such that H0

(
X,Ω1

X

)
= H0

(
X,Ω3

X

)
= 0, and let J3XC denote the intermediate
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Jacobian of XC constructed by transcendental means as in [CG72]. We recall that the complex
analytic space J3XC(C) is by definition the cokernel of the composition

H3(X(C),Z(2))→ H3(X(C),C)→ H2
(
XC,Ω

1
XC

)
(2.5)

of the map induced by the inclusion Z(2) ⊂ C with the projection stemming from the Hodge de-
composition. On H3(X(C),C), one can consider the C-linear involution F∞ induced by the com-
plex conjugation involution of X(C) and the two C-antilinear involutions FB and FdR correspond-
ing, respectively, to the real structures H3(X(C),C) = H3(X(C),R) ⊗R C and H3(X(C),C) =
H3

dR(X/R) ⊗R C. They all commute and are related by the formula FdR ◦ FB ◦ F∞ = Id; see
[Del79, Proposition 1.4]. It follows that FdR stabilizes the image of the first arrow of (2.5). Also
denoting by FdR the C-antilinear involution of H2

(
XC,Ω

1
XC

)
associated with the real structure

H2
(
XC,Ω

1
XC

)
= H2

(
X,Ω1

X

)
⊗R C and noting that the second arrow of (2.5) is FdR-equivariant,

we deduce that FdR stabilizes the image of (2.5) and thus equips J3XC(C) with an antiholomor-
phic involution. The polarization of J3XC, being given by the opposite of the cup product map
H3(X(C),Z(2))×H3(X(C),Z(2))→ Z(1), is preserved by this involution since the cup product
is equivariant with respect to FB and F∞. Hence J3XC descends to a ppav J3X over R, which
is the sought-for intermediate Jacobian of X. This method avoids the use of the deep results of
Bloch [Blo79] and Murre [Mur85] and would be sufficient for the proof of Theorem 1.3.

2.4. Birational behavior. We now show that the validity of Property 2.4 is a birational invari-
ant of smooth projective threefolds over k. Recall that the assertion that CH0(X)Q is supported
in dimension 1, which is required for Property 2.4 to make sense, is a birational invariant of
smooth projective varieties over k by Lemma 2.2.

Theorem 2.7. Let X and Y be birational smooth projective threefolds over k such that CH0(Y )Q
is supported in dimension 1. If Y satisfies Property 2.4, then so does X. Moreover, there exist
smooth projective curves C and C ′ over k and an isomorphism J3Y × J1C ' J3X × J1C ′ of
ppavs over k.

It follows that one can associate with any smooth projective k-rational threefold X over k
a ppav J3X over k that gives rise to an obstruction to the k-rationality of X extending [CG72,
Corollary 3.26].

Corollary 2.8. A smooth projective k-rational threefold X over k satisfies Property 2.4. If X
is moreover k-rational, then its intermediate Jacobian J3X is isomorphic, as a ppav over k, to
the Jacobian of a smooth projective curve over k.

Proof. To verify the first assertion, we may work over k as Property 2.4 depends only on Xk.
It then follows from Theorem 2.7 applied with Y = P3

k
. Indeed, P3

k
satisfies Property 2.4: since

CH2
(
P3
k

)
alg

= 0, one even has Ab2P3
k

= 0.

To show the second assertion, we apply Theorem 2.7 with Y = P3
k. By the above, one has

J3P3
k = 0, and we obtain an isomorphism J1C ' J3X × J1C ′ of ppavs over k for some smooth

projective curves C and C ′ over k. Since the indecomposable factors of J1C are Jacobians of
smooth projective connected curves over k, the uniqueness of the decomposition of J3X as
a product of indecomposable factors (see Section 2.1) shows that J3X is itself a product of
Jacobians of smooth projective connected curves over k, hence is the Jacobian of a smooth
projective curve over k.

We first study the behavior of Property 2.4 under birational morphisms.
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Lemma 2.9. Let f : Y → X be a birational morphism of smooth projective threefolds over k
such that CH0(Y )Q is supported in dimension 1. If Y satisfies Property 2.4, then so does X and,
moreover, there is an isomorphism J3Y ' J3X ×B of ppavs over k for some ppav B over k.

Proof. Let θY ∈ NS
(
Ab2Yk

)
be the class given by Property 2.4 for Y . Define θX := (f+)∗θY ∈

NS
(
Ab2Xk

)
. We first remark that θX satisfies the condition of Property 2.4(i) for X. Indeed,

once we fix a prime number ` invertible in k, this follows from the commutativity of the diagram
(see Section 2.3)

H1
ét

(
Ab2Xk,Z`

)∨
= T`Ab2X(k)

((f+)∗)∨
��

T` CH2(Xk)alg∼
T`φ

2
Xoo

∼
T`λ

2
//

f∗
��

H3
ét(Xk,Z`(2))/(tors)

f∗
��

H1
ét

(
Ab2Yk,Z`

)∨
= T`Ab2Y (k) T` CH2(Yk)alg∼

T`φ
2
Yoo

∼
T`λ

2
// H3

ét(Yk,Z`(2))/(tors)

since f∗ : H3
ét(Xk,Z`(2))→ H3

ét(Yk,Z`(2)) respects the cup product pairing.

Let us turn to Property 2.4(ii) for X. One has f+ ◦ f+ = Id: Ab2X → Ab2X since f∗ ◦ f∗ =
Id: CH2(Xk)→ CH2(Xk) and since φ2

X is surjective. A natural isomorphism of abelian varieties

Ab2Y ' f+
(
Ab2X

)
×Ker(f+) (2.6)

results. It follows from the above diagram and from the same diagram with f∗, f+ replaced
by f∗, f+ (and vertical arrows reversed) that applying the rational `-adic Tate module functor
to (2.6) yields, via (2.4), the decomposition

H3(Yk,Q`(2)) ' f∗H3(Xk,Q`(2))×Ker(f∗) (2.7)

stemming from the equality f∗ ◦ f∗ = Id: H3(Xk,Q`(2)) → H3(Xk,Q`(2)). By the projection
formula, the latter decomposition is orthogonal with respect to the cup product pairing on
H3(Yk,Q`(2)). Hence the decomposition of T`

(
Ab2Y

)
induced by (2.6) is orthogonal with respect

to the pairing c1,`(θY ). Equivalently, if p : Ab2Y → Ker(f+) denotes the projection, then θY =
(f+)∗θX + p∗θ for some θ ∈ NS(Ker(f+)). As θY is a principal polarization, so must be θX
and θ.

Lemma 2.10. Let X be a smooth projective threefold over k with CH0(X)Q supported in dimen-
sion 1. Let f : Y → X be the blow-up of a smooth subscheme Z ⊂ X, and let C be the union of
the 1-dimensional components of Z. If X satisfies Property 2.4, then so does Y and, moreover,
there is an isomorphism J3Y ' J3X × J1C of ppavs over k.

Proof. We first construct an isomorphism of abelian varieties Ab2Y ' Ab2X × J1C.

Let i : E ↪→ Y be the inverse image of C in Y . Consider the correspondence z := (i, f |E)∗E ∈
CH2(Y × C). The existence of the Poincaré divisor on Ck × J

1Ck inducing the natural bijec-
tion φ1

C : CH1(Ck)alg → J1C(k) and the fact that φ2
Y is regular in the sense of [Mur85, De-

finition 1.6.1] show the existence of a morphism z+ : J1Ck → Ab2Yk such that z+(k) ◦ φ1
C =

φ2
Y ◦ z∗ : CH1(Ck)alg → Ab2Y (k). Since φ1

C , φ2
Y and z∗ are Γk-equivariant, so is z+(k), show-

ing that z+ descends to a morphism z+ : J1C → Ab2Y defined over k. A similar argument
shows the existence of a morphism z+ : Ab2Y → J1C of abelian varieties over k such that
φ1
C ◦ z∗ = z+(k) ◦ φ2

Y : CH2(Yk)alg → J1C(k).

Computing the Chow groups of a blow-up [Ful98, Proposition 6.7(e)] yields a canonically
split short exact sequence

0→ CH1(Zk)→ CH1(Xk)× CH1

(
f−1(Z)k

)
→ CH1(Yk)→ 0 . (2.8)
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As f−1(Z) is a projective bundle of relative dimension at least 1 over Z, there is a canonical
isomorphism CH1(f−1(Z)k) ' CH0(Zk) × CH1(Zk); see [Ful98, Theorem 3.3]. Combining it
with (2.8), we get an isomorphism CH1(Xk) × CH0(Zk) → CH1(Yk). Identifying the arrows
and restricting to algebraically trivial cycles shows that (f∗, z∗) : CH2(Xk)alg × CH1(Ck)alg →
CH2(Yk)alg is an isomorphism with inverse (f∗,−z∗) : CH2(Yk)alg → CH2(Xk)alg × CH1(Ck)alg.
We deduce at once that (f+, z+) : Ab2X × J1C → Ab2Y and (f+,−z+) : Ab2Y → Ab2X × J1C
are inverse isomorphisms of abelian varieties over k.

Let θC ∈ NS
(
J1Ck

)
be the canonical principal polarization. For all primes ` invertible in k,

the class c1,`(θC) ∈ H2
ét

(
J1Ck,Z`(1)

)
=
(∧2H1

ét

(
J1Ck,Z`

))
(1) corresponds, via the isomorphism

T`
(
λ1◦(φ1

C)−1
)

: H1
ét

(
J1Ck,Z`

)∨ → H1
ét(Ck,Z`(1)), to the cup product map

∧2H1
ét(Ck,Z`(1))

^−→
H2

ét(Ck,Z`(2))
deg−−→ Z`(1). To verify this classical fact, already used by Murre in [Mur73, § 3.6],

one may reduce to k of characteristic 0 by lifting C to such a field, then to k = C by the Lefschetz
principle, where it follows from a transcendental computation (for which see [BL99, §§ 11.1–11.2])
after comparing `-adic and Betti cohomology.

Let θX ∈ NS
(
Ab2Xk

)
be the class given by Property 2.4 for X, and define the class θY as

θY := (f+,−z+)∗(θX , θC). We only need to show that θY satisfies Property 2.4(i). This follows
from the above property of θC and from the commutativity of the two diagrams

H1
ét

(
Ab2Xk,Z`

)∨ ×H1
ét(J

1Ck,Z`)
∨

((f+)∗,(z+)∗)∨
��

T` CH2(Xk)alg × T` CH1(Ck)alg∼
(T`φ

2
X ,T`φ

1
C)

oo

o (f∗, z∗)
��

H1
ét

(
Ab2Yk,Z`

)∨
T` CH2(Yk)alg ,∼

T`φ
2
Yoo

T` CH2(Xk)alg × T` CH1(Ck)alg ∼
(T`λ

2,T`λ
1)
//

o (f∗, z∗)
��

H3
ét(Xk,Z`(2))/(tors)×H1

ét(Ck,Z`(1))

(f∗, z∗)
��

T` CH2(Yk)alg ∼
T`λ

2
// H3

ét(Yk,Z`(2))/(tors)

since f∗ : H3
ét(Xk,Z`(2)) → H3

ét(Yk,Z`(2)) respects the cup product pairing and since z∗ :
H1

ét(Ck,Z`(1))→ H3
ét(Yk,Z`(2)) reverses it in the sense that

deg(z∗x ^ z∗y) = − deg(x ^ y) ∈ Z`(1) (2.9)

for all x, y ∈ H1
ét(Ck,Z`(1)). Identity (2.9) was proved by Clemens and Griffiths in [CG72, (3.12)]

when k = C. To check it, set x′ := (f |E)∗x and y′ := (f |E)∗y, so that x′, y′ ∈ H1
ét(Ek,Z`(1)), and

compute

i∗x
′ ^ i∗y

′ = i∗(i
∗i∗x

′ ^ y′) = i∗(x
′ ^ y′ ^ i∗i∗1) = i∗(x

′ ^ y′ ^ c1(OE(−1))) .

Since z∗x ^ z∗y = i∗x
′ ^ i∗y

′, the projection formula yields

deg(z∗x ^ z∗y) = deg(x′ ^ y′ ^ c1(OE(−1))) = − deg(x ^ y) .

To go further, we need a resolution of indeterminacies result going back to Abhyankar [Abh98],
which we will use exactly as Murre did in [Mur73, § 3] (see also [LP00] for an application in
a similar vein).

Proposition 2.11. Let f : Y 99K X be a rational map of varieties over k with Y smooth quasi-
projective of dimension 3 and X projective. Then there exist a composition g : Z → Y of blow-ups
with smooth centers and a morphism h : Z → X such that h = f ◦ g.
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Proof. Let Γ ⊂ Y ×k X be the closure of the graph of f . Since the projection Γ → Y is
projective and birational, it is the blow-up of some coherent sheaf of ideals I ⊂ OY ; see [Har77,
II, Theorem 7.17]. There exists a morphism g : Z → Y that is a composition of blow-ups with
smooth centers such that the sheaf of ideals IOZ ⊂ OZ is invertible [Abh98, (9.1.4)] (see [CP08,
Proposition 4.2] or [CJS09, Theorem 5.9] for modern references). By the universal property of
a blow-up, Z dominates Γ, and we let h : Z → X be the induced morphism.

We may finally conclude the proof of Theorem 2.7.

Proof of Theorem 2.7. Let f : Y 99K X be a birational map. By Proposition 2.11, there exist
a composition g : Z → Y of blow-ups with smooth centers and a morphism h : Z → X such that
h = f ◦ g. By Lemmas 2.9 and 2.10, the varieties Y , Z, X all satisfy Property 2.4, and we obtain
an isomorphism

J3X ×B ' J3Y × J1C (2.10)

of ppavs over k for some ppav B over k and some smooth projective curve C over k. The same
reasoning applied to f−1 produces a ppav B′ over k, a smooth projective curve C ′ over k and
an isomorphism

J3X × J1C ′ ' J3Y ×B′ (2.11)

of ppavs over k. By the uniqueness of the decomposition of a ppav as a product of indecomposable
factors, and as the indecomposable factors of J1C and J1C ′ are Jacobians of smooth projective
connected curves over k (see Section 2.1), we deduce from the isomorphism J3Y × B × B′ '
J3Y × J1C × J1C ′ obtained by combining (2.10) and (2.11) that B and B′ are themselves
Jacobians of smooth projective curves over k. Thus (2.10) is the desired isomorphism.

3. Counterexamples to the Lüroth problem

We now explain how to use the intermediate Jacobians studied in Section 2 to construct examples
of varieties over k that are k-rational but not k-rational.

3.1. Twists. Our examples will be constructed as twists of k-rational varieties. LetX be a quasi-
projective variety over k. The twist cX of X by the 1-cocycle c = (cγ)γ∈Γk ∈ Z1(k,Aut(Xk))
(see [Ser94, I, § 5.1 and III, § 1.3]) is a variety over k with an isomorphism i : Xk ' (cX)k such
that γ(i(x)) = i(cγ · γ(x)) for all x ∈ X(k) and γ ∈ Γk. The twists of X are exactly the varieties
over k that are k-isomorphic to Xk, and two twists cX and c′X of X are isomorphic as varieties
over k if and only if c = c′ are cohomologous [Ser94, III, § 1.3, Proposition 5]. We denote by
[cX] ∈ H1(k,Aut(Xk)) the cohomology class of c.

Similarly, if (A, θ) is a ppav over k and d ∈ Z1(k,Autppav(Ak, θ)), then the twist d(A, θ) of
(A, θ) by d is a ppav over k such that (Ak, θ) ' (d(A, θ))k, two cocycles give rise to isomorphic
ppavs over k if and only if they are cohomologous, and we set [d(A, θ)] to be the image of d in
H1(k,Autppav(Ak, θ)).

Proposition 3.1. Let X be a smooth projective threefold over k. Assume that CH0(X)Q is
supported in dimension 1 and that X satisfies Property 2.4. Let χ : Aut(Xk)→ Autppav

(
J3Xk

)
be the Γk-equivariant map g 7→ g+ (see Section 2.2.1). Then for all c ∈ Z1(k,Aut(Xk)), one has
J3(cX) ' χ(c)

(
J3X

)
as ppavs over k.
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Proof. The map φ2
X considered in (2.1) being Γk-equivariant by hypothesis and Aut(Xk)-equi-

variant by the functoriality of J3X (see Section 2.2.1), the composition

CH2((cX)k)alg ' CH2(Xk)alg
φ2X−−→ J3X(k) ' χ(c)(J

3X)(k) ,

where the first and third arrows are induced by, respectively, the natural isomorphisms Xk '
(cX)k and J3Xk '

(
χ(c)

(
J3X

))
k
, is Γk-equivariant as the defects of Γk-equivariance of the first

and third arrow compensate each other exactly. This yields an isomorphism J3(cX) ' χ(c)J
3X

of ppavs over k by the definition (2.1) of J3(cX).

3.2. Quadratic twists. If (A, θ) is a ppav over k, sending 1 to the automorphism −Id of (Ak, θ)
induces a Γk-equivariant morphism ϕ : Z/2Z → Autppav(Ak, θ), hence a map ϕ : H1(k,Z/2Z) =
Z1(k,Z/2Z)→ Z1(k,Autppav(Ak, θ)).

For all a ∈ H1(k,Z/2Z), the ppav ϕ(a)(A, θ) over k is the quadratic twist of (A, θ) by a.

Our main result regarding the non-triviality of the Clemens–Griffiths invariant over k is the
following consequence of the Torelli theorem.

Proposition 3.2. Let C be a smooth projective geometrically connected curve over k, and let
a ∈ H1(k,Z/2Z). Then the following conditions are equivalent:

(i) There exists a smooth projective curve C ′ over k such that ϕ(a)

(
J1C

)
and J1C ′ are isomor-

phic as ppavs over k.

(ii) The class a is trivial, or Ck has genus 0 or 1, or Ck is hyperelliptic.

Proof. We first prove that (ii)⇒(i). If a is trivial, then ϕ(a)

(
J1C

)
' J1C. If C has genus 0, then

ϕ(a)

(
J1C

)
= 0 and if C has genus 1, then ϕ(a)

(
J1C

)
' J1

(
ϕ(a)

(
J1C

))
. Now, suppose that Ck is

hyperelliptic of genus at least 2. By [Lau01, Appendice, Théorème 4], one has a Γk-equivariant
group isomorphism Aut(Ck)

∼−→ Autppav

(
J1Ck

)
inducing a bijection

H1(k,Aut(Ck))
∼−→ H1

(
k,Autppav

(
J1Ck

))
.

The inverse image of the class
[
ϕ(a)

(
J1C

)]
by this bijection corresponds to a twist C ′ of C (called

a hyperelliptic twist) with the property that J1C ′ ' ϕ(a)

(
J1C

)
as ppavs over k.

Now, assume that condition (i) holds but that Ck has genus at least 2 and is not hyper-
elliptic. Since J1Ck and J1C ′

k
are isomorphic ppavs over k, the Torelli theorem shows that

C ′
k
' Ck. By [Lau01, Appendice, Théorème 4], one has a Γk-equivariant group isomorphism

Aut(Ck) × Z/2Z
∼−→ Autppav

(
J1Ck

)
associating with an automorphism of Ck the induced

automorphism of J1Ck and with 1 ∈ Z/2Z the automorphism −Id. This yields a bijection

H1(k,Aut(Ck)) ×H
1(k,Z/2Z)

∼−→ H1
(
k,Autppav

(
J1Ck

))
. The images

[
ϕ(a)

(
J1C

)]
and

[
J1C ′

]
of ([C], a) and ([C ′], 0) by this bijection coincide because ϕ(a)

(
J1C

)
' J1C ′ as ppavs over k,

showing that a is trivial.

3.3. Conic bundles. In this subsection, we do not assume that k is perfect.

Concrete varieties to which we may apply the above results are conic bundles. Let S be
a smooth projective k-rational surface over k, let L be an invertible sheaf on S, and let F ∈
H0
(
S,L⊗2

)
be a non-zero section with smooth zero locus C := {F = 0} ⊂ S. We define p : P :=

PS
(
L−1⊕L−1⊕OS

)
→ S as a rank 2 projective bundle over S in the sense of Grothendieck, with

tautological bundle OP(1). Then p∗OP(1) ' L−1 ⊕ L−1 ⊕ OS , and the last summand gives rise
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to a section u ∈ H0(P,OP(1)). Similarly, the first two summands of the isomorphism p∗(p
∗L ⊗

OP(1)) ' OS ⊕OS ⊕ L induce two sections s, t ∈ H0(P, p∗L ⊗OP(1)).

3.3.1. Characteristic not 2. Suppose first that k has characteristic different from 2. Define an
embedded conic bundle Y ⊂ P over S by the equation

Y :=
{
s2 − t2 = u2F

}
⊂ P .

Kummer theory yields a surjection κ : k∗ � H1(k,Z/2Z) with kernel (k∗)2. We fix α ∈ k∗, we
set a := κ(α), and we choose β ∈ k such that β2 = α. We consider the embedded conic bundle
Xα ⊂ P over S with equation

Xα :=
{
s2 − αt2 = u2F

}
⊂ P , (3.1)

which will turn out to be a twist of Y (see Proposition 3.4(i)).

Lemma 3.3. If S is k(β)-rational, then so is Xα.

Proof. The generic fiber of the projection p|Xα : Xα → S is a conic that has a k(β)(S)-point
given by s = β, t = 1 and u = 0, hence is k(β)(S)-rational. The lemma follows at once.

The S-automorphism δ of Y given by the formula (s, t, u) 7→ (s,−t, u) yields a Γk-equivariant
morphism ψ : Z/2Z→ Aut(Yk) with ψ(1) = δ. For a ∈ H1(k,Z/2Z), we consider the twist ψ(a)Y
of Y , where we still denote by ψ the composition H1(k,Z/2Z) = Z1(k,Z/2Z)→ Z1(k,Aut(Yk)).

Proposition 3.4. Assume that k is perfect.

(i) The varieties Xα and ψ(a)Y are k-isomorphic.

(ii) There is an isomorphism J3Y ' J1C of ppavs over k.

(iii) There is an isomorphism J3Xα ' ϕ(a)

(
J1C

)
of ppavs over k.

(iv) If Ck is connected, of genus at least 2 and not hyperelliptic and if β /∈ k, then Xα is not
k-rational.

Proof. The isomorphism i : Yk ' (Xα)k given by (s, t, u) 7→ (s, t/β, u) satisfies the equality
γ(i(y)) = i(ψ(aγ)·γ(y)) for all y ∈ Y (k) and γ ∈ Γk. The description of ψ(a)Y given in Section 3.1
then shows that ψ(a)Y ' Xα as varieties over k, proving assertion (i).

DefineW := PS(L−1⊕OS) with projection q : W → S and tautological bundleOW (1), the two
factors of L−1⊕OS inducing sections v ∈ H0(W, q∗L⊗OW (1)) and w ∈ H0(W,OW (1)). The S-
rational map W 99K Y given by the formula (v, w) 7→ (s, t, u) =

((
w2F+v2

)
/2,
(
w2F−v2

)
/2, vw

)
identifies Y with the blow-up of W along the curve {v = F = 0}, which is isomorphic to C. Let
E := {F = s− t = 0} be the exceptional divisor, with inclusion j : E ↪→ Y . Since W and hence
also Y are smooth projective k-rational threefolds, they satisfy Property 2.4 by Corollary 2.8.
One has CH2(Wk)alg ' CH1(Sk)alg = 0, hence J3W = 0, by the computation of the Chow groups
of a projective bundle [Ful98, Theorem 3.3(b)] and because of the k-rationality of S. We deduce
that J3Y ' J3W × J1C ' J1C as ppavs over k by Lemma 2.10, and assertion (ii) is proved.

The inverse image Z := (p|Y )−1(C) ⊂ Y is the union of E and δ(E). The total space
of the normalization ν : Z̃ → Z is thus isomorphic to the disjoint union of E and δ(E). Let
f : C → S and g : Z → Y be the inclusions, and h := p|Z ◦ ν : Z̃ → C. Applying [Ful98,
Proposition 6.6(b) and (c)] (especially the statement there concerning [Ful98, Theorem 6.2(a)])
shows that g∗ ◦ (p|Z)∗ = (p|Y )∗ ◦ f∗ : CH1(Ck)→ CH2(Yk). One verifies easily on the genera-
tors of CH1(Ck) that (p|Z)∗ = ν∗ ◦ h∗ : CH1(Ck) → CH1(Zk). Consequently, (g ◦ ν)∗ ◦ h∗ =
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(p|Y )∗ ◦ f∗ : CH1(Ck) → CH2(Yk). Since CH2(Sk)alg = 0 as S is k-rational, the map (g ◦ ν)∗ ◦
h∗ : CH1(Ck)alg → CH2(Yk)alg vanishes identically. Equivalently,

(1 + δ∗) ◦ j∗ ◦ (p|E)∗ : CH1(Ck)alg → CH2(Yk)alg

is identically zero. Since j∗ ◦ (p|E)∗ : CH1(Ck)alg → CH2(Yk)alg is an isomorphism by the de-
scription of Y as a blow-up of W and by the computation of the Chow groups of blow-ups and
projective bundles [Ful98, Theorem 3.3(b) and Proposition 6.7(e)], we see that δ∗z = −z for all
z ∈ CH2(Yk)alg. As a consequence of this identity, one has χ ◦ ψ = ϕ : Z/2Z → Autppav

(
J3Yk

)
,

where we use the notation of Sections 3.1–3.2. By assertion (i), Proposition 3.1 and assertion (ii),
J3Xα ' J3(ψ(a)Y ) ' ϕ(a)

(
J3Y

)
' ϕ(a)

(
J1C

)
.

Finally, one deduces assertion (iv) from assertion (iii), Corollary 2.8 and Proposition 3.2.

Remark 3.5. Over k = C, Mumford described the intermediate Jacobian of a conic bundle as
a Prym variety (see [CG72, Appendix C] and [Bea77, Théorème 2.1]). Our computation that
J3Xα = ϕ(a)

(
J1C

)
in Proposition 3.4(iv) is a variant of this result. Assuming for simplicity

that C is geometrically connected of genus g and β /∈ k, one may think of ϕ(a)(J
1C) as playing

the role of the Prym variety of the double cover Ck(β) → C. Indeed, the Jacobian J1(Ck(β)) of
the smooth projective connected curve Ck(β) over k coincides with the Weil restriction of scalars
Resk(β)/k

((
J1C

)
k(β)

)
, and there is a canonical exact sequence of abelian varieties

0 //
ϕ(a)(J

1C) // Resk(β)/k((J
1C)k(β))

Nk(β)/k
// J1C // 0

(obtained by twisting the exact sequence 0 → J1C → J1C × J1C → J1C → 0). This differs
from the classical setting in that the total space Ck(β) of the double cover is not geometrically
connected, which explains that the dimension of our intermediate Jacobian ϕ(a)

(
J1C

)
is equal

to g and not to g − 1.

Corollary 3.6. Suppose that β /∈ k, and let F ∈ H0
(
P2
k,OP2k(2d)

)
be the equation of a smooth

plane curve for some d > 2. The smooth projective variety Xα over k with equation
{
s2−αt2 =

u2F
}

as in (3.1) is k(β)-rational but not k-rational.

Proof. We use the above results with S = P2
k and L = OP2k(d). The first assertion is Lemma 3.3.

To prove the second assertion, one may apply Proposition 3.4(iv) over the perfect closure of k
since Ck is non-hyperelliptic of genus at least 2, as is any smooth plane curve of degree at least 4
(the line bundle KCk

is very ample as a positive multiple of OP2
k
(1), whereas the canonical bundle

of a hyperelliptic curve is not).

Remark 3.7. Corollary 3.6 would fail for d = 1, as
{
s2−αt2 = u2

(
x2 + y2 + z2

)}
is birational to

the smooth quadric with a k-point
{
s2 − αt2 = x2 + y2 + z2

}
⊂ P4

k, hence is k-rational. In this
case, Ck has genus 0.

Let us illustrate further the importance of the hypothesis that Ck is of genus at least 2 and
not hyperelliptic in Proposition 3.4(iv). Fix d > 1, let Φ ∈ H0

(
P1
k,OP1k(2d)

)
be a polynomial with

pairwise distinct roots over k, and consider the projective bundle q : S := PP1k
(
OP1k⊕OP1k(d)

)
→ P1

k

with tautological line bundle L := OS(1). There are two canonical sections v ∈ H0(S,OS(1)) and
w ∈ H0

(
S, q∗OP1k(−d)⊗OS(1)

)
, and one may consider C := {F = 0} ⊂ S with F := v2 − Φw2.

The curve Ck is smooth, connected, of genus g = d − 1 and hyperelliptic. The conic bundle
Xα :=

{
s2 − αt2 = u2F

}
over S as in (3.1) satisfies J3Xα ' J1C ′, where C ′ is a hyperelliptic

twist of C (by Proposition 3.4(iii) and Proposition 3.2). Consequently, one cannot deduce from
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Corollary 2.8 that Xα is not k-rational. This is fortunate because Xα is birational to the quadric
surface bundle

{
s2 − αt2 − v2 + Φw2 = 0

}
over P1

k. This quadric bundle has a rational section
given by s = v = 1 and t = w = 0, showing that Xα is k-rational.

Example 3.8. When d = 2, the varieties of Corollary 3.6 are often k-unirational. We only give one
example: we show that the variety Xα over k defined by the equation

{
s2−αt2 = u2

(
x4+y4+z4

)}
as in (3.1) is k-unirational. Applying [STV14, Lemma 3.5] with a1 = a2 = 1, a3 = −1 and
a4 = a5 = a6 = 0 shows that the degree 2 del Pezzo surface T :=

{
s2 = x4 + y4 + 1

}
⊂ Xα is

k-unirational. Then Xα is dominated by the fiber product Xα ×P2k T which, as a conic bundle
with a rational section over the k-unirational variety T , is k-unirational.

3.3.2. Characteristic 2. Let us now assume that k has characteristic 2. We only explain how to
modify the statements and arguments of Section 3.3.1 in this case.

Artin–Schreier theory yields a surjection κ : k � H1(k,Z/2Z), whose kernel consists of the
elements of the form β2 +β for some β ∈ k. We fix α ∈ k, we set a := κ(α), and we choose β ∈ k
such that β2 + β = α.

We define an embedded conic bundle Y :=
{
s2 + st = u2F

}
⊂ P, and we let δ be the S-

automorphism of Y given by the formula (s, t, u) 7→ (s+ t, t, u). We consider the embedded conic
bundle Xα ⊂ P over S with equation

Xα :=
{
s2 + st+ αt2 = u2F

}
⊂ P . (3.2)

With these modifications, Lemma 3.3 and Proposition 3.4 continue to hold, with the same
proofs (in the proof of Proposition 3.4(i), take i : (s, t, u) 7→ (s+ tβ, t, u)). We deduce from these
statements an analogue of Corollary 3.6, using exactly the same arguments.

Corollary 3.9. Suppose that β /∈ k, and let F ∈ H0
(
P2
k,OP2k(2d)

)
be the equation of a smooth

plane curve for some d > 2. The smooth projective varietyXα over k with equation
{
s2+st+αt2 =

u2F
}

as in (3.2) is k(β)-rational but not k-rational.

Example 3.10. When d = 2, the varieties of Corollary 3.9 are often k-unirational. We only give
one example: we show that the variety Xα over k defined by the equation

{
s2 + st + αt2 =

u2
(
x3y + y3z + z3x

)}
as in (3.1) is k-unirational. Arguing as in Example 3.8, it suffices to show

that T :=
{
s2 = x3y + y3z + z3x

}
is k-unirational. But this variety is even F2-unirational since

F2(T ) = F2

(
x, y,

(
x3y + y3 + x

)1/2) ⊂ F2

(
x1/2, y1/2

)
.

4. Unramified cohomology of real threefolds

We now restrict ourselves to the field k = R of real numbers and study in detail another strategy
to show that a C-rational threefold over R is not R-rational, making use of unramified cohomology.
Recall that G = Gal(C/R).

4.1. Bloch–Ogus theory. If X is a smooth variety over R, the group G acts continuously
on X(C) and we will consider, for any G-module M and any i > 0, the G-equivariant Betti
cohomology groups H i

G(X(C),M). Let HiX(M) be the Zariski sheaf on X associated with the
presheaf U 7→ H i

G(U(C),M). The degree i unramified cohomology group of X with coefficients
in M is H i

nr(X,M) := H0(X,HiX(M)). The sheaf HiSpec(R)(M) is the constant sheaf H i(G,M),

and pulling back along the structural morphism yields a morphism H i(G,M)→ H i
nr(X,M).
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We refer to [BW20a, § 5.1] for more information on the sheaves HiX(M) and their Zariski
cohomology groups. It is explained there that [CHK97, Corollary 5.1.11] may be applied in this
context, which is usually referred to as the validity of Gersten’s conjecture. In particular, if we
define

Ci,cX (M) :=
⊕

x∈X(c)

ιx,∗ lim−→
U⊂{x}

H i−c
G (U(C),M(−c)) ,

where X(c) is the set of codimension c points of X, the map ιx : x → X is the inclusion and U
runs over the dense open subvarieties of {x}, then the sheaf HiX(M) admits a flasque resolution
by a Cousin complex

0→ HiX(M)→ Ci,0X (M)→ Ci,1X (M)→ · · · (4.1)

whose arrows are induced by residue maps in long exact sequences of G-equivariant cohomology
with support. Consequently, the Zariski cohomology groups of HiX(M) may be computed as the
cohomology of the complex obtained by taking the global sections of the Cousin complex. Using
this description, the arguments of [CV12, Appendice A] adapt to the real setting and show that
correspondences between smooth projective varieties act naturally on the groups Hj(X,HiX(M)).

4.2. Obstructions to rationality. We first recall two definitions originating from, respectively,
[Sal84, Definition 3.1, Lemma 3.5] and [ACP17, § 1.2].

Definition 4.1. A smooth projective variety X over a field k is retract k-rational if there exist
a dense open subset U ⊂ X, a k-rational variety V and morphisms f : U → V and g : V → U
such that g ◦ f = Id. It is universally CH0-trivial if for every field extension k ⊂ l, the degree
map deg : CH0(Xl)→ Z is an isomorphism.

It is obvious that a smooth projective k-rational variety is retract k-rational (more generally,
stably k-rational varieties are retract k-rational), and a smooth projective retract k-rational
variety is universally CH0-trivial by [CP16, Lemme 1.5]. The following proposition is a variant of
classical results (see for instance [Bar92, Corollaire du Théorème 2] or [ACP17, Theorem 1.4]).

Proposition 4.2. Let X be a smooth projective variety over R that is universally CH0-trivial.
Then for any i > 0 and any G-module M , we have an isomorphism H i(G,M)

∼−→ H i
nr(X,M).

In particular, the conclusion holds if X is retract R-rational.

Proof. Since X has a zero-cycle of degree 1, it has a real point x ∈ X(R). The restriction to x is
a retraction of H i(G,M)→ H i

nr(X,M), showing its injectivity.

By [ACP17, Lemma 1.3], the variety X admits an integral decomposition of the diagonal:
if d is the dimension of X, there is an equality ∆X = {x} ×X + Z ∈ CHd(X ×X), where ∆X

is the diagonal and Z is supported on a closed subset X × D where D  X. One may now
argue as in the proof of [CV12, Proposition 3.3(i)] by letting these correspondences act on α ∈
H i

nr(X,M). Of course, ∆X,∗α = α, and (X ×{x})∗α is in the image of H i(G,M)→ H i
nr(X,M).

Moreover, Z∗α vanishes in the complement of D, hence vanishes, as one sees immediately from
the description of H i

nr(X,M) as a cohomology group of the complex of global sections of the
Cousin complex. We have shown the surjectivity of H i(G,M)→ H i

nr(X,M).

Finally, the last assertion follows from [CP16, Lemme 1.5].

4.3. The case of C-rational threefolds. We understand completely when these invariants
allow one to show that a C-rational threefold is not (retract) R-rational.
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Theorem 4.3. Let X be a smooth projective threefold over R that is C-rational. The following
are equivalent:

(1) For any i > 0 and any G-module M , we have an isomorphism H i(G,M)
∼−→ H i

nr(X,M).

(2) The variety X satisfies

(i) X(R) has exactly one connected component,
(ii) Pic(XC) is a permutation G-module,
(iii) the cycle class map clR : CH1(X)→ H1(X(R),Z/2Z) is surjective.

Combining Theorem 4.3 with Proposition 4.2, we see that conditions (i), (ii) and (iii) are
necessary for the (retract) R-rationality of X. These conditions have already been explained and
discussed in the introduction. We only recall here that a G-module M is a permutation G-module
if it is isomorphic to a direct sum of copies of Z and Z[G]. We will use the following lemma several
times.

Lemma 4.4. A finitely generated torsion-free G-module M is a permutation G-module if and
only if H1(G,M) = 0.

Proof. By [Sil89, I, (3.5.1)], a finitely generated torsion-free G-module is a direct sum of G-
modules isomorphic to Z, Z(1) and Z[G]. The lemma follows.

Proof of Theorem 4.3. The variety XC is rational, hence connected, so that all open subsets
U ⊂ X are geometrically connected. Consequently, H0

X(M) is the constant sheaf H0(G,M), and
H0(G,M)

∼−→ H0
nr(X,M).

The group H1(X(C),M) is a birational invariant of smooth projective complex varieties.
Since XC is rational, it vanishes. As a consequence, the Hochschild–Serre spectral sequence
[BW20a, (1.4)] provides an isomorphism H1(G,M)

∼−→ H1
G(X(C),M). Combining it with the

isomorphism H1
G(X(C),M)

∼−→ H1
nr(X,M) given by the coniveau spectral sequence [BW20a,

(5.1) and (5.2)] shows that H1(G,M)
∼−→ H1

nr(X,M).

View H i(G,M) as a constant sheaf on X(R) for the euclidean topology, and let ι : X(R)→ X
be the inclusion. The natural restriction map HiX(M)→ ι∗H

i(G,M) is an isomorphism if i > 4
by [BW20a, Proposition 5.1(iv)]. It follows that the restriction to real points induces an isomor-
phism H i

nr(X,M)
∼−→ H0(X(R), H i(G,M)) for all i > 4. We deduce that if X(R) has exactly

one connected component, the pull-back H i(G,M) → H i
nr(X,M) is an isomorphism for any

G-module M and any i > 4, and taking M = Z/2Z shows that the converse holds.

From now on, we may assume that X(R) has exactly one connected component. In particular,
the morphisms H i

nr(X,M)
∼−→ H0(X(R), H i(G,M)) = H i(G,M) induced by restrictions to real

points are retractions of the pull-back morphisms H i(G,M) → H i
nr(X,M), showing that the

latter are injective. Statement (1) is thus tantamount to their surjectivity or, equivalently, to the
vanishing of

H i
nr(X,M)0 :=

{
α ∈ H i

nr(X,M) | α|x = 0 for all x ∈ X(R)
}
.

Let us complete the proof that statement (1) implies statement (2): it remains to prove
conditions (ii) and (iii). By [Col95, Proposition 4.2.3(a)] and comparison between equivariant
Betti cohomology and étale cohomology (see [Cox79], [Sch94, Corollary 15.3.1]), there is an
isomorphism

Br(X) = H2
nr(X,Q/Z(1)) . (4.2)
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We deduce from statement (1) that Br(R) → Br(X) is an isomorphism. Since H3(G,C∗) = 0,
the Hochschild–Serre spectral sequence

Ep,q2 = Hp
(
G,Hq

ét(XC,Gm)
)

=⇒ Hp+q
ét (X,Gm) (4.3)

now implies that H1(G,Pic(XC)) = 0. Since XC is rational, Pic(XC) is torsion free and finitely
generated, and Lemma 4.4 shows that Pic(XC) is a permutation G-module, proving condition (ii).
By [BW20a, Remark 5.3(iii)], the vanishing of H3

nr(X,Q/Z(2))0 implies that the real integral
Hodge conjecture for 1-cycles on X (see [BW20a, Definition 2.2]) holds. In turn, this implies
condition (iii) by [BW20a, Theorem 3.22].

It remains to prove that statement (2) implies statement (1) in degrees i = 2, 3. Writing M
as the direct limit of its finitely generated sub-G-modules and using the fact that sheafification
and taking cohomology commute with colimits, we may assume that M is finitely generated.

Let us first deal with i = 3. Define B to be the direct sum of one copy of Z[G] (respectively,
of Z) for each element in a finite generating subset of M (respectively, of MG). It is a finitely
generated permutation G-module. By construction, the natural G-equivariant morphism p : B →
M is such that both p and p|BG : BG → MG are surjective. Let A be the kernel of p. The long

exact sequence of group cohomology associated with 0 → A → B
p−→ M → 0 shows that

H1(G,A) = 0, and Lemma 4.4 implies that A is a permutation G-module.

Taking long exact sequences of G-equivariant cohomology associated with the short exact
sequence 0 → A → B → M → 0 on Zariski open subsets U ⊂ X and sheafifying gives rise to
a long exact sequence of Zariski sheaves on X:

H2
X(B)→ H2

X(M)→ H3
X(A)→ H3

X(B)→ H3
X(M)→ H4

X(A)→ H4
X(B) .

Since B⊗ZQ→M⊗ZQ has a G-equivariant section, H2
X(B⊗ZQ)→ H2

X(M⊗ZQ) is surjective.
It follows that the cokernel of H2

X(B)→ H2
X(M) is a torsion sheaf. Since H3

X(A) has no torsion
by [BW20a, Proposition 5.1(ii)], we deduce that H3

X(A)→ H3
X(B) is injective:

0→ H3
X(A)→ H3

X(B)→ H3
X(M)→ H4

X(A)→ H4
X(B) . (4.4)

As XC is rational, the groups H1
(
X,H3

X(Z[G])
)

= H1
(
XC,H3

XC
(Z)
)

and H0
(
X,H3

X(Z[G])
)

=

H0
(
XC,H3

XC
(Z)
)

(see [BW20a, Proposition 5.1(i)]) both vanish, by [CV12, Proposition 3.3(iii)

and Proposition 3.4]. Since H0
(
X,H3

X(Z)
)

is a subgroup of the latter by [BW20a, Proposi-
tion 5.1(i), (iii)], it also vanishes. In addition, combining [BW20a, Theorem 3.22] and [BW20a,
(5.9)] shows that condition (iii) implies the vanishing of H1

(
X,H3

X(Z)
)
. All in all, we have proved

that

H1
(
X,H3

X(A)
)

= H0
(
X,H3

X(B)
)

= 0 . (4.5)

There is a commutative diagram whose first row is exact, whose second row is a complex obtained
by taking global sections in (4.4) and whose two vertical arrows are isomorphisms by the case
i = 4 already dealt with:

H3(G,M) //

��

H4(G,A) //

o��

H4(G,B)

o��
H3

nr(X,M) // H4
nr(X,A) // H4

nr(X,B) .

The exactness of (4.4) and the vanishings (4.5) imply that H3
nr(X,M)→ H4

nr(X,A) is injective.
A diagram chase then shows that H3(G,M)→ H3

nr(X,M) is surjective, which is what we needed
to prove.
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It remains to settle the case i = 2 when M is finitely generated. Applying the above arguments
to M(1) instead of M , we find a short exact sequence of G-modules 0 → C → D → M → 0,
where C and D are finite direct sums of G-modules isomorphic to Z(1) or Z[G], giving rise to
a long exact sequence

0→ H2
X(C)→ H2

X(D)→ H2
X(M)→ H3

X(C)→ H3
X(D) . (4.6)

The group H0(X,H2
X(Z[G])) = H0(XC,H2

XC
(Z)) (see [BW20a, Proposition 5.1(i)]) vanishes by

[CV12, Proposition 3.3(i)] because XC is rational. Since H0
(
X,H2

X(Z(1))
)

is a subgroup of it by
[BW20a, Proposition 5.1(iii)], this group also vanishes. We deduce

H2
nr(X,D) = 0 . (4.7)

Both natural morphisms (Z[G] ⊗Z D)G → (Z[G] ⊗Z M)G and D(1)G → M(1)G are surjec-
tive, the first one because it can be identified with D → M and the second one because
H1(G,C(1)) = 0. Since XC is rational, Pic(XC) ' H2(X(C),Z(1)), which is a permutation

G-module by condition (ii). It follows that
[
H2(X(C),Z) ⊗ D

]G → [
H2(X(C),Z) ⊗ M

]G
is

surjective. Since XC is rational, its Artin–Mumford invariant H3(X(C),Z)tors vanishes [AM72,
Proposition 1], and we deduce from the universal coefficient theorem [Spa66, § 5.5, Theorem 10]
that H2(X(C), D)G → H2(X(C),M)G is surjective. For a G-module N , let us consider the
Hochschild–Serre spectral sequence [BW20a, (1.4)]:

Ep,q2 = Hp(G,Hq(X(C), N)) =⇒ Hp+q
G (X(C), N) .

We have seen above that H1(X(C), N) = 0, and restricting to a real point shows that the edge
maps H i(G,N) → H i

G(X(C), N) are injective. Applying this to N = D and N = M gives rise
to a commutative diagram with exact row

H2
G(X(C), D)

∼ //

��

H2(X(C), D)G

����

0 // H2(G,M) // H2
G(X(C),M) // H2(X(C),M)G // 0 .

Since X(R) is connected, we deduce from the diagram above an isomorphism H2
G(X(C),M)0

∼−→
H2(X(C),M)G, where we set, for all G-modules N and i > 0,

H i
G(X(C), N)0 :=

{
α ∈ H i

G(X(C), N) | α|x = 0 for all x ∈ X(R)
}
.

The image of H2
G(X(C), D) in H2

G(X(C),M) is contained in H2
G(X(C),M)0, and we get a sur-

jection H2
G(X(C), D) � H2

G(X(C),M)0. From the long exact sequence of equivariant coho-
mology, we deduce an injection H3

G(X(C), C)0 ↪→ H3
G(X(C), D)0. The coniveau spectral se-

quence [BW20a, (5.1) and (5.2)] yields, for any G-module N , an injection H1
(
X,H2

X(N)
)
↪→

H3
G(X(C), N) whose image has coniveau at least 1, hence belongs to H3

G(X(C), N)0 (indeed,
since X has a smooth R-point, the implicit function theorem shows that X(R) is Zariski dense
in X). Applying it to N = C and N = D, we get an injection

H1
(
X,H2

X(C)
)
↪→ H1

(
X,H2

X(D)
)
. (4.8)

There is a commutative diagram whose first row is exact, whose second row is a complex
obtained by taking global sections in (4.6) and whose two vertical arrows are isomorphisms by
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the case i = 3 already dealt with:

H2(G,M) //

��

H3(G,C) //

o��

H3(G,D)

o��
H2

nr(X,M) // H3
nr(X,C) // H3

nr(X,D) .

The exactness of (4.6), the vanishing (4.7) and the injectivity of (4.8) imply that H2
nr(X,M)→

H3
nr(X,C) is injective. A diagram chase now shows that H2(G,M) → H2

nr(X,M) is surjective,
which is what we needed to prove.

5. Examples of real threefolds

We finally combine the results of the previous sections to study in detail interesting examples of
real threefolds that are C-rational but not R-rational.

In Sections 5.1–5.3, we consider a variety X defined as in (3.1) with k = R, α = −1, S = P2
R

and L = OP2R(d) for some d > 1. It has equation X =
{
s2 + t2 = u2F

}
for a homogeneous poly-

nomial F ∈ H0
(
P2
R,OP2R(2d)

)
= R[x, y, z]2d defining a smooth plane curve C := {F = 0} ⊂ P2

R.

We let p|X : X → P2
R be the projection.

5.1. The set of real points. It is easy to find such examples for which X(R) is diffeomorphic
to the real locus of a smooth projective R-rational variety.

Proposition 5.1. If F is positive on R3 \ {0}, then X(R) is diffeomorphic to the real locus of
a smooth projective R-rational variety:

(i) If d is even, X(R) ' S1 × P2(R).

(ii) If d is odd, X(R) '
(
S1 × S2

)
/(Z/2Z), where Z/2Z acts diagonally by the antipodal invo-

lution on both factors.

Proof. Let µ : S2 → P2(R) be the double cover with Galois group Z/2Z = {1, ϕ}, where ϕ
is the antipodal involution of S2. Let L be the C∞ real line bundle on P2(R) associated with
L = OP2R(d). Since F > 0 and S2 is simply connected, there exists a section G ∈ H0

(
S2, µ∗L

)
such that G2 = µ∗F , unique up to a sign. Hence φ∗G = εG for some sign ε = ±1. Since L is
trivial if and only if d is even, ε = (−1)d.

Using the identifications S1 =
{
a2 + b2 = 1

}
and S2 =

{
x2 + y2 + z2 = 1

}
, we deduce that

the map S1 × S2 → X(R) induced by s = aG(x, y, z), t = bG(x, y, z), u = 1 realizes X(R)
as a quotient of S1 × S2 by a diagonal action of Z/2Z: via the antipodal involution on S2 and
multiplication by (−1)d on S1.

When d is even, one gets X(R) '
(
P1 × P2

)
(R). Applying the construction to d = 1 and

F = x2 + y2 + z2 shows that the diagonal quotient
(
S1 × S2

)
/(Z/2Z) appearing when d is odd

is diffeomorphic to the real locus of the smooth projective variety
{
s2 + t2 = u2

(
x2 + y2 + z2

)}
,

which is birational to the smooth affine quadric with an R-point
{
s2 + t2 = x2 + y2 + 1

}
, hence

is R-rational.

5.2. Unirationality. Some of the examples we consider are also R-unirational.

Proposition 5.2. Suppose that d = 2. Then X is R-unirational if and only if F is not negative
definite on R3 \ {0}.
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Proof. If F is negative definite on R3 \ {0}, then X(R) = ∅, so that X cannot be R-unirational.

Otherwise, consider the surface T ⊂ X defined by {s = 0}. The equation T =
{
t2 =

u2F (x, y, z)
}

shows that it is a smooth degree 2 del Pezzo surface with a real point. By the
implicit function theorem, the real points of T are actually Zariski dense in T . It follows from
the work of Manin [Man86, Theorem 29.4] that T is R-unirational. Base changing the conic bundle
X → P2

R by the projection T → P2
R and base changing it further by a unirational parametrization

of T , one obtains a conic bundle over an R-rational surface with a rational section, that is, an
R-rational threefold dominating X. This shows that X is R-unirational.

5.3. Examples with trivial unramified cohomology. It is also not hard to decide when X
has trivial unramified cohomology in the sense of Theorem 4.3(1).

Proposition 5.3. The variety X has the property that H i(G,M)
∼−→ H i

nr(X,M) for any i > 0
and any G-module M if and only if X(R) is connected and non-empty.

Proof. It suffices to show that X satisfies conditions (ii) and (iii) of Theorem 4.3(2) if X(R) is
non-empty. That condition (iii) holds may be obtained as a combination of [BW20b, Theorem 6.1]
and [BW20a, Theorem 3.22].

To verify condition (ii), one may argue as in [Col10, Proof of Proposition 2.1] (taking B =
P2
R in loc. cit.). Alternatively, recall from the proof of Proposition 3.4(iii) that one may write
p|XC : XC → P2

C as the composition of the blow-up of a smooth connected curve XC → W with
exceptional divisor E =

{
F = s − t

√
−1 = 0

}
⊂ XC and of a P1-bundle W → P1

C. We deduce
that Pic(XC) has rank 3 and is generated by OP2C(1), E and any line bundle that has degree 1

on the generic fiber of p|XC : XC → P2
C. If σ(E) =

{
F = s + t

√
−1 = 0

}
⊂ XC is the image

of E by the complex conjugation σ, then E ∪ σ(E) = (p|XC)−1(CC). Consequently, the subgroup
〈OP2C(1), E〉 ⊂ Pic(XC) is G-stable, and one computes that it is isomorphic to the G-module

Z⊕ Z(1). We have obtained a short exact sequence of G-modules

0→ Z⊕ Z(1)→ Pic(XC)→ Z→ 0 ,

where the projection Pic(XC) → Z computes the degree on the generic fiber of pC : XC → P2
C.

Since X(R) 6= ∅, one has Pic(XC)G = Pic(X) by [BLR90, §§ 8.1–8.4], and the long exact sequence
of G-cohomology yields

0→ Z→ Pic(X)→ Z→ Z/2Z→ H1(G,Pic(XC))→ 0 . (5.1)

The generic fiber of p|X is a non-trivial conic as it has non-trivial ramification above C. Con-
sequently, there is no line bundle on X that has degree 1 on the generic fiber of p|X . We de-
duce from (5.1) that H1(G,Pic(XC)) = 0, hence that Pic(XC) is a permutation G-module by
Lemma 4.4.

Combining the results obtained so far, we get the following.

Theorem 5.4. There exists a smooth projective threefold X over R that is not R-rational but is
C-rational and R-unirational, and is such that X(R) is diffeomorphic to

(
P1 × P2

)
(R) and that

for any G-module M and i > 0, we have an isomorphism H i(G,M)
∼−→ H i

nr(X,M).

Proof. Let F (x, y, z) ∈ H0
(
P2
R,O(4)

)
be a polynomial that is positive on R3 \ {0} and that

defines a smooth plane curve (one may take F (x, y, z) = x4 + y4 + z4). The smooth projective
variety defined by the equation X :=

{
s2 + t2 = u2F

}
as in (3.1) has the required properties by

Corollary 3.6 and Propositions 5.1, 5.2 and 5.3.
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Remark 5.5. The variety defined by the equation X :=
{
s2 + t2 = u2F (x, y, z)

}
with F (x, y, z) =

x4 − y4 − z4 also satisfies the requirements of Theorem 5.4 (except that its real locus is diffeo-
morphic to the sphere S3, hence to the real locus of an R-rational quadric), by Corollary 3.6
and Propositions 5.2 and 5.3. In this particular example, some arguments may be simplified. In
the proof of Proposition 5.2, the real locus T (R) is diffeomorphic to a sphere S2, and Comes-
satti’s theorem ([Com12, § 6, pp. 54–55], see [Sil89, VI, Corollary 6.5]) shows at once that T
is R-rational. In the proof of Proposition 5.3, the verification of condition (iii) is immediate as
H1(X(R),Z/2Z) = H1

(
S3,Z/2Z

)
= 0.

Remark 5.6. In Theorem 5.4, the assertion that H i(G,M)
∼−→ H i

nr(X,M) shows that it is not
possible to prove that X is not R-rational using Proposition 4.2. We do not know whether X is
retract R-rational, or stably R-rational, or whether it is universally CH0-trivial.

5.4. Examples with non-trivial unramified cohomology. To contrast with Theorem 5.4,
we give an example of a smooth projective C-rational threefold X over R that may be proved not
to be R-rational using Proposition 4.2 but not using Corollary 2.8. Since examples failing con-
dition (i) of Theorem 4.3 are classical, we restrict to varieties whose real locus is non-empty and
connected. In view of the discussion below the statement of Theorem 1.4, it is not expected that
there are such examples for which condition (iii) fails. Consequently, we focus on condition (ii).

Theorem 5.7. There exists a smooth projective threefold X over R that is not retract R-
rational but is C-rational and R-unirational, whose real locus is diffeomorphic to that of a
smooth projective R-rational variety and for which J3X = 0.

Proof. Consider Σ :=
{
x2 + y2 =

(
t − t3

)
z2
}
⊂ P2

R × A1
R, where [x : y : z] are homogeneous

coordinates on P2
R and t is the coordinate on A1

R. Let S be a smooth compactification of Σ such
that the projection to A1

R extends to a relatively minimal conic bundle π : S → P1
R. The real

locus S(R) is a disjoint union of two spheres; let K ⊂ S(R) be the one for which t ∈ [0, 1].

Let α ∈ Br(R(S)) be the class of the quaternion algebra
(
−1, t − t2

)
. As there exists a

D ∈ Div(SC) such that div
(
t− t2

)
= NC/R(D), the conic over R(S) defined by this quaternion

algebra extends to a smooth and projective morphism f : X → S all of whose fibers are conics.
Indeed, let π : SC → S be the natural morphism and p : P(E) → S be the projective bundle
associated with E = OS⊕π∗OSC(−D); the global section (−1)⊕

(
t−t2

)
of OS⊕OS(−NC/R(D)) ⊂

Sym2
OS E = p∗OP(E)(2) defines a global section of OP(E)(2) whose zero locus in P(E) is the sought-

for X. We note that f(X(R)) = K.

As SC is rational and as α|SC = 0, the threefold XC is rational.

The Brauer group of a C-rational smooth proper surface over R whose real locus has s > 1
connected components is isomorphic to (Z/2Z)2s−1 (by [Sil87, Théorème 4] and the Hochschild–
Serre spectral sequence (4.3)). Thus Br(S) ' (Z/2Z)3. Since S is regular, Br(S) → Br(R(S)) is
injective by [Gro68a, Corollaire 1.8], and XR(S) being a non-trivial conic over R(S), the kernel
of Br(R(S)) → Br(XR(S)) has cardinality exactly 2; see [CO89, Proposition 1.5]. It follows that
the kernel of Br(S) → Br(X) has cardinality at most 2, hence that Br(X) contains a subgroup
isomorphic to (Z/2Z)2. We deduce that Br(R) → Br(X) is not an isomorphism. Equivalently,
in view of (4.2), the morphism H2(G,Q/Z(1)) → H2

nr(X,Q/Z(1)) is not an isomorphism. By
Proposition 4.2, the variety X is not retract R-rational.

Let g : P1
R → P1

R be a morphism such that g
(
P1(R)

)
⊂ (0, 1) and T be a resolution of singu-

larities of the base change of π : S → P1
R by g. By [Sil89, VI, Proposition 3.2 and Lemma 3.3], the
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variety T is R-rational. Consider the base change XT → T of f by T → S. By [Gro68b, Corol-
laire 7.5] and since Br(R)

∼−→ Br
(
P2
R
)
, the pull-back αT ∈ Br(T ) of α on T comes from Br(R).

By the choice of α, this class is trivial in restriction to the real points of T , hence is trivial.
Consequently, XT is the projectivization of a rank 2 vector bundle over T , hence is R-rational.
We have shown that X is R-unirational.

The Leray spectral sequence of XC → SC shows that H3(X(C),Z) = 0. By a comparison
with `-adic cohomology and Proposition 2.3, it follows that J3X = 0.

It remains to control X(R). It follows from the equation of Σ and the explicit expression of α
that a neighborhood ofX alongX(R) may have been chosen to be the blow-up of the affine variety{
x2+y2 =

(
t−t3

)
, u2+v2 =

(
t−t2

)}
⊂ A5

R at its two singular points {x = y = u = v = t = 0} and
{x = y = u = v = t−1 = 0}. With this choice, the substitutions x 7→ x/

√
1 + t and y 7→ y/

√
1 + t

show that X(R) is diffeomorphic to the real locus of (a smooth projective compactification Y
of) the blow-up of the affine variety

{
x2 + y2 =

(
t − t2

)
, u2 + v2 =

(
t − t2

)}
⊂ A5

R at its
two singular points. The variety Y is R-rational since the projection to the R-rational surface{
x2 + y2 =

(
t− t2

)}
is a conic bundle with a rational section {u = x, v = y}. This concludes the

proof.
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