

Femmes et Mathématiques

Attirance de la supraconductivité par les coins.

Virginie BONNAILLIE-NOEL

en collaboration avec F. ALOUGES, M. DAUGE, B. HELFFER et G. VIAL

IRMAR, Université de Rennes 1 et ENS Cachan, antenne de Bretagne

IHP, 21 Mai 2005

Motivation physique

- Supraconductivité : propriété que possèdent certains matériaux de laisser passer le courant sans dissipation d'énergie lorsqu'ils sont maintenus à température très basse.
- Effet Meissner : soumis à un champ magnétique extérieur suffisamment faible, le matériau repousse ce champ \Rightarrow lévitation.

Comportements des supraconducteurs :

 ${\bf B}: {\rm champ}$ appliqué.

- Supraconducteur de type I (κ petit) : $\mathbf{B} \geq \mathbf{B_c} \Rightarrow$ la supraconductivité disparaît. $\mathbf{B} \leq \mathbf{B_c} \Rightarrow$ le courant passe sans résistance électrique et le matériau repousse les lignes de champ.

- Supraconducteur de type II (κ grand) : 2 champs critiques B_{c_1} et B_{c_2} $\mathbf{B} \leq \mathbf{B_{c_1}} \Rightarrow$ état supraconducteur. $\mathbf{B} \geq \mathbf{B_{c_2}} \Rightarrow$ état normal. $\mathbf{B_{c_1}} \leq \mathbf{B} \leq \mathbf{B_{c_2}} \Rightarrow$ état mixte : le flux magnétique pénétre l'objet par des petits tubes, appelés *vortex*, de plus en plus denses quand le champ augmente.

Applications

- Train MagLev (552 km/s),
- Imageries médicales : IRM (Imagerie par Résonance Magnétique) ou RMN (Résonance Magnétique Nucléaire).

Modélisation mathématique

Théorie de Ginzburg-Landau (1950) : paramètre d'ordre ψ $(|\psi|^2$ proportionnel à la densité des électrons supraconducteurs).

échantillon supraconducteur de section Ω , de caractéristique κ , soumis à un champ magnétique extérieur $\mathcal{H} = \sigma \operatorname{rot} \mathbf{F}$ (F normal à Ω , σ intensité du champ).

 ${\cal A}$ potentiel magnétique induit.

énergie libre du matériau :

$$\mathcal{G}(\psi, \mathcal{A}) = \underbrace{\int_{\Omega} \left(|(\nabla - i\kappa \mathcal{A})\psi|^2 + \frac{\kappa^2}{2} (|\psi|^2 - 1)^2 \right) dx}_{\text{énergie des électrons supraconducteurs}} \underbrace{\frac{\int_{\Omega} |\operatorname{rot}\mathcal{A} - \mathcal{H}|^2 dx}_{\text{énergie magnétique}}.$$

Minimisation de l'énergie

$$\mathcal{G}(\psi, \mathcal{A}) = \int_{\Omega} \left(\left| (\nabla - i\kappa \mathcal{A})\psi \right|^2 + \frac{\kappa^2}{2} (|\psi|^2 - 1)^2 \right) dx + \kappa^2 \int_{\Omega} |\operatorname{rot} \mathcal{A} - \mathcal{H}|^2 \mathrm{dx}.$$

Points critiques de \mathcal{G} = solutions des équations d'Euler :

$$\int -(\nabla - i\kappa \mathcal{A})^2 \psi = \kappa^2 (1 - |\psi|^2) \psi, \qquad \text{sur } \Omega,$$

$$\begin{cases} \operatorname{rot}^{2}\mathcal{A} = -\frac{i}{2\kappa}(\overline{\psi}\nabla\psi - \psi\nabla\overline{\psi}) - |\psi|^{2}\mathcal{A} + \operatorname{rot}\mathcal{H}, & \operatorname{sur} \Omega, \\ \frac{\partial\psi}{\partial\nu} - i\kappa\mathcal{A}\psi \cdot \nu &= 0, & \operatorname{sur} \partial\Omega, \\ \operatorname{rot}\mathcal{A} - \mathcal{H} &= 0 & \operatorname{sur} \partial\Omega. \end{cases}$$

$$\operatorname{rot} \mathcal{A} - \mathcal{H} = 0$$
 sur $\partial \Omega$.

Champs critiques pour κ grand

 (ψ, \mathcal{A}) minimiseur de \mathcal{G} .

 $-\sigma < \mathbf{B}_{\mathbf{C}_1}(\kappa)$: état supraconducteur. Si $\sigma = 0$, $(\psi, \mathcal{A}) = (1, 0)$. Pour $\sigma < B_{C_1}(\kappa)$, unique minimiseur et $|\psi| \simeq 1$.

 $\begin{array}{l} - \ \mathbf{B_{C_1}}(\kappa) < \sigma < \mathbf{B_{C_2}}(\kappa) : \text{état mixte.} \\ \psi \text{ s'annule.} \end{array}$

- $\mathbf{B}_{\mathbf{C}_{2}}(\kappa) < \sigma < \mathbf{B}_{\mathbf{C}_{3}}(\kappa)$: état mixte.

La supraconductivité a disparu à l'intérieur et subsiste à la surface. $|\psi| > 0$ à la surface du matériau et $|\psi| \simeq 0$ à l'intérieur.

 $-\sigma > \mathbf{B}_{\mathbf{C}_{3}}(\kappa)$: état normal. (0, $\sigma \mathbf{F}$) unique minimiseur.

Liens avec l'opérateur de Schrödinger

Définition : $B_{C_3}(\kappa) = \inf\{\sigma > 0 | (0, \sigma \mathbf{F}) \text{ est un minimiseur global de } \mathcal{G}.\}$ Objectifs : Etudier le comportement de ψ selon la géométrie de Ω , regarder où apparaît la supraconductivité.

Linéarisation des équations d'Euler au voisinage de l'état normal $(0, \sigma \mathbf{F})$,

$$-(\nabla - i\kappa \mathcal{A})^{2}\psi = \kappa^{2}\psi, \quad \text{sur }\Omega,$$
$$\operatorname{rot}^{2}\mathcal{A} = \operatorname{rot}\mathcal{H}, \quad \text{sur }\Omega,$$
$$\frac{\partial\psi}{\partial\nu} - i\kappa \mathcal{A}\psi \cdot \nu = 0, \quad \text{sur }\partial\Omega,$$
$$\operatorname{rot}\mathcal{A} - \mathcal{H} = 0 \quad \text{sur }\partial\Omega.$$

puis $h = \frac{1}{\kappa\sigma}$,

$$\begin{cases} -\left(h\nabla - i\frac{\mathcal{A}}{\sigma}\right)^2\psi &= \frac{1}{\sigma^2}\psi, \quad \text{sur }\Omega,\\ \left(\left(h\nabla - i\frac{\mathcal{A}}{\sigma}\right)\psi\right)\cdot\nu &= 0, \quad \text{sur }\partial\Omega. \end{cases}$$

Opérateurs modèles

domaine convexe polygonal curviligne de \mathbb{R}^2 , Ω $\mathcal{A} = \frac{1}{2}(x_2, -x_1)$ potentiel magnétique, $\mathcal{B} = \operatorname{rot} \mathcal{A} \equiv -1$ champ magnétique associé, paramètre semi-classique. h

Opérateur $P_h = -(h\nabla - i\mathcal{A})^2$ avec les conditions de Neumann.

$$= \left(h\partial_{x_1} - \frac{i}{2}x_2\right)^2 + \left(h\partial_{x_2} + \frac{i}{2}x_1\right)^2 = -h^2\Delta + ihx_2\partial_1 - ihx_1\partial_2 + \frac{1}{4}|x|^2.$$

plan

OBJECTIFS : Etude et calculs des modes propres $(\mu_{h,n}, u_{h,n})$ quand $h \to 0$, le *n*-ième mode propre vérifie $P_h u_{h,n} = \mu_{h,n} u_{h,n}$ Localisation des fonctions propres associées.

Plan

La plus petite valeur propre de $-(\nabla - i\mathcal{A})^2$ sur \mathbb{R}^2 vaut 1.

Demi-plan

La plus petite valeur propre de $-(\nabla - i\mathcal{A})^2$ sur $\mathbb{R} \times \mathbb{R}^+$ vaut $\Theta_0 \leq 0.59$.

Secteur angulaire

La plus petite valeur propre de $-(\nabla - i\mathcal{A})^2$ sur G^{α} vérifie $\mu_1(\alpha) \leq \Theta_0$. Si Ψ_k^{α} est un vecteur propre pour la k-ième valeur propre $\mu_k(\alpha)$ alors

$$\forall \epsilon > 0, \ \int_{G^{\alpha}} e^{2(\sqrt{\Theta_0 - \mu_k(\alpha)} - \epsilon)|\mathbf{x}|} |\Psi_k^{\alpha}(\mathbf{x})|^2 \ \mathrm{d}\mathbf{x} \le C.$$

Autour de la première valeur propre

Domaines réguliers (dans \mathbb{R}^2)

 $\frac{\mu_{h,1}}{h} \longrightarrow \Theta_0.$

Si $\mu_{h,1}$ est simple, $u_{h,1}$ se concentre (en \sqrt{h}) autour des points de courbure maximale de $\partial\Omega$.

Domaines polygonaux

$$\frac{\mu_{h,1}}{h} \longrightarrow \min_{\alpha} \mu_1(\alpha)$$

• α sont les angles de Ω .

• $\mu_1(\alpha)$ est la première valeur propre (de Neumann) de l'opérateur de Schrödinger avec h = 1

$$Q = -(\nabla - i\mathcal{A})^2$$

sur le secteur infini G^{α} d'angle α .

+ concentration du vecteur propre dans les sommets d'angle $\min_{\alpha} \mu_1(\alpha)$.

Autour du polygone

Construction de quasi-modes "presque des vecteurs propres"

- Ω polygone convexe, Σ ensemble des sommets s de Ω,
- α_s angle au sommet s, G^{α_s} secteur infini d'angle α_s .

$$s \in \Sigma$$
 et $k \ge 1$ tels que $\mu_k(\alpha_s) < \Theta_0$,

 $\Psi_k^{\alpha_s}$ une fonction propre de $Q = -(\nabla - i\mathcal{A})^2$ sur G^{α_s} pour $\mu_k(\alpha_s)$.

Changement d'échelle

 $X = \frac{x}{\sqrt{h}}$ pour relier $Q = -(\nabla - i\mathcal{A})^2$ avec $P_h = -(h\nabla - i\mathcal{A})^2$

 $x \mapsto \Psi_k^{\alpha_s}\left(\frac{x}{\sqrt{h}}\right)$ fonction propre de P_h sur G^{α_s} pour la valeur propre $h\mu_k(\alpha_s)$

Translation et rotation

pour relier G^{α_s} sur le secteur infini $\widetilde{G}_s \cap \Omega$ qui coïncide avec Ω autour de s

$$\widetilde{\psi}_{h,s,k}(x) = e^{\frac{i}{2h}x \wedge s} \Psi_k^{\alpha_s} \left(\frac{\mathcal{R}_s(x-s)}{\sqrt{h}}\right) \quad \text{fonction propre de } P_h \text{ sur } \widetilde{G}_s.$$

Troncature

Pour chaque sommet $s \in \Sigma$, on note d_s la distance aux autres sommets

 $d_s = \operatorname{dist}(s, \Sigma \setminus \{s\}).$

Soit χ_s une fonction (de troncature) régulière nulle en dehors de $\mathcal{B}(s, d_s)$, égale à 1 dans $\mathcal{B}(s, d_s - \delta)$.

Quasi-modes définis sur Ω

 $x \mapsto \psi_{h,s,k}(x) = \chi_s(x) \,\widetilde{\psi}_{h,s,k}(x).$

Propriétés des quasi-modes

Rayleigh quotient $\forall \varepsilon > 0, \exists C_{\varepsilon}:$

$$\left|\frac{\int_{\Omega} \left|(h\nabla - i\mathcal{A})\psi_{h,s,k}\right|^2 dx}{\int_{\Omega} |\psi_{h,s,k}|^2 dx} - h\mu_k(\alpha_s)\right| \le C_{\varepsilon} \exp\left(-2\frac{d_s\sqrt{\Theta_0 - \mu_k(\alpha_s)} - \varepsilon}{\sqrt{h}}\right)$$

Approximation de l'équation des modes propres

 $\forall \varepsilon > 0, \ \exists C_{\varepsilon} :$

$$\frac{|P_h\psi_{h,s,k} - h\mu_k(\alpha_s)\psi_{h,s,k}||}{||\psi_{h,s,k}||} \le C_{\varepsilon} \exp\left(-\frac{d_s\sqrt{\Theta_0 - \mu_k(\alpha_s)} - \varepsilon}{\sqrt{h}}\right)$$

Estimations tubulaires des valeurs propres

Notations

- $\mu_{h,n}$ *n*-ième valeur propre de P_h répétée avec multiplicité.
- λ_n *n*-ième valeur propre de $\bigoplus_{s \in \Sigma} Q_{G^{\alpha_s}}$ répétée avec multiplicité.

 $\lambda_n = n - \text{ième}$ élément de $\{h\mu_k(\alpha_s), k \ge 1, s \in \Sigma\}$.

• Σ_n l'ensemble des sommets

 $\Sigma_n = \{ s \in \Sigma, \lambda_n \text{ est une valeur propre pour } Q_{G^{\alpha_s}} \}$

• $r(\lambda_n)$ la distance

$$r(\lambda_n) = \min_{s \in \Sigma_n} d(s, \Sigma \setminus \{s\})$$

Théorème

Pour tout $\varepsilon > 0$, il existe C_{ε} tel que

$$|\mu_{h,n} - h\lambda_n| \le C_{\varepsilon} \exp\left(-\frac{r(\lambda_n)\sqrt{\Theta_0 - \lambda_n - \varepsilon}}{\sqrt{h}}\right)$$

Simulations numériques sur un carré

 $\Omega = (-1, 1) \times (-1, 1) \text{ (quatre coins d'angle } \frac{\pi}{2}\text{)}.$ $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 \simeq 0.509905.$

Calculs des modes propres avec FEM code MELINA

Prochains transparents : Abscisses : $k = \frac{1}{h}$. Ordonnées : $\frac{\mu_{h,n}}{h}$, $n = 1, \dots, 12$.

En jaune, le tube exponentiel

$$\lambda_1 \pm \exp\left(-\frac{2\sqrt{\Theta_0 - \lambda_1}}{\sqrt{h}}\right).$$

$$h^{-1}\mu_{h,n}$$
 versus h^{-1}

$$h^{-1}\mu_{h,n}$$
 versus h^{-1}

$$h^{-1}\mu_{h,n}$$
 versus h^{-1}

$$h^{-1}\mu_{h,n}$$
 versus h^{-1}

64 éléments, Q10 (4 fois plus de degré de liberté)

$$h^{-1}\mu_{h,n}$$
 versus h^{-1}

Convergence des vecteurs propres

Module du paramètre d'ordre

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.4

-0.6

-0.8

-0.8

h = 1, 0.1, 0.09, 0.08, 0.07, 0.06

Module du paramètre d'ordre (suite)

h = 0.05, 0.04, 0.03, 0.02, 0.014, 0.01

Partie réelle du paramètre d'ordre

h = 1, 0.1, 0.09, 0.08, 0.07, 0.06

Partie réelle du paramètre d'ordre (suite)

h = 0.05, 0.04, 0.03, 0.02, 0.014, 0.01

Convergence des premières valeurs propres

$$h^{-1}\mu_{h,n}$$
 versus h^{-1}

Convergence des premières valeurs propres (suite)

 $h^{-1}\mu_{h,n}$ versus h^{-1}

Premier cluster de valeurs propres

 $h^{-1}\mu_{h,n}$ versus h^{-1}

Premier mode

Premier mode (suite)

Deuxième mode

Deuxième mode (suite)

Cinquième mode

Cinquième mode (suite)

