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ABSTRACT. This work aims at taking into account the influence of geometrical defects on the 
behavior till complete failure of structures. This is achieved without any fine description of 
the exact geometry of the perturbations. The proposed strategy is based on two approaches: 
asymptotic analysis of Navier equations and strong discontinuity approach. 
RÉSUMÉ. L’objectif de ce travail est de prendre en compte l’influence de la présence de défauts 
géométriques sur le comportement à rupture des structures et ce, sans description fine de la 
géométrie particulière des perturbations. L’approche proposée s’appuie sur deux outils : une 
analyse asymptotique des équations de Navier et l’utilisation de modèles à discontinuité forte. 
KEYWORDS: multi-scale asymptotic analysis, singular perturbation, strong discontinuity, 
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1. Introduction

The evaluation of the limit load and behavior till rupture of a structure is highly
correlated to the presence of small defects or heterogeneities: material defects, geo-
metrical defects or loading perturbations.

In this work we look more precisely at the prediction of the rupture of complex
structures suffering from (surfacic) "small" perturbations (inclusions or porosities).
We are concerned with the choice of the most suitable Finite Element strategy to
capture the structural behavior. Themain feature of our work is to propose an approach
dealing with both singular perturbations and localization zones development, by using
a coarse description of the geometry: neither the perturbation shape nor a fine re-
presentation of the cohesive crack are considered. Our aim is to design a numerical
strategy dealing with a coarse discretization of the unperturbed domain and able to
perform the analysis of the structural response from the elastic phase to complete
failure. To that purpose, we consider two macroscopic models dedicated to each of
the two phases of the behavior:

– the asymptotic analysis is used to evaluate the influence of the presence of micro-
defects on the solution (Dambrine et al., 2005; Bonnaillie-Noël et al., 2009),
– the strong discontinuity approach allows taking into account, at the structural

scale, the development of localization zones or cohesive cracks (Brancherie et al.,
2009).

In the first section, we give the keypoints of the asymptotic analysis and the nu-
merical strategy used for the evaluation of stress concentration due to the presence
of geometrical defects. We present, in the second section, the approach developed
to couple the asymptotic analysis to the strong discontinuity method in order to per-
form the computation of the behavior of the structure till complete failure. Finally, the
third section is dedicated to some numerical results obtained considering structures
presenting several singular perturbations.

2. Description of the influence of singular perturbations: multi-scale asymptotic
analysis

We evaluate the influence of geometrical perturbations by a multi-scale asymptotic
analysis of Navier equations of linear elasticity.

We consider here a domain Ωε pierced with a perturbation of size ε centered on
the regular point 0 (see Figure 1). In the following, we denote as Ω0 the unperturbed
domain and H∞ the unbounded domain obtained by a blow-up around the point 0
bringing the perturbation at scale 1: H∞ = lim

ε→0
Ωε/ε.
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Ω0

O

(a)

Ωε

O

(b)

H∞

O

(c)

Figure 1. Unperturbed domain Ω0 (a), perturbed domain Ωε (b) and unbounded do-
mainH∞ (c)

The problem we focus on is written on the perturbed domain as:






−µ∆uε − (λ + µ)grad divuε = f on Ωε,
uε = ud on Γd,
σ · n = g on Γt,

[1]

where Γd and Γt denote the Dirichlet and Neumann boundary of the domain respec-
tively, Γt includes the boundary of the perturbation and g is supposed to be zero in a
neighborhood of the perturbation.

We can note that two scales are naturally involved in Problem [1]: the scale of
the structure and the scale of the perturbation ε. It has been proven in (Dambrine
et al., 2005) that the solution of problem [1] is approximated at first order by the
superposition of the solution obtained on the unperturbed domain Ω0 and a correction
written in terms of the fast variable x/ε. We have then:

uε(x) " u0(x) − ε
[

α1V1

(x

ε

)

+ α2V2

(x

ε

)]

, [2]

with u0 the solution on the unperturbed domain, α1 = σ11(u0)(0) and α2 =
σ12(u0)(0). The profilesV1 etV2 are obtained as solution of an homogeneousNavier
equation stated on the unbounded domainH∞ with Neumann boundary conditions on
the boundary of the normalized perturbationσ(V") ·n = G" (withG1 = (n1, 0) and
G2 = (0,n1), n1 denotes the first component of the outer normal to ∂H∞):

{

−µ∆V" − (λ + µ)grad div V" = 0 inH∞,

σ(V") · n = G" on ∂H∞.
[3]

When dealing with several perturbations, the evaluation of the solution at first or-
der requires to take into account the potential interaction between perturbations. It has
been proven in (Bonnaillie-Noël et al., 2009) that if the distance between the centers
of two neighbor perturbations is written as εα with 0 < α < 2

3
, the perturbations can
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be considered as far and no interaction needs to be taken into account at first order.
The solution is then approximated by:

uε(x) " u0(x) −
nb defects

∑

i=1

εi

[

α
i
1V

i
1

(

x

εi

)

+ α
i
2V

i
2

(

x

εi

)]

. [4]

3. Failure description

The description of the failure of a structure presenting geometrical perturbations
is decomposed into two phases:

– in a first step, the stress concentration due to the presence of micro-defects is
evaluated with the help of asymtptotic analysis,
– in a second step, we describe the localization zones and cracks developing from

the stress concentration zones through a strong discontinuity model.

Numerically, the two previous steps are performed considering a coarse description of
the geometry: only a discretization of the unperturbed domain is considered.

For structures presenting several defects, depending on the loading and on the
geometry, it can be necessary to deal simultaneously with asymptotic analysis in some
parts of the structure still in the elastic regime and with damage development in some
other parts where cracks yet initiated. To that purpose, a dedicated tool incorporating
both aspects previously described is to be developed.

3.1. Kinematic enrichment for the asymptotic analysis

Taking into account the asymptotic fields in a numerical tool can be achieved by
the use of the partition of unity method (Melenk et al., 1996) leading to the evaluation
of the influence of perturbations while using a coarse discretization of the unperturbed
domain. The standard variational Finite Element space is enriched by the approxi-
mation Ṽ" of the profiles V". The approximations Ṽ" are computed on a truncated
domainHR = H∞ ∩ B(0, R) where R is chosen as large as possible. We bring the
vanishing condition at infinity on the artificial boundary ∂HR \ ∂H∞.

As the profiles decay at infinity, their influence is very local and thus, only a
neighborhood of the perturbations needs to be enriched. The displacement field, as
suggested by [4], is then given by:

uh
ε (x) = uh

0 (x)−
nb defects

∑

i=1

εi

2
∑

"=1

∑

j∈Ji

N j(x)

[

α
i
j",1Ṽ

i
",1

(

x

εi

)

+ α
i
j",2Ṽ

i
",2

(

x

εi

)]

, [5]

where Ji denotes the indices of the nodes located in the enrichment zone related to
perturbation i. N j are the standard shape functions associated to node j andαi

j",k is a
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Effect of micro-defects on structure failure 169

two-component vector consisting of the degrees of freedom related to the enrichment
function Ṽi

",k.

The computation is performed on the discrete unperturbed domain. The presence
of the perturbations and their geometry are taken into account through a dedicated
numerical integration based on the exact geometry.

Concerning the numerical computation of the αi
j",k , as observed in the context

of XFEM (Chahine et al., 2007), if all those enriched degrees of freedom are kept
free in the enrichement areas, the problem to be solved is badly conditioned. In or-
der to circumvent this difficulty, we impose the following equalities suggested by the
asymptotic analysis:

(

αi
j",1

)

1
=

(

αi
j",2

)

2
and

(

αi
j",1

)

2
=

(

αi
j",2

)

1
. [6]

Those equalities are ensured by appealing to a master/slave strategy leading to the
resolution of an augmented problem:





K0
uu

0 0
Kε

αu
Kε

αα
ΠT

0 Π 0









u0

α

λ



 =





f0
fα
0



 , [7]

where K0
uu

is the standard stiffness matrix computed on the unperturbed domain,
Π denotes the projection operator over the equality constraints [6], Kε

αα
and Kε

αu

denote respectively the part of the total stiffness associated to the added degrees of
freedom and the coupled part. The vectorλ is the Lagrange multiplier associated with
the constraints [6] and finally, f0 and fα denote the external loading.

The two matrices Kε
αα

and Kε
αu

are computed by using a dedicated integration
strategy:

– a partitioning, typically obtained by meshing, of the elements affected by the
perturbation is carried out in order to compute all the quantities involving the profiles,
– in the vicinity of the perturbation, the order of integration is also increased in

order to capture the evolution of profiles.

3.2. Field transfer: coupling of asymptotic analysis and strong discontinuity
approach

The stress concentrations generated by the presence of micro-defects in hand, one
can continue the computation by using the strong dicontinuity approach (SDA) (see
(Simo et al., 1993; Oliver, 1995; Brancherie et al., 2009)) in order to track the deve-
lopement of high damage zones initiated on the geometrical perturbations.

For that purpose, it is necessary to project the field obtained from the asymptotic
analysis to the variational space used for strong discontitnuity approach. Indeed the
kinematic enrichments of the variational spaces associated to the asymptotic analy-
sis and the strong discontinuity approach are not compatible. The strategy proposed
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herein is to design a field transfer ensuring the transfer of the displacement field from
one variational space to the other one. Let’s denote VSDA the variational space asso-
ciated to the SDA, the displacement field used as initial value for the continuation of
the computation is obtained as the solution of a minimisation problem given as:

min
u∈VSDA

J(u) = E(u − uh
ε ) u.c. u = ud on Γd, [8]

where E(v) =
1

2

∫

Ωε

σ(v) : ε(v)dΩ. The proposed strategy is then based on the

construction of a displacement field in VSDA producing a strain energy being as close
as possible to the strain energy produced by the solution obtained on the perturbed
domain uh

ε . The solution of such a minimisation problem under constraint is obtained
as the solution of a linear set of equations.

This projected displacement field u is then used to compute the corresponding
stress introduced as an initial value for the continuation of the computationwith strong
discontinuity approach.

4. Numerical results

200mm

10
0
m
m U

O1 O2

Ωε

E = 38 × 10
4MPa , ν = 0.18

(a) Problem definition: geometry, loading and material
properties
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(b) Fine discretization of the domain (refe-
rence computation)
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(c) Coarse mesh for computation of uh
ε

Figure 2. Problem definition: geometry, loading, material properties and discretiza-
tions
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We present here the results obtained considering a domain submitted to a tensile
load (Figure 2(a)). The domain is pierced by two perturbations: the first one is cen-
tered at point O1 = (105, 0) and is of radius 2 mm and the second of radius 1.5 mm
is centered at pointO2 = (135, 0).

In order to validate the enrichment strategy adopted for the description of the influ-
ence of small defects, we compare the results obtained in terms of displacement and
stress fields for, a so called, reference computation carried out on a fine discretiza-
tion of the real geometry (Figure 2(b)) by standard Finite Element approach, and an
enriched computation performed on a coarse discretization (Figure 2(c)) of the unper-
turbed domain.

Figure 3 gives the obtained results in terms of the displacement field in the di-
rection of the traction for both discretization and interpolations. The relative error
between those two computations is lower than 0.25% allowing to conclude that the
proposed strategy gives satisfactory results regarding the one provided by the asymp-
totic analysis.

Figure 4 gives the stress field σxx obtained form the standard reference computa-
tion and the enriched one. Figure 4(c) illustrates the relative error computed in terms
of strain energy. For the considered case, the relative error integrated over the whole
domain is less than 0.01%, it is very concentrated at the very small vicinity of the
perturbations on the boundary of the domain where the strain energy is about zero
(leading to high relative error). Those results confirm that, for relatively close pertur-
bations, the profiles computed from the asymptotic analysis at first order are sufficient
to obtain a good approximation of the solution, no interactions between the inclusions
need to be taken into account.

From the displacement obtained through the enriched computation, the field trans-
fer presented in Section 3.2 is performed as soon as the maximal principal stress
reaches the limit value chosen for the initiation of cracks. Figure 5(a) represents the
stress field obtained from the rebuilt displacement after transfer. This field is the one
introduced as initial value for the continuation of the computation with strong discon-
tinuity approach. We can observe that the stress concentration due to the presence of
the perturbations are well reproduced, crack initiation takes place at the right location.
Figure 5(b) gives the orientation and opening of the introduced discontinuities at the
end of the loading process.

We can see that the crack leading to complete failure of the domain initiated on
the bigger perturbation centered on pointO1. Indeed, the development of this crack is
accompanied with elastic unloading of the rest of the domain preventing the develop-
ment of a second crack.
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(a) Reference computation on the fine discretization

(b) Computation with kinematic enrichment on the coarse
discretization

(c) Relative error

Figure 3. Displacement field ux obtained by standard and enriched computation, re-
lative error map
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(a) Reference computation
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(b) Computation with kinematic enrichment
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(c) Relative error (strain energy)

Figure 4. Stress field σxx obtained by standard and enriched computation, relative
strain energy error map
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(a) Reconstructed principal maximum stress
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(b) Discontinuities orientation and crack opening (mm)

Figure 5. Difference between the reconstructed displacement field after transfer and
the field obtained on the unperturbed domain, reconstructed maximal principal stress

5. Conclusion

We have presented a strategy allowing to take into account the influence of micro-
defects on the behavior till rupture of structures. The key point of the proposed ap-
proach is that this description is achieved without any fine description of the exact
geometry of the domain but rather with a coarse description of the unperturbed do-
main, the perturbations being incorporated in the computation through a kinematic
enrichment of standard Finite Element method.

This enrichment is provided by a multi-scale asymptotic analysis of Navier equa-
tions for linear elasticity. The description of the initiation and developement of lo-
calization zones leading to the apparition of cracks is ensured by the use of a strong
discontinuity approach. A field transfer operator has been designed in order to couple
those two approaches during all the loading process.
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Brancherie D., Ibrahimbegović A., “Novel anisotropic continuum-discrete damage model ca-
pable of representing localized failure of massive structures. Part I: theoretical formulation
and numerical implementation”, Engineering Computations, vol. 26, n˚ 1-2, p. 100-127,
2009.

Chahine E., Laborde P., Pommier J., Renard Y., Salaun M., “Study of some optimal xfem type
methods”, Computational Methods in Applied Sciences, vol. 5, p. 27-40, 2007.

Dambrine M., Vial G., “Influence of a boundary perforation on the Dirichlet energy”, Control
and Cybernetics, vol. 34, n˚ 1, p. 117-136, 2005.

Melenk J.M., Babuška I., “The partition of unity finite element method: Basic theory and appli-
cations”, Computer Methods in Applied Mechanics and Engineering, vol. 136, p. 289-314,
1996.

Oliver J., “Continuum Modelling of Strong Discontinuities in Solid Mechanics”, in D. Owen,
E. Oñate, E. Hinton (eds), Computational plasticity IV. Fundamentals and Applications,
Barcelone, p. 455-480, 1995.

Simo J.C., Oliver J., Armero F., “An Analysis of Strong Discontinuity Induced by Strain Soften-
ing Solutions in Rate-Independent Solids”, Journal of Computational Mechanics, vol. 12,
p. 277-296, 1993.

D
ow

nl
oa

de
d 

by
 [V

irg
in

ie
 B

on
na

ill
ie

-N
oë

l] 
at

 2
2:

29
 0

9 
Ju

ne
 2

01
2 


