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Abstract

The presence of small inclusions or of a surface defect modifies the solution of the
Laplace equation posed in a reference domain Ω0. If the characteristic size of the per-
turbation is small, then one can expect that the solution of the problem posed on the
perturbed geometry is close to the solution of the reference shape. Asymptotic expan-
sion with respect to that small parameter –the characteristic size of the perturbation–
can then be performed. We consider in the present work the case of two circular de-
fects with homogeneous Dirichlet boundary conditions in a bidimensional domain, we
distinguish the cases where the distance between the object is of order 1 and the case
where it is larger than the characteristic size of the defects but small with respect to
the size of the domain. In both cases, we derive the complete expansion and provide
some numerical illustrations.
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1 Introduction

The presence of small inclusions or of a surface defect modifies the solution of the Laplace
equation posed in a reference domain Ω0. If the characteristic size of the perturbation
is small, then one can expect that the solution of the problem posed on the perturbed
geometry is close to the solution of the reference shape. Asymptotic expansion with
respect to that small parameter –the characteristic size of the perturbation– can then be
performed.

The case of a single inclusion ω, centered at the origin 0 being either in Ω0 or in ∂Ω0,
has been deeply studied, see [19, 20, 14, 15, 22, 8, 9]. The techniques rely on the notion
of profile, a normalized solution of the Laplace equation in the exterior domain obtained
by blow-up of the perturbation. It is used in a fast variable to describe the local behavior
of the solution in the perturbed domain. In usually dealt situations that is for Neumann
boundary conditions in dimension greater than two and Dirichlet boundary condition in
dimension greater than three, convergence of the asymptotic expansion is obtained thanks
to the decay of the profile at infinity.
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The case of several inclusions was considered for example in the series of papers of A.
Movchan and V. Maz’ya [17, 18] where an asymptotic approximation of Green’s function
is built and justified in a domain with many inclusions. The points where the inclusions
are centered are fixed in those works. In [7], the Neumann case where the distance be-
tween the holes tends to zero but remains large with respect to their characteristic size
was investigated for two perfectly insulated inclusions: a complete multiscale asymptotic
expansion of the solution to the Laplace equation is obtained in a three scales case. In
[10], A. Friedman and M. Vogelius consider the case of a finite number of inhomogenieites
for the transmission problem for inclusions of 0 and infinite conductivity.

We consider in the present work the case of two defects with Dirichlet boundary condi-
tions in a bidimensional domain. It differs from the infinite conductivity case that imposes
a constant potential on the inhomogeneity, here we impose in addition that this constant
is zero. This assumption changes the behavior of the solution: logarithmic terms appear.
Having in mind functionals involving values taken by the solution both near and far from
the inhomogeneities, we are interested in providing a complete asymptotic expansion valid
in the H1 sense. The closely related question of pointwise estimates for the gradient of the
solution in the case where two adjacent conductivity inclusions are nearly touching was
also intensively studied recently, see [5, 6, 2] for example.

We assume that the defects we are considering are disks. We make remarks about
general geometries along the text. Let Ω0 be a bounded domain of R2 containing the
origin 0. For ε > 0, small enough, we define the perturbed domain Ωε as

Ωε = Ω0/(ω−ε ∪ ω
+
ε ), with ω±ε = x

±
ε + εB(0,1), (1.1)

where x±ε = ±ηεd with a given unitary vector d, and a real number ηε. Shortly, Ωε consists
of Ω0 from which two ε-disks at distance 2ηε have been removed. We aim at building an
asymptotic expansion of the solution uε of the Laplace problem in Ωε:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆uε = f in Ωε,
uε = 0 on ∂Ω0,
uε = 0 on ∂ω±ε ,

(1.2)

for some C∞ datum f whose support does not contain the origin 0. The regularity of f
can be weakened to obtain expansions of the solution uε at fixed orders.

We will consider two unstudied cases: ηε is constant and ηε = ε
α for α ∈ (0,1):

• In the first case, we are considering two small holes of size ε around two fixed points
A and B and the distance between both is hence fixed. For the cases of Neumann
boundary condition or of Dirichlet boundary conditions in dimension at least three,
this cases can be treated by separating each hole through cut-off functions and hence
reducing it to the single inclusion case. Here, the presence of the logarithmic term
prohibits this approach and the interaction between the holes has to be studied.

• In the second case, the distance between A and B collapses to 0 with ε like εα, that
is to say slower than the size ε of the inclusions. The interaction between the two
holes are then stronger and we will prove that the leading order of the asymptotic
expansion is then modified.

This work is hence organized as follows. In a first section, we consider the well studied
case of a single inclusion. We explain why the usual method fails in this case, we reformu-
late ideas of presented in [19, 20, 17] in order to explain both the strategy we shall follow
in the cases of two inclusions and the difficulties we will have to face. In a second step,
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we consider the case of two defects around two fixed points. We then consider the case of
weakly interacting defects: that is to say the distance between the centers of the defects
is not fixed but varies like εα with the small parameter ε, we show that the structure of
the expansion is modified by this interaction.

2 Single inclusion case

2.1 Default of the usual method

We consider a smooth bounded domain Ω0 such that the origin is contained in Ω0. Let
f ∈ C∞(Ω0) be such that 0 ∉ suppf . For ε small enough such that εB(0,1) ∩ suppf = ∅,
we define a perturbed domain

Ωε = Ω0/ωε with ωε ∶= εB(0,1).

We are interested in describing uε the solution of

{
−∆uε = f in Ωε,

uε = 0 on ∂Ωε.
(2.1)

Since the H1-capacity of ωε tends to 0 as ε tends to 0 (like 1/ ln ε), the function uε tends
to u0 defined as the solution in the unperturbed domain:

{
−∆u0 = f in Ω0,

u0 = 0 on ∂Ω0.
(2.2)

To catch the asymptotic of uε, let us study the error r0
ε ∶= uε − u0. It solves

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆r0
ε = 0 in Ωε,
r0
ε = 0 on ∂Ω0,
r0
ε = −u0 on ∂ωε.

The solution u0 of the unperturbed problem (2.2) is analytic inside Ω0. Hence, it can be
approximated in the vicinity of the origin by its Taylor expansion:

u0(x) = u0(εX) = u0(0) +∑
k≥1

Dku0(0)[X, . . . ,X]
εk

k!
, ∀x = εX ∈ ∂ωε.

Each term of this expansion can be seen as an error of order k: the usual idea to improve
the expansion of uε is now to lift in an harmonic way each term. In the 3-dimension
case or for Neumann boundary conditions, this asymptotics analysis is well studied (see
for example [19, 20, 7]...). The key point is the notion of profile, a normalized solution
of the Laplace equation in the exterior domain obtained by blow-up of the perturbation.
It turns out that profiles tend to 0 at infinity at least in the above mentioned cases. In
the converse, for the case considered here (Dirichlet condition in dimension 2), the crucial
property is not satisfied: it supposes that the boundary value problem

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆V = 0 in R2/ω,
V = u0(0) on ∂ω,
V → 0 at infinity,

(2.3)

has a solution. Here ω is a smooth bounded domain of R2. Unfortunately, this is not
the case except when u0(0) = 0. The classical analysis of elliptic equation in unbounded
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domain is made in the functional setting of weighted Sobolev spaces, see [3]. It is known
that (2.3) has a unique solution in a space containing the constants, hence this solution is
the constant u0(0) which prohibits the condition at infinity if u0(0) ≠ 0.

The existence, uniqueness and behavior at infinity of the solution for a general bound-
ary condition in H1/2(∂ω) is given by the following Lemma.

Lemma 2.1 1. Let ω be a smooth bounded domain of R2 with 0 ∈ ω. Let f ∈ H1/2(∂ω).
Then the boundary value problem

{
−∆V = 0 in R2/ω,

V = f on ∂ω,
(2.4)

admits a unique weak solution V in the variational space

W1,2
0 (R2

/ω) = {u;
u

(1 + ∣X ∣) ln(2 + ∣X ∣)
∈ L2

(R2
/ω) and ∇u ∈ L2

(R2
/ω)} .

2. Furthermore, the solution V can be decomposed

V (X) = V0 +
n

∑
k=1

Vk(X) +O∞(∣X ∣
−n+1

),

where V0 is a constant and Vk(X) = Vk(θ)∣X ∣−k where θ is the usual polar angle and
Vk ∈ Span(coskθ, sinkθ).

3. If ω is the unit ball B(0,1), and if ∫∂B(0,1) f = 0, then the solution V reads

V (X) =
n

∑
k=1

Vk(X) +O∞(∣X ∣
−n+1

) with Vk(r, θ) =
ak(f) coskθ + bk(f) sinkθ

rk
.

In particular, there exists a constant C such that

∣V (X)∣ ≤
C

∣X ∣
and ∣∇V (X)∣ ≤

C

∣X ∣2
.

Proof:

1. This result is proved by Giroire in [13].

2. The solution V has a trace on the circle ∂B(0,R) such that ω ⊂ B(0,R). Let us
decompose this trace in Fourier series:

v(θ) = a0(v) +∑
k≥1

(ak(v) coskθ + bk(v) sinkθ).

The restriction of V to the complement R2/B(0,R) solves

{
−∆V = 0 in R2/B(0,R),

V = v on ∂B(0,R),

and hence reads

V (r, θ) = a0(v) +∑
k≥1

(ak(v) coskθ + bk(v) sinkθ)
Rk

rk
.

This satisfies the announced statement.

3. It suffices to check that a0(v) = 0.
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2.2 First term in slow variable with the logarithmic solution

We are in the situation where the boundary value problem (2.3) defining the corrector has
in general no solution. To circumvent this obstruction, the logarithmic solution has to be
considered. However, it tends to infinity at infinity, it is not of finite energy in R2/ω and
has to be considered only in Ω0. Its trace on ∂Ω0 is of size one and has to be corrected.
That is why we introduce the function w defined as the solution of

{
−∆w = 0 in Ω0,
w(x) = ln ∣x∣ for x ∈ ∂Ω0.

(2.5)

The idea is now to combine the logarithmic solution and the lifted w to build a corrector
incorporating the scales 1 and ε. To build this corrector, we search coefficients a(ε) and
b(ε) such that r1

ε defined by

uε(x) = u0(x) + a(ε) ln ∣x∣ + b(ε)w(x) + r1
ε(x),

is reduced with respect to r0
ε ∶= uε − u0. The remainder r1

ε satisfies

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆r1
ε = 0 in Ωε,

r1
ε(x) = − (a(ε) + b(ε)) ln ∣x∣ on ∂Ω0,
r1
ε(x) = −u0(x) − a(ε) ln ∣x∣ − b(ε)w(x) on ∂ωε.

For x ∈ ∂Ω0, we have

r1
ε(x) = O(1) ⇔ a(ε) + b(ε) = O(1).

For x ∈ ∂ωε, there exists X ∈ ∂B(0,1) such that x = εX and we have

r1
ε(x) = O(1) ⇔ u0(0) + a(ε) ln ε +w(0) b(ε) = O(1).

Hence we solve the linear system in the unknowns (a(ε), b(ε)):

{
a(ε) + b(ε) = 0,

a(ε) ln ε + b(ε) w(0) = −u0(0),

to set

a(ε) =
1

w(0) − ln ε
u0(0) and b(ε) =

−1

w(0) − ln ε
u0(0).

A new scale appears:

hε =
1

w(0) − ln ε
=
−1

ln ε
+O (

1

ln2 ε
) as ε→ 0. (2.6)

We define the normalized corrector w as

w(x) = ln ∣x∣ −w(x). (2.7)

Remark 2.2 This construction is performed in the case of a disk where ∣x∣ = ε for x ∈ ε∂ω.
In the general case, ω is not a ball and ln ∣x∣ ≠ ln ε for all x in ε∂ω and one has to add
correctors as performed by Maz’ya et al in [19, Section 2.4, p. 60–64]. This correction of
ln ε is of order zero, is then negligeable with respect to the logarithmic term. The linear
system in (a(ε), b(ε)) remains unchanged and so hε is still the same rational fraction in
ln ε. As the formula ∣x∣ = ε is not exact, some new correctors will appear in the asymptotic
expansion at following order to recover the mismatch in the Dirichlet boundary condition
on ∂ωε.
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Remark 2.3 Let us remark that ∆w = 2πδ0 in D′(Ω0) and w = 0 on ∂Ω0. It is a type
of Green function for the domain Ω0. Let us emphasize that this function w is defined on
Ωε and can not be defined in either Ω0, either R2/ω, the limit domains where the usual
correctors are defined: the usual correctors in the slow variable x are defined on Ω0 while
the correctors in the rescaled variable x/ε are defined in R2/ω.

We approximate uε by

uε(x) = u0(x) + u0(0)w(x) hε + r̃
1
ε(x).

2.3 Second term in fast variable

We check that the remainder r̃1
ε satisfies

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆r̃1
ε = 0 in Ωε,
r̃1
ε = 0 on ∂Ω0,
r̃1
ε = −u0 − u0(0)w hε on ∂ωε.

The functions u0 and w are analytic in the vicinity of 0. Hence, for x = εX ∈ ∂ωε, we have

r̃1
ε(x) = −u0(0) −∑

k≥1

Dku0(0)[X, . . . ,X]
εk

k!

−u0(0) [ln ε + ln ∣X ∣ −w(0) −∑
k≥1

Dkw(0)[X, . . . ,X]
εk

k!
] hε

= −∑
k≥1

Dku0(0)[X, . . . ,X]
εk

k!
− u0(0) ln ∣X ∣hε + u0(0)∑

k≥1

Dkw(0)[X, . . . ,X]hε
εk

k!
.

There are two kinds of terms:

• the terms coming from Taylor expansions at the origin 0 of functions (u0, w) defined
as solution of a Laplace boundary value problem posed in Ω0,

• the term in ln ∣X ∣ which provides information about the geometry of the inclusion
ω. Notice that if ω is not a ball, we have terms of order O(1) that we have to lift at
the following step.

All these terms are zero mean value on ∂ωε. They can be lifted by using Lemma 2.1.
Since we made the assumption that ω is a unit ball B(0,1), the term ln ∣X ∣ cancels.

Thus the remainder r̃1
ε reads for x = εX ∈ ∂ωε:

r̃1
ε(x) = ∑

k≥1

uk(X) εk +∑
k≥1

wk(X) hεε
k,

with

uk = −
1

k!
Dku0(0)[X, . . . ,X] and wk =

u0(0)

k!
Dkw(0)[X, . . . ,X].

Each appearing term in the remainder r̃1
ε is a homogeneous harmonic polynomial. Hence

the mean value property insures that ∫∂B(0,1) uk = 0 and ∫∂B(0,1)wk = 0. Then Lemma 2.1
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(point 3) can be applied. We set Uk,1 and Wk,1 the solution of problem (2.4) with v = uk
and v = wk respectively. These functions can be decomposed as

Uk,1(X) =
k

∑
j=1

U jk,1(X) with U jk,1(r, θ) =
aj(uk) cos jθ + bj(uk) sin jθ

rj
, (2.8)

Wk,1(X) =
k

∑
j=1

W j
k,1(X) with W j

k,1(r, θ) =
aj(wk) cos jθ + bj(wk) sin jθ

rj
. (2.9)

We then approximate uε by

uε(x) = u0(x) + u0(0)w(x) hε +∑
k≥1

Uk,1(
x
ε ) ε

k
+∑
k≥1

Wk,1(
x
ε ) hεε

k
+ r̃2

ε(x).

2.4 Third term in slow variable

We have now to study the remainder r̃2
ε . It satisfies

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

−∆r̃2
ε = 0 in Ωε,

r̃2
ε = −∑

k≥1

Uk,1(
x
ε ) ε

k
−∑
k≥1

Wk,1(
x
ε ) hεε

k on ∂Ω0,

r̃2
ε = 0 on ∂ωε.

(2.10)

According to decomposition (2.8) and (2.9), the traces TU jk,1 and TW j
k,1 on ∂Ω0 of the

functions U jk,1(
x
ε ) and V j

k,1(
x
ε ) satisfy

∥TU jk,1∥H1/2(∂Ω0) = O(εj) and ∥TW j
k,1∥H1/2(∂Ω0) = O(εj).

Then, we get

∥TUk,1∥H1/2(∂Ω0) = O(ε) and ∥TWk,1∥H1/2(∂Ω0) = O(ε). (2.11)

We now lift these functions in slow variables and define uk,1 and wk,1 as the solution of
the normalized problems:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆uk,1 = 0 in Ω0,

uk,1 =
− 1

ε
TUk,1 on ∂Ω0,

and

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆wk,1 = 0 in Ω0,

wk,1 =
− 1

ε
TWk,1 on ∂Ω0.

We can read uε:

uε(x) = u0(x) + hε u0(0)w(x) +∑
k≥1

Uk,1(
x
ε ) ε

k
+∑
k≥1

Wk,1(
x
ε ) hεε

k

+∑
k≥2

uk−1,1(x) ε
k
+∑
k≥2

wk−1,1(x) hεε
k
+ r̃3

ε(x).

2.5 Ansatz of asymptotic expansion

We inject the remainder r̃3
ε in the equation and obtain:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

−∆r̃3
ε = 0 in Ωε,

r̃3
ε = 0 on ∂Ω0,

r̃3
ε = −∑

k≥2

uk−1,1 ε
k
−∑
k≥2

wk−1,1 hεε
k on ∂ωε.
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The function uk,1 and wk,1 have a value at 0 which is a priori not 0. This suggests to
mimic the approach already used to start the asymptotics and to define r̃4

ε by:

uε(x) = u0(x) + u0(0)w(x) hε +∑
k≥1

Uk,1(
x
ε ) ε

k
+∑
k≥1

Wk,1(
x
ε ) hεε

k

+∑
k≥2

uk−1,1(x) ε
k
+∑
k≥2

wk−1,1(x) hεε
k

+∑
k≥2

uk−1,1(0)w(x) hεε
k
+∑
k≥2

wk−1,1(0)w(x) h2
εε
k
+ r̃4

ε(x).

This justifies the ansatz

uε(x) = u0(x) + u0(0)w(x) hε + ∑
j≥1,k≥2

αj,kw(x) hjεε
k

+ ∑
j≥0,k≥1

Vj,k(
x
ε ) h

j
εε
k
+ ∑
j≥0,k≥2

vj,k(x) h
j
εε
k, (2.12)

where any coefficient αj,k and any functions Vj,k and vj,k are obtained by reiterating the
previous steps.

2.6 Justification of the order of convergence

Now we have to justify this formal expansion by using an a priori error estimate. Let us
introduce the remainder of the asymptotic expansion truncated after the order hJε ε

K

rJ,Kε (x) = uε(x) − u0(x) − u0(0)w(x) hε − ∑
(j,k)∈KJ,K ,j≥1,k≥2

αj,kw(x) hjεε
k

+ ∑
(j,k)∈KJ,K ,k≥1

Vj,k(
x
ε ) h

j
εε
k
+ ∑

(j,k)∈KJ,K ,k≥2

vj,k(x) h
j
εε
k,

with
KJ,K = {(j, k) ∈ N2;k <K or k =K and j ≤ J}.

By construction, rJ,Kε is harmonic.

By the definition of the trace space of H1(Ωε) with the norm

∥f∥TH1(Ωε) = inf{∥u∥H1(Ωε);u ∈ H1
(Ωε) with u = f on ∂Ωε},

we have
∥rJ,Kε ∥H1(Ωε) = ∥rJ,Kε ∥TH1(Ωε).

The equality holds when u is harmonic since its achieves the infimum in the definition of
the TH1 norm. To overcome the difficulty to evaluate the TH1 norm of a given function,
we also define the intrinsic Sobolev space H1/2 of the boundary of an ε-dependent domain
Ωε as a subspace of L2(∂Ωε) with finite norm

∥f∥H1/2(∂Ωε) = ∥f∥L2(∂Ωε) + [f]2,∂Ωε ,

with

[f]2
2,∂Ωε

=∬
∂Ωε×∂Ωε

∣f(x) − f(y)∣2

∣x − y∣2
dσxdσy.
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E. Gagliardo has shown in [11] that, if the domain is Lipschitz, the two different norms
on H1/2 are equivalent. For a familly of domains parametrized by ε, this means that the
domains should be uniformly Lipschitz with respect to ε. In the case we are studying:
a single interior perturbation Ωε = Ω0/ωε where the nucleation center 0 belongs to Ω0,
the uniform Lipschitz property is not satisfied and the norms H1/2 and TH1 may be non
equivalent.

V. Maz’ya and S. Poborchi discuss in [21, Section 4.1.3] situations where this property
is violated. The two terms in the intrinsic norm should be weighted. We quote their result
once adapted to the space H1/2 in the case of plane domains: the trace norm ∥f∥TH1(Ωε)
is equivalent, uniformly in ε, to the norm

(ε∣ ln ε∣)−1/2
∥f∥L2(∂Ωε) + [f]2,∂Ωε . (2.13)

We have now to face the question of evaluating on ∂ωε various norm of the trace of a
function f wich is smooth around 0. Quoting [7, Lemma 3.2], if f is a smooth function
defined around 0, let M ≥ 0 be such that for all multi-indices k with ∣k∣ <M , ∂kf(0) = 0.
Then,

∥f∥H1/2(ε∂ω) ≤ CεM , (2.14)

∥f∥TH1(εω) ≤ C ∣ ln ε∣−1/2εM−1/2, (2.15)

with C independent of ε. Applying this to rJ,Kε , we get

∥rJ,Kε ∥H1(Ωε) ≤ C hJ−1/2
ε εK−1/2.

Remark 2.4 Let us conclude this section by noting that the usual a priori estimates can be
applied for the second remainder r2

ε directly since its trace on the non-uniformly Lipschitz
boundary ∂ωε is 0. Hence, we get directly from (2.10)-(2.11) that ∥r2

ε∥H1(Ωε) ≤ Cε
2, that

is:
uε(x) = u0(x) + u0(0)w(x) hε +U1,1(

x
ε ) ε +W1,1(

x
ε ) hεε +OH(ε)(ε).

2.7 Numerical illustration

In this subsection, we illustrate the contribution of the first two terms of the expansion
(2.12). For this, we choose for Ω0 the rectangle [−1,1] × [0,1] and we consider the

f(x) = 2(x2
2 − x2) + 2(x2

1 − 1).

Then the solution u0 of the problem (2.2) is given explicitely by

u0(x) = −(x
2
1 − 1)(x2

2 − x2),

as illustrated in Figure 1.
For numerical computation, we take ε = 1/1.57 ≃ 0.0585. With this parameter, we have

hε ≃ −0.100 and
−1

ln ε
≃ −0.088.

We compute the solution uε of problem (2.1) by a finite element method using the Finite
Element Library Mélina (see [16]). The computed solution is given in Figure 2. The
difference r0

ε = uε − u0 is given in Figure 3. We observe that the error is located around
the inclusion since u0 does not satisfy the Dirichlet condition on the inclusion.
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Figure 1: u0

Figure 2: uε

Figure 3: First order approximation uε − u0

(a) w

(b) u0(0)w hε (c) −u0(0)w / ln ε

Figure 4: Second term of the expansion
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Let us know observe the effect of the second term of the asymptotics. We compute an
approximation of the function w, solution of (2.5) on Ω0 by a finite element method, see
Figure 4(a). The second term x↦ u0(0)w(w) hε = u0(0)(ln ∣x∣−w(x)) hε of the expansion
is computed in Figure 4(b). We add the first two terms of the expansion in Figure 5(a)
with the scale hε. We then compute the second remainder r̃1

ε = uε − u0 − u0(0)w hε in
Figure 5(b). We observe the error is now located between at the middle of Ωε far away
the boundary.

(a) u0 + u0(0)w hε (b) uε − u0 − u0(0)w hε

Figure 5: Second order approximation u0 + u0(0)w hε

If we replace the asymptotics scale hε by its first order expansion −1/ ln ε, we change
the second term of the expansion by the multiplicative term as illustrated in Figure 4(c).
If we approximate hε by −1/ ln ε and then uε by u0 − u0(0)w ln ε as in Figures 6(a) and
6(b), we observe that the error if located around the inclusion. We highlight the interest
of choosing the adapted scale hε and not its first order approximation −1/ ln ε.

(a) u0 − u0(0)w / ln ε (b) uε − u0 + u0(0)w / ln ε

Figure 6: Second order approximation u0 − u0(0)w / ln ε

Table 1 gives the error norms when we aprroximate uε by the first terms of its ex-
pansion. As explained in Remark 2.2, the second and third columns provide two distinct
approximations of the same order in ε. Notice that, in the presented case of disks, hε
contains information of higher order than 1/ ln ε.

uε − u0 uε − u0 − u0(0)w hε uε − u0 + u0(0)w / ln ε

L2-norm 7.799 e-2 6.88 e-3 6.56 e-3

H1-norm 4.0277 e-1 2.865 e-2 5.290 e-2

Table 1: Error norms
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3 Two separated inclusions case

Now fix two distinct points A et B in Ω0 and set d =
Ð→
AB. We consider the Dirichlet

boundary value problem:

{
−∆uε = f in Ωε,

uε = 0 on ∂Ωε,
(3.1)

set in the domain:

Ωε = Ω0/(ωAε ∪ ω
B
ε ), with ωAε = B(A, ε) and ωBε = B(B, ε), (3.2)

as illustrated in Figure 7. Introduce the functions wA and wB solutions of

!A
"

!B
"

⌦"

A•

•
B

Figure 7: The perturbed domain

{
−∆wA = 0 in Ω0,
wA(x) = ln ∣x −A∣ for x ∈ ∂Ω0,

{
−∆wB = 0 in Ω0,
wB(x) = ln ∣x −B∣ for x ∈ ∂Ω0.

(3.3)

We follow the previously introduced algorithm and seek coefficients aA(ε), bA(ε) and
aB(ε), bB(ε) so that the remainder r1

ε defined as

uε(x) = u0(x) + aA(ε) ln ∣x −A∣ + bA(ε)wA(x) + aB(ε) ln ∣x −B∣ + bB(ε)wB(x) + r1
ε(x),

is smaller than r0
ε = uε − u0. The function r1

ε satisfies

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

−∆r1
ε = 0 in Ωε,

r1
ε(x) = − (aA(ε) + bA(ε)) ln ∣x −A∣ − (aB(ε) + bB(ε)) ln ∣x −B∣ on ∂Ω0,
r1
ε(x) = −u0(x) − aA(ε) ln ∣x −A∣ − bA(ε)wA(x)

−aB(ε) ln ∣x −B∣ − bB(ε)wB(x) on ∂(ωAε ∪ ω
B
ε ).

The functions x ↦ ln ∣x − A∣ and x ↦ ln ∣x − B∣ defined on ∂Ω0 are linearly independent
since A ≠ B. Then for x ∈ ∂Ω0,

r1
ε(x) = O(1) ⇔ aA(ε) + bA(ε) = O(1) and aB(ε) + bB(ε) = O(1).

For x ∈ ∂ωAε , there exists X ∈ ∂B(0,1) such that x = A + εX and we have

r1
ε(x) = O(1) ⇔ u0(A) + aA(ε) ln ε + bA(ε) wA(A) + aB(ε) ln ∣d∣ + bB(ε) wB(A) = O(1).

By symmetry, for x ∈ ∂ωBε , there exists X ∈ ∂B(0,1) such that x = B + εX and we have

r1
ε(x) = O(1) ⇔ u0(B) + aA(ε) ln ∣d∣ + bA(ε) wA(B) + aB(ε) ln ε + bB(ε) wB(B) = O(1).
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Hence we solve the linear system in the unknowns (aA(ε), bA(ε), aB(ε), bB(ε)):

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

aA(ε) + bA(ε) = 0,
aB(ε) + bB(ε) = 0,

aA(ε) ln ε + bA(ε) wA(A) + aB(ε) ln ∣d∣ + bB(ε) wB(A) = −u0(A),
aA(ε) ln ∣d∣ + bA(ε) wA(B) + aB(ε) ln ε + bB(ε) wB(B) = −u0(B).

(3.4)

Writing bA(ε) = −aA(ε) and bB(ε) = −aB(ε), the system can be reduced to

{
aA(ε) (wA(A) − ln ε) + aB(ε) (wB(A) − ln ∣d∣) = u0(A),
aA(ε) (wA(B) − ln ∣d∣) + aB(ε) (wB(B) − ln ε) = u0(B).

(3.5)

We set

δ(ε) = (wA(B) − ln ∣d∣)(wB(A) − ln ∣d∣) − (wA(A) − ln ε)(wB(B) − ln ε)

and get:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

aA(ε) = −bA(ε) =
ln ε −wB(B)

δ(ε)
u0(A) +

wB(A) − ln ∣d∣

δ(ε)
u0(B),

aB(ε) = −bB(ε) =
wA(B) − ln ∣d∣

δ(ε)
u0(A) +

ln ε −wA(A)

δ(ε)
u0(B).

We check that the leading terms are the same as the ones obtained by considering a single
inclusion at A and a single inclusion at B:

aA(ε) =
−1

ln ε
u0(A) +O (

1

ln2 ε
) and aB(ε) =

−1

ln ε
u0(B) +O (

1

ln2 ε
) as ε→ 0. (3.6)

The presence of two defects appears in aA(ε) and in aB(ε) but only in higher order term
in the asymptotic expansion of the coefficients. Setting

wA(x) = ln ∣x −A∣ −wA(x) and wB(x) = ln ∣x −B∣ −wB(x). (3.7)

We follow the algorithmic method of Section 2 and approximate uε by

uε = u0 + aA(ε)wA + aB(ε)wB + r̃
1
ε .

Then, we check that r̃1
ε satisfies

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆r̃1
ε = 0 in Ωε,
r̃1
ε = 0 on ∂Ω0,

r̃1
ε = −u0 − aA(ε)wA − aB(ε)wB on ∂(ωAε ∪ ω

B
ε ).

For x = A + εX ∈ ∂ωAε , we have

∣x −B∣
2
= ∣A −B + εX ∣

2
= ∣d∣

2
− 2ε⟨d,X⟩ + ε2,

then
ln ∣x −B∣ = ln ∣d∣ +∑

k≥1

bk(X)εk.
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Consequently, the remainder r̃1
ε reads for x = A + εX ∈ ∂ωAε

r̃1
ε(x) = −u0(A) −∑

k≥1

Dku0(A)[X, . . . ,X]
εk

k!

−aA(ε) [ln ε + ln ∣X ∣ −wA(A) −∑
k≥1

DkwA(A)[X, . . . ,X]
εk

k!
]

−aB(ε) [ln ∣d∣ +∑
k≥1

bk(X)εk −wB(A) −∑
k≥1

DkwB(A)[X, . . . ,X]
εk

k!
] .

Using (3.5) and the fact that X ∈ ∂B(0,1), we check that the terms of low order cancel
and thus, for x ∈ ∂ωAε ,

r̃1
ε(x) = −∑

k≥1

Dku0(A)[X, . . . ,X]
εk

k!
+ aA(ε)∑

k≥1

DkwA(A)[X, . . . ,X]
εk

k!

−aB(ε)∑
k≥1

[bk(X) −
1

k!
DkwB(A)[X, . . . ,X]] εk.

We rewrite the remainder on ∂ωAε as

r̃1
ε(x) = ∑

k≥1

uAk (X)εk + aA(ε)∑
k≥1

vAk (X)εk + aB(ε)∑
k≥1

wABk (X)εk.

By symmetry, one checks that for x = B + εX ∈ ∂ωBε , it holds

∣x −A∣ = ∣B −A + εX ∣ = ∣d∣
2
+ 2ε⟨d,X⟩ + ε2,

then
ln ∣x −A∣ = ln ∣d∣ +∑

k≥1

ak(X)εk,

and for x ∈ ∂ωBε ,

r̃1
ε(x) = −∑

k≥1

Dku0(B)[X, . . . ,X]
εk

k!
+ aB(ε)∑

k≥1

DkwB(B)[X, . . . ,X]
εk

k!

−aA(ε)∑
k≥1

[ak(X) −
1

k!
DkwA(B)[X, . . . ,X]] εk.

We can also rewrite the remainder for x = B + εX ∈ ∂ωBε as

r̃1
ε(x) = ∑

k≥1

uBk (X)εk + aB(ε)∑
k≥1

vBk (X)εk + aA(ε)∑
k≥1

wBAk (X)εk.

As in the case of one inclusion in Subsection 2.3, we lift each term appearing in the
boundary of the inclusions. Thus we approximate uε by

uε(x) = u0(x) + aA(ε)wA(x) + aB(ε)wB(x)

+∑
k≥1

(UAk,1(
x−A
ε ) εk + V A

k,1(
x−A
ε ) aA(ε)ε

k
+WAB

k,1 (x−Aε ) aB(ε)εk)

+∑
k≥1

(UBk,1(
x−B
ε ) εk + V B

k,1(
x−B
ε ) aB(ε)εk +WBA

k,1 (x−Bε ) aA(ε)ε
k) + r̃2

ε .
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These new correctors generate traces on the boundary ∂Ω0, exactly as in the case of a
single inclusion (see Subsection 2.4): we check that the reminder r̃2

ε is the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆r̃2
ε = 0 in Ωε,

r̃2
ε = −∑

k≥1

(UAk,1(
x−A
ε ) εk − V A

k,1(
x−A
ε ) aA(ε)ε

k
+WAB

k,1 (x−Aε ) aB(ε)εk)

−∑
k≥1

(UBk,1(
x−B
ε ) εk − V B

k,1(
x−B
ε ) aB(ε)εk +WBA

k,1 (x−Bε ) aA(ε)ε
k) on ∂Ω0,

r̃2
ε = 0 on ∂(ωAε ∪ ω

B
ε ).

In particular, we get ∥r̃2
ε∥H1(Ωε) = O(ε2) by the argument developed in Remark 2.4 and

the order two expansion:

uε(x) = u0(x) + aA(ε)wA(x) + aB(ε)wB(x)

+∑
k≥1

(UAk,1(
x−A
ε ) εk + V A

k,1(
x−A
ε ) aA(ε)ε

k
+WAB

k,1 (x−Aε ) aB(ε)εk)

+∑
k≥1

(UBk,1(
x−B
ε ) εk + V B

k,1(
x−B
ε ) aB(ε)εk +WBA

k,1 (x−Bε ) aA(ε)ε
k) +OH1(Ωε)(ε

2
). (3.8)

In the previous expansion many terms are of higher order than the remainder, we have
shown:

Theorem 3.1 The solution uε admits the asymptotic expansion

uε(x) = u0(x) + aA(ε)wA(x) + aB(ε)wB(x)

+UA1,1(
x−A
ε ) ε + V A

1,1(
x−A
ε ) aA(ε)ε +W

AB
1,1 (x−Aε ) aB(ε)ε

+UB1,1(
x−B
ε ) ε + V B

1,1(
x−B
ε ) aB(ε)ε +WBA

1,1 (x−Bε ) aA(ε)ε +OH1(Ωε)(ε
2
). (3.9)

The algorithm can be continued if one wishes to obtain a higher order expansion. The
next step would be to define new correctors in slow variable in order to obtain the following
term of the asymptotics:

uε = u0 + aA(ε)wA(x) + aB(ε)wB(x)

+∑
k≥1

(UAk,1(
x−A
ε ) εk + V A

k,1(
x−A
ε ) aA(ε)ε

k
+WAB

k,1 (x−Aε ) aB(ε)εk)

+∑
k≥1

(UBk,1(
x−B
ε ) εk + V B

k,1(
x−B
ε ) aB(ε)εk +WBA

k,1 (x−Bε ) aA(ε)ε
k)

+∑
k≥2

(uAk−1,1(x) ε
k
+ vAk−1,1(x) aA(ε)ε

k
+wABk−1,1(x) aB(ε)εk)

+∑
k≥2

(uBk−1,1(x) ε
k
+ vBk−1,1(x) aB(ε)εk +wBAk−1,1(x) aA(ε)ε

k) + r̃3
ε ,

and so on up to the desired precision and then apply the a priori estimates. The study
made by V. Maz’ya and S. Poborchi for the case of a single inclusion in [21, Section 4.1.3]
can directly be extended to two separated holes around two fixed points and the estimates
(2.14) and (2.15) remains valid.

Another interest of this result comes from the theory of topology optimization. This
theory initiated in [23, 12] receives a tremendously growing interest. In a recent paper [4],
S. Amstuzt and M. Ciligot-Travain provide a unifying treatment of constrained shape and
topology optimization problems. The variations of shapes using the so-called speed method
as well as ‘digging holes’, the basic concept of sensitivity-based topology optimization, are
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viewed as a general way to perturb domains. To derive the optimality condition, Amstuzt
and Ciligot-Travain make a crucial structure assumption (formulae (8) and (9) in their work
[4]): an arbitrary number of topological variations should be allowed at the same time, in
other words one should be able to justify the leading terms of an asymptotic expansion
of a cost function for an arbitrary number of holes dug simultaneously in the domain.
However, the large literature on topological optimization deals with a single perturbation.
It is then important to check their assumption: for Neumann boundary conditions, it is
a consequence of the works of Maz’ya and Mochdan [17, 18]. Here, we can validate their
assumption in the more difficult case of Dirichlet boundary conditions in dimension two.
It is a corollary of Theorem 3.1: it suffices to write the leading terms in the expansion
(3.9). This term is given by (3.6) and it turns out that it is exactly the superposition of the
leading terms of the contribution of each holes considered independently. The interaction
appears at higher order in the series in 1/ ln ε that defined the fractions aA and aB in ln ε.
The passage to an arbitrary number of inclusions is straightforward: the main difference
is that the adapted scale hε has to be computed by solving a larger linear system than
(3.4).

3.1 Numerical illustration

We use the same function f as in the case of one inclusion. We choose

A = (−0.5,0.5) and B = (0.5,0.5).

The solution uε of problem 4.1 with ε = 1/1.57 ≃ 0.0585 is computed by a finite element
method and given in Figure 8(a). Table 2 gives the error norms when we aprroximate uε
by the first terms of its expansion. The first remainder r0

ε = uε−u0 is given in Figure 8(b).

(a) uε (b) r0ε = uε − u0

Figure 8: First term approximation

The soution wA of problem (3.3) is given in Figure 9(a). The second term of the expansion
aA(ε)wA+aB(ε)wB is computed in Figure 9(c). The effect of the two terms approximation
is illustrated in Figure 10.

uε − u0 uε − u0 − aA(ε)wA − aB(ε)wB uε − u0 +
u0(A)

ln ε wA +
u0(B)

ln ε wB

L2-norm 8.323 e-2 7.76 e-3 4.67 e-3

H1-norm 4.2756 e-1 4.946 e-2 5.979 e-2

Table 2: Error norms
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(a) wA (b) wA

(c) aA(ε)wA + aB(ε)wB

Figure 9: Second term of the expansion

(a) u0 + aA(ε)wA + aB(ε)wB (b) uε − u0 − aA(ε)wA − aB(ε)wB

Figure 10: Second order approximation

4 Two moderately close inclusions case

We consider the Dirichlet boundary value problem

{
−∆uε = f in Ωε,

uε = 0 on ∂Ωε,
(4.1)

set in the domain:

Ωε = Ω0/ω−ε ∪ ω
+
ε , with ω±ε = B(x

±
ε , ε) and x±ε = ±ε

αd, (4.2)

as illustrated in Figure 11. We assume that d is a unit vector.

4.1 Useful relations

In the construction of the asymptotics expansion, we need to estimate terms where are
involved distances between the center of the inclusion x±ε and a point x on the exterior
boundary ∂Ω0 or on the boundary of the other inclusion ω∓ε . This subsection put together
these estimates. The beginning of this subsection is also valid for general inclusion. Nev-
ertheless the expression (4.5) is established by using Tchebychev formula which are based
on the specific geometry of a ball. In other geometries, relation (4.6) is no more available
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Figure 11: The perturbed domain

and we can not lift the terms in this way.
Let x ∈ ∂Ω0, then we can write

∣x − x±ε ∣
2

= ∣x∣2 (1 ∓ 2εα
⟨x,d⟩

∣x∣2
+
ε2α

∣x∣2
) ,

ln ∣x − x±ε ∣ = ln ∣x∣ +∑
k≥1

B̃±
k (x)ε

αk, with B̃±
1 = ∓

⟨x,d⟩

∣x∣2
. (4.3)

Let x ∈ ∂ω±ε , there exists X ∈ ∂B(0,1) such that x = ±(εαd + εX) and we have

∣x − x∓ε ∣
2

= 4ε2α
(1 + ε1−α

⟨d,X⟩ +
ε2−2α

4
) ,

ln ∣x − x∓ε ∣ = ln(2εα) +∑
k≥1

ãk(X)ε(1−α)k. (4.4)

Let us make the functions ãk more explicit. We denote h = ε1−α cos θ + 1
4ε

2−2α, with θ be
such that cos θ = ⟨d,X⟩, then

ln(1 + h) = ∑
k≥1

(−1)k+1

k
hk = ∑

k≥1

(−1)k+1

k

k

∑
j=0

Ck−jk cosk−j θ
ε(1−α)(j+k)

4j

= ∑
m≥1

ε(1−α)m ∑
[m
2
]≤k≤m

(−1)k+1 (k − 1)!

(m − k)!(2k −m)!

cos2k−m θ

4m−k
,

with m = j + k. Using the change of variables p =m − k, we have:

m

∑
k=[m

2
]
(−1)k+1 (k − 1)!

(2k −m)!(m − k)!

cos2k−m θ

22m−2k
=

[m
2
]

∑
p=0

(−1)m−p+1 (m − p − 1)!

j!(m − 2j)!

cosm−2p θ

22p
.

Using the Tchebychev polynomial functions (see [1, Chap. 22]), we have

m

2

[m
2
]

∑
p=0

(−1)p
(m − p − 1)!

j!(m − 2p)!
2m−2p cosm−2p θ = cos(mθ).

Consequently,

ln(1 + h) = ∑
m≥1

ε(1−α)m
(−1)m+1

m

cos(mθ)

2m−1
,
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and the function ãk defined in (4.4) reads

ãk(X) =
(−1)k+1

k

cos(kθ)

2k−1
. (4.5)

We observe that

∫
∂B(0,1)

ãk = 0. (4.6)

4.2 First term in slow variable

As in the cases of one inclusion or two separated inclusions, we look for coefficients a±(ε)
and b(ε) such that the remainder r1

ε defined by

uε(x) = u0(x) + a+(ε) ln ∣x − x+ε ∣ + a−(ε) ln ∣x − x−ε ∣ + b(ε) w(x) + r1
ε(x),

with w defined in (2.5), is reduced with respect to r0
ε = uε −u0. The remainder r1

ε satisfies

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆r1
ε = 0 in Ωε,

r1
ε(x) = −a+(ε) ln ∣x − x+ε ∣ − a−(ε) ln ∣x − x−ε ∣ − b(ε) ln ∣x∣ on ∂Ω0,
r1
ε(x) = −u0(x) − a+(ε) ln ∣x − x+ε ∣ − a−(ε) ln ∣x − x−ε ∣ − b(ε)w(x) on ∂ω±ε .

For x ∈ ∂Ω0, we have

r1
ε(x) = O(1) ⇔ a+(ε) + a−(ε) + b(ε) = O(1).

For x = εαd + εX ∈ ∂ω+ε , with X ∈ ∂B(0,1), we have

r1
ε(x) = −u0(0) +O(εα) − a+(ε) ln ε − a−(ε) ln ∣2εαd + εX ∣ − b(ε)(w(0) +O(εα)).

Consequently

r1
ε(x) = O(1) ⇔ u0(0) + a+(ε) ln ε + a−(ε) ln 2εα +w(0) b(ε) = O(1).

We obtain the similar condition on ∂ω−ε :

r1
ε(x) = O(1) ⇔ u0(0) + a+(ε) ln 2εα + a−(ε) ln ε +w(0) b(ε) = O(1).

Hence we solve the linear system in the unknowns (a±(ε), b(ε)):

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

a+(ε) + a−(ε) + b(ε) = 0,
ln ε a+(ε) + (ln 2 + α ln ε) a−(ε) + w(0) b(ε) = −u0(0),

(ln 2 + α ln ε) a+(ε) + ln ε a−(ε) + w(0) b(ε) = −u0(0),

to set

a+(ε) = a−(ε) =
u0(0)

2w(0) − ln 2 − (1 + α) ln ε
and b(ε) =

−2u0(0)

2w(0) − ln 2 − (1 + α) ln ε
.

As in (2.6) for the case of one inclusion, a new scale appears:

hε =
1

2w(0) − ln 2 − (1 + α) ln ε
=

−1

(1 + α) ln ε
+O (

1

ln2 ε
) as ε→ 0. (4.7)

A notable point is that the coefficient α measuring the distance between the two inclusion
appears as a multiplicative factor in the leading term of the asymptotic. The situations
of Sections 3 and 4 are drastically different.

We introduce the normalized corrector wε as

wε(x) = ln ∣x − x+ε ∣ + ln ∣x − x−ε ∣ − 2w(x), (4.8)

with w defined by (2.5). Then we approximate uε by

uε(x) = u0(x) + u0(0)wε(x) hε + r̃
1
ε(x).
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4.3 Second terms

We check that the remainder r̃1
ε satisfies

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆r̃1
ε = 0 in Ωε,
r̃1
ε = −u0(0)wε hε on ∂Ω0,
r̃1
ε = −u0 − u0(0)wε hε on ∂ω±ε .

In order to estimate the first reminder r̃1
ε , we examine its traces on ∂Ωε, that is on ∂Ω0

and on ∂ω±ε . For this, we use relations established in Subsection 4.1.
For any x ∈ ∂Ω0, we can write

r̃1
ε(x) = ∑

k≥2

(B+
k (x) +B

−
k (x)) hεε

αk, ∀x ∈ ∂Ω0, (4.9)

with B±
k = −u0(0)B̃

±
k and B̃±

k defined in (4.3). We have

∥r̃1
ε∥H1/2(∂Ω0) = O (

ε2α

ln ε
) .

Let us now look at the trace on the inclusions ω±ε . Let x ∈ ∂ω±ε , and X ∈ ∂B(0,1) be
such that x = ±(εαd + εX). We have

ln ∣x − x±ε ∣ = ln ε.

Then
r̃1
ε(x) = −u0(x) − u0(0)( ln ε + ln ∣x − x∓ε ∣ − 2w(x)) hε.

Using Subsection 4.1, we can write relation (4.4)

ln ∣x − x∓ε ∣ = ln(2εα) +∑
k≥1

ãk(X)ε(1−α)k,

with ãk defined in (4.5) and satisfying (4.6). By interior elliptic regularity, u0 and w are
analytic in the vicinity of 0. Then

u0(x) = u0(0) +∑
n≥1

Dnu0(0)[x, . . . , x]

= u0(0) + ∑
j+k≥1

(±1)j+kCjj+kD
j+ku0(0)[X, . . . ,X

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
j times

,d, . . . ,d
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
k times

]εj+αk,

w(x) = w(0) +∑
n≥1

Dnw(0)[x, . . . , x],

in the vicinity of 0. For the convenience, we denote

ak(X) = −u0(0)ãk(X),

u±j,k(X) = (±1)j+k+1Cjj+kD
j+ku0(0)[X

j ,dk],

w±
j,k(X) = (±1)j+k2u0(0)C

j
j+kD

j+kw(0)[Xj ,dk],

with ãk defined in (4.5). Then the remainder r̃1
ε reads

r̃1
ε(x) = ∑

j+k>0

u±j,k(X) εj+αk +∑
k≥1

ak(X) hεε
(1−α)k

+ ∑
j+k>0

w±
j,k(X) hεε

j+αk, ∀x ∈ ∂ω±ε .

(4.10)
As for the case of one inclusion, the mean value property insures that

∫
∂B(0,1)

u±j,k = 0 and ∫
∂B(0,1)

w±
j,k = 0.

Now we need to lift each boundary condition appearing in (4.9) and (4.10).
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• The functions B±
k introduced in (4.3) to estimate the remainder on the exterior

boundary as given in (4.9) generate correctors b±k defined by

{
−∆b±k = 0 in Ω0,

b±k = B±
k on ∂Ω0.

(4.11)

These correctors do not satisfy the Dirichlet condition on the boundary of the inclu-
sions ∂ω±ε and then generate errors on these boundaries.

• We now proceed as in the case of one inclusion when we lift uk and wk. We notice
that the mean value property is satisfied since

∫
∂B(0,1)

ak = 0, ∫
∂B(0,1)

u±j,k = 0 and ∫
∂B(0,1)

w±
j,k = 0.

Then Lemma 2.1 (point 3) can be applied. We set Ak, U
±
j,k and V ±

j,k the solution of
problem (2.4) with v = ak, v = u

±
j,k and v = w±

j,k respectively:

{
−∆Ak = 0 in R2/ω,
Ak = ak on ∂ω,

{
−∆U±

j,k = 0 in R2/ω,

U±
j,k = u

±
j,k on ∂ω,

{
−∆W ±

j,k = 0 in R2/ω,

W ±
j,k = w

±
j,k on ∂ω.

These functions have similar decomposition as in (2.8) and (2.9).

We then approximate uε by

uε(x) = u0(x) + u0(0)wε(x) hε +∑
k≥2

(b+k(x) + b
−
k(x)) hεε

αk

+∑
k≥1

(Ak(
x−x+ε
ε ) +Ak(

x−x−ε
ε )) hεε

(1−α)k
+ ∑
j+k>0

(U+
j,k(

x−x+ε
ε ) +U−

j,k(
x−x−ε
ε )) εj+αk

+ ∑
j+k>0

(W +
j,k(

x−x+ε
ε ) +W −

j,k(
x−x−ε
ε )) hεε

j+αk
+ r̃2

ε(x). (4.12)

4.4 Third terms

Let us study now the remainder r̃2
ε . It satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆r̃2
ε = 0 in Ωε,

r̃2
ε(x) = −∑

k≥1

(Ak(
x−x+ε
ε ) +Ak(

x−x−ε
ε )) hεε

(1−α)k

− ∑
j+k>0

(U+
j,k(

x−x+ε
ε ) +U−

j,k(
x−x−ε
ε )) εj+αk

− ∑
j+k>0

(W +
j,k(

x−x+ε
ε ) +W −

j,k(
x−x−ε
ε )) hεε

j+αk for x ∈ ∂Ω0,

r̃2
ε = −∑

k≥2

(b+k + b
−
k) hεε

αk on ∂ω±ε .

• Let us study the trace on ∂Ω0. According to their decomposition like in (2.8) and

(2.9), the traces TA±
k , TUj,k and TWj,k on ∂Ω0 of the functions Ak(

x−x±ε
ε ), U±

j,k(
x−x±ε
ε )

and W ±
j,k(

x−x±ε
ε ) satisfy

∥TA±
k∥H1/2(∂Ω0) = O(ε), ∥TU±

j,k∥H1/2(∂Ω0) = O(ε) and ∥TW±
j,k∥H1/2(∂Ω0) = O(ε).
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We now lift these functions in slow variables and define â±k , û±j,k and ŵ±
j,k as the

solution of
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆v̂ = 0 in Ω0,

v̂ = −
1

ε
TV on ∂Ω0,

with TV = TAk(
x−x±ε
ε ), TU±

j,k(
x−x±ε
ε ) and TV ±

j,k(
x−x±ε
ε ) respectively.

• To lift the boundary condition on ∂ω±ε , we proceed as in the first step of the con-
struction of the asymptotic expansion (see also the study of the remainder r̃3

ε in the
case of one inclusion). The function b±k have a value at 0 which is a priori not 0. We
can lift the boundary condition by considering the function

−∑
k≥2

(b+k(0) + b
−
k(0))wε(x) h

2
εε
αk.

We can read uε:

uε(x) = u0(x) + u0(0)wε(x) hε

+∑
k≥2

(b+k(x) + b
−
k(x)) hεε

αk
−∑
k≥2

(b+k(0) + b
−
k(0))wε(x) h

2
εε
αk

+∑
k≥1

(Ak(
x−x+ε
ε ) +Ak(

x−x−ε
ε )) hεε

(1−α)k
+∑
k≥2

(â+k−1(x) + â
−
k−1(x)) hεε

k−α(k−1)

+ ∑
j+k>0

(U+
j,k(

x−x+ε
ε ) +U−

j,k(
x−x−ε
ε )) εj+αk + ∑

j+k>1,j≥1

(û+j−1,k(x) + û
−
j−1,k(x)) ε

j+αk

+ ∑
j+k>0

(W +
j,k(

x−x+ε
ε ) +W −

j,k(
x−x−ε
ε )) hεε

j+αk
+ ∑
j+k>1,j≥1

(ŵ+
j−1,k(x) + ŵ

−
j−1,k(x)) hεε

j+αk

+ r̃3
ε(x).

4.5 Ansatz

We inject the remainder r̃3
ε in the equation and obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆r̃3
ε = 0 in Ωε,

r̃3
ε = ∑

k≥2

(b+k(0) + b
−
k(0))wε h

2
εε
αk on ∂Ω0,

r̃3
ε = −∑

k≥2

(â+k−1 + â
−
k−1) hεε

k−α(k−1)

− ∑
j+k>1,j≥2

(û+j−1,k + û
−
j−1,k) ε

j+αk
− ∑
j+k>1,j≥2

(ŵ+
j−1,k + ŵ

−
j−1,k) hεε

j+αk on ∂ω±ε .

We have now to reiterate the previous step with the new functions.
This justify the building of the ansatz

uε(x) = u0(x) + u0(0)wε(x) hε + ∑
i≥0,j≥1,k≥0

ci,j,kwε(x)h
i
εε
j+αk

+ ∑
i≥1,k≥2

βi,k(b
+
k(x) + b

−
k(x)) h

i
εε
αk
+ ∑
i≥1,k≥2

βi,k(b
+
k(0) + b

−
k(0))wε(x) h

i+1
ε εαk

+ ∑
i≥0,j≥0,k≥1

(Ai,j,k(
x−x+ε
ε ) +Ai,j,k(

x−x−ε
ε )) hiεε

j+k(1−α)
+ ∑
i≥0,j≥0,k≥1

âi,j,k(x) h
i
εε
j+1+k(1−α)

+ ∑
i≥0,j+k>0

(V +
i,j,k(

x−x+ε
ε ) + V −

i,j,k(
x−x−ε
ε ))hiεε

j+αk
+ ∑
i≥0,j+k>0

(v̂+i,j,k(x) + v̂
−
i,j,k(x))h

i
εε
j+1+αk.

To justify it, we proceed exactly as in Subsection 2.6.
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4.6 Numerical illustration

We use the same test as in the case of one inclusion. The solution uε of problem (4.1)
with ε = 1/1.57 ≃ 0.0585 and α = 0.8 is computed by a finite element method and given in
Figure 12(a). With these parameters, we have

hε ≃ −0.067 and
−1

(1 + α) ln ε
≃ 0.049.

The first remainder r0
ε = uε−u0 is given in Figure 12(b). The second term of the expansion

(a) uε (b) r0ε = uε − u0

Figure 12: First term approximation

u0(0)wε hε is computed in Figure 13. The effect of the two terms approximation is
illustrated in Figures 14 and 15.

(a) u0(0)w hε (b) −u0(0)w /((1 + α) ln ε)

Figure 13: Second term of the expansion

(a) u0 + u0(0)w hε (b) u0 − u0(0)w /((1 + α) ln ε)

Figure 14: Two term expansion
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(a) uε − u0 − u0(0)w hε (b) uε − u0 + u0(0)w / ln ε

Figure 15: Second order approximation

uε − u0 uε − u0 − u0(0)w hε uε − u0 + u0(0)w /((1 + α) ln ε)

L2-norm 1.0858 e-1 1.235 e-2 3.753 e-2

H1-norm 4.9162 e-1 6.715 e-2 1.7603 e-1

Table 3: Error norms
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