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Abstract

Ventcel boundary conditions are second order differential conditions that appear
in asymptotic models. Like Robin boundary conditions, they lead to wellposed varia-
tional problems under a sign condition of a coefficient. Nevertheless situations where
this condition is violated appeared in several works. The wellposedness of such prob-
lems was still open. This manuscript establishes, in the generic case, the existence and
uniqueness of the solution for the Ventcel boundary value problem without the sign
condition. Then, we consider perforated geometries and give conditions to remove the
genericity restriction.

Keywords: Ventcel boundary condition, pseudodifferential operators, asymptotic
analysis, shape dependency.

1 Introduction

In various situations, an artificial boundary condition is introduced to replace the effect of
a more complex geometry. We can mention the approximate boundary conditions in the
framework of thin layers [4, 10, 14] or rough boundaries [1, 16, 2]. For exterior problems,
absorbing (or transparent) conditions are another example, see [9, 13, 15].

These boundary conditions are generally simple differential conditions obtained from
an asymptotic analysis with respect to a characteristic length: the thickness of the layer,
the scale of the roughness, the diameter of the artificial boundary, for the previous three
examples respectively. A hierarchy of models is obtained, depending on the target order of
accuracy. Basically, we find Dirichlet or Neumann type condition at order 0, Robin/Fourier
at order 1 (interpreted as a flow across the boundary), and Ventcel at order 2 (understood
as a surface diffusion).

Precisely, let Ω be a smooth bounded domain of Rd with d ≥ 2, and α, β denote two
real numbers. The Ventcel boundary value problem for the Laplace operator reads{

−∆u = f in Ω,
∂nu+ αu+ β∆τu = 0 on ∂Ω.

(1.1)
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This boundary value problem has been intensively studied ever since the pioneering works
of Feller and Ventcel, [11, 12, 23, 22]. Under a natural assumption on the sign of β, a
variational approach is available. Define the bilinear form A and the linear form B by

A(u, v) =
∫

Ω
∇u∇v +

∫
∂Ω
αuv − β∇τu.∇τv and B(v) =

∫
Ω
fv,

on the variational space

H(Ω) =
{
u ∈ H1(Ω), u|∂Ω ∈ H1(∂Ω)

}
.

Endowed with the norm

‖u‖2H(Ω) = ‖u‖2H1(Ω) + ‖u‖2H1(∂Ω),

the space H(Ω) is Hilbertian. The weak formulation of problem (1.1) then reads

Find u ∈ H(Ω) such that for all v ∈ H(Ω), A(u, v) = B(v).

When α > 0 and β < 0, the bilinear form A is coercive and existence and uniqueness of
a solution to (1.1) follow from Lax-Milgram lemma. A large literature has been devoted to
that case of great importance: the condition β < 0 is generally satisfied in the applications.
For the specific case of the Laplace operator, we refer to [3] and [8].

In the case β > 0, the quadratic form u 7→ A(u, u) is neither positive, nor negative.
Then, existence and uniqueness of the solution are not ensured by Lax-Milgram lemma.
We precisely address this question in the present work. To the best of our knowledge, this
condition β > 0 appears for the first time in a recent work of D. Bresch and V. Milisic [6].

Such a boundary condition also appears when looking for a transparent boundary
condition for an exterior boundary value problem in planar linear elasticity. The goal is
to bound the infinite domain by a large “box” to make numerical approximations possible
(typically a large ball of radius R). The solution of the problem set in this bounded domain
has to be close to the original solution ; the convergence is expected as R goes to infinity.
Precisely, in [5], one considers the case of a linear elastic material in the exterior of a
bounded domain on the boundary of which the displacement is prescribed. In that case,
cancelling the leading singular parts at infinity of the solution leads to the approximate
boundary condition

σ(~u)~n+
1
R

E

1 + ν

 1
1− ν

0

0 1

 ~u+
1
R

E(1− ν)
2(1 + ν)(1− 2ν)

[
0 0
0 1

]
∆τ~u = 0, (1.2)

set on the circle of radius R. In the former equation, ~u denotes the displacement decom-
posed into its radial and tangential components and σ stands for the stress tensor. The
physical parameters E and ν are such that the quantity in front of the Laplace-Beltrami
operator is nonnegative: Young’s modulus E is nonnegative and Poisson’s coefficient ν
takes values in the interval (−1, 0.5).

In this manuscript, we study the case of the Laplace operator as a model problem. In
Section 2, we present a study of existence and uniqueness of solutions to Ventcel boundary
value problem without sign condition. We start by two simple examples where explicit
computations can be done. Then, the general case is treated thanks to reformulation of
the boundary value problem (1.1) into a nonlocal equation on the boundary ∂Ω. This
idea is by now standard in the study of boundary problems (see e.g. [7]). In our case,
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pseudodifferential and spectral techniques lead to existence and uniqueness results apart
from exceptional cases. This study is valid in any dimension of space.

Section 3 refers to the framework of transparent boundary conditions for an exterior
problem in the plane. As mentioned above, in the Laplace case, the coefficient β generally
has the right sign β < 0, but we consider here β > 0. The geometric setting is the
following: let ω be a smooth bounded domain in R2 and we introduce a larger domain Ω
such that ω ⊂ Ω. We study the model Ventcel boundary value problem

−∆u = 0 in Ω \ ω,
∂nu+ αu+ β∆τu = 0 on ∂Ω,

u = g on ∂ω,
(1.3)

where g is a fixed right hand side in H1/2(∂ω) and β > 0. In a first approach, one can
choose the bounding domain Ω as a ball centered in ω. The general theory presented in
Section 2 applies but cannot answer the question: for a given Ω, is boundary value problem
(1.3) wellposed ? Therefore, we address and give positive answers to the two following
questions:

Q1: Is there some continuity with respect to the shape ? Precisely, if (1.3) has a unique
solution, does it remain the case when ω is slightly modified ?

Q2: Does (1.3) has a unique solution if Ω is a ball of radius R chosen large enough ?

2 About existence and uniqueness of solution

We focus in this section on the Ventcel boundary value problem for Laplace operator such
as {

−∆u = f in Ω,
∂nu+ αu+ β∆τu = 0 on ∂Ω

under the unusual condition β > 0. We address the question of existence of a solution
and, if this problem admits solutions, of the uniqueness.

2.1 Analytic examples

2.1.1 Laplace Ventcel problem in a disk

Before studying the general case, we first consider what happens in the unit disk in R2:{
−∆u = 0 in B(0, 1),

∂nu + α u + β ∂2
θθu = f on ∂B(0, 1).

(2.1)

We seek the solution under the form

u(r, θ) = a0 +
∞∑
n=1

(an cosnθ + bn sinnθ) rn,

thanks to Poisson kernel. We obtain the totally decoupled equations

an(−βn2 + n+ α) = an(f) and bn(−βn2 + n+ α) = bn(f),

where an(f) and bn(f) denote the Fourier coefficients of the boundary data f . The problem
admits a unique solution as soon as

α /∈ {αn = βn2 − n, n ∈ N}. (2.2)
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2.1.2 Laplace Dirichlet-Ventcel problem in a ring

Now, we consider a situation with two boundaries (having in mind that the outer one may
play the role of an artificial boundary). Let us consider a concentric annulus Ω of inner
radius Ri and outer radius Re > Ri and a distribution g ∈ H−1/2(∂BRi). We consider the
model boundary value problem

−∆u = 0 in Ω,
∂nu = g on ∂BRi ,

∂nu +
α

Re
u +

β

Re
∂2
θθu = 0 on ∂BRe .

(2.3)

An harmonic function u in Ω can be written as a Laurent’s series:

u(r, θ) = d+ c ln r +
∞∑
n=1

(
anr

n + a−nr
−n) cosnθ +

(
bnr

n + b−nr
−n) sinnθ.

Inserting the previous expression into problem (2.3) leads to the following linear systems
for the coefficients an, a−n, and bn, b−n:[

Rn−1
i n −R−n−1

i n
Rn−1
e

(
α+ n− βn2

)
R−n−1
e

(
α− n− βn2

)] [ an
a−n

]
=
[
−an(g)

0

]
, (2.4)

[
Rn−1
i n −R−n−1

i n
Rn−1
e

(
α+ n− βn2

)
R−n−1
e

(
α− n− βn2

)] [ bn
b−n

]
=
[
−bn(g)

0

]
. (2.5)

Here, an(g) and bn(g) denote the Fourier coefficients of the boundary data g. These linear
systems admit a unique solution if

nR−n−1
e Rn−1

i

(
α− n− βn2

)
+ nRn−1

e R−n−1
i

(
α+ n− βn2

)
6= 0,

i.e. if

α /∈
{
αn = βn2 − n+

2n
1 + (Re/Ri)

2n , n ∈ N
}
. (2.6)

An other point of view is the following : for fixed α and β, the forbidden values of the
radii Ri and Re are characterized by the existence of n such that(

Re

Ri

)2n

= −
α− n− βn2

α+ n− βn2
= −1 +

2n
α+ n− βn2

.

Since Re/Ri > 1 by definition, a necessary condition on n is

−1 +
2n

α+ n− βn2
> 1 ⇔

n

α+ n− βn2
> 1 ⇔

{
α+ n > βn2,

α < βn2.

Thus, the forbidden values γn for the ratio Re/Ri are in finite number. If

Re
Ri

/∈

γn =

(
−
α− n− βn2

α+ n− βn2

)1/2n

for
√
α

β
< n <

1 +
√

1 + 4αβ
2β

 , (2.7)

then the boundary value problem (2.3) is wellposed with a unique solution corresponding
to the coefficients an, a−n and bn, b−n satisfying (2.4)-(2.5).
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Remark 2.1 Having in mind either the application to transparent boundary conditions
(Re → ∞), or the case of perforated domains (Ri → 0, see Section 3.2 here), we check
that condition (2.7) is satisfied if Re/Ri is large enough. Note also that in the limiting
case Re/Ri = +∞ we recover in (2.6) the forbidden values of αn corresponding to the case
of a disk appearing in (2.2).

Remark 2.2 In the case of Dirichlet boundary conditions on the inner boundary, we
consider a distribution f ∈ H1/2(∂BRi) and we have the boundary value problem

−∆u = 0 in Ω,
u = f on ∂BRi ,

∂nu +
α

Re
u +

β

Re
∂2
θθu = 0 on ∂BRe .

(2.8)

Similar computations lead to the following conclusion: there exists a unique solution in
the case when

α /∈
{
αn = βn2 − n+

2n
1− (Re/Ri)

2n n ∈ N
}
, (2.9)

and an infinite number of values γn are forbidden for the ratio Re/Ri. These values equal

γn =

(
βn2 + n− α
βn2 − n− α

)1/2n

with n ∈ N. (2.10)

Nevertheless, it is easy to check that γn → 1 at infinity and that the forbidden ratios
remain bounded. Hence the boundary value problem (2.8) is wellposed when Re/Ri is large
enough.

2.2 The general case

In this section, we consider Ω a bounded smooth domain of Rd (at least C3), with d ≥ 2.
For f ∈ H1(Ω) and g ∈ L2(∂Ω), and for α, β > 0, we consider:{

−∆u = f in Ω,
∂nu+ αu+ β∆τu = g on ∂Ω.

(2.11)

We shall see that the situation is similar to the particular example studied in Section 2.1,
i.e. problem (2.11) is wellposed except for a countable set of values for the parameters.

2.2.1 An equivalent nonlocal equation

The leading idea is to look at this boundary value problem as a nonlocal equation set on
the boundary. Let us obtain this equivalent problem. First, we remove the right hand side
in the partial differential equation by a standard lift: let F ∈ H1

0(Ω) satisfying −∆F = f
in Ω. The function W = u− F solves the boundary value problem{

−∆W = 0 in Ω,
∂nW + αW + β∆τW = ϕ on ∂Ω,

(2.12)

where ϕ = g + ∂nF + αF + β∆τF on ∂Ω. Note that by elliptic regularity of F the trace
ϕ is in fact in H1/2(∂Ω). Then, we introduce the Dirichlet-to-Neumann map Λ associated
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to the Laplace operator on Ω: this operator is defined from H1/2(∂Ω) onto H−1/2(∂Ω) by
Λ(ψ) = ∂nU where U is the solution of the boundary value problem{

−∆U = 0 in Ω,
U = ψ on ∂Ω.

The introduction of the Dirichlet-to-Neumann map allows us to rewrite (2.12) as the
surface equation

β∆τw + Λw + αw = ϕ on ∂Ω. (2.13)

The new unknown w in (2.13) is the trace of W on ∂Ω. It is easy to check that (2.13)
and (2.12) are equivalent in the sense that if w solves (2.13), then its harmonic extension
W in Ω solves (2.12). Conversely, if W solves (2.12), then its trace on Ω solves (2.13).
The computations made in the examples studied in Section 2.1 can be performed since the
Laplace-Beltrami operator and the Dirichlet-to-Neumann are both diagonal on the Fourier
basis when the domain is a disk or a centered annulus. For a general domain Ω, there
is no particular reason for the Laplace-Beltrami operator and the Dirichlet-to-Neumann
map to have a common diagonal basis.

2.2.2 On the resolubility of the nonlocal equation

In order to get results for the general case we will use some properties of the Dirichlet-to-
Neumann map. To that end, we use the theory of pseudodifferential operators. We know
that the domain ∂Ω is smooth and compact, so the general theory of pseudodifferential
operators can be applied here.

First recall some standard definitions. For N ∈ N∗, we introduce symbols which are
functions defined on the cotangent bundle T ∗(O) where O is an open subset of RN : for
m ∈ R, this is the set denoted by Sm(O) of functions a of (x, ξ) ∈ T ∗(O) −→ C, which
are C∞ on T ∗(O) except perhaps on {ξ = 0}, and such that∣∣∣∂ix∂jξa(x, ξ)

∣∣∣ ≤ Ci,j(1 + |ξ|2)m/2−|j|/2, ∀i, j ∈ NN , (x, ξ) ∈ T ∗(O)/{ξ = 0}.

In the definition m is called the order, and a symbol is called elliptic if there exist C ′ and
C ′′ > 0 such that we have in addition

|a(x, ξ)| ≥ C ′(1 + |ξ|2)m/2 for |ξ| ≥ C ′′.

To a symbol in Sm(O) we associate a (pseudo-)differential operator aw thanks to the
following formula

awu(x) = (2π)−N
∫∫

ei(x−y).ξa

(
x+ y

2
, ξ

)
u(y)dydξ for u ∈ C∞0 (O),

defined as an oscillatory integral for high orders.
By extension, we say that an operator is of order m and/or elliptic if its symbol has

this property. We choose here the so-called Weyl quantization of symbols, for which real
elliptic semi-bounded symbols give rise to selfadjoint extensions on L2 (in fact formally
selfadjoint on L2 and closable when initially defined on C∞0 , see e.g. [20]).

We won’t here recall the definitions of symbols and pseudodifferential operators on a
smooth manifold. The smooth manifold in question is ∂Ω, which is locally diffeomorphic
to Rd−1. Let us just point out the fact that for m ∈ R, the corresponding space of symbols
Sm(∂Ω) is invariantly defined modulo Sm−1(∂Ω) thanks to local charts and according to
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the definitions in Rd−1. The previous notions of order and ellipticity naturally extend to
operators on a manifold.

One of the main property of (pseudo-)differential operators of order m is the following
one: they map Hs(∂Ω) to Hs−m(∂Ω) for any s ∈ R. Recall that they can a priori be
defined without ambiguity on the space S ′(∂Ω) of temperate distributions by duality, and
that ∂Ω is compact. The following result is a summary of some basic spectral results we
shall need later. We do not give the proof here and refer to standard books about the
spectral theory of pseudodifferential operators (e.g. [21], [19] or [20]):

Proposition 2.3 Let P be an elliptic semi-bounded and formally selfadjoint pseudodif-
ferential operator of order m > 0 on ∂Ω. Then

1. P is closable and has a compact resolvent as an unbounded operator on Hs(∂Ω);

2. P maps Hs(∂Ω) to Hs−m(∂Ω) for any s ∈ R;

3. Its spectrum (as an unbounded operator on Hs(∂Ω)) is independent of s, and made
of a series of real eigenvalues growing to infinity;

4. The associated eigenspaces are finite dimensional and the eigenfunctions belong to
C∞(∂Ω);

5. P is Fredholm of index 0.

We just give some comments on the proof of the previous proposition, without giving
details. Point 1. and 2. are related to the compact embedding Hs(∂Ω) ↪→ Hs−m(∂Ω) and
to the existence of a pseudodifferential inverse (modulo regularizing operators) of P , called
a parametrix, which symbol belongs to S−m(∂Ω). Point 3. and 4. are consequence of the
L2(∂Ω) case by elliptic regularity since any eigenfunction in Hs(∂Ω) is an eigenfunction in
L2(∂Ω) and is C∞(∂Ω). The L2-case follows from the fact that P has compact resolvent
and is selfadjoint in L2(∂Ω). Point 5. is a consequence of the existence of a parametrix,
the fact that the symbol is real and the compactness of the resolvent (see e.g. [21, Chap.
2]).

We quote now without proof standard results about the Laplace-Beltrami operator
and the Dirichlet-to-Neumann operator, that can be found for example in [20].

Proposition 2.4 We have

1. The Laplace-Beltrami operator −∆τ on ∂Ω is a semi-bounded elliptic pseudodiffe-
rential operator of real symbol of order 2;

2. The Dirichlet-to-Neumann operator Λ is an elliptic pseudodifferential operator of real
symbol of order 1.

Now we are able to prove a result confirming that in the general case, things look like
as in the particular case of the annulus studied in the first part of this section, at least
concerning the generic existence and uniqueness of solutions. Recall that the aim is to
study equation (2.13) that we rewrite now:

β∆τw + Λw + αw = ϕ on ∂Ω. (2.14)
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Theorem 2.5 Operator Pα,β = −β∆τ − Λ − αId is an elliptic selfadjoint semi-bounded
from below pseudodifferential operator of order 2.

Besides, for fixed β > 0, there exists series (αn)n∈N growing to infinity such that for
any ϕ ∈ Hs(∂Ω) with s ∈ R, we have

1. If α 6∈ {αn}, then equation −Pα,βw = ϕ admits a unique solution in S ′(∂Ω) which,
in addition, belongs to Hs+2(∂Ω);

2. If α ∈ {αn}, then there is either no solution or a complete affine finite dimensional
space of Hs+2(∂Ω) solutions.

Proof of Theorem 2.5: The first assertion is just a consequence of the fact that
the symbol of −β∆τ − Λ − αId is real and elliptic of order 2. In particular it has the
same symbol in S2(∂Ω)/S1(∂Ω) than −β∆τ since Λ is of order 1. We can therefore apply
Proposition 2.3 to Pα,β, and also to

Pβ
def= Pα,β + αId = −β∆τ − Λ.

In particular we can introduce the series (αn)n∈N of eigenvalues of Pβ, going to infinity
with n from point 3. of Proposition 2.3. We get in particular that for any α 6∈ {αn},
Pβ−αId is invertible from Hs+2(∂Ω) onto Hs(∂Ω). This gives assertion 1. of the theorem.
Point 2. is just a consequence of the Fredholm property since if α ∈ {αn} then Pα,β has a
finite dimensional kernel and its image is of finite codimension. The proof is complete.

Remark 2.6 The main feature of the previous study is of course that equation (2.14) is
generically solvable for fixed β, in the following sense: for all values of α > 0 avoiding the
countable set {αn} there exists a unique solution. This set of values {αn} was explicitly
computed in the case of a disk (2.2) and of a ring with either Neumann (2.6) or Dirichlet
(2.8) conditions.

3 Perforated domains

3.1 Answer to Q1: Shape sensitivity analysis

We fix d0 > 0 and set Ωd0 the subset of Ω made of points x with d(x, ∂Ω) > d0. We consider
the case where the subdomain ω is included in Ωd0 . We follow the boundary variation
approach of F. Murat and J. Simon: for a given vector field h ∈ C1(Rd,Rd) with support
in Ωd0 and any nonnegative real t, we set Φt : Rd → Rd defined by Φt(x) = x+ th(x). For
t small enough, Φt is a diffeomorphism from Rd into itself.

In this section, we define the Dirichlet-to-Neumann map Λω, seen from H1/2(∂Ω) onto
H−1/2(∂Ω), adapted to our problem by Λω(ϕ) = ∂nu where u denotes the solution of

−∆u = 0 in Ω \ ω,
u = ϕ on ∂Ω,
u = 0 on ∂ω.

(3.1)

Our aim in this section is to prove the following result.

Theorem 3.1 In the previously described geometrical setting, there are real positive num-
bers t0 and C such that for all t ≤ t0

‖ΛΦt(ω) − Λω‖L(H1/2(∂Ω),H−1/2(∂Ω)) ≤ C t ‖h‖W1,∞(Ω\ω). (3.2)
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Proof of Theorem 3.1: There exists a bounded extension operator E from H1/2(∂Ω)
into H1(Ω) such that the extension E(ϕ) of ϕ ∈ H1/2(∂Ω) is supported in Ω \ Ωd0 . Pre-
cisely, for all ϕ ∈ H1/2(∂Ω), we have E(ϕ)(x) = 0 for any x ∈ Ωd0 and

‖E(ϕ)‖H1(Ω) ≤ C(Ω, d0)‖ϕ‖H1/2(∂Ω).

Let us now fix ϕ ∈ H1/2(∂Ω). In order to deal with homogeneous boundary conditions,
we set w = u− E(ϕ) so that w solves

−∆w = ∆E(ϕ) in Ω \ ω,
w = 0 on ∂Ω,
w = 0 on ∂ω.

This leads to the weak formulation: find w in H1
0(Ω \ ω) such that

∀v ∈ H1
0(Ω \ ω),

∫
Ω\ω
∇w.∇v =

∫
Ω\ω

∆E(ϕ)v. (3.3)

Let wt the solution of this problem set on the perturbed domain Ω \ ωt with ωt = Φt(ω).
By definition, wt belongs to H1

0(Ω \ ωt) and satisfies

∀vt ∈ H1
0(Ω \ ωt),

∫
Ω\ωt

∇wt.∇vt =
∫

Ω\ωt

∆E(ϕ)vt.

We transport this integral equation on the fixed domain setting wt = wt◦Φt and vt = vt◦Φt.
The chain rule gives (∇vt) ◦ Φt = (DΦ−1

t )T ∇vt. Therefore by change of variables, the
previous weak formulation can be rewritten under the form

∀vt ∈ H1
0(Ω \ ω),

∫
Ω\ω

A(t, x)∇wt.∇vt =
∫

Ω\ω
∆E(ϕ) ◦ Φtv

tJ(t, x),

where J(t, x) = detDΦt(x) is the Jacobian and A(t, x) = J(t, x)(DΦt(x)−1)(DΦt(x)−1)T .
The assumptions made on the extension operator E ensure that the supports of h and
E(ϕ) do not intersect so that the right hand side simply reads∫

Ω\ω
∆E(ϕ) ◦ Φtv

tJ(t, x) =
∫

Ω\ω
∆E(ϕ)vt.

Hence, the transported formulation is

∀vt ∈ H1
0(Ω \ ω),

∫
Ω\ω

A(t, x)∇wt.∇vt =
∫

Ω\ω
∆E(ϕ)vt. (3.4)

Now, since A is C1 with respect to t and continuous with respect to x in Ω, there exists t0
such that for all t ∈ [0, t0],

1
2
|v|2 < v.A(t, x)v < 2|v|2 and ‖A(t, .)− Id‖L∞(Ω\ω) ≤ c1‖h‖W1,∞(Ω\ω) t. (3.5)

By classical a priori estimates, we obtain the existence of a constant c > 0 depending only
on the domains Ω and ω such that

‖wt‖H1(Ω\ω) ≤ c‖∆E(ϕ)‖H−1(Ω\ω) ≤ c‖E(ϕ)‖H1(Ω\ω) ≤ c‖ϕ‖H1/2(∂Ω). (3.6)
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We form the difference between (3.3) and (3.4) to get

∀v ∈ H1
0(Ω \ ω),

∫
Ω\ω

(
A(t, x)∇wt −∇w

)
.∇v = 0.

Therefore, A(t, x)∇wt −∇w = 0 in L2(Ω \ ω). But the decomposition

A(t, x)∇wt −∇w = [A(t, x)− Id]∇wt +∇wt −∇w

provides
‖∇wt −∇w‖L2(Ω\ω) ≤ c2‖A(t, .)− Id‖L∞(Ω\ω)‖∇wt‖L2(Ω\ω).

Applying (3.6) and (3.5), we get

‖wt − w‖H1(Ω\ω) ≤ c3‖h‖W1,∞(Ω\ω) t ‖ϕ‖H1/2(∂Ω).

By restriction to Ω\Ωd0 , we also have ‖wt−w‖H1(Ω\Ωd0
) ≤ Ct‖ϕ‖H1/2(∂Ω). On this tubular

neighborhood of ∂Ω, h = 0, then Φt = Id and wt = wt. Now, for any ψ ∈ H1/2(∂Ω),
Green’s formula yields

〈ψ, ∂nw − ∂nwt〉H1/2(∂Ω)×H−1/2(∂Ω) =
∫

Ω\ω
(∆w −∆wt)E(ψ) + (∇w −∇wt)∇E(ψ).

Since ∆w = −∆E(ϕ) = ∆wt by construction, we obtain the estimate∣∣∣〈ψ, ∂nw − ∂nwt〉H1/2(∂Ω)×H−1/2(∂Ω)

∣∣∣ ≤ ‖∇wt −∇w‖L2(Ω\ω)‖∇E(ψ)‖L2(Ω\ω)

≤ C‖h‖W1,∞(Ω\ω) t ‖ϕ‖H1/2(∂Ω)‖ψ‖H1/2(∂Ω).

The proof is complete.

3.2 Answer to Q2: asymptotic analysis

The boundary value problems we have in mind for the applications are invariant by di-
latation: see the scaling included in the boundary condition of (1.2). Therefore, instead
of working with a large domain surrounding a fixed domain, we will work in this section
with a fixed domain and a small inclusion inside. For consistency with the motivation of
(1.2), we restrict ourselves to dimension 2 and the outer domain can be thought as a disk.

Let Ω and ω be two bounded domains in R2. We fix x0 in Ω; the set x0 +εω is denoted
by ωε(x0). For ε small enough, ωε(x0) ⊂ Ω and we set Ωε = Ω \ ωε(x0). For a subdomain
D of Ω (D will takes the values ∅, ωε(x0)), we consider the differential operator LD on
H1(∂Ω) with values in H−1(∂Ω) defined by

LD(u) = αu+ ΛD(u) + β∆τu, (3.7)

where ΛD is the Dirichlet-to-Neumann map defined as ΛD(ϕ) = ∂nU and U denotes the
solution of 

−∆U = 0 in Ω \D,
U = ϕ on ∂Ω,
U = 0 on ∂D.

We address the question of the invertibility of Lωε(x0). Our first result is the following.

Theorem 3.2 If L∅ is invertible, then there is ε0 > 0 such that for all ε ∈ (0, ε0), the
operator Lωε(x0) is invertible.
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As a direct consequence of this theorem and of the study of Section 2.1, we obtain the
following statement, related to the fact that L∅ is generically invertible:

Corollary 3.3 Assume that Ω is the unit disk and that conditions (2.2) hold, or more
generally that Ω is smooth and compact and that conditions of point 1. of Theorem 2.5
hold. Then there is ε0 > 0 such that for all ε ∈ (0, ε0), the operator Lωε(x0) is invertible,
and the norm of the inverse is uniformly bounded with respect to ε.

In the case of the disk we therefore have the following : for any bounded open ω containing
0 and any α, β 6= 0, the boundary value problem

−∆u = 0 in B(0, R) \ ω,
∂nu+ α

Ru+ β
R∆τu = 0 on ∂B(0, R),

u = g on ∂ω,

(3.8)

where g is a fixed right hand side in H1/2(∂ω), is wellposed if R is large enough.

Proof of Theorem 3.2: The first step is to prove that

‖Λωε(x0) − Λ∅‖L(H1/2(∂Ω),H−1/2(∂Ω)) ≤
C

| ln ε|
. (3.9)

To that end, fix ϕ ∈ H1/2(∂Ω) and let u0 and uε be solutions of

{
−∆u0 = 0 in Ω,

u0 = ϕ on ∂Ω;
and


−∆uε = 0 in Ωε,

uε = ϕ on ∂Ω,
uε = 0 on ∂ωε(x0).

Let d denote the distance to x0 and w the solution of{
−∆w = 0 in Ω,

w = ln d on ∂Ω.

Following the ideas of Maz′ya, Nazarov and Plamenevskij exposed in [18], we formulate
the ansatz

uε = u0 + aε(ln d− w) + r, with aε = O(1) and r = O(aε). (3.10)

Considering the traces of r on both ∂Ω and ∂ωε(x0), we get

on ∂Ω : −r = 0,
on ∂ωε(x0) : −r = [u0(x0) + O(1)] + aε [ln ε− w(x0) +O(1)] ,

whence the expression for aε:

aε =
u0(x0)

w(x0)− ln ε
. (3.11)

Applying the mean value theorem to u0 in a small ball B around x0, contained in Ω
(choosing ε small enough, we also assume ωε(x0) ⊂ B, see (3.13) below), and the standard
a priori estimate for u0, we obtain

|u0(x0)| ≤ |B|
1/2

2π
‖u0‖L2(B) ≤ c1‖ϕ‖H1/2(∂Ω).

Combined with equation (3.11), we immediately get

aε ≤
c2

| ln ε|
‖ϕ‖H1/2(∂Ω). (3.12)
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To prove (3.9), we need to estimate the H1-norm of uε − u0 over Ωε. Using the expres-
sion (3.10), it is enough to show r = O(aε) (even if a sharper estimate may be obtained
to validate (3.10) as an asymptotic formula).

We first check that r is an harmonic function in Ωε vanishing on ∂Ω. The problem
then reduces to compute the norm of its trace on ∂ωε(x0). Setting x = x0 + εX with
X ∈ ∂ω, this trace takes the form

−r(x) = [u0(x)− u0(x0)] + aε[ln |X| − w(x) + w(x0)].

For the first part of r, we use an L∞-estimate in the ball B for the harmonic function u0:

‖u0 − u0(x0)‖H1/2(∂ωε(x0)) ≤ c3ε‖∇u0‖L∞(B). (3.13)

Using the mean value theorem for ∇u0 we get

‖∇u0‖L∞(B) ≤ c4‖∇u0‖L2(Ω) ≤ c5‖ϕ‖H1/2(∂Ω).

We combine the previous estimates with (3.12):

‖r‖H1/2(∂ωε(x0)) ≤
(
c3c5ε+

c2

| ln ε|

)
‖ϕ‖H1/2(∂Ω) ≤

c6

| ln ε|
‖ϕ‖H1/2(∂Ω) = O(aε). (3.14)

This achieves to prove the estimate

‖uε − u0‖H1(Ωε) ≤
C

| ln ε|
‖ϕ‖H1/2(∂Ω).

By a standard a priori estimate, this yields (3.9).

A similar estimate is easily obtained for Lωε(x0) − L∅ by linearity. To conclude, we
write

Lωε(x0) = L∅
[
I + L−1

∅ (Lωε(x0) − L∅)
]
.

Then, for ε small enough, the operator Lωε(x0) is invertible and its inverse can be written
in terms of the Neumann’s series

L−1
ωε(x0) =

∞∑
n=0

(I − L−1
∅ Lωε(x0))

nL−1
∅ .

This expression gives a fortiori a unform bound for the norm of the inverse.

Remark 3.4 Theorem 3.2 remains valid in higher dimensions. Nethertheless, the proof
has to be adapted: the right hand side of (3.9) has to be modified. The upper-bound in
ε depends on the dimension and is closely linked to the fundamental solution of Laplace
equation. Namely, in dimension 3, the logarithmic potential is replaced by 1/|x| so that
the bound in (3.9) becomes Cε.

3.3 Some numerical experiments

The previous result states that, for R large enough, problem (3.8) has a unique solution.
From a practical point of view, it would be useful to quantify the expression “large enough”.
In the particular example of a ring, see Section 2.1.2, this can be done thanks to analytic
computations, see formula (2.10). However, this can not be achieved in the general case
but numerical simulations can help to have an idea on this point.
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We denote by LR the operator associated to problem (3.8). In Figures 2 and 3, we plot
the norm of the inverse of LR (actually the infinity norm of the corresponding discrete
matrix) with respect to R. In the case of a ring, we naturally recover the forbidden radii –
in red dashed lines on the figure – characterized by (2.10). Figure 3 shows a more general
situation ; the geometries are represented in Figure 1.

All results shown have been obtained with a high degree finite element method imple-
mented with the library Mélina, see [17], with the following values

α = β = 1.

Note that the most difficult computations concern very thin rings, which explain that the
forbidden ratios close to 1 are not well captured by the simulations. However only large
R have to be considered in the absorbing conditions framework (the larger R, the better
the approximation). Besides, the computations show that the radius R has not to be very
large to get a wellposed problem. For large R, Figure 4 does not show any forbidden radii
beyond R = 1.1. The drift in R2 only reflects the asymptotic behavior of the inverse L−1

R .

Figure 1: The geometries and meshes used (R = 2).

Thanks. This work has been supported by the ANR (Agence Nationale de la Recherche),
project macadam number JCJC06-139561.
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