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Abstract

We describe the asymptotic of the steady states of the out-of equilibrium Schrödinger-
Poisson system, in the regime of quantum wells in a semiclassical island. After establishing
uniform estimates on the nonlinearity, we show that the nonlinear steady states lie asymptoti-
cally in a finite-dimensional subspace of functions and that the involved spectral quantities are
reduced to a finite number of so-called asymptotic resonant energies. The asymptotic finite
dimensional nonlinear system is written in a general setting with only a partial information on
its coefficients. After this first part, a complete derivation of the asymptotic nonlinear system
will be done for some specific cases in a forthcoming article [BNP2].
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1 Introduction

1.1 Motivation

This analysis is motivated by the study of quantum electronic transport in semiconductor het-
erostructures, like resonant tunneling diodes. It is modelled on the basis of a mean field Hartree
type description of the electrostatic interaction of particles, known as the Schrödinger-Poisson
system. The modelling of resonant tunneling diodes includes the following characteristic features:

1. Steady electronic currents are observed. This can be achieved only within the modelling of
out-of-equilibrium quantum systems.

2. The I−V curves of such devices present negative differential resistance. We are in a far from
equilibrium regime, for which the linear response theory is questionnable.

3. A very rich nonlinear phenomenology can be observed in such devices, with hysteresis phe-
nomena (see [JLPS], [PrSj]) and even steadily oscillating currents (see [KKetal]).

4. The general wisdom about these systems says that the nonlinear effects are governed by little
number of resonant states.

This article is a part of a larger program, namely the understanding of the nonlinear dynam-
ics of these out-of-equilibrium quantum systems. One issue is to prove rigorously that a simple
Schrödinger-Poisson system in a far from equilibrium regime, that is when the steady states show a
strong anisotropy in the momentum variable at the quantum scale, can lead to multiple solutions to
the nonlinear stationary problem with non trivial bifurcation diagrams. A first check was provided
by Jona-Lasinio, Presilla and Sjöstrand in [JLPS], [PrSj]. A second issue which goes definitely
further than those previous works is the explanation of the production of complex bifurcation di-
agrams in terms of the geometry of the potential, which requires an accurate analysis of tunnel
effects.
The present work was achieved on the basis of former works by the second author and of the
ph-D thesis of the third author. This analysis lead the three authors to the introduction of some
reduced model which happens to be very efficient in the numerical simulation of realistic devices
(see [BNP]). Only the first part of the mathematical analysis is provided here and complements
will be presented in a forthcoming article [BNP2].
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The points 1) and 2) above are now well understood. A presentation can be done within
a Landauer-Büttiker approach [BuLa], [Lan], [ChVi] and [BDM] which involves the scattering
states. This modelling allows a strong anisotropy of the occupation number with respect to the
momentum and it definitely differs from all the approach where the density matrix looks like a
function of the Hamiltonian [BKNR1], [BKNR2]. This latter modelling (and probably the entropy
maximizing approach of [DMR] as well) better suits the situation of little variations from the ther-
modynamical equilibrium, ends with corrected drift-diffusion models and cannot produce multiple
solutions due to monotonicity properties. It should be noted that all these modelling consider the
reservoirs as fixed objects which only provide some kind of inhomogeneous boundary conditions,
in comparison with the theoretical analysis of non equilibrium steady states widely studied within
the framework of the von Neumann algebraic approach of statistical physics and which concerns
the evolution of the full system, small system plus reservoirs (see for example [JaPi]).
For our model, a complete general functional framework which catches the proper nonlinear steady
states and provides a well defined nonlinear dynamics was provided in [Ni3], after using a phase-
space approach with some specific tools of the time dependent approach in scattering theory.

Besides the building of a proper functional framework, those models became even more inter-
esting after the articles of Jona-Lasinio, Presilla and Sjöstrand [JLPS], [PrSj] where convincing
heuristic arguments and calculations on those simple nonlinear systems were provided as an expla-
nation for observed hysteresis phenomena, in agreement with point 3). Then the question arose
whether a complete explanation from an asymptotic analysis on the Schrödinger-Poisson system
or whether new nonlinear phenomena could be predicted in some more complex geometric setting
like a multiple wells problem. For instance, no real explanation is provided in [JLPS], [PrSj] for
the presence or the absence of hysteresis phenomena according to the geometry of the barrier po-
tentials. Our reduced model (see [NiPa], [BNP] and forthcoming article [BNP2]) provides such an
explanation, with additional results.

Finally point 4) provides the relevant asymptotic. Resonant states are effective when the imag-
inary part of resonances are small. Such a behavior can be achieved when the potential barrier are
high or large and it is well formulated within a semiclassical asymptotic (small parameter h → 0,
imaginary part of resonances of order O(e−c/h)). Nevertheless a full semiclassical asymptotic with
O(1) large wells would lead to a large number of resonant states within a fixed energy interval.
Point 4) can be fulfilled by considering quantum wells in a semiclassical island. The introduction
of the small parameter h > 0 as a rescaled Fermi-length as well as a full justification of this asymp-
totic regime within the presentation of realistic devices has been done in [BNP].

From a mathematical point of view, this problem presents two specific difficulties.

• A non usual multiple wells problem has to be considered: it is not exactly a semiclassical
problem and it is nonlinear.

• The introduction of resonances requires the implementation of a complex deformation and
the study of non self-adjoint operators.

Fortunately, the one-dimensional framework provides some simplifications or accurate estimates
which allow a complete analysis. First a uniform control on the nonlinear potential with the help
of some monotony principles can be obtained in W 1,∞. Hence the nonlinear potential can be
replaced by an h-dependent potential, with uniform bounds in W 1,∞. Some standard arguments
of the semiclassical analysis for resonances (see [HeSj1]), for multiple wells (see [HeSj2], [HeSj3]),
or for the Breit-Wigner formula (see [GeMa]) have to be adapted. Again the weak regularity is
partly compensated by the fact that we work on a 1D problem. This article is almost self-contained
in the sense that the proofs which are exactly the same as in the usual semiclassical setting were
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not reproduced. Precise references are given for these technical parts. Nevertheless some details
have to be checked in order to ensure that these techniques can be adapted with the quantum wells
and the limited regularity of the nonlinear semiclassical potential. The 1D Schrödinger-Poisson
system studied here admits natural a priori regularity estimates, uniform with respect to the small
parameter h → 0. This leads asymptotically to a perfect splitting of the quantum and classical
scales.

1.2 Quantum framework

In the whole study, the framework is the following: h > 0 denotes the semiclassical parameter
obtained in realistic cases as a rescaled Fermi length (see [BNP]) and I := [a, b] is a given compact
interval of the real line. Let P h

B the Schrödinger operator on the real line:

P h
B := −h2 d

2

dx2
+ B, B ≡ BI + B∞, (1.1)

where

BI(x) := −B
x− a

b− a
1[a,b](x), B∞(x) := −B · 1[b,+∞)(x), (1.2)

and B is a non negative constant. The potential B simply describes the applied bias. The reference
Hamiltonian is the self-adjoint realization in the Hilbert space L2(R) of P h

B :

D(Hh
B) = H2(R), ∀u ∈ D(Hh

B), Hh
Bu := P h

Bu. (1.3)

Since several self-adjoint (or non self-adjoint) closure of the same differential operator will be
considered, the notation P refers to the differential operators acting on C∞

0 , while H will be used
for its realization as an unbounded operator on L2.
We restrict our analysis in this work to operators in the form

P h[V ] := P h
B + V, V ∈ L∞(I), (1.4)

and denote by Hh[V ] the self-adjoint realization in L2(R) of P h[V ]:

D(Hh[V ]) = H2(R), ∀u ∈ D(Hh[V ]), Hh[V ]u := P h[V ]u, (1.5)

after identifying V ∈ L∞(I) with V (x)1I(x) ∈ L∞(R).
Of particular interest is the case where the potential V = V h depends on the small parameter

h and describes quantum wells in an island with cliffs. It splits into

V h := V0 + V h
NL, V0 := Ṽ0 −Wh, Ṽ0, V

h
NL ∈W 1,∞(I). (1.6)

The function Ṽ0, which models the island potential, can be any non negative Lipschitz function
independent of h. Practically it is simply a constant potential on I, Ṽ0(x) = V0 1I(x) with V0 ∈ R+.
The function Wh, which described the quantum wells, is defined by

Wh(x) :=

N
∑

i=1

wi

(

x− ci
h

)

. (1.7)

In this definition of Wh, the positions (ci)
N
i=1 are N given points in (a, b) and wi are non negative

L∞-functions supported in the interval [−κ, κ], with κ > 0 fixed. We denote by Uh the support
of the function Wh and U := ∪N

i=1 {ci} the region where the quantum wells concentrate, and set
c0 := a, cN+1 := b (see Figure 1).
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Figure 1: Total potential B + V h −Wh.

Assumption 1 Suppose that
Λ0 := inf

x∈I
Ṽ0(x) + B(x) > 0 , (1.8)

and fix the parameters Λ∗ and Λ∗ so that 0 < Λ∗ < Λ∗ < Λ0.

We will focus on the energy range λ ∈ [Λ∗,Λ
∗].

Finally the function V h
NL describes the mean field nonlinear potential which takes into account

the repulsive electrostatic interaction. It will be given as a solution to the Poisson equation on
I = [a, b] and will satisfy

∀h > 0, V h
NL ∈W 1,∞(I), V h

NL ≥ 0. (1.9)

Such Hamiltonians are used in the modelling of quantum electronic transport in mesoscopic
structures like resonant tunelling diodes (RTD) or super-lattices. The nonlinear steady states can
be studied within a Landauer-Büttiker approach: see [BuLa], [Lan], [ChVi] and [BDM] or [Ni3] for
possible functional frameworks concerned with the extension to the nonlinear analysis including
the nonlinear dynamics. This approach involves the scattering wave functions and requires the
analysis of the continuous spectrum of Hh[V ]. Since for any potential V ∈ L∞(I), Hh[V ] is a
compactly supported L∞-perturbation of the reference Hamiltonian Hh

B or the Hamiltonian with
step potential −h2∆+B∞, the limiting absorption principle holds. By standard arguments ([Ya2],
[Pat]) one even gets the absence of imbedded eigenvalues

∀h > 0, σess(H
h[V ]) = σac(H

h[V ]) = [−B;∞), (1.10)

and the scattering states of Hh[V ] are indeed well defined for any V ∈ L∞(I).

Remark 1 Under the non necessary additional assumption

∀i ∈ {1, . . . , N} , Ṽ0(ci) + inf σ (−∆ − wi) > 0 , (1.11)

one can even check like in Theorem 3.4 or Theorem 3.6 that there is no eigenvalue at all for h > 0
small enough (and V h

NL ≥ 0) ;

σ(Hh[V ]) = σac(H
h[V ]) = [−B,+∞) .
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We focus on the energies λ ∈ [Λ∗,Λ
∗].

We consider the incoming scattering states ψh
−(k, ·) of the Hamiltonian Hh[V ] parameterized by

the wave vector k (we omit to write the dependence with respect to the potential for scattering
states). They provide a diagonalization ofHh[V ] over the continuous spectrum (see formula (1.19)).
Precisely, introduce first the dispersion relation associated with the reference Hamiltonian Hh

B

Definition 1.1 Set for k ∈ R∗

λk :=

∣

∣

∣

∣

k2 if k > 0,
k2 −B if k < 0.

(1.12)

This dispersion relation (1.12) gives, for the wave vector k, the energy λk of the incoming plane
wave represented by ψh

−(k, ·). Again, we are mostly interested in the k’s such that λk ∈ [Λ∗,Λ
∗].

By definition, the incoming generalized eigenfunction ψh
−(k, ·) defined for k ∈ R solves the

differential equation:
P hψh

−(k, ·) = λkψ
h
−(k, ·), (1.13)

with the normalization (of incoming plane waves)

for k > 0 ψ−(k, x) =







ei kx
h + rk e

−i kx
h for x < a

tk e
i
(λk+B)1/2x

h for x > b ,
(1.14)

for k < 0 ψ−(k, x) =







tk e
−i

(λk)1/2x

h for x < a

ei kx
h + rk e

−i kx
h for x > b .

(1.15)

The square root z1/2 is chosen with the ramification along the half-line iR− in order to ensure that

e−i(λk)1/2x decays exponentially as x→ −∞ when λk ∈ (−B, 0) .
These coefficients determine the scattering matrix (rk, tk) for positive energies λk > 0. They are
linked for λk > 0 by the relation

|rk|
2 +

√

λk

λk +B
|tk|

2 = 1, λk > 0 . (1.16)

Since the wave vector k is a log-derivative, this normalization of the wave functions can be written
in terms of boundary conditions at x = a and x = b, in this specific one-dimensional case fitting
with realistic problems:

[

h∂x + iλ
1/2
k

]

|x=a
u = 2ikei ka

h ,

[

h∂x − i(λk +B)1/2
]

|x=b
u = 0, for k > 0 (1.17)

and
[

h∂x + iλ
1/2
k

]

|x=a
u = 0,

[

h∂x − i(λk +B)1/2
]

|x=b
u = 2ikei kb

h , for k < 0 . (1.18)

Thus the problem over the real line is reduced to a boundary problem on I with boundary conditions
depending on the spectral parameter (1.17)-(1.18). These boundary conditions are exact transpar-
ent boundary conditions. This setting makes rather easy the complex deformation argument used
in the analysis of resonances (see [BaCo], [HeSj1] or [HiSi] for a more general introduction). Here
considering a complex λk around any positive value is easily implemented because the coefficients
on the boundary conditions at x = a and x = b depend holomorphically on λk (or k).
We end this section with three elementary properties :
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1. With this normalization, it appears that for any non negative continuous function θ on
[Λ∗,Λ

∗], the operator 1Iθ(H
h[V ])1I is an integral operator. Moreover the kernel is given by

1Iθ(H
h[V ])1I [x, y] =

∫

k

θ(λk)ψh
−(k, x)ψh

−(k, y)
dk

2πh
, (x, y) ∈ I × I. (1.19)

2. Note that because of the regularity of ψh
−, it follows by Mercer’s theorem (see [Si, Thm 3.5])

that this operator is trace-class, with a trace equal to the diagonal integral.

3. Note also that because the solutions to the ODE (1.13) in the interval I is a 2-dimensional
linear subspace, say Sλk

⊂ H2(a, b), conditions (1.17)-(1.18) form an affine system in Sλk
.

Resonances around positive energies correspond to the exceptional complex values of λk = z
for which the continuous linear functionals defining this system are proportional.

1.3 Schrödinger-Poisson system

Here we are interested in the study of the stationary case. We first fix the profile of the incoming
beam of electrons over the structure between a and b.

Notation 1 Fix a continuous non negative function k 7→ g(k) such that g(k) = 0 if λk /∈ (Λ∗,Λ
∗),

see (1.12).

A beam of electrons corresponds to a superposition of scattering states with density g. The
electronic density is then described by the measure dng[V ] defined by

dng[V ](x) :=

∫

R

g(k)|ψh
−(k, x)|2

dk

2πh
. (1.20)

It is convenient to introduce the function g(Kh
−) of the asymptotic momentum operator defined

(see [DeGe], [Ni3] for a more general presentation) according to:

g(Kh
−)[x, y] =

∫

R

g(k)ψh
−(k, x)ψh

−(k, y)
dk

2πh
.

Its localized version 1Ig(K
h
−)1I has the integral kernel

1Ig(K
h
−)1I [x, y] =

∫

R

g(k)1I(x)ψ
h
−(k, x)ψh

−(k, y)1I(y)
dk

2πh
. (1.21)

The operator g(Kh
−) is a density matrix and the density fulfills the weak formulation

∀ϕ ∈ C0(I),

∫

I

ϕ(x)dng [V ](x) = Tr [1Ig(K
h
−)1Iϕ]. (1.22)

Note that in the particular case where g(k) is a function of the energy, i.e. g(k) ≡ θ(λk), g(Kh
−)

is a function of the Hamiltonian
g(Kh

−) = θ(Hh) . (1.23)

Functions of the Hamiltonian can be viewed as equilibrium states (and even thermodynamical
equilibrium states when θ is decreasing). For such states, the current through the device is null.
Hence out-of-equilibrium steady states with a non vanishing current have to be described with
a function g(k) which is not a function of the energy. In order to make this situation clear, we
assume the next possibly extendible assumption (see [BNP] for an easy generalization towards
more realistic problems).

7



Assumption 2 Fix a non negative function θ ∈ C0
c ((Λ∗,Λ

∗)) and assume that

g(k) = 1k>0 · θ(λk). In particular, 0 ≤ g(k) ≤ θ(λk). (1.24)

The Schrödinger-Poisson system is an Hartree model which includes the self-consistent electro-
static potential within the device (a ≤ x ≤ b). Hence the nonlinear potential V h

NL is a solution
to

{

Hh[V h] = Hh
B + Ṽ0 −Wh + V h

NL,

−∆V h
NL = dng[V

h], V h
NL = (a) = V h

NL(b) = 0.
(1.25)

Note that the assumption g ≥ 0 yields dng[V
h] ≥ 0 and V h

NL ≥ 0.
It is known, (see [BDM], [Ni3]) , that the system (1.25) admits solutions, for fixed h > 0. Further-
more with the absence of negative eigenvalues provided by the condition (1.11), it is easily checked
that the solutions to (1.25) are the only steady states of the nonlinear dynamics studied in [Ni3].
Yet, uniform estimates with respect to h are not given in [Ni3]. We are now interested in the
structure of the set of asymptotic solutions as h → 0. A first step consists in getting a priori
estimates on the semi-linear problem. This is performed in Section 2. Since for a given h > 0 the
density dng[V

h] is a bounded positive measure, we introduce the following spaces:

Definition 1.2 Call (Mb(I), ‖ · ‖b) the Banach space of bounded complex measures on [a, b] and
let

BV 2
0 (I) :=

{

V ∈ C0(I) |V ′′ ∈ Mb(I), V (a) = 0 = V (b)
}

, (1.26)

normed by ‖V ‖ := ‖V ‖∞ + ‖V ′′‖b.

With this norm , BV 2
0 (I) is a Banach space continuously embedded in W 1,∞(I) and compactly

embedded in the Hölder spaces C0,α(I) for α ∈ (0, 1).

1.4 Results

Theorem 1.3 Consider problem (1.25). Then for h > 0 sufficiently small:
i) The family of potentials (V h

NL)h>0 is uniformly bounded in L∞(I).
ii) The family of measures (dng[V

h])h>0 is bounded in Mb(I) and the family (V h
NL)h>0 is bounded

in BV 2
0 (I).

iii) Consequently, the family of potentials (V h
NL)h>0 is bounded in W 1,∞(I) and relatively compact

in the Hölder space C0,α(I) for any α ∈ (0, 1).

We then try to identify the weak∗ possible limits dn0
g of the measure dng[V

h]. Owing to the
boundedness stated in Theorem 1.3 ii), we shall make the next simplifying assumption which makes
sense after possibly extracting a subsequence (hn)n∈N.

Assumption 3 The convergence

dng[V
h]

h→0
⇀ dn0

g

holds for the weak topology of Mb(I) = C0(I)′.

The following notations for the total potential

Vh := V h + B = Ṽ0 + V h
NL −Wh + B, (1.27)

and for the total potential with filled wells

Ṽh := Vh +Wh = Ṽ0 + V h
NL + B, (1.28)
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are convenient. The solution to

− ∆V = dn0
g , V (a) = V (b) = 0 (1.29)

is denoted V 0
NL and we set

Ṽ0 := Ṽ0 + V 0
NL + B . (1.30)

Theorem 1.3 has the next consequence.

Corollary 1.4 Make the Assumption 3. Then the filled potential Ṽh is uniformly bounded in
W 1,∞(I) and converges in C0,α(I) to Ṽ0 as h→ 0 for any α < 1. Moreover if the second derivative
∂2

xṼ0 is a bounded measure, the weak convergence

∂2
xṼ

h h→0
⇀ ∂2

xṼ
0 = ∂2

xṼ0 − dn0
g

also holds in Mb(I).

Remark 2 Note that the solution of the asymptotic Poisson equation does not depend on the
possible mass of dn0

g concentrated on x = a or x = b. Indeed the asymptotic potential V 0
NL forgets

any boundary layer and the boundary value problem (1.29) is equivalently written with the restricted
measure dn0

g

∣

∣

(a,b)
.

The idea leading to an accurate description of the the asymptotic density dn0
g is the following:

suppose in a first step that the wells are filled, that is Wh = 0 and Vh = Ṽh. In the classical
picture, the incoming particles of energy λk ≤ Λ∗ are reflected by the cliffs, so one expects that
dn0

g ≡ 0 in (a, b). Now, the introduction of the wells Wh generates trapped quantum states
transformed into resonant states after the interaction with the continuous spectrum. The tunnel
effect allows these states to be occupied in a stationary setting. Besides, the quantum wells with an
O(h)-diameter produce two interesting effects. Firstly the density will asymptotically concentrate
like delta-functions in positions around the ci’s. Secondly the resonant energies attached to one well
are separated by O(1) gaps (see Remark 3 below). With a finite number of wells, this asymptotic
implements the general wisdom that the nonlinear system is essentially governed by finite number
of resonant states of the system (point 4 of our introduction). The relevancy of this asymptotic,
with quantum wells in a semiclassical island, has been carefully checked in [BNP] with numerical
data fitting with realistic situations.

To state our results we need the notion of asymptotic resonant energy.

Notation 2 Denote, for i = 1, . . . , N , by σi the set of the eigenvalues of the Hamiltonian −∆−wi

on the real line
σi :=

{

ei
k

}

k∈Ki
⊂ (−∞, 0), Ki ⊂ N, i = 1, . . . , N. (1.31)

Definition 1.5 We will say that λ ∈ R is an asymptotic resonant energy for the potential Vh if
and only if

λ ∈ E0 :=

N
⋃

i=1

Ei, Ei := σi + Ṽ0(ci). (1.32)

Moreover, we define the multiplicity mλ of the asymptotic resonant energy λ as

mλ := #Jλ, where Jλ := {i ∈ {1, . . . , N} s.t. λ ∈ Ei} . (1.33)

Finally, for i = 1, . . . , N, we will say that the well ci is resonant at the energy λ (or λ-resonant) if
and only if i ∈ Jλ.
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Remark 3 The set σi + Ṽ0(ci) is nothing but the set of the eigenvalues of the Hamiltonian Ĥ1
i :=

−∆−wi + Ṽ0(ci) on R, which is unitarily equivalent to the Hamiltonian Ĥh
i := −h2∆−wi(·/h)+

Ṽ0(ci).

Theorem 1.6 Make the Assumptions 1 and 3 and fix a non negative function θ ∈ C0
c ((Λ∗,Λ

∗))
and assume the convergence of Ṽh stated in Corollary 1.4. Let dng[V

h] be the density defined
according to (1.20) and Assumption 2 or by taking g(k) = θ(λk). Then the weak limit dn0

g satisfies

dn0
g

∣

∣

(a,b)
=
∑

λ∈E0

∑

i∈Jλ

tλi θ(λ) δx=ci , (1.34)

with the following specifications:
i) In the case of a function of the Hamiltonian, that is g(k) = θ(λk), all the tλi ’s are equal to 1 for
every λ ∈ E0 and i ∈ Jλ.
ii) If g(k) = 1k>0 · θ(λk), then for every λ ∈ E0 and i ∈ Jλ, t

λ
i lie in the interval [0, 1].

Finally, the asymptotic nonlinear potential V 0
NL which solves (1.29) is an affine function on each

interval [ci, ci+1], i = 0, . . . , N .

Note that the sum is a finite sum, since the set E0 ∩ supp θ is finite. Observe immediately that
point ii) follows from i) because if one denotes

θλ(k) := θ(λk) (1.35)

one has 0 ≤ dng[V
h] ≤ dnθλ

[V h], and ii) is obtained by Theorem 1.3 and Poisson’s equation (1.25).
Moreover, the nonlinearity asymptotically lies in a finite dimensional subspace A of C0(I) :

A :=
{

V ∈ C0(I) s.t. V|∂I = 0 and V|[ci,ci+1] is affine, i = 0, . . . , N
}

. (1.36)

In this finite dimensional space, the asymptotic nonlinear system can be written either with the
coordinate system = (V (ci))i=1,...,N ∈ RN or with the more convenient one (−V ′(ci + 0)+V ′(ci −
0))i=1,...,N proportionnal to the collection of total charges in the wells.

Theorem 1.6-i) gives a mean to compute the potential V 0
NL in the particular case where g is a

function of the Hamiltonian. In the anisotropic case ii) the determination of the tλi ’s relies on a
discussion on the Agmon distance between the wells. A forthcoming paper [BNP2] will be dedi-
cated to the analysis of these coefficients.

In order to prove the results, we adopt the following strategy: as the problem is a semi-linear
problem, we get a priori estimates for the nonlinear potential (Section 2), and then reduce the
analysis to the linear analysis of the Hamiltonian Hh[V h] with uniform estimates on the potential
(V h)h>0. Useful results on the Dirichlet problem in the interval I with accurate estimates of the
resolvent kernel are reviewed in Section 3. The analysis of resonances starts in Section 4 and
Section 5 and ends in Section 6 with a version of the Breit-Wigner formula for the local density of
states.

2 A priori Estimates

We first prove some estimates for self-adjoint realizations of P h on Ω = R or Ω an open sub-interval
of I.
Consider the differential operator P h defined by (1.4), for any B ≥ 0 with (1.6)-(1.9), and let P̃ h

be defined by

P̃ h[V h] := P h[V h] +Wh ≡ −h2 d
2

dx2
+ Ṽh .
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Remark 4 The ˜ symbol recurrently refers to the situation where the wells are filled. According to
our general convention the letter P refers to the differential operator while H refers to some closed
realization as an unbounded operator.

Proposition 2.1 Fix a non negative smooth function θ̂ ∈ C∞
0 (R), and call Hh

Ω (resp. H̃h
Ω) the self-

adjoint realization on L2(Ω) of P h (resp. P̃ h) with domain H1
0 (Ω) ∩H2(Ω). Then, for any given

compact subset K ⊂ R, and h > 0, the operators 1K θ̂(H
h
Ω)1K and 1K θ̂(H̃

h
Ω)1K are trace-class.

Moreover the estimate

Tr [1K θ̂(H
h
Ω)1K ] − Tr [1K θ̂(H̃

h
Ω)1K ] ≤ CK

(

1 +
∥

∥

∥Ṽh
∥

∥

∥

L∞

)

holds with a constant CK independent of h ∈ (0, h0).

Proof: In dimension 1 and for any fixed h > 0, these operators are trace class (see [Si]). For
the comparison, we use the Dynkin-Helffer-Sjöstrand formula (see [Dav], [HeSj4], [Ni1]):

θ̂(Hh
Ω) =

1

2iπ

∫

C

∂
˜̂
θ

∂z̄
(z)(z −Hh

Ω)−1dz ∧ dz̄, (2.1)

where
˜̂
θ is a compactly supported almost-analytic extension of θ̂. Apply then the second resolvent

formula for z /∈ R and write with P̃ h − P h = Wh:

1K(z −Hh
Ω)−11K − 1K(z − H̃h

Ω)−11K = −1K(z −Hh
Ω)−1Wh(z − H̃h

Ω)−11K . (2.2)

Introduce then a smooth cut-off function χ, equal to 1 on a fixed neighborhood of Uh if Ω 6= R,
and take χ ≡ 1 if Ω = R. Write the r.h.s of eq. (2.2)

[1K(z −Hh
Ω)−1χ][Wh(i+ h2∆)−1][(i+ h2∆)χ(z − H̃h

Ω)−11K ], (2.3)

where −∆ denotes the free Laplacian on R. By the spectral theorem, the first factor of (2.3) is a
bounded operator with norm O(|Im(z)|−1) uniformly w.r.t. h > 0. Since the operator [Wh(i +
h2∆)−1] is unitarily equivalent to Wh=1(i+ ∆)−1, it is trace class uniformly with respect to h, z.
Indeed the latter writes f(x)g(−i∇) whose symbol is L1 (see [ReSi3, Thm XI. 20, p. 47]).
For the last factor, the decomposition

(i+ h2∆)χ(z − H̃h
Ω)−1 = (i+ h2∆)χ(i+ h2∆Ω)−1

[

1 + (i− z + Ṽh)(z − H̃h
Ω)−1

]

,

leads to
∥

∥

∥(i+ h2∆)χ(z − H̃h
Ω)−1

∥

∥

∥ ≤ CK
〈z〉

|Im(z)|

(

1 +
∥

∥

∥Ṽh
∥

∥

∥

L∞

)

.

�

Proposition 2.1 says that the quantum wells can be forgotten for a uniform global estimate of
the density of states. Thanks to a monotony principle shown in [Ni2], one can prove the following
result:

Proposition 2.2 Consider the Schrödinger-Poisson system (1.20)-(1.25). Then the family of
potentials (V h

NL)h>0 is uniformly bounded in L∞.

11



Proof: For a given function F, we will denote by Fλ the function k 7→ F (λk) (see (1.12) for the
definition of λk). By assumption on the shape of the incoming beam of electrons, one has:

0 ≤ g(k) ≤ θλ(k), (2.4)

so we will first study the density of particles corresponding to the equilibrium state described by
θλ, that is the measure dnθλ

[V h]. The proof consists in controlling the total mass of the measures
by similar quantities relative to other Hamiltonians. In dimension 1, the regularity provided by
the Poisson equation with bounded measure as a right-hand side allows the integration by parts

1

2

∫ b

a

(

dV h
NL

dx

)2

dx =

∫ b

a

V h
NLdng[V

h](x) ≤

∫ b

a

V h
NLdnθλ

[V h](x) . (2.5)

Now, chose a non negative smooth compactly supported function θ̂ ∈ C∞
0 (R) decreasing over

(−B,Λ∗) and with support included in (−∞,Λ∗) such that

0 ≤ θ ≤ θ̂. (2.6)

We then get by positivity of V h
NL and the expression of the measure in (1.20)

1

2

∫ b

a

(

dV h
NL

dx

)2

dx ≤

∫ b

a

V h
NLdnθλ

[V h](x) ≤

∫ b

a

V h
NLdnθ̂λ

[V h](x). (2.7)

Set then
V h

2 := V h − V h
NL ≡ Ṽ0 −Wh, (2.8)

and consider now the Hamiltonian Hh
2 := Hh

B + V h
2 . Apply then the monotony principle (see

Appendix B) with H1 = Hh
2 = Hh

B +V h
2 and H2 = Hh

B + V h: the last term of (2.7) is bounded by

∫ b

a

V h
NLdnθ̂λ

[V h](x) ≤

∫ b

a

V h
NLdnθ̂λ

[V h
2 ](x)

≤ ‖V h
NL‖L∞(I)

∫ b

a

dnθ̂λ
[V h

2 ](x). (2.9)

Applying Proposition 2.1 gives, coming back to (2.8)

∫ b

a

dnθ̂λ
[Ṽ0 −Wh](x) ≤ C +

∫ b

a

dnθ̂λ
[Ṽ0](x) , (2.10)

the constant C being independent of h since the potential Ṽ0 does not depend on h. Finally,
we need an upper bound for the density of particles in the island I in the case of the potential
Ṽ0 + B. For this, we reduce the problem to the case of the constant potential on I and equal to
Λ∗. Apply again the monotony principle with H1 = Hh

B − B + Λ∗ and H2 = Hh
B + Ṽ0. Since

H2 −H1 = Ṽ0 +B−Λ∗ =: δV is larger than Λ0 −Λ∗ > 0 according to (1.8), one has uniformly on
I

δV (x) > inf
I

(Ṽ0 + B) − Λ∗ ≥ Λ0 − Λ∗ =: α > 0, and δV (x) ≤ ‖Ṽ0‖L∞ . (2.11)

By writing dn∗
θ̂λ

for the measure dnθ̂λ
[Λ∗ − BI ], the inequality

α

∫ b

a

dnθ̂λ
[Ṽ0] ≤

∫ b

a

δV · dnθ̂λ
[Ṽ0] ≤

∫ b

a

δV · dn∗
θ̂λ

≤ ‖Ṽ0‖L∞

∫ b

a

dn∗
θ̂λ
,

12



implies

0 ≤

∫ b

a

dnθ̂λ
[Ṽ0] ≤

‖Ṽ0‖L∞

α

∫ b

a

dn∗
θ̂λ
. (2.12)

Since
∫ b

a
dn∗

θ̂
is a constant not depending on h (see Appendix D for explicit formulas), we get,

combining (2.7), (2.10) and (2.12)

1

2
‖V h

NL‖
2
H1

0
≤

(

C +
‖Ṽ0‖L∞

α

∫ b

a

dn∗
θ̂

)

‖V h
NL‖L∞ . (2.13)

We conclude with the standard imbedding of H1
0 in L∞. �

Theorem 1.3 gathers the results of Proposition 2.2 with the next result.

Proposition 2.3 The family of measures (dng[V
h])h is uniformly bounded in Mb(I). It follows

that the family of potentials (V h
NL) is bounded in BV 2

0 (I). In particular it is a relatively compact
family in every Hölder space C0,α(I), α ∈ (0, 1).

Proof: By definition of dnθλ
and simple comparison, one gets

∫

I

dng[V
h] ≤

∫

I

dnθλ
[V h] = Tr [1Iθ(H

h)1I ] ≤ Tr [1I θ̂(H
h)1I ].

Apply again Proposition 2.1, since now the family of potentials is uniformly bounded in L∞. Again
the uniform boundedness of the right-hand side with respect to h > 0 comes from (2.9), (2.10),
(2.12) and Appendix D. �

3 Results on the Dirichlet Problem

From now, we systematically make Assumption 3 and reduce the analysis to a linear
analysis of Hh[V h].

For the contribution of the resonances in the evaluation of spectral quantities, the idea con-
sists in considering the non-self adjoint boundary value problem with complex coefficients in the
boundary conditions (1.17)(1.18) as a perturbartion of the homogeneous Dirichlet problem.

3.1 Some notations

In order to measure the error, we shall use several standard tools:
1) The h-dependent Hs-norms:

‖u‖2
s,h :=

∑

k≤s

‖hk∂k
xu‖

2
L2(I), (u ∈ Hs(I)) (3.1)

will be used mainly with s = 0, 1, 2.
2) The Agmon distance is defined for any potential V ∈ L∞(I) according to

Definition 3.1 For an energy λ ∈ R and a potential V, we define the Agmon distance by :

∀x, y ∈ I, d(x, y;V, λ) =

∣

∣

∣

∣

∫ y

x

√

(V (t) − λ)+ dt

∣

∣

∣

∣

. (3.2)
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For our estimates, we should take V = Vh. Yet, it is equivalent to work with the distance relative
to the potential Ṽh since the support of Wh is included in a finite union of intervals with diameter
2κh.
Moreover owing to the lower bound

∀λ ∈ [Λ∗,Λ
∗], ∀x ∈ I, inf

h>0, x∈I
Ṽh(x) − λ ≥ Λ0 − Λ∗ =: δ > 0, (3.3)

all the Agmon distances (depending on Ṽh) are uniformly equivalent to the usual Euclidean dis-
tance.
3) Finally in the analysis of the tunnel effect, it is usual to introduce the estimates within the next
setting.

Definition 3.2 For an h-dependent vector f(h) in a normed space E with norm ‖ ‖E and a
positive real valued function g(h), we write

f(h) = Õ (g(h)) , (as h→ 0) (3.4)

if there exists η0 > 0 such that

∀η ∈ (0, η0), ∃Cη > 0, ∀h ∈ (0, h0), ‖f(h)‖E ≤ Cηe
η
h g(h) .

3.2 Decay estimate

Like in Proposition 2.1, Ω denotes an open interval in I and Hh
Ω the self-adjoint Dirichlet realiza-

tion of P h[V h] with domain H1
0 (Ω) ∩H2(Ω).

We shall use the following result about the decay of the eigenfunctions of Hh
Ω.

Proposition 3.3 Suppose that UΩ := {c1, . . . , cN} ∩ Ω is not empty. For every h > 0 suffi-
ciently small, let λh ∈ (Λ∗,Λ

∗) be an eigenvalue of Hh
Ω and φh an L2-normalized corresponding

eigenfunction:
(Hh

Ω − λh)φh = 0.

Then, the estimate

∀x ∈ Ω,

∣

∣

∣

∣

dj

dxj
φh(x)

∣

∣

∣

∣

≤ Ch−2j−1e−
d̃h(x,UΩ)

h , j ∈ {0, 1} ,

holds with C > 0 uniform w.r.t h ∈ (0, h0) if d̃h stands for the Agmon distance for the potential
Ṽh at the energy λh.

Remark 5 Note that contrary to the general use, we do not introduce at this level the Õ but an
accurate estimate made possible in this simple one-dimensional case. This accurate estimate will
be combined in the proof of Theorem 3.4 with the uniform Lipschitz estimate on Ṽh (see especially
(3.11), (3.12), (3.13)). This provides a complete splitting between the semiclassical and quantum
scale in spite of a limited regularity assumption.

Proof: Set Ω = [α, β]. 1) Let us begin with the estimate of φh(x).
Apply the Agmon identity of Appendix A with P = P h, z = λh, u1 = u2 = φh and ϕ(x) =
d̃h(x, UΩ) where φh is an eigenfunction of Hh

Ω with eigenvalue λh. Since Vh − λh − ϕ′2 = −Wh,
the inequalities ϕ = O(h) in Uh and ‖φh‖L2 = 1 imply

e±
ϕ
h = O(1) in Uh and

∫

(Vh − λh − ϕ′2) |vh|2 = O(1).
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From the Agmon identity, we deduce an estimate for vh = eϕ/hφh :

∣

∣

∣

∣

‖h
dvh

dx

∥

∥

∥

∥

L2

= O(1).

Since vh(α) = vh(β) = 0, it follows

∥

∥vh
∥

∥

L2 +

∥

∥

∥

∥

dvh

dx

∥

∥

∥

∥

L2

= O

(

1

h

)

.

This implies

‖vh‖L∞ = O

(

1

h

)

,

and then

∀x ∈ Ω, |φh(x)| ≤
C

h
e−d̃h(x,UΩ).

2) For the estimate of dφh/dx, we use the equation







−h2d
2φh

dx2
+ Vhφh = λhφh,

φh(α) = φh(β) = 0.

As φh ∈ C1([α, β]), there exists c ∈ (α, β) such that dφh

dx (c) = 0. The function g defined by

g = eϕ/h dφh/dx satisfies






h2g′ = hϕ′e
ϕ
h
dφh

dx
+ h2e

ϕ
h
d2φh

dx2
,

h2g(c) = 0.

Using the equation satisfies by φh, we deduce

h2g′ = hϕ′
(

e
ϕ
h φh

)′

− |ϕ′|2 e
ϕ
h φh + (Vh − λh) e

ϕ
h φh

= hϕ′ dv
h

dx
− |ϕ′|2vh + (Vh − λh)vh.

Then ‖h2g′‖L2 = O(1/h). Cauchy-Schwarz inequality gives the L∞-estimate for g : |g(x)| ≤ C/h3

for any x ∈ [α, β] and also of dφh/dx :

∀x ∈ Ω = [α, β],

∣

∣

∣

∣

dφh

dx
(x)

∣

∣

∣

∣

≤
C

h3
e−d̃h(x,UΩ).

�

Remark. When the potential is regular, a better estimate like

∀x ∈ Ω,
∣

∣φh(x)
∣

∣ ≤ Ch−
1
2 e−d̃h(x,UΩ)/h,

holds and even a complete WKB expansion is possible. Here the low regularity and the concen-
tration of the quantum wells prevent from such an accurate result.
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3.3 Spectrum for one single well

From the spectral viewpoint, we are interested in localizing the eigenvalues of Hh
Ω in the limit

h→ 0. The first result concerns the problem with one well.

Theorem 3.4 Let Ω be a sub-interval of (a, b) containing exactly one well ci, i ∈ {1, . . . , N}.
Then :
i) Every eigenvalue of Hh

Ω in (Λ∗,Λ
∗) converges, and the limit belongs to the set Ei (see (1.32)).

ii) For every λ0 ∈ (Λ∗,Λ
∗) ∩ Ei and any fixed small enough ε > 0, the Dirichlet Hamiltonian Hh

Ω

has exactly one eigenvalue in [λ0 − ε, λ0 + ε] for h ∈ (0, hε).

Proof: Call {λh
1 , . . . , λ

h
r} the eigenvalues of Hh

Ω in the interval [Λ∗,Λ
∗], and φh

1 , . . . , φ
h
r an

orthonormal system of corresponding eigenfunctions. Because of Proposition 2.1, since the rank of
the spectral projections are given by traces of functions of Hh

Ω one has:

r = O(1), h→ 0

(take for θ a smooth version of the function 1[ε,Λ0], ε > 0 small). The idea is to use the ellipticity

of the problem, and the scaling of the wells in order to replace the potential Ṽh near a well by a
constant one. Let Ĥh the Hamiltonian with domain H2(R) given by:

∀u ∈ D(Ĥh), Ĥhu := P̂ hu, P̂ h := −h2 d
2

dx2
+ Ṽh(ci) · 1− wi

(

x− ci
h

)

. (3.5)

This Hamiltonian is unitarily equivalent to −∆ + Ṽh(ci) − wi(· − ci), whose eigenvalues is the set

Eh
i := Ei + αh

i , αh
i = Ṽh(ci) − Ṽ0(ci) → 0, h→ 0. (3.6)

Since ‖Ṽh − Ṽ0‖C0 → 0 when h → 0, for any λ0 ∈ [Λ∗,Λ
∗] ∩ Ei there exists ε0 > 0 such that

Ĥh has exactly one eigenvalue in (λ0 − ε0, λ0 + ε0). To analyze the spectrum of Hh in the whole
set [Λ∗,Λ

∗], we then choose, for each λ0, two numbers ε+0 > 0, ε−0 > 0 such that the intervals
(λ0 − ε−0 , λ0 + ε+0 ) are disjoint and their union covers a compact neighborhood of [Λ∗,Λ

∗] and such

that Ĥh has no eigenvalues in each annulus {ε0 < |λ− λ0| < 2 min{ε+0 , ε
−
0 }}.

Λ∗ Λ∗

λ0
-�

ε0
-�

ε0

-�

ε−0
-�

ε+0
-�

δ
-�

δ

-�

2 min(ε+0 , ε
−
0 )

-�

2 min(ε+0 , ε
−
0 )

-� -�

-� -�

Let now η > 0, and χ a smooth cut-off function supported in Ω such that χ = 1 if d(x, ∂Ω) ≥ 2η
and χ = 0 if d(x, ∂Ω) ≤ η. Owing to the exponential decay of the φh

j ’s stated in Proposition 3.3,
the estimate

〈

χφh
j , χφ

h
k

〉

L2(Ω)
= δjk + O

(

e−
co
h

)

, j, k ∈ {1, . . . , r}, (3.7)

for some c0 > 0 independent on h > 0 and η > 0.
For any j ∈ {1, . . . , r}, the function χφh

j belongs to the domain of Ĥh with the identity

P̂ hχφh
j = λh

j χφ
h
j + [P h, χ]φh

j + (Ṽh(ci) − Ṽh(x))χφh
j . (3.8)
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Owing to the exponential decay of φh
j , the commutator term satisfies:

‖[P h, χ]φh
j ‖L2(Ω) = O

(

h−1e−
d̃h(ci,∂Ω)−2η

h

)

, (3.9)

where d̃h is the Agmon distance for Ṽh at the energy λh
i . Because the potential Ṽh is greater than

Λ0 and λh
i ≤ Λ∗ < Λ0, the r.h.s in (3.9) is of order O(e−c′/h) with c′ independent of the potential

and the energy.
For the last term of the r.h.s. of (3.8), just write for ε > 0

[Ṽh(ci) − Ṽh(x)]χφh
j = 1|x−ci|≤ε · [Ṽ

h(ci) − Ṽh(x)]χφh
j

+ 1|x−ci|>ε · [Ṽ
h(ci) − Ṽh(x)]χφh

j . (3.10)

Since the family of potentials (Ṽh)h>0 is W 1,∞(I)-bounded, the first term is treated by writing

∥

∥

∥1|x−ci|≤ε · [Ṽ
h(ci) − Ṽh(x)]χφh

j

∥

∥

∥

L2(Ω)
≤ ε sup ‖Ṽh‖W 1,∞‖χφh

j ‖L2(Ω) = O(ε), (3.11)

and again by the accurate decay estimates of Proposition 3.3, the second term is estimated by

∥

∥

∥1|x−ci|>ε · (Ṽ
h(ci) − Ṽh(x))χφh

j

∥

∥

∥

L2(Ω)
= O

(

e−
c′0ε

h

)

. (3.12)

We then choose
ε := hα, α ∈ (0, 1), (3.13)

and we obtain by combining (3.12), (3.11), (3.9), (3.8)

∀j = 1, . . . , r, P̂ hχφh
j = λh

jχφ
h
j + O(hα) in L2(Ω) . (3.14)

Now, fix δ > 0 such that Ĥh has no eigenvalue in {ε+0 < λ−λ0 < ε+0 +δ}∪{−ε−0 −δ < λ−λ0 < −ε+0 }

and apply Proposition C.1 (see Appendix C) to A = Ĥh, [λ−, λ
+] = [λ0 − ε−0 , λ0 + ε+0 ], N = r,

a = δ > 0, µj = λh
j , ψj = χφh

j , from which we conclude

~d
(

span {χφh
1 , . . . , χφ

h
r},1[λ0−ε−

0 ,λ0+ε+
0 ](Ĥ

h)
)

≤

(

r

1 + o(1)

)1/2
ε

a
= O(hα). (3.15)

This last estimate forces Hh to have at most one eigenvalue in [λ0 − ε−0 , λ0 + ε+0 ], r ≤ 1, when
h > 0 is small enough.

We finish by proving i) and ii). For this, let φ̂h
0 be a normalized eigenvector for the eigenvalue

λ0 of the Hamiltonian Ĥh = −h2d2/dx2+ Ṽ0(ci)−wi((·−ci)/h), unitarily equivalent to −d2/dx2+

Ṽ0(ci)−wi Then φ̂h
0 is an eigenvector of Ĥh for the eigenvalue λ0+αh

i (see (3.6)). Estimates similar
to (3.9), (3.11), (3.12) lead to

P hφ̂h
0 = (λ0 + αh

i )χ̂̂φh
0 + O(hα) in L2(Ω) . (3.16)

Apply again Proposition C.1 in a small interval centered around λ0+αh
i in the following way: since

Ĥh has at most one eigenvalue in [λ0 − ε−0 , λ0 + ε+0 ], it is easy to choose a convenient parameter a
in Proposition C.1 (Appendix C) by a simple argument of counting: set Lj := [jhα/2, (j+ 1)hα/2[,
and Kj := −Lj ∪ Lj . If {λ0 + αh

i } + K1 contains the eigenvalue, one defines Ih = [λ0 + αh
i −

2hα/2, λ0 + αh
i + 2hα/2], else Ih = [λ0 + αh

i − hα/2, λ0 + αh
i + hα/2]. This furnishes an interval Ih
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of diameter O(hα/2) around λ0 + αh
i and a real a = a(h) > 0 of order hα/2 leading again with

Proposition C.1 to
~d
(

span (χφ̂h
0 ),1Ih

(Hh
Ω)
)

= O(hα/2) . (3.17)

This yields r = 1 and the convergence of the eigenvalue to λ0. �

Remark 6 It follows that the well ci is λ-resonant if and only if there exists a domain Ω containing
ci such that for any open set ω ⊂ Ω the Dirichlet operator Hh

ω has an eigenvalue converging to λ
as h goes to 0.

3.4 Spectrum in the multiple wells case

A way of studying the spectral properties of the multiple wells Dirichlet problem consists in de-
coupling it into N one-well problems. Following [Hel] or [HeSj3], a good choice of open sets is the
following: fix λ ∈ [Λ∗,Λ

∗], and if d̃h (resp. d̃0) denotes the Agmon distance at the energy λ for the

potential Ṽh (resp. Ṽ0), we define

S1 := min
j 6=k

d̃h(cj , ck) (= S1(h)) (3.18)

and for a fixed small enough η > 0,

Ωi := I \
⋃

k 6=i

{x ∈ I, d̃0(x, ck) ≤ η}, i = 1, . . . , N . (3.19)

The h-dependance of S1 recalled between the parentheses of (3.18) is omitted in the sequel.

Note that these open sets are not disjoint and Ωi contains only the well ci. The use of the
distance d̃0 makes sure that they do not depend on h although the h-dependence would be well
controlled.
We first eliminate the non resonant wells before giving a result similar to Theorem 3.4.

Proposition 3.5 Let λ be an asymptotic resonant energy and suppose that the well ci is not λ-
resonant. Then there exists a positive constant c such that for any eigenvalue λh ∈ (λ − c, λ+ c),
one has

∀x ∈ (ci − c, ci + c), |φh(x)| ≤ e−
c
h , h→ 0

where φh is an L2-normalized eigenfunction of Hh
I for the eigenvalue λh.

In plain words, eigenfunctions for eigenvalues converging to λ are exponentially small in the
non λ-resonant wells.
Proof: Since λ is not a resonant energy for the well ci, we can choose the open set ω containing
the only well ci and the compact energy interval Λ ∋ λ such that for h > 0 sufficiently small,
the Dirichlet operator Hh

ω has no spectrum in Λ (see Remark 6). For a smooth cut-off function θ
supported in ω and equal to 1 on a δ-neighborhood of ci (δ > 0 small), one has

P hθφh = λhθφh + [P h, θ]φh. (3.20)

The residual term satisfies by Proposition 3.3 the decay estimate

‖[P h, θ]φh‖L2(I) ≤ Cδe
−

cδ
h , cδ > 0, h→ 0.

Note that the vector θφh is not zero.
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Apply again Proposition C.1 in a compact interval strictly contained in Λ and a > 0 not
depending on h > 0. If we denote by F the spectral subspace for Hh

ω associated to this compact
interval, it follows

~d(span{θφh}, F ) ≤
1

‖θφh‖

Cδe
−

cδ
h

a
. (3.21)

Since F is null by choice of Λ, it follows by properties of the distance ~d that the l.h.s. of (3.21)
is greater than 1. This provides an L2-estimate of θφh. The H2 regularity of a solution to (3.20)
provides the pointwise estimate in (ci−δ, ci+δ) . Finally choose the constant c > 0 small enough. �

The analogous to Theorem 3.4 writes

Theorem 3.6 Recall that Hh
ω denotes the Dirichlet realization of P h to the open set ω. Then, for

h > 0 sufficiently small :
i) After ordering, every eigenvalue of Hh

I in (Λ∗,Λ
∗) converges as h → 0 and the limit belongs to

the set E0 (see (1.32)).
ii) For every λ ∈ (Λ∗,Λ

∗) ∩ E0 and any small enough ε > 0, the operators Hh
I has exactly mλ

eigenvalue(s) in [λ− ε, λ+ ε] as soon as h < hε.
Call them λh

i (i ∈ Jλ).
iii) Fix such a λ. Let (Ωi)i∈Jλ

the subdomains of I defined in (3.19). Call (ψh
i )i∈Jλ

normalized
eigenvectors associated to the unique eigenvalue of Hh

Ωi
converging to λ. There exists a unitary

matrix (ph
i,j)1≤i,j≤mλ

such that in L2(I)

∀i ∈ Jλ, φh
i −

∑

j∈Jλ

ph
i,jψ

h
j = Õ

(

e−
S1
h

)

,

with S1 defined according to (3.18).

Proof: It suffices to follow the proof in [Hel, pp. 34-35], while Proposition 3.5 guarantees that
the non resonant wells are negligible in the decay estimates (see also [Pat, p. 148] for details). �

3.5 Resolvent estimates

Let us briefly recall the decay results of the kernel of the resolvents. Fix η > 0 (η small) and for a
point p ∈ (a, b), let χp denote a smooth cut-off function supported in the set {|x− p| ≤ η}.

Like in [HeSj3, p. 143] (see also [DiSj] or [Pat, p. 135] for this specific case), the combination
of the Agmon estimate (see Appendix A) with the spectral theorem provides in the one well-case
(N = 1) the following estimates

∀z /∈ σ(Hh
I ),

∥

∥χx(Hh
I − z)−1χy

∥

∥ ≤ Cη
e

−d̃h(x,y)+Cη

h

min(rh, 1)
, (3.22)

where rh = dist(z, σ(Hh
I )), and d̃h is the Agmon distance for the potential Ṽh at the energy

λ := Re(z).
A straightforward adaptation of the analysis of the multiple wells Dirichlet problem carried out

in [HeSj2], [HeSj3, p. 147] or [Pat, p. 151] provides the same estimate for N > 1.

Proposition 3.7 For h in (0, h0), h0 small enough, consider zh ∈ C \ σ(Hh
I ) such that there

exists λ0 ∈ [Λ∗,Λ
∗] with zh → λ0 as h → 0 and set λh = Re(zh) and rh = dist(zh, σ(Hh

I )). If
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rh ≥ e−S1/2h with S1 := mink 6=l d̃h(ck, cl), then the kernel of the resolvent (Hh
I − zh)−1 satisfies

∣

∣(Hh
I − zh)−1[x, y]

∣

∣ =
Õ
(

e−
d̃h(x,y)

h

)

min(rh, 1)
,

with uniform constants with respect to x, y ∈ I and where d̃h is the Agmon distance for the potential
Ṽh at the energy λh := Re(zh).

Proof: Let θ be a C∞ even function supported in a neigborhood [−3η, 3η] and equal to 1 on
[−η, η] where η and Ωi are linked by relation (3.19). We define

θi(x) := θ(x − ci), χi(x) = 1 −
∑

j 6=i

θj(x), ∀i = 1, . . . , N. (3.23)

Let χ̃i C
∞ functions with support in Ωi defined in (3.19) such that

N
∑

i=1

χ̃i = 1.

We define

Ti(z) := (Hh
Ωi

− z)−1 and R0 :=

N
∑

i=1

χiTi(z)χ̃i.

Then we have

(Hh
I − z)R0 =

N
∑

i=1

χiχ̃i +

N
∑

i=1

[P h, χi]Ti(z)χ̃i

= 1 +

N
∑

i=1

[P h, χi]Ti(z)χ̃i

= 1 −

N
∑

i=1

∑

k 6=i

[P h, θk]Ti(z)χ̃i,

since χiχ̃i = χ̃i and using (3.23). We have to study the convergence of the serie
∑

n≥0R0ε
n with

ε =
∑N

i=1

∑

k 6=i[P
h, θk]Ti(z)χ̃i. We notice that χ̃i[P

h, θk] is equal to 0 as soon k 6= i and if k = i,

this term is [P h, θk]. Then,

R0ε
n =

N
∑

i0=1

N
∑

i1 6=i0

. . .

N
∑

in−1 6=in

χi0Ti0 [P
h, θi1 ]Ti1 [P

h, θi2 ]Ti2 , . . . , [P
h, θin ]Tin χ̃in .

Since the function θk is localized in a neighborhood of the well ck, we can write for s = 0, 1, . . . , N−
1

[P h, θis ]Tis(z)[P
h, θis+1 ] = [P h, θis ]χisTis(z)χis+1 [P

h, θis+1 ].

This last relation allows to use results on the one-well problem (3.22), then

∥

∥χisTis(z)χis+1

∥

∥ ≤ Cη
e−

d̃h(x,y)−Cη

h

min(rh, 1)
.
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This leads to the following estimate

‖χx0R0ε
nχy0‖ ≤ Cn+1

η

e−
ϕn(x0,y0)−nCη

h

min(rh, 1)n+1
,

where ϕn(x0, y0) = mini0,...,in d(y0, cin) + d(cin , cin−1) + . . . + d(ci1 , ci0) + d(ci0 , x0). In fact, the
function ϕn is the length of the the shortest way from y to x going through n different wells. We
can bound from below ϕn by

ϕn(x0, y0) ≥ d(x0, y0) + nS1.

Then the serie is convergent under the assumption rh ≥ e−S1/2h and we can write

χx0(H
h
I − z)−1χy0 =

∑

n≥0

χx0R0ε
nχy0 .

Appendix E provides the pointwise estimates. �

Corollary 3.8 If rh ≥ C−1hC for some C > 0, then

∣

∣(z −Hh
I )−1[x, y]

∣

∣ = Õ
(

e−d̃h(x,y)
)

.

Another consequence is the improved pointwise estimate for the eigenfunctions of the Dirichlet
problem ([HeSj3, p.138] or [Pat, p. 153]):

Proposition 3.9 For every h > 0 sufficiently small, let λh ∈ (Λ∗,Λ
∗) and φh an L2-normalized

corresponding eigenfunction of Hh
Ω. Suppose that λh → λ0 ∈ E0 ∩ (Λ∗,Λ

∗). Then the estimates

∀x ∈ Ω,

∣

∣

∣

∣

dj

dxj
φh(x)

∣

∣

∣

∣

= Õ

(

e−
d̃0(x,U0)

h

)

, j ∈ {0, 1},

hold when d̃0 stands for the Agmon distance for the potential Ṽ0 at the energy λ0 and U0 =
∪i∈Jλ0

{ci} for the set of λ0-resonant wells.

Remark 7 Here the Õ-writing of the estimates allows to replace the h-dependent quantities, Ṽh,
d̃h and λh by their asymptotic values Ṽ0, d̃0 and λ0.

4 Complex deformation

4.1 A reduced Stone’s formula

The results of Theorem 1.6 are derived from a good information about the asymptotic local density
of states associated with functions of the Hamiltonian. According to Stone’s formula and the
limiting absorption principle, a possible method is the computing of a quite precise expression of
the resolvent, since for λ ∈ [Λ∗,Λ

∗] ⊂ σac(H
h) (Hh = Hh[V h]):

1

2iπ
1I

[

(Hh − (λ+ i0))−1 − (Hh − (λ− i0))−1
]

1I = 1I
∂E

∂λ
(λ)1I , (4.1)

and of its meromorphic extension through the spectral half-line (0,∞) ⊂ [−B,∞), in order to take
into account the contribution of resonant states.
We will focus on this meromorphic extension from the upper-half plane while the corresponding
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results for the extension from the lower-half plane are easily carried over after changing i into −i.
Resolvent. Fix z ∈ C, Im(z) > 0 and consider the problem with unknown u ∈ H2(R) :

(P h − z)u = f, f ∈ L2(I), z ∈ C, Im(z) > 0, Re(z) ∈ (Λ∗,Λ
∗). (4.2)

Again because the potential is constant on both sides of the interval I, the problem with unknown
u ∈ H2(R):

(P h − z)u = f, f ∈ L2(I) ,

can be explicitly solved outside I, and the condition u ∈ L2 eliminates exponentially growing
modes. It is easy to check that this condition is exactly given by (1.17)-(1.18) when Im(z) > 0.
Precisely, we can write the next statement.

Proposition 4.1 Let z ∈ C, Im(z) > 0, Re(z) ∈ (Λ∗,Λ
∗). Consider the linear functionals Ta(z),

Tb(z) on H2(I) given by :

Ta(z)u :=
[

h∂x + iz1/2
]

|x=a
u, Tb(z)u :=

[

h∂x − i(z +B)1/2
]

|x=b
u,

and the closed unbounded operator Hh
z defined by

D(Hh
z ) :=

{

u ∈ H2(I) s.t. Ta(z)u = Tb(z)u = 0
}

,

∀u ∈ D(Hh
z ), Hh

z u := P hu.

Then the restriction on I of the solution to equation (4.2) is (Hh
z − z)−1f . In other words :

1I(H
h − z)−11I = (Hh

z − z)−1, Im(z) > 0, Re(z) ∈ (Λ∗,Λ
∗).

Remark 8 1. We will check that for such z′s, operator Hh
z −z is invertible (see Proposition 4.2

and Proposition 5.2 below).

2. Note that since the solutions on I of the homogeneous equation associated with (4.2) make a
linear 2-dimensional subspace of H2(I), the injectivity of operator (Hh

z − z) is equivalent to
the independence of the functionals Ta(z), Tb(z).

3. By replacing i by −i in the definitions of the functionals Ta(z) and Tb(z), one obtains the
corresponding boundary conditions for Im(z) < 0.

4.2 Resonances

In our one-dimensional situation, it is quite simple to detect the resonances as poles of the scattering
matrix. According to the end of Subsection 4.1, one states

Proposition 4.2 Let z a complex number such that Re(z) > 0. Then z is a resonance of the
operator P if and only if Hh

z − z is not injective.

Indeed, the non-injectivity of Hh
z − z is equivalent to the fact that the linear functionals are

proportional, so the normalization given in (1.14)-(1.15) is not performable.

Remark 9 The anti-resonances are defined similarly after considering the meromorphic exten-
sion from the lower half-plane {Im(z) < 0} while changing i into −i in the transparent boundary
conditions (see Remark 8).
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4.3 Analysis of the resolvent

Recall that since we are interested in getting the spectral density inside the island I, Proposition 4.1
allows to work with Hh

z − z in place of Hh − z. Moreover, because Theorem 3.6 ensures that the
set E0 of asymptotic resonant energies is discrete, we will make the following reduction:

Assumption 4 Suppose that the set [Λ∗,Λ
∗] contains exactly one asymptotic resonant energy

λ0 ∈ (Λ∗,Λ
∗) . Recall that mλ0 denotes its multiplicity according to (1.33) and that (λh

j )1≤j≤mλ0

are the ordered eigenvalues of Hh
I lying in [Λ∗,Λ

∗] (and converging to λ0).

Introduce

Ωh := {z ∈ C s.t. Re(z) ∈ Kh, Im(z) ∈ [−4h, 4h]} , (4.3)

with Kh := [λ0 − αh, λ0 + αh] , (4.4)

and αh := 4 max
{

h, |λ0 − λh
j |, j = 1, . . . ,mλ0

}

. (4.5)

The parameter z is assumed to satisfy
z ∈ Ωh .

Proposition 3.9 indicates that from the spectral viewpoint, around a resonant energy the non
resonant wells do not matter. We adapt to this remark the filled well Hamiltonians

H̃h
I = Hh

I +Wh and H̃h
z = Hh

z +Wh . (4.6)

Set then for given λ ∈ (Λ∗,Λ
∗)

Wh
λ :=

∑

i∈Jλ

wi

(

· − ci
h

)

, Uh
λ := suppWh

λ . (4.7)

Define then
H̃h

I (λ) := Hh
I +Wh

λ and H̃h
z (λ) := Hh

z +Wh
λ , (4.8)

the operators associated to respectively the Dirichlet and transparent problems with the λ-resonant
wells filled. The parameter λ remains fixed as h→ 0 and those definitions lead to

H̃h
• (λ) = Hh

•

when λ 6= λ0 and
H̃h

• (λ0) = Hh
• +Wh

λ0
.

In particular, H̃h
I (λ0) has no eigenvalue in [Λ∗,Λ

∗].

An accurate analysis of the resolvent (Hh
z − z)−1 starts with essentially two steps :

1. Eliminate the non resonant wells : we show that H̃h
z (λ0) − z is invertible for all z ∈ Ωh.

2. Check that for z far from λ0, H
h
z − z = H̃h

z (λ) − z, λ 6= λ0, is invertible .

Hence the notation H̃h
z (λ) is convenient for a compact formulation of different results.

Proposition 4.3 Make the Assumption 4 and fix any λ ∈ [Λ∗,Λ
∗].

i) For any z ∈ Ωh if λ = λ0 (resp. z ∈ [Λ∗,Λ
∗]× [−4h, 4h] and dist(z, λ0) > αh/2 or |Im(z)| ≥ 2h

if λ 6= λ0), the operator H̃h
z (λ) − z is invertible. The kernel of the resolvent is estimated by

∣

∣

∣(H̃h
z (λ) − z)−1[x, y]

∣

∣

∣ = Õ
(

e−
d̃(x,y)

h

)

,
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where d̃ stands for the Agmon distance for the potential Ṽh at the energy Re(z). Moreover the
constants can be chosen uniform with respect to x, y ∈ I and z.
ii) For any function ϕ ∈ C0

c ((a, b)), (H̃h
z (λ)−z)−1ϕ belongs to the space L1 of trace-class operators

for z ∈ Ωh if λ = λ0 (resp. z ∈ [Λ∗,Λ
∗] × [−4h, 4h] and dist(z, λ0) > αh/2 or |Im(z)| ≥ 2h if

λ 6= λ0), with the estimate
∥

∥

∥
(H̃h

z (λ) − z)−1ϕ
∥

∥

∥

L1
≤ Cϕh

−2 .

Remark 10 In particular, applying i) with λ = λ0, gives, since Hh
z (λ) = Hh

z and using Prop. 4.2
that P h has no resonance in the set

{

z ∈ Ωh, |Im(z)| > 2h or dist(z, λ0) ≥
αh

2

}

.

Proof: The first statement will be proved in three steps a) b) and c) where the last two ones
are very similar.
i)-a) We start with the strongly elliptic problem: suppose that λ = λ0, z ∈ Ωh and Jλ0 =
{1, . . . , N}, that is H̃h

z (λ0) = H̃h
z (every well is filled). We use the Agmon identity of Appendix A

where ϕ is a C1(I)-function satisfying the eiconal condition:

inf
h>0,x∈I

Ṽh(x) − Re(z) − ϕ′2(x) ≥ m > 0 ,

and we take the real part of both sides. Since z ∈ Ωh is possibly complex, there are boundary terms
in the Agmon estimates (see Appendix A) but their coefficients are O(h3). For z ∈ Ωh and with
the condition Λ0 − Λ∗ > 0 according Assumption 1, the coercivity of the variational formulation
with the transparent conditions (see Proposition 4.1) is easily checked when h > 0 is small enough:
Taking ϕ ≡ 0 provides the existence of the resolvent and uniform bounds.
Taking ϕ with the above eiconal condition provide the weighted estimate

∀f ∈ L2(I),
∥

∥

∥e
ϕ
h (H̃h

z − z)−1f
∥

∥

∥

1,h
≤ C

∥

∥

∥e
ϕ
h f
∥

∥

∥

L2
.

The case ϕ ≡ (1 − η)d̃(·, y) for fixed y ∈ (a, b) (which satisfies the eiconal condition) implies i) in
this specific case. The pointwise estimate of the Schwartz kernel of the resolvent is obtained after
Appendix E
i)-b) In the weaker case, λ = λ0, z ∈ Ωh, Jλ0 6= {1, . . . , N}, the problem is neither self-adjoint nor
strongly elliptic. Only the wells in Uh

λ0
= suppWh

λ0
according to (4.7) are filled and the other non

resonant wells are left. We use an approximation argument with the latter estimate. Set

Sz
0 := d̃(Uh \ Uh

λ0
, ∂I) (4.9)

where d̃ is the Agmon distance for the potential Ṽh and the energy Re(z). Introduce, for η > 0
small, the cut-off functions χ, ψ̃ such that 0 ≤ χ, ψ̃ ≤ 1, χ ≡ 1 in the set {x ∈ I, d̃(x, Uh \ Uh

λ0
) ≤

Sz
0 − η}, ψ̃ ≡ 1 in the set {d̃(x, Ũh \ Uh

λ0
) ≤ (Sz

0 − η)/2}, χ ≡ 0 in
{

d̃(x, Uh \ Uh
λ0

) ≥ Sz
0 − η/2

}

and ψ̃ ≡ 0 in the set {d̃(x, Ũh
λ \ Uh

λ0
) ≥ (Sz

0 + η)/2}.
Choose

R(λ0) := (H̃h
z − z)−1(1 − ψ̃) + χ(H̃h

I (λ0) − z)−1ψ̃. (4.10)

as an approximate right inverse for H̃h
z (λ0)− z: Actually H̃h

z (λ0) is replaced by the corresponding
Dirichlet Hamiltonian around the remaining non λ0-resonant wells. Note that R(λ0) is well defined
since for z ∈ Ωh, z is uniformly far away from the spectrum of H̃h

I (λ0).

A straightforward computation using H̃h
z (λ0)χ = H̃h

I (λ0)χ and χψ̃ = ψ̃ gives

(H̃h
z (λ0) − z)R(λ0) = 1 − ε, ε := ε0 + ε1, (4.11)
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where
ε0 := W̃h

λ (H̃h
z − z)−1(1 − ψ̃), ε1 := −[P h, χ](H̃h

I (λ0) − z)−1ψ̃. (4.12)

With the estimate about (H̃h
z −z)

−1 and the control of the resolvent (H̃h
I (λ0)−z)

−1 of the Dirichlet
Hamiltonian provided by Proposition 3.7 with the uniform lower bound dist(z, σ(Hh

I (λ0))) ≥ c > 0,
one deduces the inequality

‖ε0‖ + ‖ε1‖ ≤ Cηe
−Sz

0+cη

2h , (4.13)

in the operator norm.
The relation

(H̃h
z (λ0) − z)R(λ0) = 1 − ε, ‖ε‖ ≤ Cηe

−Sz
0+cη

2h (4.14)

ensures the injectivity of (H̃h
z (λ0)− z) and provides a right inverse after using the Neumann series

for (1 − ε)−1 .
Similarly, setting

L(λ0) := (1 − ψ̃)(H̃h
z − z)−1 + ψ̃(H̃h

I (λ0) − z)−1, (4.15)

leads to

L(λ0)(H̃
h
z (λ0) − z) = 1 + ε′, ‖ε′‖ ≤ Cηe

−Sz
0+cη

2h , (4.16)

and provides a left inverse for H̃h
z (λ0) − z .

The estimate of the kernel of the resolvent is now obtained after considering the first terms in the
expansion series defining the inverse

χx · R(λ0)

∞
∑

k=0

εk · χy.

The estimate for k = 0 is clear according to the estimates of the kernels (part a) and Proposition 3.7)
appearing in the definition of R(λ0). For k ≥ 1, note first, since ψ̃[P h, χ] = 0 and (1 − ψ̃)W̃h

λ = 0
that by computing the terms corresponding to k = 1, k = 2 and then by induction, the general
term splits for any k ≥ 1 into two terms, namely

χxR(λ)εkχy = χx(H̃h
z − z)−1





k
∏

j=1

ε[j]



χy + χx(H̃h
I (λ0) − z)−1





k
∏

j=1

ε[j+1]



χy , (4.17)

where [ℓ] stands for the class of ℓ modulo 2. Each term involves k + 1 resolvents, which induces a
prefactor (Cηe

cη
2h )k+1 in the estimate

∀k ≥ 1, ‖χx ·R(λ)εk · χy‖ ≤ (Cηe
cη
2h )k+1e−

ϕk(x,y)

h ,

with

ϕk(x, y) = min{Lk(x, y), Lk(y, x)}, Lk(x, y) = d̃(x, ∂I) + (k − 1)
Sz

0

2
+ d̃(y, Ũh

λ ) .

We conclude, since ϕk(x, y) ≥ d̃(x, y) + (k − 2)Sz
0 , that the serie is convergent (the convergence is

uniform w.r.t z ∈ Ωh). Again the pointwise estimate is provided by Appendix E.
i)-c) To finish the proof of i), it remains the case λ 6= λ0, dist(z, λ0) ≥ αh/2 or |Im(z)| ≥ 2h. The
strategy is essentially the same as in i)-b): we replace Hh

z = H̃h
z (λ) by H̃h

z far away from the wells
and by H̃h

I (λ) = Hh
I around non λ-resonant wells, which are all the wells. Consider this time

Sz
0 := d(Uh, ∂I) , with Uh = suppWh
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and χ, ψ such that 0 ≤ χ, ψ ≤ 1, χ ≡ 1 in the set {x ∈ I, d̃(x, Uh) ≤ Sz
0 − η}, ψ ≡ 1 in the set

{d̃(x, Uh) ≤ (Sz
0 − η)/2} and ψ ≡ 0 in the set {d̃(x, Uh) ≥ (Sz

0 + η)/2}. Choose as an approximate
right inverse (well defined for z ∈ Ωh such that |Im(z)| > h or dist(z,Λ0) ≥ αh/2)

R = (H̃h
z − z)−1(1 − ψ) + χ(Hh

I − z)−1ψ,

and as an approximate left inverse

L = (1 − ψ)(H̃h
z − z)−1 + ψ(H̃h

I − z)−1 .

One obtains again a norm-convergent series thanks to resolvent estimates and the pointwise esti-
mates of the kernel are derived from Appendix E.
ii) We start again like for i) by the case where λ = λ0, Jλ0 = {1, . . . , N}. For Hh

0 being the
Dirichlet h-Laplacian on I, write, since (Hh

0 + i)ϕ = (H̃h
z + i− z − Ṽh)ϕ:

ϕ(H̃h
z − z)−1 = (Hh

0 + i)−1ϕ[1 + (z + i− Ṽh)](H̃h
z − z)−1

+(Hh
0 + i)−1[P h, ϕ](H̃h

z − z)−1. (4.18)

One sees that the first term of the r.h.s of (4.18) is trace-class with the announced estimates because
(Hh

0 + i)−1 is trace-class whereas the second factor is uniformly bounded. For the last term, use
again that (Hh

0 + i)−1 is trace-class and the fact that we obtained estimates for (H̃h
z − z)−1 in the

H1,h-norm. The result follows by taking the adjoint. In the case λ = λ0, z ∈ Ωh and mλ0 < N ,
use the series R(λ0)

∑∞
k=0 ε

k to see that

(H̃h
z (λ0) − z)−1 =

[

(H̃h
z − z)−1(1 − ψ̃) + χ(H̃h

I (λ0) − z)−1ψ̃
]

[

1 + O(e−
c
h )
]

, (4.19)

and notice that the first factor is trace-class. Finally, one has something similar for λ 6= λ0 and
suitable z

(Hh
z − z)−1 =

[

(H̃h
z − z)−1(1 − ψ̃) + χ(Hh

I − z)−1ψ̃
]

[

1 + O(e−
c
h )
]

. (4.20)

�

5 Localizing resonances

The formalism of Grushin’s Problem provides a convenient way to treat simultaneously the question
of the invertibility of the operator(Hh

z −z) raised in the latter section, and (through a perturbative
formulation) to localize the resonances of P h. We refer the reader to the appendix of [HeSj1]
or to [SjZw] for a general presentation of this technique. Fix the reference energy to the value
λ0 ∈ (Λ∗,Λ

∗) and work in the set Ωh defined in (4.3). Denote by λh
1 , . . . , λ

h
n the eigenvalues of

Hh
I converging to λ0 (they lie in Kh), and φh

1 , . . . , φ
h
mλ0

a corresponding orthonormal system of

eigenvectors. Start by writing the Grushin’s problem for the Dirichlet realization Hh
I :

{

(Hh
I − z)u+R−

0 u
− = v,

R+
0 u = v+,

(5.1)

with
(u, u−) ∈ D(Hh

I ) × C
mλ0 , (v, v+) ∈ L2(I) × C

mλ0 ,

R−
0 : C

mλ0 −→ L2(I), u− :=







u−1
...

u−mλ0






7→ R−

0 u
− :=

mλ0
∑

j=1

u−j φ
h
j , (5.2)

26



and

R+
0 : L2(I) −→ C

mλ0 , u 7→ R+
0 u :=







〈u, φh
1 〉L2

...
〈u, φh

mλ0
〉L2






. (5.3)

Set F ′′ := span {φh
j }

n
j=1, F

′ := (F ′′)⊥. Then, this problem is invertible and the solution is given,
with obvious notations by























u′ = (Hh
I

′
− z)−1v′,

u′′ =

mλ0
∑

j=1

〈u, φh
j 〉φ

h
j =

mλ0
∑

j=1

v+
j φ

h
j ,

u−j = 〈v, φh
j 〉 + (z − λh

j )v+
j , j = 1, . . . ,mλ0 ,

(5.4)

where Hh
I
′
denotes the restriction of Hh

I to F ′. In terms of operators

{

u = E0(z)v + E+
0 v

+,

u− = E−
0 v + E−+

0 (z)v+,
(5.5)

with

E0(z)v = (H ′h
I − z)−1Πh

I v, E+
0 v

+ =

mλ0
∑

j=1

v+
j φ

h
j ,

E−
0 v =







〈v, φh
1 〉L2

...
〈v, φh

mλ0
〉L2






, E−+

0 (z)v+ = diag (z − λh
j ) v+,

and Πh
I is the orthogonal projector onto F ′ :

Πh
I v :=



1 −

mλ0
∑

j=1

|φh
j 〉〈φ

h
j |



 v . (5.6)

Finally, write

Hh
I (z) :=

(

Hh
I − z R−

0

R+
0 0

)

, Eh
I (z) := (Hh

I (z))−1 =

(

E0(z) E+
0

E−
0 E−+

0 (z)

)

. (5.7)

Now we perturb the problem in order to obtain the resonant problem. Like in the proof of
Proposition 4.3, set

S0 := d̃0(U
h
λ0
, ∂I), (5.8)

where d̃0 is the Agmon distance for the potential V0 at the energy λ0. For η > 0 small, fix two
smooth cut-off functions χ, ψ such that 0 ≤ χ, ψ ≤ 1, χ ≡ 1 in the set {x ∈ I, d(x, Uh

λ0
) ≤ S0 − η},

ψ ≡ 1 in the set {d(x, Uh
λ0

) ≤ (S0 − η)/2} and ψ ≡ 0 in the set {d(x, Uh
λ0

) ≥ (S0 + η)/2}. Define

H(z;h) :=

(

Hh
z − z χR−

0

R+
0 0

)

, z ∈ Ωh. (5.9)
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Far from the resonant wells, Hh
z looks like H̃h

z (λ0) and around the wells the Dirichlet problem
(with all the wells) is a good approximation of Hh

z . This leads to set

F(z;h) :=

(

χE0ψ + (H̃h
z (λ0) − z)−1(1 − ψ) χE+

0

E−
0 ψ E−+

0

)

. (5.10)

One shows that
H(z;h)F(z;h) = 1 + K(z;h)

and K satisfies the estimate

K(z;h) =





Õ
(

e−
S0
2h

)

Õ
(

e−
S0
h

)

Õ
(

e−
S0
2h

)

Õ
(

e−
2S0

h

)



 . (5.11)

More precise computations with the second order expansion of the Neumann series and using the
resolvent esimates of Proposition 4.3 can be done. When all the wells are resonant, mλ0 = N ,
details are given by the direct transcription of [HeSj1, pp. 117-128]. The more general case was
treated in [Pat, pp. 178-189].

Proposition 5.1 With the notations (4.3) and (5.8) and for z ∈ Ωh, the operator is invertible,
and the inverse is given by the norm convergent series

H(z;h)−1 = F(z;h)

∞
∑

j=0

(−1)jKj(z;h) =

(

E(z;h) E+(z;h)

E−(z;h) E−+(z;h)

)

,

with
E−+(z) = E−+

0 + Õ
(

e−
2S0

h

)

Moreover, it is uniformly norm-bounded holomorphic function of z ∈ Ωh .

Within the Grushin problem approach, the inversibility of Hh
z − z is reduced to the question of

invertibility of the finite-dimensional block E−+(z) (see the Schur complement formula (6.7)). In
particular, considering det(E−+(z)) leads to the next standard approximation result of resonances
by Dirichlet eigenvalues.

Proposition 5.2 Take the notation (4.3) and (5.8). The operator P h has exactly mλ0 resonances
(counted with multiplicity) zh

1 , . . . , z
h
mλ0

in Ωh. They satisfy

∀j ∈ {1, . . . ,mλ0}, |zh
j − λh

j | = Õ
(

e−
2S0

h

)

.

and have negative imaginary parts.

6 Local density of states

We end the proof of Theorem 1.6 by considering the asymptotic behaviour of the density associated
with a function of the energy.
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Proposition 6.1 Let θ ∈ C0
c ((Λ∗,Λ

∗)) and keep the notations (4.4) under Assumptions 1, 3 and
4. The particle density dnθλ

[V h] defined for g(k) = θ(λk) satisfies the next weak∗ asymptotic in
Mb((a, b)): For all ϕ ∈ C0

c ((a, b)),

lim
h→0

∫ b

a

ϕ(x) dnθλ
= lim

h→0
Tr
[

θ(Hh)ϕ
]

= lim
h→0

Tr
[

(θ.1Kh
)(Hh)ϕ

]

=
∑

i∈Jλ0

θ(λ0)ϕ(ci) . (6.1)

This result which is a Breit-Wigner type formula for the density of states like in [GeMa] will be
proved in two steps : 1) eliminating the non resonant energies; 2) specifying the contribution of
resonant states.

6.1 Eliminating the non resonant energies

We first check that the density goes to 0 in (a, b) as h goes to 0 when all the wells are filled, that
is for H̃h and then reduce the more general non resonant energy problem to this case after using
an approximate resolvent provided by (4.19)-(4.20). We start with a simple accurate estimate.

Proposition 6.2 Let ψ̃h
−(k, ·) the incoming scattering states of H̃h, such that λk ∈ [Λ∗,Λ

∗]. The

function ψ̃h
−(k, ·) is uniformly bounded with respect to x ∈ [a, b] and k. Moreover one has the

uniform pointwise estimate

ψ̃h
−(k, x) = O

(

h−1/2e−
d̃h(a,x)

h

)

, k > 0,

and ψ̃h
−(k, x) = O

(

h−1/2e−
d̃h(b,x)

h

)

, k < 0 ,

where d̃h stands for the Agmon distance for the potential Ṽh at the energy λk .

Proof: We focus on the case k > 0 (if k < 0, just swap a and b). Start by noticing that for
given k, the function Ah

k : x 7→ |ψ̃h
−(k, x)|2 satisfies

h2 d
2

dx2
Ah

k = 2|h∂xψ̃
h
−(k, ·)|2 + 2(Ṽh − λk)|ψ̃h

−(k, ·)|2 ≥ 0. (6.2)

It follows that the function h∂xA
h
k is increasing on I. But the scattering condition (1.17) says that

this functions vanishes at x = b. So the function Ah
k is convex and decreasing on I. It suffices now

to show that the family (Ah
k(a))k is uniformly bounded. But it equals

Ah
k(a) = |ψ̃h

−(k, a)|2 =
∣

∣

∣ei ka
h + rke

−i ka
h

∣

∣

∣

2

, (6.3)

which is bounded according to (1.16).
Now use the Agmon estimate of Appendix A with V = Ṽh, z = λk, u = v = ψ̃h

−(k, ·) and

ϕ = d̃h(a, x). Since P̃ hu = zu, and V − ϕ′2 − z = 0, this leads after taking the real part to

∥

∥

∥h∂x

(

e
ϕ
h ψ̃h

−(k, ·)
)∥

∥

∥

2

L2(I)
≤ h2e

2ϕ(a)
h

∣

∣

∣Re(h∂xψ̃
h
−(k, a)ψ̃h

−(k, a))
∣

∣

∣

+h2e
2ϕ(b)

h

∣

∣

∣Re(h∂xψ̃
h
−(k, b)ψ̃h

−(k, b))
∣

∣

∣ (6.4)

≤ 2|k|Ah
k(a)1/2 = O(1) . (6.5)
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Writing

e
ϕ(x)

h ψ̃h
−(k, x) = ψ̃h

−(k, a) + h−1

∫ x

a

h∂x

(

e
ϕ(t)

h ψ̃h
−(k, t)

)

dt

and Schwarz’s inequality yield the result. �

Corollary 6.3 Let θ ∈ C0
c ((Λ∗,Λ

∗)) and ϕ ∈ C0
c ((a, b)). The operator θ(H̃h)ϕ is trace-class with

a trace estimated by

Tr[θ(H̃h)ϕ] = Õ



e
−
c dist(suppϕ, ∂I)

h



 ,

where dist(x, y) = |x− y| and c is a positive constant. The family of measures (dnθλ
[Ṽ h])h>0

weakly converges to 0 in Mb((a, b)) .

Proof: The function ϕ can be assumed non negative. We write

∫ b

a

ϕ(x) dnθλ
[Ṽ h](x) = Tr

[

ϕ1/2θ(H̃h)ϕ1/2
]

=

∫ b

a

∫

R

θ(λk)
∣

∣

∣ψ̃h
−(k, x)

∣

∣

∣

2

ϕ(x)
dk

2πh
,

after using the expression of the kernel of θ(H̃h) . Proposition 6.2 combined with the fact that the
Agmon distance d̃h associated with Ṽ and an energy λ ∈ (Λ∗,Λ

∗) is uniformly equivalent to the
Euclidean distance, yields the result after integration. �

Thanks to this result one easily gets rid of non resonant energies.

Proposition 6.4 Consider the energy interval Kh defined in (4.4) and set θ̃h(λ) := (1−1Kh
(λ)) ·

θ(λ). Then in restriction to (a, b), the measure dnh
θ̃h

λ

weakly converges to 0 as h goes to 0:

∀ϕ ∈ C0
c ((a, b)), lim

h→0
Tr (θ̃h(Hh)ϕ) = 0 .

Proof: We again assume again ϕ ≥ 0 and apply Stone’s formula in order to compute the trace
of ϕ1/21I θ̃

h(Hh)1Iϕ
1/2. By referring to Proposition 4.1 and by using successively (4.19)-(4.20)

one obtains

Tr (θ̃h(Hh)ϕ) = Tr (θ̃h(H̃h)(1 − ψ̃)ϕ) + Tr (χθ̃h(Hh
I )ϕ̃) + O

(

h−2e−
c
h

)

, h→ 0. (6.6)

The first term can be estimated by

0 ≤ Tr (θ̃h(H̃h)(1 − ψ̃)ϕ) ≤ Tr (θ(H̃h)(1 − ψ̃)ϕ) ,

with a right-hand side converging to 0 by Corollary 6.3. Meanwhile the second term cancels since
Hh

I has no spectrum on the support of θ̃h. This finishes the proof. �
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6.2 Contribution of resonant states

Let us first go back to the Grushin problem introduced in Section 5. According to Proposition 5.1,
and estimates (5.11) we have

H(z;h)−1 :=

(

E(z) E+(z)
E−(z) E−+(z)

)

= F(z;h)

(

1 + ε(z) ε+(z)
ε−(z) 1 + ε−+(z)

)

,

with ε•(z) = Õ(e−S0/2h) uniformly in z ∈ Ωh. This implies

[Hh
z − z]−1 = E(z) − E+(z)(E−+(z))−1E−(z) . (6.7)

Coming back to the definition (5.10) of Fh(z), this can be improved into

E(z) = (H̃h
z (λ0) − z)−1(1 − ψ)(1 + ε) + χE0(z)ψ(1 + ε) + χE+

0 ε
− (6.8)

E+(z) = χE+
0 + (H̃h

z (λ0) − z)−1(1 − ψ)ε+ + χE+
0 ε

−+ + χE0(z)ψε
+ (6.9)

E−(z) = E−
0 ψ + E0(z)ψε+ E−+

0 (z)ε− (6.10)

E−+(z) = E−+
0 (z) + Õ

(

e−
2S0

h

)

. (6.11)

We are now ready to apply Stone’s formula with a complex deformation of the integration
contour. Before this, we write under an adapted form the polar part coming from (6.11).

Lemma 6.5 Set Ω̃h := [λ0−α
h/2, λ0−α

h/2]× [−2ih, 2ih] For z in Ωh\Ω̃h, there exists a constant
c > 0 and a matrix-valued meromorphic function G such that

E−+(z)−1 = E−+
0 (z)−1 +G(z), ‖G(z)‖ = O

(

e−
c
h

)

, h→ 0 .

Proof: Fix any matrix-norm on Cmλ0 and use again (6.11) to see that

E−+(z) = (1 + F (z)E−+
0 (z)−1)E−+

0 (z), z 6= λh
j ,

‖F (z)‖ = O
(

e−
2S
h

)

, 0 < S < S0 for z ∈ Ωh \ Ω̃h . (6.12)

Because of the expression of E−+
0 (z),

‖F (z)E−+
0 (z)−1‖ = O

(

e−
2S
h

)

(

min
j=1,...,mλ0

|z − λh
j |

)−1

.

For z 6= zh
j , j = 1, . . . ,mλ0

E−+(z)−1 = E−+
0 (z)−1[1 + F (z)E−+

0 (z)−1]−1 (6.13)

and the condition z ∈ Ωh \ Ω̃h implies minj=1,...,mλ0

∣

∣z − λh
j

∣

∣ ≥ h. Therefore, the Neumann expan-

sion of [1 + F (z)E−+
0 (z)−1]−1 converges, which yields the result. �

We can end the proof of Theorem 1.6 with the
Proof of Proposition 6.1: Owing to Proposition 6.4 it is enough to consider the trace

1I(1Kh
.θ)(Hh)1Iϕ.
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According to Stone’s formula and Proposition 4.1 one gets for non negative functions θ ∈ C0
c ((Λ∗,Λ

∗)),
and ϕ ∈ C0

c (I),

1I(1Kh
.θ)(Hh)1Iϕ =

−1

2iπ

∫

Kh+i0

θ(λ)(λ − Hh
λ )−1ϕ dλ +

1

2iπ

∫

Kh−i0

θ(λ)(λ − H ′h
λ )−1ϕ dλ ,

(6.14)

where (H ′h
z − z)−1 denotes the (meromorphic continuation from the lower-half complex plane) of

the truncated resolvent 1I(H
h − z)−11I , corresponding to the anti-resonant boundary conditions

(see Remark 9).
For fixed ε > 0, consider the contour Cε made by the segments (Λ∗ + iε,Λ∗ + iε) ∩ Ωh and

(Λ∗− iε,Λ
∗− iε)∩Ωh scoured in opposite way, the first one by real parts increasing (see Figure 2).

This contour in homotopic to the union of the circle γh and the contour C′
ε (depicted in the Figure 2)

which lies on the square root Riemann surface ramified along R+. Part of the deformation takes
place on the second sheet where resonances appear as poles. Meanwhile in the lower half-plane
(first sheet) the resolvent is given by the anti-resonant boundary conditions (see Remark 9). The
operator corresponding to these dual transparent boundary conditions is denoted by H ′h

z and its
resolvent, [H ′h

z − z]−1, has the same properties as [Hh
z − z]−1, up to the sign of imaginary parts.

Since for any given function ϕ ∈ C0
c ((a, b)), the functional θ 7→ Tr [θ(Hh)ϕ] defines a non negative

γh

iε

−iε

C′
ε

C′
ε

C−

C+

λ0
× γ(h)

C−

C+C′
ε C′

ε

Figure 2: Application of Stone’s formula. Resonances lie on the second sheet and close to λ0

(semi-circle gray).

measure while the right-hand side
∑

i∈Jλ0
θ(λ0)ϕ(ci) of (6.1) is also a positive functional of θ, the

function θ can be replaced by a polynomial approximation on the interval [Λ∗,Λ
∗]. Use polynomial

approximations from below (resp. from above) in order to get a lower bound (resp. upper bound)
of the limit in (6.1). Hence we can assume that θ is a polynomial function on [Λ∗,Λ

∗], which allows
the complex deformation of the contour integral.

We first integrate the polar part. Consider first the integral over γh, which involves only
(Hh

z − z)−1. Use expression (6.7) first. Let us note immediately that E(z) is a holomorphic
function in a neighborhood of γh, its integral is null. Then, one can rewrite

E−(z) = E−
0 ψ + Õ

(

e−
S0
2h

)

, E+(z) = χE+
0 + Õ

(

e−
S0
2h

)

. (6.15)

These estimates hold in the norm of trace-class operators since these operators are of finite-rank.
On the contour γh, one has

E−+(z)−1 = E−+
0 (z)−1 +G(z), G(z) = O(1), (6.16)
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so coming back to (6.7)

E+
0 (z −Hh

z )−1 = −E(z) + χE+
0 E

−+
0 (z)−1E−

0 ψ + O
(

e−
S0
2h

)

, h→ 0. (6.17)

If now we integrate over γh, and since θ(λh
j ) = θ(λ0) + o(1), it comes

∫

γh

θ(z)(Hh
z − z)−1ϕ

dz

2iπ
= 0 + θ(λ0)χE

+
0 E

−
0 ψϕ+ o(1)‖ϕ‖∞. (6.18)

Note that E+
0 E

−
0 is nothing but the orthogonal projector on the Dirichlet states

∑mλ0

j=1 |φh
j 〉〈φ

h
j | .

Taking now the trace, and using its cyclicity, one has with the approximation of the Dirichlet states
by superpositions of the eigenfunctions of the one-well problem in Theorem 3.6

Tr



χ

mλ0
∑

j=1

|φh
j 〉〈φ

h
j |ψϕ



 = Tr





mλ0
∑

j=1

|φh
j 〉〈φ

h
j |ψϕ



 (6.19)

=

mλ0
∑

j=1

〈

φh
j , φ

h
j ψϕ

〉

L2 (6.20)

=
∑

j∈J(λ0)

ϕ(cj) + o(1)‖ϕ‖∞ . (6.21)

Let us come to the contour C′
ε of which the projection on C lies in Ωh \ Ω̃h. Note that the polar

part coming from (H ′h
z − z)−1 is to be treated with the integral of the polar part coming from

(Hh
z − z)−1. Since (with obvious notations)

E′−+(z)−1 − E−+(z)−1 = E′−+(z)−1(E−+(z) − E′−+(z))E−+(z)−1 ,

Lemma 6.5 implies that the difference is then exponentially small because the resonances and
anti-resonances are at distance greater than h from C′

ε.
It remains the holomorphic part over C′

ε. Because the polar part is treated, one can compute
this integral after the inverse homotopy leading back to Cε. But coming back to the expansion

series (6.8) of E(z) (resp. E′(z)) with main term given by H̃h
z (resp. H̃ ′

h

z ), the application of
Stone’s formula gives that the contribution of these terms is zero by Proposition 6.4. �

A Agmon identity

Here we just give the basic energy identity.

Lemma A.1 Let Ω := (α, β) an open interval, V ∈ L∞(ω), z ∈ C and ϕ a Lipschitz real function
on Ω. Denote by P the Schrödinger operator P := −h2d2/dx2 + V. Then for any u1, u2 in H2(Ω),
and setting vj := eϕ/huj one has:

∫ β

α

e
2ϕ
h (P − z)u1ū2dx =

∫ β

α

hv′1hv
′
2dx+

∫ β

α

(V − z − ϕ′2)v1v̄2dx

+

∫ β

α

hϕ′(v′1v̄2 − v1v̄
′
2)dx

+ h2
(

e
2ϕ(α)

h u′1ū2(α) − e
2ϕ(β)

h u′1ū2(β)
)

.

This identity is obtained after conjugation of hd/dx by eϕ/h and integration by parts.
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B Monotony Principle

A little variation of [Ni2] provides the next result.

Proposition B.1 For i = 1, 2, let Vi two non negative functions in L∞(I) and Hi := Hh
B + Vi.

Consider a function F ∈ S(R) which is decreasing on [−B,+∞). Write Fλ(k) = F (λk) and define
dnFλ

according to (1.35) and (1.20). Then the inequality
∫

I

(V2 − V1)dnF [V2] ≤

∫

I

(V2 − V1)dnF [V1]

holds.

This inequality is a convexity inequality which is a key ingredient in the analysis of thermondy-
namical equilibria of Schrödinger-Poisson systems (see [Ni1], [Ni2]). Here the assumption Vi ≥ 0
ensures σ(Hi) ⊂ [−B,+∞). The convexity inequality with a continuous spectrum has been proved
in [Ni2], with the assumption that the potential is 0 at infinity. Here the different values 0 and
−B for x < a and x > b do not bring any additional difficulties in this simple one-dimensional
problem.

C Spectral approximation

We refer the reader to [Hel], [HeSj2] for the details. Recall that if E and F are two given closed
subspaces of a Hilbert space H, with orthogonal projections ΠE and ΠF , the non-symmetric
distance from E to F, denoted by ~d(E,F ) ∈ [0, 1] is the norm of operator (1 − ΠF )ΠE , and if
~d(E,F ) < 1, ΠF induces on E a continuous injection on its range with bounded inverse. Moreover,

if at the same time ~d(F,E) < 1, the latter distances are equal. In particular E and F have same
dimension.

Proposition C.1 Let A an unbounded self-adjoint operator on H and Λ := [λ−, λ+] ⊂ R. Suppose
that there exists ε > 0, N linearly independent vectors ψ1, . . . , ψN in the domain of A,µ1, . . . , µN ,
N complex numbers in Λ such that Aψj = µjψj + rj , with ‖rj‖ ≤ ε. If A has no spectrum in
{x, 0 < dist(x,Λ) ≤ a} for some a > 0, then the subspaces E := Span(ψ1, . . . , ψN ) and F equal to
the spectral subspace 1Λ(A)H verify

~d(E,F ) ≤

(

N

ρ∗

)1/2
ε

a
,

where ρ∗ is the smallest eigenvalue of the Gram matrix with entries 〈ψi, ψj〉.

In particular if A is known to have only discrete spectrum and if the directed distance ~d(E,F ) can
be proved in this way to be smaller than 1, then A has at least N eigenvalues lying in Λ.

D Scattering states for the barrier

Proposition D.1 Let V0(x) := Λ∗ on I and Hh
0 := −h2∆ + V0 − B · 1(b,∞), and {ψh

−(k, ·)}k its

scattering states. Set Sk :=
√

(Λ∗ − λk), λk < Λ∗. Then one has as h → 0, and uniformly for
x ∈ I, for k > 0

|ψh
−(k, x)|2 =

4k2

Λ∗
e−

Sk(x−a)

h

(

1 + O
(

e−
2Sk(b−x)

h

))

,

|ψh
−(−k, x)|2 =

4k2

Λ∗ +B
e

Sk(x−b)

h

(

1 + O
(

e−
2Sk(x−a)

h

))

.
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It suffices to solve explicitly on I the system characterizing ψh
−(k, ·) on the explicit basis of

solutions to the ODE (since the potential is constant on I). Use the scattering conditions (1.17)-
(1.18) . These conditions are still valid when λ < 0 because of the choice of the square root indeed.
Finally the computation reduces to the solving of 2 by 2 affine systems. We just give the final
result.

E Pointwise estimate for the resolvent

The next result shows that no Lipschitz regularity is necessary in dimension 1 in order to transform
weighted L2-estimates into pointwise estimates of the Green functions. Once the weighted L2-
estimates are obtained from the Agmon identity of Appendix A, it suffices to use the equation
after the regularization of the Agmon distance which is possible because the Õ estimates can
absorb little exponential errors.

Proposition E.1 Let H = −h2∆ + V be a closed operator with V ∈ L∞(I), I = [a, b], D(H) ⊂
H2(I), with dual H ′ and D(H ′) ⊂ H2(I). Fix z ∈ C such that z 6∈ σ(H) for all h ∈ (0, h0). We
assume that there is a distance d ∈ C0(I × I), such that the resolvent estimate

‖χx(z −H)−1χy‖L(L2) ≤ CηA(h)e
−d(x,y)+η

h

holds for all (x, y, h) ∈ I × I × (0, h0) as soon as η ∈ (0, η0), with η0 > 0 small enough and χp

generically denotes a cut-off functions supported in |x− p| = O(η). Then the pointwise estimate

|(z −H)−1[x, y]| = Õ
(

A(h)e
−d(x,y)

h

)

,

holds with uniform constants with respect to (x, y, h) ∈ I × I × (0, h0).

Proof: Let y0 ∈ I be fixed. Consider a smooth function ϕ ∈ C∞(I) which is an aproximation of
d(x, y0), such that ‖ϕ− d(., y0)‖L∞ ≤ η and f ∈ L2(I).
Let u be the solution to (H − z)u = χy0f , then

e
ϕ
h (−h2∆ + V − z)e−

ϕ
h

(

e
ϕ
h u
)

= e
ϕ
h χy0f.

By defining v = eϕ/hu, the assumption leads to the estimate

‖v‖L2 ≤ Cη A(h) e
cη
h ‖χy0f‖. (E.1)

Using the relation

e
ϕ
h (−(h∂x)2 + V − z)e−

ϕ
h = −h2∂2

x + 2hϕ′∂x + hϕ′′ + V − (ϕ′)2 − z,

we can write

[C − h2∂2
x + 2hϕ′∂x]v = e

ϕ
h χy0f + Cv + hϕ′′v − (V − (ϕ′)2 − z)v, (E.2)

where C is a strictly positive constant large enough. The regularity of ϕ implies

‖v‖H2,h ≤ Cη e
cη
h ‖χy0 f̃‖L2 .

In dimension one, H2,h is continously embedded in C0([a, b]). Then the application f 7→ eϕ/h(H −
z)−1e−ϕ/hχy0f is continuous from L2([a, b]) onto C0([a, b]) with the above uniform estimate.
By duality, χy0e

−ϕ/h(H ′ − z)−1e−ϕ/h is continuous from (Mb(I), ‖ · ‖b) onto L2.
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By changing y0 into x0 and H into H ′, this says that the L2-norm v1 = χx0e
d(x0,y0−cη)/h(H −

z)−1δy0 has an L2(I)-norm bounded by CηA(h). A bootstrap with (E.2) leads to the uniform
estimate of |v1(x)|, which yields the pointwise resolvent estimate. �
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