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Abstract

This article continues the asymptotic analysis of a nonlinear Schrödinger-Poisson system
which models in a far from equilibrium regime the quantum transport in electronic devices
like resonant tunneling diodes. Within the reduction to an h-dependent linear problem with
uniform regularity estimates for the potential already established in the first part, explicit
computations of the asymptotic finite dimensional nonlinear system are derived. They rely
on an accurate (phase-space) analysis of the tunnel effect which relies on some kind of Breit-
Wigner formula and Fermi golden rule.
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B Universal lower bound for gaps 28

1 Introduction

We complete the asymptotic analysis started in [BNP1] of some out-of-equilibrium 1D Schrödinger-
Poisson system arising from the modelling of resonant tunelling diodes. This problem is a nonlinear
problem whose functional framework was considered in [BDM], [Ni3] within a Landauer-Büttiker
approach [BuLa], [ChVi], [Lan] (see also [NiPa], [Pat], [JLPS], [PrSj], [BNP], [BNP1]). We recall
that the analysis has been reduced, in [BNP1], to an h-dependent linear problem after providing
uniform estimates for the initial semilinear problem. Hence we consider for h > 0 going to zero
and for some fixed interval I = [a, b] the Schrödinger operator on the real line,

Ph := − d2

dx2
+ Ṽh −Wh, Ṽh := −B + V h, V h ∈W 1,∞(a, b) , (1.1)

where
B(x) = −Bx− a

b− a
1[a,b](x)−B · 1[b,+∞)(x) (1.2)

and B is a non-negative constant. The potential B simply models the applied bias. The family
of potentials (V h)h∈(0,h0) has uniformly bounded second derivatives ∂2

xV
h = ∂2

xṼh in Mb([a, b])
which converge weakly to some measure µ0 ∈Mb([a, b]), with the additional boundary conditions

V h(a) = V h(b) = 0 .

Recall that this makes a bounded family of functions Ṽh in W 1,∞(a, b) and which converges in
C0,α(I), α < 1, to a function Ṽ0, ∂2

xṼ(0)
∣∣
(a,b)

= µ0
∣∣
(a,b)

. We assume that

inf
h∈(0,h0),x∈I

Ṽh(x) =: Λ0 > 0. (1.3)

Finally, the potential −Wh describes quantum wells according to

Wh(x) =
N∑
i=1

wi

(
x− ci
h

)
, (1.4)

where c1 < . . . < cN are N given points in (a, b) and the functions wi are continuous1 positive
functions supported in [−κ, κ] for some fixed κ > 0. We shall use the convention c0 = a and
cN+1 = b. The Hamiltonian Hh is the self-adjoint realization of Ph on the real line with domain
H2(R)

∀u ∈ D(Hh) = H2(R), Hhu := Phu. (1.5)

Recall that the notation P is used for the differential operator while H is reserved for some closed
non necessary self-adjoint realization as an unbounded operator on L2.
The potentials wi, i = 1, . . . , N , is chosen so that the spectrum σ(Hi) of the Hamiltonians Hi =
−∆− wi satisfies

Ṽh(ci) + inf σ(Hi) ≥ κi > 0 ,

with κi independent of h. With such an assumption the operator Hh has a purely continuous
spectrum equal to [−B,∞).
Due to the applied bias B ≥ 0, the dispersion relation associated with the Hamiltonian Hh reads

λk :=
∣∣∣∣ k2 if k > 0,
k2 −B if k < 0. (1.6)

1In [BNP1], the nonlinear analysis was carried out with only wi ∈ L∞(I).
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For k ∈ R such that λk ∈ (−B,+∞) \ {0}, the incoming scattering state ψ−(k, x) is the solution
of

Phψh−(k, ·) = λkψ
h
−(k, ·) , (1.7)

with the normalization

for k > 0 ψ−(k, x) =

 ei
kx
h + rk e

−i kxh for x < a ,

tk e
i
(λk+B)1/2x

h for x > b ,

for k < 0 ψ−(k, x) =

 tk e
−i (λk)1/2x

h for x < a ,

ei
kx
h + rk e

−i kxh for x > b .

The square root z1/2 is chosen with the ramification along the half-line iR− in order to ensure that
e−i(λk)1/2x decays exponentially as x→ −∞ when λk ∈ (−B, 0) .
This can be reduced to k-dependent transparent boundary conditions

for k > 0


[
h∂x + iλ

1/2
k

]
u(a) = 2ikei

ka
h ,[

h∂x − i(λk +B)1/2
]
u(b) = 0,

(1.8)

for k < 0


[
h∂x + iλ

1/2
k

]
u(a) = 0,[

h∂x − i(λk +B)1/2
]
u(b) = 2ikei

kb
h .

(1.9)

The coefficients tk and rk are the transmission and reflexion coefficients and satisfy for λk > 0

|rk|2 +
√

λk
λk +B

|tk|2 = 1. (1.10)

Denote, for i = 1, . . . , N by σi the set of negative eigenvalues of the Hamiltonian Hi = −∆ − wi
with D(Hi) = H2(R)

σi := {eik}k∈Ki ⊂ (−∞; 0), Ki ⊂ N, i = 1, . . . , N . (1.11)

The set of asymptotic resonant energies is defined as

E0 :=
N⋃
i=1

Ei, Ei := σi + Ṽ0(ci). (1.12)

Let us recall as well the notion of asymptotic resonant wells associated with λ ∈ E0:

Jλ := {i ∈ {1, . . . , N} s. t. λ ∈ Ei} .

The multiplicity mλ of the asymptotic resonant energy λ is given by

mλ := #Jλ.

Like in [BNP1], we focus on positive energies: We fix an energy domain (Λ∗,Λ∗) ⊂ (0,Λ0), and we
consider the functions

θ ∈ C0
c ((Λ∗,Λ∗)) , θ ≥ 0 , (1.13)

and g(k) = θ(λk)1R+(k) . (1.14)
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The function of the asymptotic momenum is the operator with (continuous in 1D) kernel

g(Kh
−)[x, y] =

∫
k

g(k)ψh−(k, x)ψh−(k, y)
dk

2πh
, (1.15)

and we are interested in the asymptotic of the particle density nh(x) defined by∫ b

a

ϕ(x) dnh(x) = Tr
[
g(Kh

−)ϕ(x)
]
, ∀ϕ ∈ C0

c ((a, b)) ,

or equivalently

nh(x) =
∫
k

g(k)|ψh−(k, x)|2 dk

2πh
.

The result of [BNP1, Theorem 1.6] states that, possibly after extracting a subsequence, the measure
dnh converges weakly to dn0 in Mb((a, b)) with

dn0 =
∑
λ∈E0

∑
i∈Jλ

tλi θ(λ) δx=ci , tλi ∈ [0, 1] . (1.16)

Our aim here is the accurate determination of the coefficients tλi according to the geometry of the
potential.

Recall that this result, [BNP1, Theorem 1.6], is essentially obtained by checking that the tλi ’s
are equal to 1 when the function g(k) is replaced by θ(λk) and g(Kh

−) by θ(Hh). In this article,
we focus on the anisotropic case when g(k) = θ(λk)1R+(k) cannot be written as a function of the
energy. Note that due to the decomposition

θ(Hh) = g−(Kh
−) + g+(Kh

−), g−(k) = 1k<0 · θ(λk), g+(k) = 1k>0 · θ(λk), (1.17)

the result can be tranformed into a result for functions g− supported on negative momentum and
even carries over to more general combination.

2 Assumptions and results

Since (1.16) is a local result on the energy axis while the set of asymptotic resonant energies E0 is
finite, the analysis can be partly simplified after the next assumption.

Assumption 1 Suppose that the support of function θ and therefore g(k) = 1k>0 · θ(λk), contains
only one asymptotic resonant energy

supp θ ∩ E0 = {λ0} .

The next assumptions are technically more serious. Some specific configurations allow to handle
accurately and quite simply the discussion with respect to the geometry in terms of the Agmon
distance.

Definition 2.1 With an energy λ ∈ R and a potential V ∈ L∞(I), is associated the Agmon
(possibly degenerate) distance d(., .;V, λ) defined by :

∀x, y ∈ I, d(x, y;V, λ) =
∣∣∣∣∫ y

x

√
(V (t)− λ)+ dt

∣∣∣∣ . (2.1)
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Notation 1 The Agmon distance associated with the asymptotic potential Ṽ0 and the asymptotic
resonant energy λ0 is denoted by d0. It is defined by

d0(x, y) :=
∣∣∣∣∫ y

x

√
Ṽ0(τ)− λ0 dτ

∣∣∣∣ ,
With this distance, let

S0 := d0(∪i∈Jλ0
{ci}, ∂I), SU := max

i,j∈Jλ0

d0(ci, cj), SI := d0(a, b) (2.2)

be respectively the distance between the λ0-resonant wells and the boundary ∂I = {a, b}, the diam-
eter of the union of the resonant wells, and the diameter of the island.
It is sometimes convenient to introduce the set

U = {c1, . . . , cN} .

Finally, introduce for η0 > 0 the quantity

S̃U := max
τ∈[c1,cN ]

√
Ṽ0(τ) + η0 − λ0 |cN − c1|,

which measures the diameter of the area which contains all the wells.

Notice that S̃U is written in terms of some L∞-norm of the potential instead of an integral. The
parameter η0 is introduced in order to ensure S̃U > SU . It can be chosen arbitrarily small.

Definition 2.2 We say that the λ0-resonant wells are gathered (resp. strongly gathered) if and
only if

S0 + SU < SI/2 (resp. S0 +mλ0SU < SI/2). (2.3)

As S0 + SU is the greatest distance from the boundary of the island to the resonant wells, the
condition S0 + SU < SI/2 expresses that the resonant wells are gathered in one the halves of the
island. This explains the terminology.

Definition 2.3 We say that the wells are isolated if and only if

S0 > 8S̃U and mλ0 = N. (2.4)

Inequality (2.4) means that the wells are confined in the central part of the island.

Theorem 2.4 Make Assumption 1. Suppose that the λ0-resonant wells are strongly gathered, or
suppose that the wells are isolated (mλ0 = N) and gathered with N = mλ0 . Then the two next
statements hold:
i) The coefficients tλ0

i , i ∈ Jλ0 , are all equal to 1 if d0(a, ci) < d0(ci, b) for all i ∈ Jλ0 .
ii) The coefficients tλ0

i , i ∈ Jλ0 , are all equal to 0 if d0(a, ci) > d0(ci, b) for all i ∈ Jλ0 .

In the first case the wells are confined in the left-hand half of the island, whereas in the second
case the wells are confined in the right-hand side of the island, this partition being done in terms
of the Agmon distance d0. This result can be interpreted in terms of tunneling effect: in case i)
the tunneling effect is easier from a to the wells than from the wells to b, the particles coming from
−∞ (remember g+(−|k|) = 0) are trapped by the wells; in case ii), the particle escape more easily
from the wells to b than they get into the wells from a.
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Theorem 2.5 Assume that the wells are isolated according to Definition 2.3 (mλ0 = N). Let
λh1 < . . . < λhmλ0

be the eigenvalues of the Dirichlet Hamiltonian Hh
I on I = [a, b] converging to λ0

as h → 0 with the normalized eigenvectors φh1 , . . . , φ
h
mλ0

. Fix ε ∈ (0, 1/2 min0≤i 6=i′≤N+1 |ci − ci′ |)
and let ψ̃h−(k, ·) be the generalized eigenfunctions of H̃h = Hh + Wh. Then the coefficient tλ0

i ,
i = 1, . . . ,mλ0 , is obtained as the limit of the quantity

mλ0∑
j=1

∫ ci+ε

ci−ε
|φhj (x)|2 dx

1 +

√
λhj

∣∣∣〈φhj , Whψ̃h−(−
√
λhj +B, ·)

〉∣∣∣2√
λhj +B

∣∣∣〈φhj , Whψ̃h−(+
√
λhj , ·)

〉∣∣∣2
, (2.5)

as h→ 0 (after possibly extracting a subsequence).

From this result non trivial cases for which not all the tλi belong to {0, 1} will be exhibited in
Section 8, in particular in Proposition 8.5 and Proposition 8.6.
When N = 1, we will establish that, the coefficient tλ0

1 belongs to (0, 1) only if d0(a, c1) = d0(c1, b).
In the case of two wells N = 2, the values of tλ0

1 and tλ0
2 have to fulfill the next rules

1. tλ0
1 = 1 and tλ0

2 ∈ [0, 1] if d0(a, c1) < d0(c2, b);

2. tλ0
1 ∈ [0, 1] and tλ0

2 = 0 if d0(a, c1) > d0(c2, b);

3. 1 ≥ tλ0
1 ≥ t

λ0
2 ≥ 0 if d0(a, c1) = d0(c2, b).

All these rules which were proved only for isolated wells and especially the general condition tλ0
1 ≥

tλ0
2 have a very natural interpretation within the probabilistic presentation of quantum mechanics.

They are probably valid in all cases although our proof requires some specific assumptions. They
were taken as granted in the numerical applications treated in [BNP]. Note that our results provide
essentially a complete understanding of what is going on when there is no interaction of resonances,
or when the interaction of resonant states involves only two wells. In the final nonlinear problem
presented in [BNP], [BNP1], the coefficients tλi play the role of Lagrange multipliers which have
an arbitrary value in [0, 1] when the associated constraint for the asymptotic resonant energy or
the Agmon distances is saturated.
Finally note that the assumption mλ0 = N in the second case of Theorem 2.4 (isolated and gathered
wells) is not crucial. It is assumed here in order to avoid some unessential technicalities which have
already been considered in [BNP1] and are treated in the sligthly simpler first case.

3 Reduction of the relevant energy interval

In [BNP1], a small h-dependent energy domain around λ0 has been introduced. Let Hh
I denote

the Dirichlet realization of Ph on the interval I = [a, b] and let {λh1 , . . . , λhmλ0
} be the ordered

eigenvalues converging to λ0 as h→ 0. Set

Ωh := {z ∈ C s.t. Re (z) ∈ Kh, Im (z) ∈ [−4h, 4h]} (3.1)
with Kh := [λ0 − αh, λ0 + αh] (3.2)
and αh := 4 max

{
h, |λ0 − λhj |, j = 1, . . . ,mλ0

}
. (3.3)

The Proposition 6.4 of [BNP1] yields the next energy interval reduction.
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Proposition 3.1 Under Assumption 1, the convergence

lim
h→0

Tr
[
g(Kh

−)ϕ(x)
]
− g(

√
λ0)Tr

[
1Kh(Hh)1(0,+∞)(Kh

−)ϕ(x)
]

= 0

holds for any ϕ ∈ C0
c ((a, b)) .

Hence we will mainly focus on the energies lying in Kh and on the spectral parameters lying
in Ωh in the sequel.

4 Lower bound for the imaginary parts of the resonances

In this simple one-dimensional problem where the potential is piecewise constant outside a com-
pact interval, the resonances are easily introduced after an explicit complex deformation of the
transparent boundary conditions (1.8)-(1.9). The operator Hh

ζ is defined for a complex ζ lying in
a neighborhood of λ ∈ (−B, 0) by

D(Hh
ζ ) =

{
u ∈ H2(I),

[
h∂x + iζ1/2

]
u(a) = 0,[

h∂x − i(ζ +B)1/2
]
u(b) = 0

}
, (4.1)

Hh
ζ u = Phu = [−h2∆ + Vh(x)]u , ∀u ∈ D(Hh

ζ ) . (4.2)

The resonances are then exactly the complex values z for which the operator (Hh
z − z) is not

injective (see [BNP1] for this specific case and [BaCo], [HeSj1], [HiSi] for more general versions of
the complex deformation).
It was proved in [BNP1] that the resonances converging to λ0 lie in a Õ(e−2S0/h)-neighborhood
of the Dirichlet eigenvalues (see [BNP1, Proposition 5.2]). Hence we get the usual result that the
imaginary part of resonances converging to λ0 are exponentially small

Im (zh) = Õ(e−
2S0
h ) .

Providing a lower bound for the imaginary part of resonances is a standard result within the
semiclassical analysis of resonances (see [HeSj1]). We check it with a more pedestrian approach
for our 1D problem where the potential does not fit exactly with the semiclassical setting and has
a limited regularity. Note that the lower bound can be much smaller than the upper bound in the
multiple well case.

Proposition 4.1 For any η > 0, there exists a positive constant Cη > 0 such that for any reso-
nance zh converging to λ0, one has

Cηe
− 2S0−η

h ≥ −Im (zh) ≥ C−1
η e−

2(S0+SU )+η
h . (4.3)

Proof: Let zh such a resonance and uh a normalized resonant state associated, that is an element
in the kernel of Hh

zh − z
h with L2(I)-norm equal to 1. It satisfies

−h2∆uh + Vh(x)uh = zhuh,
∥∥uh∥∥

L2(I)
= 1 ,

with the boundary conditions provided by uh ∈ D(Hh
zh) . By taking the imaginary part of the

identity (A.1) applied with V = Vh, u2 = u1 = uh, z = zh and ϕ ≡ 0 one gets

− Im (zh) = hRe (
√
zh +B)|uh(b)|2 + hRe (

√
zh)|uh(a)|2. (4.4)
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If the imaginary part of zh is too small, uh satisfies a Cauchy problem in x = a with small datas
because of the resonant boundary conditions and limh→0 z

h = λ0 ∈ (Λ∗,Λ∗). We next check that
such a smallness is limited by the normalization assumption

∥∥uh∥∥
L2 = 1. In order to get this, set

F (x) :=

 uh(x)

ih
duh

dx
(x)

 . (4.5)

F satisfies the ODE on I

ih
dF

dx
= Ah(x)F (x), Ah(x) :=

(
0 1

zh − Vh 0

)
, Vh = Ṽh −Wh. (4.6)

Endow C2 with the standard hermitian norm. If ρh(x) denotes the spectral radius ofAh(x)Ah(x)T ,
one gets the estimate ∣∣∣∣hdFdx

∣∣∣∣2 ≤ ρh(x)|F (x)|2. (4.7)

By Gronwall’s lemma this yields

|F (x)| ≤ min
(
|F (a)|e 1

h

R x
a
|zh−Vh(τ)|1/2 dτ ; |F (b)|e 1

h

R b
x
|zh−Vh|1/2 dτ

)
, (4.8)

for all x ∈ I. The transparent conditions given by uh ∈ D(Hh
zh) imply

|F (a)|2 = |uh(a)|2(1 + |zh|), |F (b)|2 = |uh(b)|2(1 + |zh +B|) . (4.9)

Apply now the Agmon estimate technique like in [DiSj] in order to check that the resonant
wave function concentrates in the wells: Taking the real part of the identity (A.1) with V = Vh,
z = zh, u1 = u2 = uh and ϕ(x) = d(x, suppWh; Ṽh − ε0,Re zh) with ε0 > 0 leads to

0 =
∫ b

a

∣∣∣h∂x(e
ϕ
h uh)

∣∣∣2 dx+ ε0

∫
I\suppWh

∣∣∣eϕh uh∣∣∣2 dx

+
∫

suppWh

(Ṽh(x)−Wh(x)− Re zh)
∣∣uh∣∣2 dx

+ h Im [(zh)1/2] e2
ϕ(a)
h

∣∣uh(a)
∣∣2 + h Im [(zh +B)1/2] e2

ϕ(b)
h

∣∣uh(b)
∣∣2 .

Since limh→0 z
h = λ0 > 0 and Im (zh) = Õ(e−2S0/h) and from (4.4) we deduce the estimate∫

I\suppWh

∣∣∣h∂x(e
ϕ
h uh)

∣∣∣2 + ε0

∣∣∣eϕh uh∣∣∣2 dx ≤ Õ
(
e−4

S0
h

)
max

{
e

2ϕ(a)
h , e

2ϕ(b)
h

}
−
∫

suppWh

(Ṽh(x)−Wh(x)− Re zh)
∣∣uh∣∣2 dx .

Owing to ϕ(a) ≤ d0(a, U) and ϕ(b) ≤ d0(b, U) for h > 0 small enough and to
∥∥uh∥∥

L2 = 1 we get∫
I\suppWh

∣∣∣h∂x(e
ϕ
h uh)

∣∣∣2 + ε0

∣∣∣eϕh uh∣∣∣2 dx ≤ C

for some constant independent of h > 0 (small enough). Let χ a cut-off function which cancels
around the boundary of I. Then, χuh is close to an eigenfunction for the Dirichlet operator
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Hh
I . Using [Hel, p. 30–31] (or [HeSj2]), we can prove that uh has asymptotically no mass in the

non-resonant wells.
From this we conclude that the constant κ1 > 0 can be chosen so that there exists i ∈ Jλ0 such

that the L2-norm of uh on [ci−κ1h, ci +κ1h] is greater than 1
2

1
mλ0

, for h > 0 small enough. Using
(4.8) and integrating on [ci − κ1h, ci + κ1h], one obtains from (4.8) and (4.9)

1
4m2

λ0

≤ min
(
|uh(a)|2(1 + |zh|)

∫ ci+κ1h

ci−κ1h

e
2
h

R x
a
|zh−Vh(τ)|1/2 dτ dx ;

|uh(b)|2(1 + |zh +B|)
∫ ci+κ1h

ci−κ1h

e
2
h

R b
x
|zh−Vh(τ)|1/2 dτ dx

)
. (4.10)

In the integral with respect to τ , one can replace Vh by Ṽh modulo O(h), since each well is of
diameter κh. Fix now ε1 > 0. For h > 0 small enough we can assume

|Ṽh(x)− Ṽ0(x)| ≤ ε1

and
∣∣zh − λ0

∣∣ ≤ ε1 .

This leads finally to

1/(4m2
λ0

) ≤ eCκ1 min
(

2h|uh(a)|2(1 + |zh|)e
2(d0(a,ci)+Cε1

h ; 2h|uh(b)|2(1 + |zh +B|)e
2d0(ci,b)+Cε1

h

)
≤ C ′

∣∣Im zh
∣∣ e 2d0(ci,∂I)+C

′ε1
h .

The lower bound of (4.3) appears as a necessary condition owing to d0(ci, ∂I) ≤ S0 +SU by taking
C ′ε1 ≤ ε . �

Remark 4.2 • Note that in the single well case N = 1, SU = 0, one recovers a logarithmic
equivalent to |Im zh| .

• Note that the lower bound of (4.3) can be improved slightly by noticing d0(ci, ∂I) is less than
min {S0 + SU , SI/2}.

5 Resolvent estimates around an asymptotic resonant en-
ergy

In this section, we play with the explicit expression of the determinant and the inverse of finite
dimensional matrices after the Grushin reduction of the resonance problem, in the spirit [TaZw].
The next expression of the resolvent was derived in [BNP1] after introducing a Grushin problem :

1I(Hh − z)−11I = (Hh
z − z)−1 = F (z)− E+(z)(E−+(z))−1E−(z) , (5.1)

for all z ∈ Ωh and where F is a holomorphic trace class operator-valued function. For any compact
set K ⊂ (a, b), there exists cK such that the estimate

∀ϕ ∈ C0(K), |Tr (F (z)ϕ)| = Oϕ(e−cK/h), h→ 0 , (5.2)

holds uniformly for z ∈ Ωh and h ∈ (0, h0). The meromorphic part is of finite rank with poles
located exactly at the resonances zh1 , . . . , z

h
mλ0

of Ph.
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The labelling of the resonances is done according to the labelling of the Dirichlet eigenvalues
λh1 , . . . , λ

h
mλ0

with
∣∣zhj − λhj ∣∣ = Õ

(
e−2S0/h

)
.

Moreover, the approximated expansion

E−+(z) = diag
[(
z − λh1

)
, . . . ,

(
z − λhmλ0

)]
+ Õ

(
e−

2S0
h

)
(5.3)

= diag
[(
z − zh1

)
, . . . ,

(
z − zhmλ0

)]
+ Õ

(
e−

2S0
h

)
, (5.4)

E−(z) = E−0 ψ + Õ
(
e−

S0
2h

)
, (5.5)

E+(z) = χE+
0 + Õ

(
e−

S0
2h

)
. (5.6)

hold with
∥∥E+

0

∥∥ and
∥∥E−0 ∥∥ uniformly bounded and where ψ and χ are cut-off functions (see [BNP1,

Section 5 and Section 6.2]).

Proposition 5.1 The estimate

∥∥(E−+(λ))−1
∥∥ = Õ

(
e

2(mλ0
−1)SU
h

[
min

j=1,...,mλ0

|λ− zhj |
]−1

)

holds for any real λ ∈ Ωh ∩ R, when ‖ ‖ denotes any fixed norm on Mmλ0
(C) .

Proof. We start to prove that there exists a function fh such that

∀z ∈ Ωh, detE−+(z) =
mλ0∏
j=1

(z − zhj )fh(z) inf
h>0

inf
Ωh
|fh(z)| ≥ c > 0. (5.7)

Fix any norm on Mmλ0
(C). The function fh : z 7→ detE−+(z)

∏mλ0
j=1 (z − zhj )−1 is meromorphic

on Ωh, does not cancel, and has removable singularities at z = zhj . We apply then the maximum
modulus principle to the matrix elements. Because of (5.4) and the location of the resonances we
have

detE−+(z) =
mλ0∏
j=1

(z − zhj ) + Õ
(
e−

2S0
h

)
, (5.8)

and on the boundary of Ωh, |z − zhj | ≥ Ch, C > 0. Consequently, f is bounded by below by 1/2
for h sufficiently small. This proves (5.7).
In order to evaluate the norm of (E−+(z))−1, we use the representation

(E−+(z))−1 =
1

detE−+(z)
comE−+(z)T , (5.9)

where Γ(z) := comE−+(z)T denotes the transpose matrix of the cofactors. Let us make more
explicit the form of the general element Γij(z) in order to get the estimate. In general, by denoting
ε(z) the residual matrix in (5.4) the entry Γij(z) is a sum of (mλ0 − 1)! homogeneous monomials
of order mλ0 − 1 in the matrix elements of E−+(z), among which there are r diagonal elements
(0 ≤ r ≤ mλ0 − 1). Such a monomial writes

r∏
k=1

(z − zhjk + εik,ik)
mλ0−1∏
l/∈{1,...,r}

εσ(il),il , σ ∈ Smλ0−1 . (5.10)
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The estimate of
∥∥(E−+(z))−1

∥∥ is then derived from an upper bound of quantities like

thr (z) =

r∏
k=1

(
z − zhjk + εik,ik

) mλ0−1∏
k/∈{1,...,r}

εσ(ik),ik

mλ0∏
j=1

(z − zhj

, 0 ≤ r ≤ mλ0 − 1. (5.11)

For any fixed r ∈ {0, . . . ,mλ0 − 1} and λ ∈ R, the inequality

|thr (λ)| ≤ Cr max
0≤r1≤r

Õ
(
e−

2(mλ0
−r1−1)S0
h

)
mλ0−r1∏
k=1

|zhjk − λ|

≤ Cr max
0≤r1≤r

Õ
(
e−

2(mλ0
−r1−1)S0
h

)
|zhj1 − λ|

mλ0−r1∏
k=2

|Im zjk |

combined with the lower bound (4.3) yields

∣∣thr (λ)
∣∣ ≤ Cr max

0≤r1≤r

Õ
(
e

2(mλ0
−r1−1)SU
h

)
min
j

∣∣λ− zhj ∣∣ ≤ Cr
Õ
(
e

2(mλ0
−1)SU
h

)
min
j

∣∣λ− zhj ∣∣ .

�

6 Case of strong gatherness

We prove Theorem 2.4 under the strong gatherness assumption (see Definition 2.2) that we recall
here:

S0 +mλ0SU < SI/2 . (6.1)

Actually the result will be proved under the simplifying assumption that all the wells are λ0-
resonant, mλ0 = N . The Lemma 6.1 given in the end of this Section will make clear that this
assumption is not restrictive.
Proof of Theorem 2.4 under the strong gatherness assumption: First note that the two
statements i) and ii) can be deduced one from the other with a complementary argument provided
by the relation (1.17) with the functions of the energy for which tλj = 1 was proved in [BNP1].
Hence we want to prove

lim
h→0

Tr
[
g(Kh

−)ϕ
]

= 0

in the case ii). According to Proposition 3.1, it is equivalent to

lim
h→0

Tr
[
gh(Kh

−)ϕ
]

= 0 ,

with gh(k) = 1(0,+∞)(k)1Kh(λk) .
Let ψ−(k, x) (λk ∈ Kh) be the generalized eigenfunction defined by (1.8)-(1.9) for the potential Vh
and ψ̃−(k, x) be the generalized eigenfunction associated with the filled potential Ṽh = Vh +Wh .
Set

uh(k, ·) := ψh−(k, ·)− ψ̃h−(k, ·) = (Hh
k2 − k2)−1Whψ̃h−(k, ·). (6.2)
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so that
|ψh−(k, x)|2 ≤ 2|ψ̃h−(k, x)|2 + 2|uh(k, x)|2 . (6.3)

If we denote by K̃h
− the asymptotical momentum for H̃h, we get for any ϕ ∈ C0

c ((a, b); R+):

0 ≤ Tr (gh(Kh
−)ϕ) ≤ Tr (gh(K̃h

−)ϕ) + 2‖ϕ‖2∞
∫
k>0,λk∈Ih

‖uh(k, ·)‖2L2
x

dk

2πh
. (6.4)

If we come back to the expression (5.1) of the resolvent (Hh
k2 − k2)−1, we get

uh(k, ·) = F (k2)Whψ̃h−(k, ·)− E+(k2)(E−+(k2))−1E−(k2)Whψ̃h−(k, ·), (6.5)

and finally
‖uh(k, ·)‖2L2

x
≤ 2‖F (k2)Whψ̃h−(k, ·)‖2 + 2‖T (k2)Whψ̃h−(k, ·)‖2 , (6.6)

by setting
T (k2) := E+(k2)(E−+(k2))−1E−(k2) . (6.7)

The first term of (6.6) uniformly goes to 0 when h→ 0, because F is bounded in the operator-norm
and Whψ̃h−(k, ·) is Õ(e−d0(a,Uh))/h), according to the Proposition 6.2 in Section 6.1 of [BNP1]. By
Proposition 5.1, it follows that the second term is bounded by

‖T (k2)Whψ̃h−(k, ·)‖2 = Õ

e− 2d(a,U)
h e

4(N−1)SU
h

min
j=1,...,N

|k2 − zhj |2

 . (6.8)

But, for any resonance zh ∈
{
zh1 , . . . , z

h
N

}
, writing zh = Eh − iΓh, Eh = Re (zh), Γh = −Im (zh),

gives
1

|k2 − zh|2
=

1
Γh

Γh
(k2 − Eh)2 + Γh2 . (6.9)

The latter factor is uniformly bounded in L1(Rk), while the first factor is estimated owing to (4.3)
by

1
Γh

= Õ
(
e

2(S0+SU )
h

)
.

By putting all the inequalities together, the integral in (6.4) is dominated by

Õ
(
e−

2d(a,U)
h e

4(N−1)SU
h

)
× Õ

(
e

2(S0+SU )
h

)
.

We conclude by recalling the assumptions

d(a, U) = SI − (S0 + SU )
−2SI + 4(S0 +NSU ) < 0 .

�
The next arguments show that the assumption mλ0 = N is easily removed. Let H̃h

k2,nr be the
operator with the same domain as Hh

k2 and associated with the potential

Ṽhnr = Vh +
∑
j∈Jλ0

wj

(
x− cj
h

)
,

where all the resonant wells are filled. In [BNP1] such an Hamiltonian was denoted by H̃k2(λ0)
and it was proved (see Proposition 4.3) that it satisfies the same resolvent estimate as H̃k2 . Hence
the previous proof carries over to the case when mλ0 < N as soon as the generalized eigenfunctions
ψ̃h−,nr(k, x) corresponding to the partially filled wells share the same properties as the ψ̃h−(k, x) .
This is given by the next Lemma.
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Lemma 6.1 For k > 0 such that λk ∈ Kh, the pointwise estimate

ψ̃h−,nr(k, x) = ψ̃h−(k, x) + Õ
(
e−

d0(a,Uhnr)+d0(Uhnr,x)
h

)
holds for any x ∈ I = [a, b] with a uniform control of the constants with respect to x ∈ I. The set
Uhnr is supp Wh

nr with Wh
nr = Wh −

∑
j∈Jλ0

wj

(
.−cj
h

)
.

Proof: The function ε(k, ·) := ψ̃h−,nr(k, ·) − ψ̃h−(k, ·) is in the domain of Hh
k2,nr and, since

P̃h −Wh
nr = Phnr, it follows that

ψ̃h−,nr(k, ·) = ψ̃h−(k, ·)− (Hh
k2,nr − k2)−1Wh

nrψ̃
h
−(k, ·). (6.10)

It was shown that ψ̃h−(k, x) = O(h−1)e−d0(a,x) uniformly w.r.t k, whereas the kernel of (Hh
k2,nr−

k2)−1 is Õ(e−d0(x,y)). �

7 Isolated Wells

We assume in this section mλ0 = N .

7.1 Preliminary results

In the case of isolated wells, the geometric assumption ensures that the resonances are simple.
More precisely, the gaps between the Dirichlet eigenvalues converging to λ0 are much larger than
the imaginary parts of all the corresponding resonances. This does not correspond exactly to the
case mλ0 = 1 because the energy domain Kh = Ωh ∩R has to be splitted into exponentially small
energy intervals with a refined analysis which was not really carried out in [BNP1]. This will lead
in particular in Section 7.2 to a refined version of the Breit-Wigner type formula for the local
density of states already considered in [BNP1] after [GeMa].

The first result which is an application of the universal lower bound of gaps given in [KiSi],
introduces the quantity S̃U .

Proposition 7.1 Let λh1 < . . . < λhmλ0
be the eigenvalues of Hh

I , the Dirichlet realization of Ph

on I converging to λ0. There exists a constant CU > 0 such that for h > 0 sufficiently small

∀j 6= k, |λhj − λhk | ≥ C−1
U e−

S̃U
h . (7.1)

When the wells are isolated, each disc centered on λhj with radius (3CU )−1e−S̃U/h contains therefore
only one resonance of Ph for h > 0 small enough.

Proof: Consider the Hamiltonian Ĥh on the whole line R with domain H2(R) and defined by

∀u ∈ H2(R), Ĥhu := P̂hu, P̂h := −h2d2/dx2 + V̂h, (7.2)

V̂h = 1(−∞,b) · Vh(a) + 1I · Vh + 1(b,∞) · Vh(b). (7.3)

The potential V̂h is a continuous function constant outside I and coinciding with Vh on I. By
construction, one has

inf σess

(
Ĥh
)
≥ Λ0 > Λ∗. (7.4)
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Besides, the number of eigenvalues of Ĥh is bounded w.r.t. h > 0. Apply then the Theorem 2
from [KiSi] given in Appendix B with [aKS , bKS ] = [c1 − κh, cN + κh] and α2

KS = Λ0 (the KS

index refers to Kirsch and Simon’s notations). This provides a lower bound for the splitting of the
eigenvalues of Ĥh, lying around λ0, namely

|λ̂hj − λ̂hk | ≥ Ce−
S̃U
h . (7.5)

Now, if λh is one of the eigenvalues of Hh
I in this interval with φh a corresponding L2-normalized

eigenfunction, one has with the exponential decay estimates (see [BNP1, Proposition 3.3])

Ĥhχφh = λhχφh + [Ph, χ]φh, ‖[Ph, χ]φh‖L2 ≤ Cηe−
S0−cη
h , (7.6)

for a smooth cut-off function χ supported in (a, b) and equal to 1 outside an η-neighborhood of
its boundary ∂I = {a, b}. Since Hh

I is self-adjoint, an orthonormal basis of mλ0 eigenvectors
φh’s associated with eigenvalues λh converging to λ0 can be considered. The exponential decay
of these eigenvectors (see [BNP1, Proposition 3.3]) ensures that the Gram matrix of the χφh’s is
exponentially close the unit matrix. According to [Hel], [HeSj2] (see also [BNP1, Appendix C]),
Ĥh has at least mλ0 eigenvalues converging to λ0.

Conversely, if λ̂h is an eigenvalue of Ĥh with eigenfunction φ̂h, one has in L2(I)

Ĥhχφ̂h = λ̂hχφ̂h + [Ph, χ]φ̂h, (7.7)

with the same estimate of the remainder term [Ph, χ]φ̂h as in (7.6) owing to the exponential decay
of φ̂h (Use again the Agmon estimate). A first application of the results of [Hel], [HeSj2] (see
also [BNP1, Appendix C]) ensures that there is a bijection between the eigenvalues of Hh

I and the
eigenvalues of Ĥh converging to λ0, with variations of order Õ(e−S0/h) which are much smaller
than the gaps (7.5). �

The previous localization of resonances can be combined with the Grushin formulation (5.1).
Unfortunately this does not produce an accurate enough information. We now want to use the
lower bound on the gaps in order to consider separately every pair (λhj , z

h
j ) made of a Dirichlet

eigenvalue with the associated resonance, although this still allows interacting wells. Improved
resolvent estimates and a better description of the generalized wave function is needed. In [BNP1]
the kernel of the resolvent (Hh

• −z)−1 was studied when dist(z, σ(Hh
I )) is larger than hC (or e−S1/h

with the notations of [BNP1]). Here we have to work with only dist(z, λhj ) ≥ (C/100)e−S̃U/h, that
is much closer to the Dirichlet eigenvalue λhj (e−S̃U/h = o(e−SU/h) = o(e−S1/h)). Let us start with
a lemma about the Dirichlet realization which completes the results of [BNP1].

Lemma 7.2 Let Hh
I be the Dirichlet realization on the interval I of the operator Ph. Let zh belong

to Ωh with h ∈ (0, h0), h0 small enough. Set

r(h) = dist(zh, σ(Hh
I )) ,

and assume r(h) > 0. The kernel of the resolvent (Hh
I − zh)−1 satisfies

(Hh
I − zh)−1[x, y] =

Õ
(
e−

d0(x,y)−SU
h

)
min (r(h), 1)

with uniform constants with respect to x, y ∈ I, when d0 denotes the Agmon distance d(., .; Ṽ0, λ0) .
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Proof: We already proved in [BNP1, Proposition 3.7 and Corollary 3.8] the estimate

(Hh
I − zh)−1[x, y] = Õ

(
e−

d0(x,y)
h

)
, when r(h) ≥ hC ; (7.8)

and in [BNP1, Proposition 3.9] the estimate∣∣φhj (x)
∣∣+
∣∣∂xφhj (x)

∣∣ = Õ
(
e−

d0(x,U)
h

)
, (7.9)

which holds for any normalized eigenfunction φhj associated with an eigenvalue λhj , j ∈ {1, . . . ,mλ0},
converging to λ0 as h→ 0. Recall that U gathers all the wells

U = {c1, . . . , cN} .

Consider the spectral projector

Πh
I = Id− 1

2iπ

∫
∂Ωh

(z −Hh
I )−1 dz = Id−

mλ0∑
j=1

|φhj 〉〈φhj | .

Write for z ∈ Ωh \ σ(Hh
I )

(Hh
I − z)−1 = (Hh

I − z)−1Πh
I + (Hh

I − z)−1(Id−Πh
I )

= (Hh
I − z)−1Πh

I +
mλ0∑
j=1

1
λhj − z

|φhj 〉〈φhj | ,

where the first term is holomorphic with respect to z ∈ Ωh. In terms of Schwartz kernels one gets

(Hh
I − z)−1Πh

I [x, y] = (Hh
I − z)−1[x, y]−

mλ0∑
j=1

1
λhj − z

φhj (x)φhj (y) .

The maximum principle combined with the estimate (7.8) for z ∈ ∂Ωh and the decay estimate
(7.9) imply

∀z ∈ Ωh,
∣∣(Hh

I − z)−1Πh
I [x, y]

∣∣ ≤ Õ (e− d0(x,y)−SU
h

)
.

An obvious estimate of the polar term derived again from (7.9) yields the result.
�

Below are two results for the filled wells potential Ṽh. The first Lemma is a specific case of
Proposition 4.3 in [BNP1]. The second one is a consequence of Proposition 6.2 in [BNP1].

Lemma 7.3 For z ∈ Ωh the resolvent estimate∣∣∣(H̃h
z − z)−1[x, y]

∣∣∣ = Õ
(
e−

d0(x,y)
h

)
holds with uniform constant with respect to x, y ∈ I.

Lemma 7.4 For λ ∈ Kh = Ωh∩R, the generalized wave functions ψ̃h−(
√
λ, .) and ψ̃h−(−

√
λ+B, .),

which solve (1.7)-(1.8) with Wh ≡ 0, satisfy

ψ̃h−(
√
λ, .) = Õ

(
e−

d0(a,x)
h

)
and ψ̃h−(−

√
λ+B, x) = Õ

(
e−

d0(x,b)
h

)
,

with uniform constants with respect to x ∈ [a, b].
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7.2 Breit-Wigner formulas

We provide here an accurate information on the resolvent (Hh
λ − λ)−1 = 1I(Hh − λ)−11I , for

λ ∈ Kh, in terms of resonances.
The domain

Kh ×
[
−(20CU )−1e−

S̃U
h , (20CU )−1e−

S̃U
h

]
=
{
z ∈ Ωh, |Im z| ≤ (20CU )−1e−

S̃U
h

}
will be covered by Nh = Õ(eS̃U/h)-open discs with radius (10CU )−1e−S̃U/h centered on the real
axis. They are labelled so that the mλ0 first ones are centered around the Dirichlet eigenvalues λhj

ωhj =
{
z ∈ C,

∣∣z − λhj ∣∣ < (10CU )−1e−
S̃U
h

}
,

and the notation ωhj with j > mλ0 is used for all the other ones.

&%
'$

&%
'$

&%
'$

Kh

×λh1
×zh1

×λh2
×zh2

×λh3
×zh3

?̃O(e−
2S0
h )

���
O(e−

S̃U
h )

-�

O(e−
S̃U
h )Ωh

Proposition 7.5 For j ∈ {1, . . . ,mλ0}, let zhj be the resonance of Hh associated with the Dirichlet
eigenvalue λhj ,

∣∣zhj − λhj ∣∣ = Õ(e−2S0/h) . For any j ∈ {1, . . . , Nh} the resolvent (Hh
z − z)−1 is

decomposed in ωhj as (
Hh
z − z

)−1
= ghj (z) +

1[1,mλ0 ](j)

zhj − z
Ahj

where ghj (z) is an holomorphic operator-valued function of z ∈ ωhj with the next properties:

1. For j ∈ {1, . . . ,mλ0}, the operator Ahj is close to the Dirichlet spectral projector |φhj 〉〈φhj |:∥∥Ahj − |φhj 〉〈φhj |∥∥ = Õ
(
e−

S0−6S̃U
2h

)
. (7.10)

2. If χ1 and χ1/2 are two C∞0 ((a, b)) cut-off functions such that χ% ≡ 1 on U and ∂xχ% is
supported in {x ∈ (a, b), %S0 − η ≤ d0(x, U) ≤ %S0 + η} with % ∈ {1/2, 1} and η > 0, then
there is a constant Cη > 0 and a constant c > 0 independent of η > 0, such that the difference

Dh
j (z) = ghj (z) −

[
(H̃h

z − z)−1(1 − χ1/2) + χ1(Hh
I − z)−1χ1/2 −

1[1,mλ0 ](j)

zhj − z
Ahj

]
(7.11)

satisfies

∀z ∈ ∂ωhj ,
∥∥Dh

j (z)
∥∥ ≤ Cη e−S0−6S̃U−cη

2h . (7.12)
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Proof: The proof of this result relies on two leading ideas. One is the Laurent expansion (with
the exact poles zhj ) of the meromorphic function (Hh

z − z)−1 which is handled like in the proof of
Lemma 7.2. The other one is the approximation of the resolvent (Hh

z − z)−1 by

Rh = (H̃h
z − z)−1(1− χ1/2) + χ1(Hh

I − z)−1χ1/2 , (7.13)

already considered in [BNP1, Proposition 4.3].
We focus on the case j ∈ {1, . . . ,mλ0}, since the other case j > mλ0 will be deduced easily from
this one by taking Ahj = 0. The expression (7.13) leads to

∀z ∈ ωhj \
{
λhj
}
, (Hh

z − z)Rh = 1− ε = 1− ε0 − ε1

with ε0 = Wh(H̃h
z − z)−1(1− χ1/2)

and ε1 = −
[
Ph, χ1

]
(Hh

I − z)−1χ1/2 .

Lemma 7.3 and Lemma 7.2 provide the estimates

‖ε0‖ ≤ Cη e−
S0−cη

2h ,

and ‖ε1‖ ≤ Cη
e−

S0−cη−2SU
2h

r(h)
≤ Cη (10CU ) e−

S0−cη−4S̃U
2h ,

for any z ∈ ∂ωhj with r(h) =
∣∣z − λhj ∣∣ = (10CU )−1e−S̃U/h . Hence the assumption S̃U < S0/4 and

taking η > 0 small enough ensure the convergence of the series

(Hh
z − z)−1 = Rh

∞∑
k=0

εk = Rh +Rh
∞∑
k=1

εk, for z ∈ ∂ωhj . (7.14)

We now consider the Laurent expansion of (Hh
z − z)−1 in ωhj

(Hh
z − z)−1 = ghj (z) +

1
zhj − z

Ahj , (7.15)

where zhj is the resonance of Hh lying in ωhj according to Proposition 7.1. Computing the residue
of (Hh

z −z)−1, equal to (7.14) with Rh given by (7.13), along the contour ∂ωhj provide the estimates

∥∥Ahj − |φhj 〉〈φhj |∥∥ ≤ e−S0−cη
2h + sup

z∈∂ωhj

∥∥∥∥∥Rh
∞∑
k=1

εk

∥∥∥∥∥ ≤ C ′ηe−S0−cη−4S̃U
2h × e

S̃U
h ,

after using

‖Rh‖ ≤ C‖(H̃z − z)−1‖+ C‖(HI − z)−1‖ = O
(
e
S̃U
h

)
.

This yields (7.10).
For the second estimate, notice the identity

Dh
j (z) = ghj (z)−Rh +

1
zhj − z

Ahj = Rh
∞∑
k=1

εk

and (7.12) is deduced from∥∥∥∥∥Rh
∞∑
k=1

εk

∥∥∥∥∥ ≤ C ′ηe−S0−cη−6S̃U
2h for z ∈ ∂ωhj .

�
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Remark 7.6 The estimates of the error terms could be improved by studying more carefully the
first terms of the series

∑∞
k=1 ε

k in the spirit of [HeSj1] or [BNP1, Proposition 4.3]. It is not an
essential issue here.

Below is the Breit-Wigner formula which will be used.

Proposition 7.7 Assume that the wells are isolated and take the notations λhj , φhj zhj and ωhj
introduced before for j ∈ {1, . . . ,mλ0}. In ωhj one has the next equality of meromorphic functions

〈
φhj , (Hh

z − z)−1φhj
〉

=
1 + Õ

(
e−

S0−6S̃U
2h

)
zhj − z

+ Õ
(
e−

S0−8S̃U
2h

)
,

and the uniform estimate ∥∥ghj (z)
∥∥ = Õ

(
e−

S0−8S̃U
2h

)
.

Proof: Let us write

〈φhj , (Hh
z − z)−1φhj 〉 = 〈φhj , ghj (z)φhj 〉+

1
zhj − z

〈φhj , Ahj φhj 〉 .

According to (7.10) the second term has the form

1
zhj − z

〈φhj , Ahj φhj 〉 =
1 + Õ

(
e−

S0−6S̃U
2h

)
zhj − z

.

The first term is holomorphic in ωhj and it suffices to find an estimate along ∂ωhj . We use the
decompostion (7.11)

〈φhj , ghj (z)φhj 〉 = 〈φhj ,
[
Dh
j (z) + (H̃h

z − z)−1(1− χ1/2)
]
φhj 〉

+ 〈φhj , χ1(Hh
I − z)−1(χ1/2)φhj 〉 −

1 + Õ
(
e−

S0−6S̃U
2h

)
zhj − z

.

This leads to

〈
φhj , g

h
j (z)φhj

〉
= Õ

(
e−

S0−6S̃U
2h

)
+

zhj − λhj(
zhj − z

) (
λhj − z

) +
Õ
(
e−

S0
2h

)
∣∣λhj − z∣∣ +

Õ
(
e−

S0−6S̃U
2h

)
∣∣zhj − z∣∣ ,

for all z ∈ ∂ωhj and the maximum principle yields the first result.
The estimate of

∥∥ghj (z)
∥∥ follows essentially the same lines. �

We end this section with a reduction of the energy interval which is thiner than the one of Propo-
sition 3.1.

Proposition 7.8 With the previous notations, set for any j ∈ {1, . . . ,mλ0}

Kj,h = ωhj ∩ R . (7.16)

For any ϕ ∈ C0
c ((a, b)), the limit

lim
h→0

Tr
[
g(Kh

−)ϕ(x)
]
−
mλ0∑
j=1

g(
√
λ0)Tr

[
1Kj,h(Hh)1(0,+∞)(Kh

−)ϕ(x)
]

(7.17)

is 0.
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Proof: We know from (1.16) and [BNP1] that the support of ϕ can be assumed to be around
U = {c1, . . . , cN}, for instance included in {x ∈ (a, b), d0(x, U) ≤ S0/3}. By Proposition 3.1, the
first term of (7.17) can be replaced with

g(
√
λ0)Tr

[
1Kh(Hh)1(0,+∞)(Kh

−)ϕ
]
.

Moreover we have for ϕ ≥ 0,

Tr
[
1Kh\∪j≤mλ0

Kj,h(Hh)1(0,+∞)(Kh
−)ϕ

]
≤ Tr

[
ϕ1/21Kh\(∪j≤mλ0

Kj,h)(Hh)ϕ1/2
]

≤
Nh∑

j=mλ0+1

Tr
[
ϕ1/21Kj,h(Hh)ϕ1/2

]
,

by introducing Kj,h = ωhj ∩ R for j ∈ {mλ0 + 1, . . . , Nh} and where we recall Nh = Õ
(
eS̃U/h

)
.

Proposition 7.5 and especially relation (7.11) give the identity

ϕ1/2(Hh − λ− i0)−1ϕ1/2 = ϕ1/2(Hh
λ − λ)−1ϕ1/2

= ϕ1/2(H̃h
λ − λ)−1ϕ1/2 + ϕ1/2(Hh

I − λ)−1ϕ1/2 + ϕ1/2Dh
j (λ)ϕ1/2 ,

valid for all λ ∈ Kj,h with j ∈ {mλ0+1, . . . , Nh}. Indeed, our choices of supports imply (1 −
χ1/2)ϕ1/2 ≡ 0 and ϕ1/2χ1 ≡ ϕ1/2χ1/2 ≡ ϕ1/2.
This leads to

1
2iπ

ϕ1/2
[
(Hh − λ− i0)−1 − (Hh − λ+ i0)

]
ϕ1/2 =

1
2iπ

ϕ1/2
[
(H̃h

λ − λ)−1 +Dh
j (λ)− h.c.

]
ϕ1/2 ,

where ”h.c.” stands for ”hermitian conjugate”. The estimate (7.12) can easily be transformed into
a trace-class estimate because of the localization in x and λ. We use Stone’s formula for 1Kj,h(Hh).
After integration w.r.t λ ∈ Kj,h, j > mλ0 , and after summing over j ∈ {1, . . . ,mλ0}, this leads to

Nh∑
j=mλ0+1

Tr
[
ϕ1/21Kj,h(Hh)ϕ1/2

]
= O

(
e−

c
h

)
,

when the wells are assumed isolated. �

7.3 A Fermi-Golden rule

An accurate determination of the coefficients tλ0
i in the case of isolated wells can be done by first

elucidating via a Fermi-Golden rule the contribution of positive and negative momenta in the size
of the imaginary part of a resonance zhj = Ehj − iΓhj . We keep the same notations λhj , φhj , zhj and
ωhj introduced before for j ∈ {1, . . . ,mλ0}. The real and imaginary parts of the resonances zhj are
written according to

zhj = Ehj − iΓhj , for j ∈ {1, . . . ,mλ0} .

Proposition 7.9 For any j ∈ {1, . . . ,mλ0} the idendity

Γhj (1 + o(1)) =
|〈Whψ̃h−(

√
λ, ·), φhj 〉|2

4h
√
λ

+
|〈Whψ̃h−(−

√
λ+B, ·), φhj 〉|2

4h
√
λ+B

(7.18)

holds for any λ ∈ ωhj .
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Proof: Let dEh(λ) denote the infinitesimal spectral projection of the whole line Hamiltonian
Hh, given by Stone’s formula:

dEh(λ) =
1

2iπ
[
(H − λ− i0)−1 − (H − λ+ i0)−1

]
.

We shall compute in two different ways and for a fixed j ∈ {1, . . . ,mλ0} the spectral measure〈
1Iφhj , dE

h(λ)1Iφhj
〉

of 1I(x)φj .
First Stone’s formula and Proposition 7.7 lead to〈
1Iφhj , dE

h(λ)1Iφhj
〉

=
1

2iπ

〈
φhj ,

[
(Hh

λ − λ)−1 − (Hh,?
λ − λ)−1

]
φhj

〉
=

1
2iπ

(
1 + Õ

(
e−

S0−6S̃U
2h

))[
1

zhj − λ
− 1

zhj − λ

]
+ Õ

(
e−

S0−8S̃U
h

)

=
Γhj
(

1 + Õ
(
e−

S0−6S̃U
2h

))
π
(∣∣λ− Ehj ∣∣2 +

∣∣Γhj ∣∣2) + Õ
(
e−

S0−8S̃U
h

)
, (7.19)

for all λ ∈ Kj,h .
The second method uses the generalized wave functions :

〈
1Iφhj , dE

h(λ)1Iφhj
〉

=
|〈ψh−(

√
λ, ·), φhj 〉|2

4πh
√
λ

+
|〈ψh−(−

√
λ+B, ·), φhj 〉|2

4πh
√
λ+B

.

The relation
ψh−(k, ·) = ψ̃h−(k, ·)−

(
Hh
λk
− λk

)−1
Wψ̃h−(k, ·) , (7.20)

Proposition 7.5, the exponential decay of φhj and ψ̃h−(k, ·) in Lemma 7.4 and Proposition 7.7 lead
to 〈

φhj , ψ
h
−(k, ·)

〉
=

〈
φhj , ψ̃

h
−(k, ·)

〉
+
〈
φhj , g

h
j (λk)Whψ̃h−(k, ·)

〉
+

1
zhj − λ

〈
φhj , A

h
jW

hψ̃h−(k, ·)
〉

= Õ
(
e−

S0
h

)
+ Õ

(
e−

S0
h

)
Õ
(
e−

S0−8S̃U
2h

)
(7.21)

+
1

zhj − λ

〈
φhj , W

hψ̃h−(k, ·)
〉

+
Õ
(
e−

S0
h

)
Õ
(
e−

S0−6S̃U
2h

)
∣∣zhj − λ∣∣ .

Owing to Proposition 4.1 and the conditions S̃U > SU and S0 > 8S̃U , the last term is estimated
by

Õ
(
e−

S0
h

)
Õ
(
e−

S0−6S̃U
2h

)
Γhj

= o

 h1/2√
Γhj

 .

20



The equality of the two expressions (7.19) and (7.21) for λ = Ehj , and again the assumption
S0 > 8S̃U imply

1
Γhj

(1 + o(1)) =
1

4h
√
Ehj

∣∣∣∣∣∣
〈
φhj , W

hψ̃h−(
√
Ehj , ·)

〉
Γhj

+ o

 h1/2√
Γhj

∣∣∣∣∣∣
2

+
1

4h
√
Ehj +B

∣∣∣∣∣∣
〈
φhj , W

hψ̃h−(−
√
Ehj +B, ·)

〉
Γhj

+ o

 h1/2√
Γhj

∣∣∣∣∣∣
2

.

This yields the result for λ = Ehj . For λ ∈ ωhj , one writes the equation for u = ψ̃h−(
√
λ, ·) −

ψ̃h−(
√
Ehj , ·) in the form

(P̃h − Ehj )u = Õ
(
e−

S̃U
h

)
ψ̃h−(
√
λ, ·) ,

h∂xu(a) + i
√
Ehj u(a) = Õ

(
e−

S̃U
h

)
+ Õ

(
e−

S̃U
h

)
ψ̃h−(
√
λ, a) ,

h∂xu(b)− i
√
Ehj +Bu(b) = Õ

(
e−

S̃U
h

)
ψ̃h−

(√
λ, b
)
.

With the Agmon identity (A.1) with ϕ = (1− η)d0(a, x), η > 0, one gets∣∣∣ψ̃h−(
√
Ehj , x)− ψ̃h−(

√
λ, x)

∣∣∣ = Õ
(
e−

d0(x,a)+S̃U
h

)
. (7.22)

Note that the right-hand side is o(
√
hΓhj ) when x ∈ suppWh owing to Proposition 4.1 and the

assumption S̃U > SU . A similar estimate can be obtained for the momentum −
√
Ehj + λ with the

distance d0(x, b) instead of d0(a, x). Hence the result for λ = Ehj implies

Γhj (1 + o(1)) =
1 + o(1)
4h
√
λ

∣∣∣〈φhj , Whψ̃h−(
√
λ, ·)

〉
+ o(

√
hΓhj )

∣∣∣2
+

1 + o(1)
4h
√
λ+B

∣∣∣〈φhj , Whψ̃h−(−
√
λ+B, ·)

〉
+ o(

√
hΓhj )

∣∣∣2 ,
for all λ ∈ ωhj , which yields the result. �

7.4 Values of the coefficients tλ0
i

In this paragraph all the previous intermediate results are gathered in order to check that the
coeffcients tλ0

i are the limits of the quantities (2.5), when the wells are isolated. We shall prove
Theorem 2.5 and the second statement of Theorem 2.4 about isolated wells will come as a corollary.
Proof of Theorem 2.5: The formula (1.16) and the reduction of the energy interval stated in
Proposition 7.8 imply that the coefficient tλi is the limit of the quantity

mλ0∑
j=1

∫
k>0

∫ ci+ε

ci−ε
1Kj,h(λk)

∣∣ψh−(k, x)
∣∣2 dx dk

2πh
=
mλ0∑
j=1

1
2πh

∥∥1Kj,h(λk)ψh−(k, x)
∥∥2

L2(R+×[ci−ε,ci+ε])
,
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for any fixed ε > 0.
We use again the relation (7.20) between ψh− and ψ̃h− and the decomposition of (Hλk−λk)−1 stated
in Proposition 7.5 in order to write when λk ∈ Kj,h

ψh−(k, ·) = ψ̃h−(k, ·)− ghj (λk)Whψ̃h−(k, ·)− 1
zhj − λk

〈φhj , Whψ̃h−(k, ·)〉φhj

−
Ahj − |φhj 〉〈φhj |

zhj − λk
Whψ̃h−(k, ·) .

By referring to the decay of ψ̃h− stated in Lemma 7.4 and the estimates for ghj (λ) and Ahj −|φhj 〉〈φhj |
derived from Propositions 7.5 and 7.7, this leads to∥∥∥∥∥1Kj,h(λk)

[
ψh− +

1
zhj − λk

〈φhj , Whψ̃h−(k, ·)〉φhj

]∥∥∥∥∥
L2(R+×[ci−ε,ci+ε])

= Õ
(
e−

d0(a,ci−ε)
h

)
+ Õ

(
e−

S0
h

)
Õ
(
e−

S0−8S̃U
2h

)
+
Õ
(
e−

S0
h

)
Õ
(
e−

S0−6S̃U
2h

)
√

Γhj
.

The assumptions S̃U > SU and S0− 8S̃U > 0 combined with the lower bound (4.3) for Γhj leads to

h−1/2

∥∥∥∥∥1Kj,h(λk)

[
ψh− +

1
zhj − λk

〈φhj , Whψ̃h−(k, ·)〉φhj

]∥∥∥∥∥
L2(R+×[ci−ε,ci+ε])

= o(1) .

The inequality (7.22) provides a comparison between ψ̃h−(k, ·) and ψ̃h−(
√
λhj , ·) which leads to

h−1/2

∥∥∥∥∥1Kj,h(λk)

[
ψh− +

1
zhj − λk

〈φhj , Whψ̃h−(
√
λhj , ·)〉φ

h
j

]∥∥∥∥∥
L2(R+×[ci−ε,ci+ε])

= o(1) +
Õ
(
e−

S0
h

)
Õ
(
e−

S̃U
h

)
√
hΓhj

= o(1) .

Computing the integral

∫
R+

∫ ci+ε

ci−ε
1Kj,h(λk)

∣∣∣〈φhj , Whψ̃h−(
√
λhj , ·)〉

∣∣∣2∣∣λk − Ehj ∣∣2 +
∣∣Γhj ∣∣2

∣∣φhj (x)
∣∣2 dx

dk

2πh

=

∣∣∣〈φhj , Whψ̃h−(
√
λhj , ·)〉

∣∣∣2
4h
√
λhjΓhj

(1 + o(1)) ,

and the Fermi golden rule (7.18) with λ = λhj yields the result. �

Proof of Theorem 2.4 for isolated wells: Assume d0(a, ck) > d0(ck, b) for all k ∈ {1, . . . ,mλ0 = N}.
The coefficients tλ0

i are obtained as the limits as h→ 0 of

mλ0∑
j=1

∣∣∣〈φhj , Whψ̃h−(
√
λhj , ·)〉

∣∣∣2
4h
√
λhjΓhj

∫ ci+ε

ci−ε

∣∣φhj x∣∣2 dx .
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But the assumption d0(a, ck) > d0(ck, b) for all k, implies∣∣∣〈φhj , Whψ̃h−(
√
λhj , ·)〉

∣∣∣2 = Õ
(
e−

SI
h

)
,

while the lower bound (4.3) implies

1
hΓhj

= Õ
(
e

2S0+2SU
h

)
.

The condition S0 + SU < SI/2 yields tλ0
i = 0, for all i ∈ {1, . . . ,mλ0}. �

8 Explicit asymptotic values

In this section we derive from an accurate asymptotic analysis of the quantities (2.5) some explicit
rules for the coefficients tλi when the wells are not gathered like in Theorem 2.4. In the two cases
N = 1 or N = 2 with isolated wells, this provides a complete description of all the possible limits
dn0
∣∣
(a,b)

, which was summarized in the end of Section 2.

We first need a simple description of the Dirichlet eigenfunctions φhj .

Lemma 8.1 Assume N = mλ0 = 1 or N = mλ0 = 2. For i ∈ {1, 2}, let ui denote a normalized
eigenvector (u2 = 0 when N = 1) of −∆ − wi associated with the eigenvalue λ0 + Ṽ0(ci). Then
there exists αh ∈ R (αh = 0 if N = 1) such that the Dirichlet eigenvectors φhj satisfy(

φh1

φh2

)
=

(
cosαh − sinαh

sinαh cosαh

)(
u1

(
.−c1
h

)
u2

(
.−c2
h

) )+ oL2(I)(1) .

Proof: We now from Theorem 3.6 in [BNP1] that the eigenvector φhj can be written

φhj =
∑
i

phjiψ
h
i + o(1) ,

where (pij)1≤ij≤mλ0
is a unitary matrix and where the ψhi is a normalized eigenvectors for the one

well problem around ci. By making use of the uniform W 1,∞ estimate of Ṽh in a small interval
[ci− ε, ci + ε] with ε > 0 independent of h > 0 but arbitrarily small like in Theorem 3.4 of [BNP1],
the exponential decay of Dirichlet eigenvectors in the classically forbidden region allows to replace
ψhi with ui with an arbitrarily small error. �

Another ingredient of this asymptotic analysis is an accurate description of the generalized
eigenfunctions of H̃h in the interval I = [a, b]. Introduce the Agmon distance associated with the
potential Ṽh at the energy λk:

d̃h(x, y) = d(x, y; Ṽh, λk) =
∣∣∣∣∫ y

x

√
Ṽh(t)− λk dt

∣∣∣∣ . (8.1)

The comparison with the first order WKB approximation has to be considered. When Ṽh is regular
it is a classical result which has to be adapted in our case. The first order approximation ψhapp(k, x)
is defined according to
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case k > 0 : ψhapp(k, x) = (Ṽh(x)−λk)−1/4
[
C−(k)e−d̃h(a,x)/h + C+(k)ed̃h(a,x)/h

]
where (C−(k), C+(k))

solves the system

[
−(Ṽh(a)− λk)1/2 + i

√
λk

]
C−(k) = 2ikei

ka
h

(
Ṽh(a)− λk

)1/4

,[
−(Ṽh(b)− λk)1/2 − i

√
λk +B

]
C−(k)

+
[(
Ṽh(b)− λk

)1/2

− i
√
λk +B

](
C+(k)e2

d̃h(a,b)
h

)
= 0 ,

(8.2)

case k < 0 : ψhapp(k, x) = (Ṽh(x)−λk)−1/4
[
C−(k)ed̃h(x,b)/h + C+(k)e−d̃h(x,b)/h

]
where (C−(k), C+(k))

solves the system

[
−(Ṽh(a)− iλk)1/2 + i

√
λk

] (
C−(k)e2

d̃h(a,b)
h

)
+
[
(Ṽh(a)− λk)1/2 + i

√
λk

]
C+(k) = 0 ,[(

Ṽh(b)− λk
)1/2

− i
√
λk +B

]
C+(k) = 2ikei

kb
h (Ṽh(b)− λk)1/4.

(8.3)

In our case, its rather technical proof which requires all the regularity and convergence assumptions
on Ṽh, namely ∂2

xṼh = µ0 in Mb(I), is deferred to a forthcoming article (see [Ni4])

Proposition 8.2 For any k ∈ R such that λk ∈ [Λ∗,Λ∗], consider the generalized wave function
ψ̃(k, x) restricted to the interval I and given by (1.7)-(1.8) with Wh ≡ 0. By introducing the
Agmon distance d̃h associated with the potential Ṽh and the energy λk according to (8.1), take the
function ψhapp defined above. Then the difference converges to 0 with the weighted estimates

max
x∈[a,b]

∣∣∣∣e d̃h(a,x)
h

(
ψ̃h(k, x)− ψhapp(k, x)

)∣∣∣∣ h→0→ 0 for k > 0 ,

max
x∈[a,b]

∣∣∣∣e d̃h(x,b)
h

(
ψ̃h(k, x)− ψhapp(k, x)

)∣∣∣∣ h→0→ 0 for k < 0 .

We shall make the next simplifying assumption, which ensures that some factors do not vanish
asymptotically.

Assumption 2 Assume that the well potentials wi, i = 1 or 2, are even and that the eigenvector
ui corresponds to the first or second eigenvalue.

Proposition 8.3 Take the same notations and conventions when N = 1 as before. Let d̃h denotes
the Agmon distance for the h-dependent potential Ṽh at the energy λk ∈ Ωh and set for i = 1 or
i = 2

γi,± =
C±(λ1/2

0 )
(Ṽ0(ci)− λ0)1/4

∫
R
wi (y)ui(y) dy ± C±(λ1/2

0 )(Ṽ0(ci)− λ0)1/4

∫
R
y wi(y)ui(y) dy . (8.4)

Then the equality(
〈φh1 , Whψ̃h−(k, ·)〉

〈φh2 , Whψ̃h−(k, ·)〉

)
=

(
cosαh − sinαh

sinαh cosαh

) γ1,−e
− d̃h(a,c1)

h

γ2,−e
− d̃h(a,c2)

h

+ o

(
e
−d̃h(a,c1)

h

)
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holds for k > 0, while the symmetric relation for k < 0 writes(
〈φh1 , Whψ̃h−(k, ·)〉

〈φh2 , Whψ̃h−(k, ·)〉

)
=

(
cosαh − sinαh

sinαh cosαh

) γ1,+e
− d̃h(c1,b)

h

γ2,+e
− d̃h(c2,b)

h

+ o

(
e−

d̃h(c2,b)
h

)
.

Proof: Let us focus on the case k > 0. First the localisation of the potential Wh and Proposition
8.2 implies ∥∥∥Whψ̃−(k, ·)

∥∥∥
L2

= O
(
e−

d̃h(a,c1)
h

)
.

Hence Lemma 8.1 reduces the problem to an accurate calculation of〈
ui

(
· − ci
h

)
, Whψ̃h−(k, ·)

〉
=
∫

R
wi(y)ui(y)ψ̃h− (k, ci + hy) dy + o

(
e−

d̃h(a,c1)
h

)
=
∫

R
wi(y)ui(y)

C−(k)(
Ṽh(ci + hy)− λk

)1/4
e−

d̃h(a,c1+hy)
h dy + o

(
e−

d̃h(a,c1)
h

)

= e−
d̃h(a,c1)

h

∫
R
wi(y)ui(y)

C−(k)
(

1−
(
Ṽh(ci)− λk

)1/2

y

)
(
Ṽh(ci + hy)− λk

)1/4
dy + o

(
e−

d̃h(a,c1)
h

)

= e−
d̃h(a,c1)

h γi,− + o

(
e−

d̃h(a,c1)
h

)
.

We used the Taylor expansion of d̃h with the known uniform regularity of Ṽh in W 1,∞(I). �

Remark 8.4 The Assumption 2 is not necessary in the previous proof but it ensures that the
coefficients γi,± do not vanish.

Proposition 8.5 Make the technical additional Assumption 2 with N = mλ0 = 1. The asymptotic
of (2.5) can lead to values tλ0

1 ∈ (0, 1) when and only when d0(a, c1) = d0(c1, b).

Proof: When N = mλ0 = 1, the single well is isolated and Theorem 2.5 and Proposition 8.3
can be used. This leads to the value tλ0

1 as the limit of

1

1 +
√
λ0√

λ0 +B

∣∣∣∣∣∣∣
γ1,−e

− d̃h(a,c1)
h + o

(
e−

d̃h(a,c1)
h

)
γ1,+e−

d̃h(c1,b)
h + o

(
e−

d̃h(c1,b)
h

)
∣∣∣∣∣∣∣
2

=

(
1 +

√
λ0√

λ0 +B

∣∣∣∣γ1,−

γ1,+
e−

d̃h(a,c1)−d̃h(c1,b)
h (1 + o(1))

∣∣∣∣2
)−1

,

where d̃h is the Agmon distance at the energy λhj . Any value in [0, 1] can be achieved depending
on the convergence of d̃h(a, c1) and d̃h(c1, b) to their asymptotic values d0(a, c1) and d0(c1, b). The
discussion of the comparison of the asymptotic distances yields the result. �

25



Proposition 8.6 Take N = mλ0 = 2 and assume that the two wells are isolated with the technical
additional condition 2. Assume also |λh2 − λh1 | = o(h). Then the coefficients tλ0

i , i = 1, 2 have to
fulfill the rules

• tλ0
1 = 1 and tλ0

2 ∈ [0, 1] d0(a, c1) < d0(c2, b) .

• tλ0
1 ∈ [0, 1] and tλ0

2 = 0 if d0(a, c1) > d0(c2, b) .

• 1 ≥ tλ0
1 ≥ t

λ0
2 ≥ 0 if d0(a, c1) = d0(c2, b) .

Remark 8.7 When |λh2 −λh1 | ≥ h2, it is no interaction between the wells and we can apply results
for the gathered wells with mλ0 = 1.

Proof: According to Theorem 2.5 and Proposition 8.3 we have to study the limits of the two
quantities

τh1 =
cos2 αh

1 +
√
λ0(1 + o(1))√
λ0 +B

∣∣∣∣∣∣∣
cosαhγ1,+e

− d̃h(c1,b)
h − sinαhγ2,+e

− d̃h(c2,b)
h + o

(
e−

d̃h(c2,b)
h

)
cosαhγ1,−e−

d̃h(a,c1)
h − sinαhγ2,−e−

d̃h(a,c2)
h + o

(
e−

d̃h(a,c1)
h

)
∣∣∣∣∣∣∣
2

+
sin2 αh

1 +
√
λ0(1 + o(1))√
λ0 +B

∣∣∣∣∣∣∣
sinαhγ1,+e

− d̃h(c1,b)
h + cosαhγ2,+e

− d̃h(c2,b)
h + o

(
e−

d̃h(c2,b)
h

)
sinαhγ1,−e−

d̃h(a,c1)
h + cosαhγ2,−e−

d̃h(a,c2)
h + o

(
e−

d̃h(a,c1)
h

)
∣∣∣∣∣∣∣
2

and

τh2 =
sin2 αh

1 +
√
λ0(1 + o(1))√
λ0 +B

∣∣∣∣∣∣∣
cosαhγ1,+e

− d̃h(c1,b)
h − sinαhγ2,+e

− d̃h(c2,b)
h + o

(
e−

d̃h(c2,b)
h

)
cosαhγ1,−e−

d̃h(a,c1)
h − sinαhγ2,−e−

d̃h(a,c2)
h + o

(
e−

d̃h(a,c1)
h

)
∣∣∣∣∣∣∣
2

+
cos2 αh

1 +
√
λ0(1 + o(1))√
λ0 +B

∣∣∣∣∣∣∣
sinαhγ1,+e

− d̃h(c1,b)
h + cosαhγ2,+e

− d̃h(c2,b)
h + o(e−

d̃h(c2,b)
h )

sinαhγ1,−e−
d̃h(a,c1)

h + cosαhγ2,−e−
d̃h(a,c2)

h + o
(
e−

d̃h(a,c1)
h

)
∣∣∣∣∣∣∣
2

The difference between this two numbers equals

τh1 − τh2 = (cos2 αh − sin2 αh)

 1

1 +
√
λ0(1 + o(1))√
λ0 +B

%(cosαh,− sinαh)2

− 1

1 +
√
λ0(1 + o(1))√
λ0 +B

%(sinαh, cosαh)2

 ,
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where the coefficient % is given by

%(β1, β2) =

∣∣∣∣∣∣∣
β1γ1,+e

− d̃h(c1,b)
h + β2γ2,+e

− d̃h(c2,b)
h + o

(
e−

d̃h(c2,b)
h

)
β1γ1,−e−

d̃h(a,c1)
h + β2γ2,−e−

d̃h(a,c2)
h + o

(
e−

d̃h(a,c1)
h

)
∣∣∣∣∣∣∣ .

An easy computation of the main term of the numerator shows that the difference

%(sinαh, cosαh)2 − %(cosαh,− sinαh)2

is a non negative number times

[
|γ1,+|2|γ2,−|2 cos4 αh − |γ2,+|2|γ1,−|2 sin4 αh

]
e−

d̃h(a,c1)+d̃h(c2,b)
h + o

(
e−

d̃h(a,c1)+d̃h(c2,b)
h

)
.

The expression (8.4) shows that the two products γ2,−γ1,+ and γ1,−γ2,+ are equal. Hence the
difference τh1 − τh2 is always non negative, which leads to

tλ0
1 ≥ t

λ0
2 . (8.5)

in all cases.
It remains to check tλ0

1 = 1 when d0(a, c1) < d0(c2, b) because the second case is obtained via a
complement argument and the third one says nothing but (8.5). Three possibilities have to be
considered: cosαh → 0 as h→ 0, sinαh → 0 as h→ 0 or | sinαh|| cosαh| ≥ δ > 0.
Assume limh→0 cosαh = 0. Then one has

τh1 = o(1) +
1 + o(1)

1 +O
(
e−2

d̃h(c2,b)−d̃h(a,c1)
h

) h→0→ 1 .

The case limh→0 sinαh = 0 is the same as the previous one after replacing αh with π
2 − α

h.
Assume cosαh ≥ δ > 0. This leads to

τh1 =
cos2 αh

1 +O
(
e−2

d̃h(c2,b)−d̃h(a,c1)
h

) +
sin2 αh

1 +O
(
e−2

d̃h(c2,b)−d̃h(a,c1)
h

) h→0→ 1 .

�

A Agmon energy identity

Here we just give the basic energy identity.

Lemma A.1 Let Ω := (α, β) an open interval, V ∈ L∞(ω), z ∈ C and ϕ a lipschitz real function
on Ω. Denote by P the Schrödinger operator P := −h2d2/dx2 + V. Then for any u1, u2 in H2(Ω),
and setting vj := eϕ/huj one has:∫ β

α

e2ϕh (P − z)u1ū2dx =
∫ β

α

hv′1hv
′
2dx+

∫ β

α

(V − z − ϕ′2)v1v̄2dx

+
∫ β

α

hϕ′(v′1v̄2 − v1v̄
′
2)dx

+h2
(
e2

ϕ(α)
h u′1ū2(α)− e2

ϕ(β)
h u′1ū2(β)

)
. (A.1)

This identity is obtained after conjugation of hd/dx by eϕ/h and integration by parts.
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B Universal lower bound for gaps

Lemma B.1 Let (aKS , bKS) be an interval and let V be a real valued continuous on R. Let En
and En−1 be the (n+ 1)th and nth eigenvalues of −d2/dx2 + V and let

λ = max
E∈[En−1,En], x∈(aKS ,bKS)

|E − V (x)|1/2.

If V (x) ≥ En + α2 on R \ [aKS , bKS ] for some α > 0, then

En − En−1 ≥
π

2

[
1

2λ2
+

λ

2
√
|En|(λ2 + |En|)

]−1

e−λ(bKS−aKS).
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[BNP] V. Bonnaillie-Noël, F. Nier and Y. Patel. Computing the steady states for an asymptotic
model of quantum transport in resonant heterostructures. J. Comp. Phys., 219 (2006) pp.
644–670.
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