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Abstract

The superconducting properties of a sample submitted to an exter-

nal magnetic field are mathematically described by the minimizers of

the Ginzburg-Landau’s functional. The analysis of the Hessian of the

functional leads to estimate the fundamental state for the Schrödinger

operator with intense magnetic field for which the superconductivity ap-

pears. So we are interested in the asymptotic behavior of the energy for

the Schrödinger operator with a magnetic field. A lot of papers have been

devoted to this problem, we can quote the works of Bernoff-Sternberg, Lu-

Pan, Helffer-Mohamed. These papers deal with estimates of the energy in

a regular domain and our goal is to establish similar results in a domain

with corners. Although this problem is often mentioned in the physical

literature, there are very few mathematical papers. We only know the

contributions by Pan and Jadallah which deal with very particular do-

mains like a square or a quarter plane. The physicists Brosens, Devreese,

Fomin, Moshchalkov, Schweigert and Peeters propose a non optimal up-

per bound for the energy. Here, we present a more rigourous analysis and

give an asymptotics of the smallest eigenvalue of the operator in a sector

Ωα of angle α when α is closed to 0, an estimate for the eigenfunctions and

we use these results to study the fundamental state in the semi-classical

case.
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1 Introduction and main results

Let Ω ⊂ R
2 be an open, simply connected domain with lipschitzian boundary

and let ν be the unit outer normal of the boundary Γ = ∂Ω when it is well
defined. We define Γ′ as the set of the points of Γ where the normal exists. We
consider a type II cylindrical superconducting sample of cross section Ω and we
apply a constant magnetic field along the cylindrical axis of intensity equal to σ.
We denote by κ the characteristic of the sample, called the “Ginzburg-Landau
parameter”. The type I superconductor corresponds to κ small and type II to
κ large. Then, up to normalization factors, the free energy writes

G(ψ,A) =
1

2

∫

Ω

(

|(∇− iκA)ψ|2 +
κ2

2
(|ψ|2 − 1)2 + κ2|curlA− σ|2

)

dx. (1.1)

The superconducting properties are described by the minimizers (ψ,A) of this
Ginzburg-Landau functional G. The complex-valued function ψ is the order
parameter ; the magnitude |ψ|2 gives the density of superconducting electrons
and the phase determines the current flow. The vector field A defined on R

2 is
the magnetic potential and B = curlA is the induced magnetic field. To deter-
mine the apparition of the superconductivity, we linearize the Euler equation
associated to (1.1) near the normal state (ψ,A) = (0, σA0) , where

A0 : =
1

2
(x2,−x1). (1.2)

Therefore, defining the change of parameter h = 1
κσ , we have to determine,

when h → 0, the bottom of the spectrum for the Neumann realization of the
operator Ph,A,Ω defined on the domain DN (Ph,A,Ω) by :

Ph,A,Ω = −∇2
h,A, with ∇h,A = h∇− iA, (1.3)

DN (Ph,A,Ω) : = {u ∈ L2(Ω)|∇h,Au ∈ L2(Ω),∇2
h,Au ∈ L2(Ω), ν · ∇h,Au|Γ′ = 0}.

We denote by qh,A,Ω and ah,A,Ω the quadratic and sesquilinear forms associated
to the operator Ph,A,Ω. These forms are defined on H1

h,A(Ω) by :

H1
h,A(Ω): = {u ∈ L2(Ω)| ∇h,Au ∈ L2(Ω)}. (1.4)

ah,A,Ω(u, v) =

∫

Ω

∇h,Au · ∇h,Av dx and qh,A,Ω(u) = ah,A,Ω(u, u). (1.5)

We omit h in the notation when h = 1.
It is well known that the spectrum of the operator Ph,A,Ω is invariant by gauge
transformation. So, when Ω is simply connected, the spectrum of Ph,A,Ω de-
pends only on the magnetic field and not on the choice of the corresponding
magnetic potential. Then, we denote by µ(h,B,Ω) the bottom of the spectrum
of Ph,A,Ω for any A such that curlA = B.

Bernoff-Sternberg [3], Helffer-Mohamed [10], Helffer-Morame [11], Lu-Pan
[14, 15] have already analyzed the case of regular domains and our aim is to
give the proof of the results announced in [5] in order to establish similar results
for domains with corners. In the previous analysis, the model operator −∇2

A0

on R × R
+ was playing an important role. Our new model to analyze the case
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of a non smooth domain is the operator −∇2
A0

in an angular sector. We denote
by Ωα a sector with an angle equal to α and by µ(α) the bottom of the spectrum
for PA0,Ωα . If α = π, we write :

Θ0 : = µ(π). (1.6)

This real Θ0 plays an important role in the study of regular cases. It appears
for the study of the bottom of the spectrum of the operator −∇2

A0
on a disk (cf

[2], p. 24 and [18]) and for the estimate of µ(h,B,Ω) given by Helffer-Morame
(cf [11], p.617-621). We will prove that Θ0 is an upper bound of µ(α). The main
result of this paper is the construction of an asymptotics for µ(α) as α→ 0 :

Theorem 1.1. There exists a real sequence (mj)j∈N recursively determined with
m0 = 1√

3
such that :

∀n ∈ N, µ(α) = α

n
∑

j=0

mjα
2j + On(α

2n+3) as α→ 0. (1.7)

To establish this result, we first determine the bottom of the essential spectrum
and then construct a regular function whose Rayleigh quotient is less than the
bottom of the essential spectrum.
The analysis of the model PA0,Ωα is useful to approximate the case of the ope-
rator Ph,A,Ω with h a small parameter, B : = curlA a non constant magnetic
potential and Ω a domain with corners, as we see in the following theorem :

Theorem 1.2. Let Ω be a bounded open subset of R
2 whose boundary is a

curvilinear polygon with vertices S1, . . . , SN . Let Ω ∋ x 7→ B(x) be a positive
magnetic field and let us define :

b = inf
x∈Ω

B(x) and b′ = inf
x∈∂Ω

B(x). (1.8)

We denote by α1, . . . , αN the angles for each vertex. Then, for h small, the
smallest eigenvalue µ(h,B,Ω) for the Neumann’s realization of −(h∇ − iA)2

admits the following asymptotics :

µ(h,B,Ω) = h inf

(

b,Θ0b
′, inf
j=1,...,N

µ(αj)B(Sj)

)

+ O(h5/4). (1.9)

We notice that for regular domains, Theorem 1.2 gives the estimate of
µ(h,B,Ω) obtained by Helffer-Morame [11], p. 617-621. The condition (1.9)
takes in the case of a constant magnetic field a simpler form :

Corollary 1.3. For B constant, we have :

µ(h,B,Ω) = inf

(

inf
j=1,...,N

µ(αj),Θ0

)

Bh+ O(h5/4) as h→ 0.

This article is organized as follows. In Section 2, we recall some results about
the Neumann realization of the Schrödinger operator with constant magnetic
field in the half plane and show that the bottom of the essential spectrum for
an angular sector is Θ0, the bottom of the spectrum for the half plane. With
the notation :

Dt =
1

i

∂

∂t
, (1.10)
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we analyze, in Subsection 2.1, the operator D2
t + (t− ζ0)

2 to construct, in Sub-
section 2.3, a test function inspired by Pan [16] and propose a first upper bound
of the bottom of the spectrum for an angular sector with angle close to π

2 .
Then, from Section 3 to Section 10, we analyze the bottom of the spectrum for
the Neumann realization of the Schrödinger operator with constant magnetic
field in an angular sector when the angle tends to 0. As it is more easy to deal
with a non variable domain, Section 3 shows how to reduce the problem to a
domain independent of the angle α of the sector and to deal with a new opera-
tor Pα. This Pα is the sum of two operators with different weight according to
α. Section 4 is devoted to the analysis of these two key-operators and leads in
Section 5 to the construction of a formal asymptotics for the eigenvalue.
Section 6 establishes an upper bound of the bottom of the spectrum µ(α) thanks
to the min-max principle and the computation of the Rayleigh quotient for the
previous formal solution.
Section 7 uses Agmon’s techniques to prove the decay of eigenfunction which is
useful to give a weak lower bound of the first eigenvalue in Section 8.
To prove that our formal construction gives further coefficients of the asymp-
totics of µ(α) as writen in Theorem 1.1, we estimate the splitting between the
two first eigenvalues and bound from below the second eigenvalue in Section 10.
In Section 11, the analysis of the Neumann realization of the Schrödinger oper-
ator with constant magnetic field in an angular sector coupled with the results
about the plane R

2 and the half plane R × R
+ are useful to estimate the bottom

of the spectrum of −(h∇− iA)2 in a non smooth domain with B = curlA non
constant and h tending to 0.

2 Some remarks about Θ0 and applications

Let us recall from [8] the link between Θ0, introduced in (1.6), and the operators
D2
t + (t− ζ)2 on R

+.

2.1 Link with D2
t + (t − ζ)2 on R

+

Proposition 2.1. Let λH(ζ) be the bottom of the spectrum of the Neumann
realization in L2(R+) of the operator H(ζ) defined for ζ ∈ R by :

H(ζ) = D2
t + (t− ζ)2.

There exists a unique ζ0 such that λH(ζ0) = Θ0, λH(ζ) is decreasing from
] −∞, ζ0] onto [Θ0,+∞[ and increasing from [ζ0,+∞[ onto [Θ0, 1[. We denote
by φ the normalized eigenvector associated to λH(ζ0), then :

∫ ∞

0

(t− ζ0)|φ(t)|2 dt = 0 and φ(0)2 =
λ′′H(ζ0)

2ζ0
. (2.1)

We show briefly how the operator H(ζ) appears in the analysis of PA0,R×R+ .
We notice that after a gauge transform, we have to study the new operator :

(Dx1 − x2)
2 +D2

x2
on R × R

+, with Neumann condition on x2 = 0.

Then, we make a partial Fourier transform in the first coordinate. The operator
PA0,R×R+ is also unitary equivalent to :

(ξ1 − x2)
2 +D2

x2
= H(ξ1).
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So the study of the operators family H(ζ) is linked to the Neumann realization
of −∇2

A0
on R × R

+.
Furthermore, the bottom of the spectrum, Θ0, is in the essential spectrum and
there is no point spectrum for the realization on R × R

+.

2.2 Bottom of the essential spectrum

Let Ωα ⊂ R
2 be an angular sector with angle α. The Persson Lemma (cf [17])

may be generalized for unbounded domains of R
2 and Neumann realizations :

Lemma 2.2 (Persson). Let Ω be an unbounded domain of R
2 with lipschitzian

boundary and V be a semi-bounded from below regular function. We denote by
inf σess(−∆A + V ) the bottom of the essential spectrum, then :

inf σess(−∆A + V ) = lim
r→∞

Σ(−∆A + V, r), (2.2)

with, denoting Br = {x ∈ Ω| |x| ≤ r} :

Σ(−∆A + V, r) : = inf
φ∈C∞

0 (Ω\Br),φ 6=0

∫

Ω

(

|∇Aφ(x)|2 + V (x)|φ(x)|2
)

dx
∫

Ω

|φ(x)|2 dx
. (2.3)

We use this lemma to determine the bottom of the essential spectrum of the
Schrödinger operator in an angular sector:

Proposition 2.3. The bottom of the essential spectrum for the Neumann reali-
zation of −∇2

A0
in an angular sector Ωα, denoted by PA0,Ωα , is equal to Θ0.

Proof : We estimate Σ(PA0,Ωα , r) for r > 0 and show that it tends to Θ0 when
r tends to infinity. We use a partition of the unity which shares the sector in
three subdomains and we compare to the models R

2 and R × R
+ according to

the support of the cut-off functions.
Let r > 0 and χ̃ be a regular function defined from R onto [0, 1] such that :

χ̃(ρ) =

{

0, ∀ρ ≤ 0,
1, ∀ρ ≥ 1.

(2.4)

Let χ̂j ∈ C∞
0 ([− 1

2 ,
1
2 ], [0, 1]) be such that :











supp χ̂j ⊂
[

j−3
4 , j−1

4

]

, ∀j = 1, 2, 3,
3
∑

j=1

χ̂2
j(θ) = 1, ∀θ ∈

[

− 1
2 ,

1
2

]

.
(2.5)

We define a cut-off function in polar coordinates :

∀(ρ, θ) ∈ R
+ ×

]

−1

2
,
1

2

[

, χr,α,pol
j (ρ, θ) = χ̃

(ρ

r

)

χ̂j

(

θ

α

)

, j = 1, 2, 3, (2.6)

and the associated functions in cartesian coordinates χr,αj . We notice that :

∀φ ∈ C∞
0 (Ωα \ Br),

3
∑

j=1

∣

∣χr,αj
∣

∣

2
φ = φ on Ωα \ Br. (2.7)
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Furthermore, it is easy to prove for all φ ∈ C∞
0 (Ωα \ Br) the relation :

||∇A0φ||2L2(Ωα) =

3
∑

j=1

||∇A0 (χ
r,α
j φ)||2L2(Ωα) −

3
∑

j=1

||φ∇χr,αj ||2L2(Ωα). (2.8)

By construction, there exists a constant C independent of α and r such that :

∀φ ∈ C∞
0 (Ωα\Br), ||∇A0φ||2L2(Ωα) ≥

3
∑

j=1

||∇A0(χ
r,α
j φ)||2L2(Ωα)−

C

α2r2
||φ||2L2(Ωα).

(2.9)
It is well known that the bottom of the spectrum of PA0,Ωα is invariant under
rotation or translation of the domain Ωα. So, using the fact that Θ0 ≤ 1 and
the definition of Σ(PA0,Ωα , r), we deduce :

Σ(PA0,Ωα , r) ≥ Θ0 −
C

α2r2
. (2.10)

This implies, taking the limit r → +∞ and using (2.2) :

inf σess(PA0,Ωα) ≥ Θ0.

Now, we establish the upper bound. Let ǫ > 0 and ψ1 ∈ C∞
0 (R × R+) be a

function such that :

Θ0 ≤
||∇A0ψ1||2L2(R×R+)

||ψ1||2L2(R×R+)

≤ Θ0 + ǫ. (2.11)

By translation and rotation from ψ1, we define a function ψ ∈ C∞
0 (Ωα \ Br)

such that :
||∇A0ψ1||2L2(R×R+)

||ψ1||2L2(R×R+)

=
||∇A0ψ||2L2(Ωα)

||ψ||2L2(Ωα)

. (2.12)

It is enough to take the limit as r tends to ∞ and ǫ to 0 to achieve the proof. �

Using this proposition, as soon as we find a function in H1
A0

(Ωα) with a
Rayleigh quotient strictly less than Θ0, then µ(α) is an eigenvalue. For example,
Jadallah [13] constructs a test-function for the quarter plane and we can use it
to see that µ(π2 ) is an eigenvalue.

Remark 2.4. It would be interesting to show that µ(α) is strictly bounded from
above by Θ0 for α ∈]0, π[ and equal to Θ0 for α ∈ [π, 2π[.

2.3 First upper bound

The eigenfunction φ introduced in Proposition 2.1 will be used for the construc-
tion of a test function giving an upper bound for µ(α). This first upper bound
follows the idea of Pan [16] who constructs a quasi-mode in order to recover
Jadallah’s result (cf [13]) and show that :

µ
(π

2

)

< Θ0.
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We use the same notations as in Proposition 2.1. Adapting the idea of Pan, we
construct a trial function, u, in polar coordinates :

u(ρ, θ) = eiγρ sin θ φ
(

τρ sin
(α

2
+ θ
))

φ
(

τρ sin
(α

2
− θ
))

, (2.13)

with :

γ =
ζ0

2τ sin α
2

and τ =

√

1

2 sinα
. (2.14)

We obtain the following result :

Proposition 2.5. For every α ∈]0, π2 ] :

µ(α) ≤ Θ0

sinα
− cosα

4 sinα
φ(0)4. (2.15)

Furthermore, for every α ∈
]

π
2 − 2 arctan

(

φ(0)4

4Θ0

)

, π2

[

, µ(α) is an eigenvalue.

Proof : A change of coordinates sends the sector onto a quarter plane Q :
(

x̃1

x̃2

)

= τ

(

sin α
2 cos α2

sin α
2 − cos α2

)(

x1

x2

)

. (2.16)

The expression of u in the new coordinates is :

ũ(x̃1, x̃2) = exp

(

i
γ(x̃1 − x̃2)

2τ cos α2

)

φ(x̃1)φ(x̃2) = eiζ0(x̃1−x̃2)φ(x̃1)φ(x̃2). (2.17)

After computing |(∇− iA0)u|2 with the choice (2.14) of γ and τ , we obtain :

||∇A0u||2L2(Ωα)=
τ2

τ sinα

(∫ ∞

0

((x̃1 − ζ0)
2φ(x̃1)

2 + φ′(x̃1)
2)dx̃1

∫ ∞

0

|φ(x̃2)|2dx̃2

+

∫ ∞

0

((x̃2 − ζ0)
2φ(x̃2)

2 + φ′(x̃2)
2)dx̃2

∫ ∞

0

|φ(x̃1)|2dx̃1

)

+
2τ2 cosα

τ sinα

(∫ ∞

0

(x̃1 − ζ0)φ(x̃1)
2dx̃1

∫ ∞

0

(x̃2 − ζ0)φ(x̃2)
2dx̃2

−1

4

∫ ∞

0

(φ(x̃1)
2)′dx̃1

∫ ∞

0

(φ(x̃2)
2)′dx̃2

)

.

We use properties of φ recalled in Proposition 2.1 and deduce from the min-max
principle :

µ(α) ≤
||∇A0u||2L2(Ωα)

||u||2L2(Ωα)

=
Θ0

sinα
− cosα

4 sinα
φ(0)4. (2.18)

According to Proposition 2.3, µ(α) is an eigenvalue as soon as µ(α) < Θ0, it is
enough to solve :

Θ0

sinα
− cosα

4 sinα
φ(0)4 < Θ0 ⇐⇒ tan

(π

4
− α

2

)

<
φ(0)4

4Θ0
.

�

We know the estimates of Θ0 and φ(0) according to Saint James-De Gennes
[19] and computations whose details are given in [6] :

Θ0 ≃ 0.59, φ(0) ≃ 0.87. (2.19)

Remark 2.6. Approximately, µ(α) is an eigenvalue for α ∈ [1.09, π2 ].
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3 Reduction to a domain independent of α

We are interested in the variation with respect to α of µ(α). The shape of the
domain Ωα suggests to use polar coordinates (ρ, φ) and so we denote by Ωpolα

the domain :
Ωpolα : =]0,+∞[×

]

−α
2
,
α

2

[

.

This change of variables leads to study the new quadratic form :

q̂(u) =

∫

Ωpol
α

(

|∂ρu|2 +
1

ρ2

∣

∣

∣

∣

(

∂φ + i
ρ2

2

)

u

∣

∣

∣

∣

2
)

ρ dρ dφ. (3.1)

To have a ρ-independent Neumann condition, we make a gauge transform :

u1(ρ, φ) : = exp

(

i
ρ2

2
φ

)

u(ρ, φ), ∀(ρ, φ) ∈ Ωpolα .

We make a last change of variables and another gauge transform to obtain a
quadratic form depending on α but defined on a domain independent of α,
whereas at the beginning, we had a constant operator on an α-dependent do-
main. We use the change of variables (ρ, φ) ∈ Ωpolα → (t, η) ∈ Ω0 with :

(t, η) =

(

α
ρ2

2
,
φ

α

)

, Ω0 : = R
+ ×

]

−1

2
,
1

2

[

.

Therefore, we have to study a family of quadratic forms qα defined on VN by :

qα(u) =

∫

Ω0

(

2t|Dtu− η u|2 +
1

2α2t
|∂ηu|2

)

dt dη, (3.2)

VN : =

{

u ∈ L2(Ω0)

∣

∣

∣

∣

1√
t
∂ηu ∈ L2(Ω0),

√
t(Dt − η) ∈ L2(Ω0)

}

.

We define the sesquilinear form aα associated to qα on VN :

aα(u, v) =

∫

Ω0

(

2t (Dt − η)u (Dt − η) v +
1

2α2t
∂ηu∂ηv

)

dt dη. (3.3)

So the spectrum of the operator Pα associated to the form aα on Ω0 satisfies :

σ(PA0,Ωα) = ασ(Pα). (3.4)

Particularly, by denoting λ(α) the bottom of σ(Pα), we observe :

µ(α) = αλ(α). (3.5)

The construction of the Friedrichs extension gives the domain of Pα which re-
spects a Neumann boundary condition in η :

DN (Pα) : =
{

u ∈ VN | ∃un ∈ C∞
0 (Ω0) s.t. un → u in L2(Ω0)

and un is a Cauchy sequence for the norm qα} .

We work with the quadratic form and do not need to characterize the domain
of Pα explicitly.
Furthermore, ψ is an eigenfunction associated to µ(α) (if it exists) if and only
if ψα is an eigenfunction for λ(α), where ψ and ψα are linked by :
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∀(t, η) ∈ Ω0, ψα(t, η) = e−iηtψ
(√

2t
α cos(αη),

√

2t
α sin(αη)

)

.

Remark 3.1. From the expression of the form qα, we immediately see that :

α 7→ αµ(α) is increasing and α 7→ µ(α)
α is decreasing.

It would be interesting to show the monotonicity of µ from ]0, π] onto ]0,Θ0].

As we know from Dauge-Helffer [8], Helffer-Morame [11], Lu-Pan [15] and as we
recalled in Section 2.1, then :

∀α ∈]0, π],
µ(α)

α
≥ µ(π)

π
=

Θ0

π
. (3.6)

4 Analysis of the two key-operators

4.1 Presentation

In the expression of aα in (3.3), two forms (and two associated operators) appear.
The first one is ℓ (with associated L) which will be defined just below and the
second is associated to the Neumann realization of −∂2

η in ] − 1
2 ,

1
2 [. We define

the sesquilinear form ℓ, on :

VNℓ : =
{

u ∈ L2(Ω0)
∣

∣

√
t(Dt − η)u ∈ L2(Ω0)

}

,

by :

ℓ(u, v) =

∫

Ω0

2t(Dt − η)u(Dt − η)v dt dη, ∀u, v ∈ VNℓ . (4.1)

Let P ⊗S(R+) be the space of polynomial functions in η whose coefficients are
in S(R+). We define the operator L on P ⊗ S(R+) by :

L : = 2(Dt − η)t(Dt − η).

Then we verify :

∀u ∈ P ⊗ S(R+), ∀v ∈ VNℓ , ℓ(u, v) = 〈Lu, v〉L2(Ω0) . (4.2)

The form qα contains a term in 1
α2 . So when trying to minimize it, it is quite

natural to begin with studying the restriction of the form to functions which
are independent of η to cancel the term in 1

α2 .

4.2 A new key operator Lmean

We define the form ℓmean which appears naturally when we restrict ℓ to functions
independent of η. Then the sesquilinear form ℓmean is defined on :

VNmean : = {f ∈ L2(R+)
∣

∣

√
tf ∈ L2(R+),

√
tDtf ∈ L2(R+)},

by :

ℓmean(u, v) =

∫ ∞

0

2

(

Dtu Dtv +
1

12
uv

)

t dt , ∀u, v ∈ VNmean . (4.3)
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The associated operator,

Lmean = 2Dt tDt +
t

6
,

is self-adjoint and its domain can be characterized (cf [4]) as being W1
2 (R+) : =

{u ∈ H1(R+)| tu ∈ H2(R+)}. Its spectrum is discrete and the eigenvalues are
simple and given by λmean

n = 2n+1√
3

for n ≥ 0. Moreover each eigensubspace is

included in S(R+). Let us give the expression of the normalized eigenvector
umean

1 associated to the first eigenvalue of Lmean, denoted by λmean
1 :

λmean
1 =

1√
3

and umean
1 (t) =

1

31/4
exp

(

− t

2
√

3

)

, ∀t ∈ R
+. (4.4)

We can use the function umean
1 as trial function to bound from above µ(α) as

follows :

Proposition 4.1. For α <
√

3Θ0, the bottom of the spectrum of PA0,Ωα is an
eigenvalue µ(α) wich satisfies :

µ(α) ≤ α√
3
. (4.5)

Before being more precise about the operator Lmean, let us mention an improv-
ment of the upper bound (4.5) due to Soeren Fournais :

Proposition 4.2. For α <
√

3Θ0√
1−Θ2

0

, the bottom of the spectrum of PA0,Ωα is an

eigenvalue µ(α) wich satisfies :

µ(α) ≤ α√
3 + α2

. (4.6)

Proof : The idea is to estimate (3.1) for a function like ei
ρ2

2 φ(1−δ)u(ρ) and choose
u and coefficient δ. This lead to define the function u ∈ VN on Ω0 by :

u(t, η) = eitηβ
2

e−
β
α

t
2 with β =

α√
3 + α2

.

Then it is easy to compute :

qα(u) =

∫

Ω0

(

2t

∣

∣

∣

∣

η(β2 − 1) + i
β

2α

∣

∣

∣

∣

2

+
β4t

2α2

)

|u(t, η)|2 dt dη

=
α

2β

(

(β2 − 1)2

6
+

β2

2α2
(1 + β2)

)∫

Ω0

|u(t, η)|2 dt dη

=
1√

3 + α2

∫

Ω0

|u(t, η)|2 dt dη. (4.7)

Thanks to the min-max principle, we deduce that µ(α) ≤ α√
3+α2

. Proposi-

tion 2.3 shows that µ(α) is an eigenvalue for any angle α such that α√
3+α2

< Θ0.

�

Remark 4.3. Approximately, µ(α) is an eigenvalue for α ∈]0, 1.26[.
Combining this with Remark 2.6, we conclude with a good accuracy that µ(α) is
an eigenvalue for α ∈]0, π2 ].
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Furthermore, we deduce by standard Fredholm theory and a regularity theo-
rem (cf [4]), the following lemma :

Lemma 4.4. Let (λmean
1 , umean

1 ) the fundamental state of Lmean. For every
f ∈ S(R+) orthogonal to umean

1 , there exists a unique u ∈ S(R+) such that :






(Lmean − λmean
1 )u = f on R

+,
∫ ∞

0

u(t) umean
1 (t) dt = 0.

(4.8)

Furthermore, if u is given by (4.8), then for all functions v ∈ VNmean :

ℓmean(u, v) − λmean
1 〈u, v〉L2(Ω0) = 〈f, v〉L2(Ω0) . (4.9)

In the case when the second member of (4.8) has the form Pumean
1 for some

polynomial P , we can explicit the solution as follows :

Lemma 4.5. Let P be a polynomial of degree n with coefficients pk such that :

n
∑

k=0

(
√

3)k k! pk = 0.

We define the polynomial of degree n, P̃ ∈ P(R+), by its coefficients p̃k :






















p̃1 = − p0
2 ,

p̃k = 1
2k2

(

2√
3
(k − 1)p̃k−1 − pk−1

)

, ∀k = 2, . . . , n,

p̃0 = −
n
∑

k=1

(
√

3)k k! p̃k.

(4.10)

Then ũ = P̃umean
1 is the unique solution for the problem :







(Lmean − λmean
1 )ũ = Pumean

1 ,
∫ ∞

0

ũ(t) umean
1 (t) dt = 0.

(4.11)

Proof : We first notice that :

∀k ∈ N,

∫ ∞

0

tk|umean
1 (t)|2 dt = k! (

√
3)k. (4.12)

We deduce immediately that :

n
∑

k=0

(
√

3)k k! qk = 0 ⇐⇒
∫ ∞

0

n
∑

k=0

qkt
k|umean

1 (t)|2 dt = 0. (4.13)

Relation (4.13) applied with qk = p̃k determined in (4.10) shows that ũ is or-
thogonal to umean

1 and so the second condition of (4.11) holds.
According to (4.13) with qk = pk, we see that Pumean

1 is orthogonal to umean
1 .

Lemma 4.4 establishes that the problem (4.8) with f = Pumean
1 has a unique

solution. So it is enough to prove that the function ũ = P̃ umean
1 satisfies condi-

tions (4.11). With the expression of umean
1 given in (4.4), we get :

(Lmean − λmean
1 )(P̃ umean

1 ) = umean
1

(

−2∂tP̃ +
2√
3
t∂tP̃ − 2t∂2

t P̃

)

.
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According to (4.10), the constant coefficient of −2∂tP̃+ 2√
3
t∂tP̃−2t∂2

t P̃ is equal

to −2p̃1 = p0 and the coefficient of tk for k = 1, . . . , n is equal to :

−2(k + 1)p̃k+1 +
2√
3
kp̃k − 2k(k + 1)p̃k+1 = −2(k + 1)2p̃k+1 +

2√
3
kp̃k = pk.

So, the first equation of (4.11) holds. �

4.3 Study of −∂2
η

An elementary study of the Neumann realization of −∂2
η leads to the following

lemma :

Lemma 4.6. Let f ∈ P ⊗ S(R+) such that for all t ∈ R+,

∫ 1
2

− 1
2

f(t, η) dη = 0.

Then there exists a unique ũ ∈ P ⊗ S(R+) such that :










−∂2
η ũ = 2tf on Ω0,

∂ηũ|
η=− 1

2
, 1
2

= 0 and

∫ 1
2

− 1
2

ũ(t, η) dη = 0.
(4.14)

Then, for all v ∈ VN , we have :

1

2

∫

Ω0

1

t
∂ηũ ∂ηv dη dt =

∫

Ω0

f v dη dt. (4.15)

As above, we have an explicit solution of problem (4.14) :

Lemma 4.7. Let P (t, η) =

n
∑

k=0

(

pek(t)(iη)
2k + pok(t)(iη)

2k+1
)

be polynomial in

η such that pek ∈ S(R+), pok ∈ S(R+) and :

∀t ∈ R
+,

n
∑

k=0

pek(t)

(2k + 1)

(

i

2

)2k+1

= 0. (4.16)

Then the polynomial S defined by :

S(t, η) = 2t
n
∑

k=0

pek(t)

(2k + 1)(2k + 2)

(

(iη)2k+2 − i2k+2

(2k + 3)22k+2

)

+2t

n
∑

k=0

pok(t)

2k + 2

(

(iη)2k+3

2k + 3
− i2k+3η

22k+2

)

,

(4.17)

is the unique solution for the problem :










−∂2
ηS = 2tP on Ω0,

∂ηS|
η=− 1

2
, 1
2

= 0 and

∫ 1
2

− 1
2

S(t, η) dη = 0.
(4.18)

Remark 4.8. The expression (4.17) shows that S has the same parity as P .
Furthermore, if pek and pok are real, then S can be written as a polynomial in the
variable (iη) with real coefficents in S(R+).
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Proof : We first notice that the condition (4.16) means exactly

∫ 1
2

− 1
2

P (t, η)dη = 0.

According to Lemma 4.6, we know that the problem (4.18) has a unique solution
denoted by S. It is enough to prove that the explicit polynomial S given by
(4.17) fills conditions (4.18).

We remark that

∫ 1
2

− 1
2

S(t, η) dη = 0 for every t ∈ R
+. It is easy to estimate ∂ηS,

to verify the Neumann condition and to compute the second derivative of S. �

5 Construction of a formal solution

5.1 First terms of the construction

We look for two sequences (mk)k∈N ∈ R
N and (uk)k∈N ∈ (P ⊗ S(R+))N such

that, for all n ∈ N, if we introduce U (n) =
n
∑

k=0

α2kuk and λ(n)(α) =
n
∑

k=0

α2kmk,

then, modulo On(α
2n+2), we have :

aα(U (n), v) ≡ λ(n)(α)
〈

U (n), v
〉

L2(Ω0)
, ∀v ∈ VN .

We look for a formal solution U (∞) and λ(∞). We expand the equation in powers
of α and express that the coefficients of α2k (k ≥ −1) should cancel.
The cancellation of the coefficient of 1

α2 gives :

∀v ∈ VN ,
∫

Ω0

1

t
∂ηu0 ∂ηv dt dη = 0. (5.1)

The unique condition coming from this relation is that u0 depends only on t.
The vanishing of the coefficient of α2k, for k ≥ 0, gives :

ℓ(uk, v)+
1

2

∫

Ω0

1

t
∂ηuk+1∂ηv dt dη =

∫

Ω0

k
∑

j=0

mjuk−j v dt dη, ∀v ∈ VN . (5.2)k

Let us show that this determines uk and mk recursively.

5.2 Algorithm for the determination of the coefficients

This method can be applied at every order to determine the other coefficients
and we will indeed prove the following proposition :

Proposition 5.1. We determine recursively the coefficients uj ∈ P ⊗ S(R+)
and mj ∈ R such that, formally :

Pα





∞
∑

j=0

α2juj



 ≡





∞
∑

j=0

α2jmj









∞
∑

j=0

α2juj



 . (5.3)

For all j ≥ 0, we can choose mj and uj = u0
j + ũj, with u0

j ∈ S(R+) and

ũj ∈ P ⊗ S(R+) uniquely determined by the relations :

m0 = λmean
1 , (5.4)0
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mj = 〈ũj , Lumean
1 〉L2(Ω0) . (5.4)j

u0
0 = umean

1 , (5.5)0


















(Lmean − λmean
1 )u0

j = −
∫ 1

2

− 1
2

Lũj dη +

j
∑

i=1

miu
0
j−i,

∫ ∞

0

u0
j(t) u

mean
1 (t) dt = 0.

(5.5)j

ũ0 = 0, (5.6)0






















−∂2
η ũj = 2t

(

j−1
∑

i=0

mj−1−iui − Luj−1

)

,

∂ηũj|
η=− 1

2
, 1
2

= 0 and

∫ 1
2

− 1
2

ũj dη = 0.

(5.6)j

Proof : To prove Proposition 5.1, we expand in power of α2 Relation (5.3), can-
cel the coefficients of α2k for k ≥ −1. We have already studied the case k = −1
and deduce ũ0 = 0. We now look at Relations (5.2)k for k ≥ 0. We denote by
P(k), for k ∈ N, the property :
P(k) : “the cancellation of the coefficient α2k, given by Relation (5.2)k,

determines the realmk and the functions u0
k, ũk+1 which are given

by solving (5.4)k, (5.5)k and (5.6)k+1”.
We now prove that P(k) holds for every k ∈ N.

We look at the relation coming from the vanishing of the constant coefficient
given by Relation (5.2)0. We restrict Relation (5.2)0 to functions only depending
on t and obtain a new relation :

∀v ∈ VNmean, ℓ
mean(u0, v) = m0 〈u0, v〉L2(Ω0) . (5.7)

So we determine u0 and m0 by solving the spectral problem Lmeanu0 = m0u0

and we choose the fundamental state (λmean
1 , umean

1 ).
We return to the initial Relation (5.2)0 where the only unknown is u1 :

∀v ∈ VN , 1

2

∫

Ω0

∂ηu1∂ηv
1

t
dt dη = 〈λmean

1 umean
1 , v〉L2(Ω0) − ℓ(umean

1 , v). (5.8)

Since umean
1 ∈ S(R+), the integration by parts ℓ(umean

1 , v) = 〈Lumean
1 , v〉L2(Ω0)

holds for any v ∈ VNℓ and so we define the function v0 : = ((λmean
1 − L)umean

1 ).

We can choose a function u1 such that u1 = u0
1 + ũ1 with u0

1 ∈ S(R+) free and
ũ1 only determined by Lemma 4.6 with f = v0. So P(0) holds.

Let k ∈ N. We assume that property P(j) holds for any j ≤ k. So, by
induction, we have determined the reals mj , the functions u0

j , ũj satisfying
Relations (5.4)j , (5.5)j and (5.6)j for j = 0, . . . , k and the function ũk+1 solving
(5.6)k+1. We vanish the coefficient of α2k+2 given by (5.2)k+1.
We choose v = umean

1 in (5.2)k+1. By assumptions onmj , u
0
j , ũj and particularly

due to the expression of ũk+1 given by (5.6)k+1, we determine mk+1 exactly by
(5.4)k+1 :

mk+1 = 〈ũk+1, Lu
mean
1 〉L2(Ω0) . (5.9)
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We now restrict Relation (5.2)k+1 to functions v ∈ VNmean. Since

∫ 1
2

− 1
2

ũj dη = 0

for any j = 1, . . . , k + 1, we have to find u0
k+1 independent of η such that :

∀v ∈ VNmean, ℓ
mean(u0

k+1, v) = −ℓ(ũk+1, v)+

∫ ∞

0





k+1
∑

j=0

mju
0
k+1−j



 v dt. (5.10)

We define the function f : = −
∫ 1

2

− 1
2

Lũk+1 dη+

k
∑

j=0

mk+1−ju
0
j . By regularity of

ũk+1 and assumptions on u0
j for j = 0, . . . , k, it is easy to prove that f ∈ S(R+)

and f is orthogonal to umean
1 . We apply Lemma 4.4 and so obtain a unique u0

k+1

satisfying the spectral problem (4.8) and so Relation (5.10). We see that u0
k+1

solves (5.5)k+1.
We now come back to Relation (5.2)k+1 to determine ũk+2 such that :

∀v ∈ VN ,
∫

Ω0

1

t
∂ηuk+2∂ηv dt dη = 2

〈

k+1
∑

j=0

mjuk+1−j − Luk+1, v

〉

L2(Ω0)

.

We apply Lemma 4.6 with f =
k+1
∑

j=0

mjuk+1−j − Luk+1. Then f ∈ P ⊗ S(R+)

and it is easy to show that

∫ 1
2

− 1
2

f(t, η) dη = 0, ∀t ∈ R
+ (using

∫ 1
2

− 1
2

ũjdη = 0 for

j = 0, . . . , k + 1 and the expression of (Lmean − λmean
1 )u0

k+1). Then we choose
ũk+2 uniquely determined by Relation (5.6)k+2.
So we have established that P(k + 1) holds.
Thus P(k) holds for every integer k ≥ 0 and Proposition 5.1 is established. �

5.3 Particular form of the coefficients in the asymptotics

We can determine an explicit expression for every coefficient given by Proposi-
tion 5.1 and (5.4)j , (5.5)j , (5.6)j . Just before, we make an easy remark about
umean

1 .

Remark 5.2. The application :

Φ: P 7→ (umean
1 )−1 L(Pumean

1 )

is well defined from P
(

R
+ ×

]

− 1
2 ,

1
2

[)

onto P
(

R
+ ×

]

− 1
2 ,

1
2

[)

.

If P (t, η) =

n
∑

k=0

pk(t)(iη)
k with pk ∈ P(R+), then Φ(P )(t, η) =

n
∑

k=0

p̃k(t)(iη)
k

with p̃k ∈ P(R+) such that for k = 0, . . . , n :

p̃k =

(

1√
3
− t

6

)

pk +
2t√
3
p′k − 2tp′′k + 2

(

1 − t√
3
pk−1

)

+ 4tp′k−1 − 2tpk−2,

with the convention p−1 = 0 and p−2 = 0.
So we deduce immediately that if pk are real for every k ≤ n, then p̃k are real.
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By induction, Remark 5.2, Lemmas 4.5 and 4.7 easily lead to the proposition :

Proposition 5.3. For k ∈ N, we consider u0
k and ũk determined by Rela-

tions (5.5)k and (5.6)k. Then there exist two polynomials P 0
k ∈ P

(]

− 1
2 ,

1
2

[)

and P̃k ∈ P
(

R
+ ×

]

− 1
2 ,

1
2

[)

such that :

u0
k = P 0

ku
mean
1 and ũk = P̃ku

mean
1 .

Furthermore P̃k has the form P̃k(t, η) =
∑

j≥0

p̃j(t)(iη)
j with p̃j ∈ P(R+) real.

Proposition 5.1 gives an expression of all the coefficients mj , u
0
j and ũj.

According to Proposition 5.3, we know that there exist polynomials P 0
j and P̃j

such that u0
j = P 0

j u
mean
1 and ũj = P̃ju

mean
1 . So we deduce an algorithm to

determine mj , P
0
j and P̃j recursively with formal computations.

At the first order, we have :

m0 = 1√
3
, P 0

0 (t) = 1, P̃0(t, η) = 0.

For the second term :

m1 = − 23

35
√

3
,

P 0
1 (t) = −19

42
+

23

70
√

3
t+

11

210
t2 − 2

189
√

3
t3,

P̃1(t, η) =
7

720
t2 + iη

t

2

(

−1 +
t√
3

)

− η2 t
2

6
+ iη3

(

2

3
t− 2

3
√

3
t2
)

+ η4 t
2

3
.

The same algorithm works for any finite expansion.

6 Upper bound for the asymptotics of µ(α)

Proposition 6.1. Let n be a positive integer and mk be the reals determined
by Proposition 5.1, for k ≤ n. We define :

λ(n) =

n
∑

k=0

α2kmk. (6.1)

Then there exist α0 > 0 and a positive constant c such that :

∀α ∈]0, α0[, µ(α) ≤ αλ(n) + cα2n+3.

Furthermore, there exists an eigenvalue µ̃(α) of PA0,Ωα such that :

µ̃(α) = αλ(n) + O(α2n+1) when α→ 0.

Proof : We consider the functions uk and the reals mk determined by Proposi-
tion 5.1 and define for every integer n ≥ 1 :

U (n) =
n
∑

k=0

α2kuk, (6.2)
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We want to estimate the Rayleigh quotient for U (n). Let v ∈ VN , then, by using
Proposition 5.1, the vanishing of the coefficient of α2k for k ≤ n, given in (5.2)k,
and the definition of u0 = umean

1 , we have :

aα(U (n), v) =
n−1
∑

k=0

α2k

∫

Ω0





k
∑

j=0

mjuk−j



 v dt dη + α2nℓ(un, v). (6.3)

In (6.3), we rewrite the sum

k
∑

j=0

mjuk−j :

n
∑

k=0

α2k
k
∑

j=0

mjuk−j = λ(n)U (n) − α2n+2
n−1
∑

k=0

α2k
n
∑

j=k+1

mk+n+1−juj . (6.4)

Thus, there exists a constant C such that for α < 1 and for every v ∈ VN :

∣

∣

∣

∣

aα(U (n), v) − λ(n)
〈

U (n), v
〉

L2(Ω0)

∣

∣

∣

∣

≤ α2n

∣

∣

∣

∣

∣

∣

ℓ(un, v) −
n
∑

j=0

mj 〈un−j, v〉L2(Ω0)

∣

∣

∣

∣

∣

∣

+Cα2n+2||v||L2(Ω0). (6.5)

We bound from below the norm ||U (n)||L2(Ω0) as follows :

||U (n)||L2(Ω0) ≥ 1 − sup
k=0,...,n

||uk||L2(Ω0)
α2

1 − α2
.

So there exist α0 < 1 and a constant C0 > 0 such that for every α ∈]0, α0[ :

||U (n)||L2(Ω0) ≥ C0 > 0. (6.6)

Due to the Cauchy-Schwarz inequality and the lower bound (6.6), a classical
spectral theorem shows that :

d(λ(n), σ(Pα)) ≤ O(α2n).

By change of variables, there exists an eigenvalue µ̃(α) of PA0,Ωα with :

|αλ(n) − µ̃(α)| ≤ O(α2n+1).

For using the min-max principle, we choose v = U (n) in (6.5) and estimate
ℓ(un, U

(n)) using (5.4)n, the orthogonality between u0
n and umean

1 and the rela-
tion ℓ(ũn, u

mean
1 ) = 〈ũn, Lumean

1 〉L2(Ω0), then :

ℓ(un, U
(n)) = ℓ(un, u

mean
1 ) +

n
∑

k=1

α2kℓ(un, uk) = mn +

n
∑

k=1

α2kℓ(un, uk),

Now, since umean
1 is normalized, we deduce :

ℓ(un, U
(n)) −

n
∑

j=0

mj

〈

un−j , U
(n)
〉

L2(Ω0)

=

n
∑

k=1

α2k



ℓ(un, uk) −
n
∑

j=0

mj 〈un−j, uk〉L2(Ω0)



 .
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According to the expression of uk given in Proposition 5.3 and Remarks 4.12
and 5.2, there exists a constant cn only dependent on n such that :

∣

∣

∣

∣

∣

∣

ℓ(un, U
(n)) −

n
∑

j=0

mj

〈

un−j , U
(n)
〉

L2(Ω0)

∣

∣

∣

∣

∣

∣

≤ cnα
2. (6.7)

Using the upper bound (6.7), Inequality (6.5) and estimate of the norm (6.6),
we get a constant c > 0 such that :

aα(U (n), U (n))

||U (n)||2L2(Ω0)

≤ λ(n) + cα2n+2, ∀α ∈]0, α0[. (6.8)

The min-max principle achieves the proof of Proposition 6.1. �

7 Some estimates of eigenfunctions

7.1 Agmon’s techniques

We give a priori estimates on the decay of the eigenfunctions. By using Agmon’s
paper [1], we propose some estimates for the localization of the eigenfunctions.
Let us recall principles of the Agmon’s estimates.
Let α1 small enough such that µk(α) < Θ0 for every α ∈]0, α1] where µk(α) is
the k-th element of the spectrum of PA0,Ωα . We denote by uk,α a normalized
eigenfunction associated to µk(α).
Let φ be uniformaly lipschitzian on Ωα, then, by assumptions on uk,α :

∫

Ωα

(

µk(α) + |∇φ|2
)

e2φ|uk,α|2 dx =

∫

Ωα

|(∇− iA0)(e
φuk,α)|2 dx. (7.1)

Let χ1 and χ2 be real, positive, regular functions on Ωα, with support respec-
tively included in Ωα ∩ B2 and Ωα \ B1 (where BR denotes {x ∈ Ωα| |x| < R})
such that |χ1|2 + |χ2|2 = 1 on Ωα. We define χRj : = χj

(

.
R

)

on Ωα, then :

qA0,Ωα(eφuk,α) =

2
∑

j=1

qA0,Ωα(χRj e
φuk,α) − 1

R2

2
∑

j=1

||eφuk,α |∇χRj | ||2L2(Ωα). (7.2)

We use the assumptions on χRj and report (7.2) on (7.1), then the positivity of

qA0,Ωα(χR1 e
φuk,α) leads to the upper bound :

qA0,Ωα(χR2 e
φuk,α) ≤

∫

Ωα

(

µk(α) + |∇φ|2 +
C

R2

)

e2φ|uk,α|2dx. (7.3)

Let us assume that there exists µ(α,R) > 0 such that :

qA0,Ωα(χR2 e
φuk,α) ≥ µ(α,R)||χR2 eφuk,α||2L2(Ωα). (7.4)

By assumption on the support of χR2 , we can bound from below ||χR2 eφuk,α||2L2(Ωα)

by ||eφuk,α||2L2(Ωα\B2R), and so deduce from (7.4) and (7.3) that :

∫

Ωα\B2R

(

µ(α,R) − µk(α) − |∇φ|2 − C

R2

)

e2φ|uk,α|2 dx

≤
∫

Ωα∩B2R

(

µk(α) + |∇φ|2 +
C

R2

)

e2φ|uk,α|2 dx. (7.5)
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If we are able to bound respectively µ(α,R) − µk(α) − |∇φ|2 − C
R2 from below

on Ωα \ B2R and µk(α) + |∇φ|2 + C
R2 from above on Ωα ∩ B2R by respective

positive constants C1 and C2 for α small enough and R large enough, then we
deduce from (7.5) :

∫

Ωα

e2φ|uk,α|2 dx ≤
(

C2

C1
+ 1

)

exp

(

2 sup
x∈Ωα∩B2R

φ(x)

)

. (7.6)

7.2 Decay of eigenfunction

Theorem 7.1. Let α1 small enough such that the k-th smallest element of
the spectrum of PA0,Ωα verifies µk(α) < Θ0 for every α ∈]0, α1]. Let uk,α
be a normalized eigenfunction associated to µk(α). For α ≤ α1 and for all

ǫ ∈
]

0,Θ0 − sup
α∈]0,α1]

µk(α)

[

, there exists a constant Cǫ,α such that :

∫

Ωα

e2
√

Θ0−µk(α)−ǫ |x| |uk,α(x)|2 dx ≤ Cǫ,α. (7.7)

Proof : By definition (2.3) of Σ(PA0,Ωα , r), the assumption (7.4) holds with
µ(α, r) = Σ(PA0,Ωα , r). Furthermore, (2.10) gives a lower bound of Σ(PA0,Ωα , r).

We define φ on Ωα by φ(x) : =
√

Θ0 − µk(α) − ǫ |x|, then (7.5) combined with
(2.10) leads to :
(

ǫ− c

α2R2
− C

R2

)∫

Ωα\B2R

e2φ|uk,α|2dx ≤
(

Θ0 − ǫ+
C

R2

)∫

Ωα∩B2R

e2φ|uk,α|2dx.

(7.8)
If we choose R = C1

α big enough for that ǫ − c
α2R2 − C

R2 ≥ ǫ
2 and Θ0 − ǫ +

C
R2 ≤ Θ0 − ǫ

2 , then (7.8) allows us to conclude that Relation (7.7) is true with

Cǫ,α = cǫexp

(

4C1

√
Θ0−µk(α)−ǫ

α

)

. �

Theorem 7.2. Let ǫ0 > 0. We define by µNDN (α, ǫ0) the bottom of the spec-
trum of −∇2

A0
on Ωα \ BR with a Neumman boundary condition in ∂Ωα and

a Dirichlet boundary condition in |x| = R, with R = ǫ0
α . Then, there exist

µNDN (ǫ0) > 0 and α0 > 0 such that :

∀α ∈]0, α0], µ
NDN (α, ǫ0) ≥ µNDN (ǫ0). (7.9)

Let uk,α be a normalized eigenvector associated to the k-th eigenvalue µk(α) for
PA0,Ωα . Then, there exists α1 ≤ α0 such that for every α ∈]0, α1] :

∫

Ωα

e
√

2µNDN (ǫ0)|x||uk,α(x)|2 dx ≤ 4e2
ǫ0
α

√
2µNDN (ǫ0). (7.10)

Proof : If (7.9) holds, we choose φ(x) =
√

µNDN (ǫ0)
2 |x| and look at (7.5) with

µ(α,R) = µNDN (ǫ0), then the conclusion of Theorem 7.2 follows.
So, we have just to establish (7.9). As illustrated in Figure 1, we define :

ΩNDNα,ǫ0 : = {x ∈ R
2| (x1 +R, x2) ∈ Ωα \ BR} with R =

ǫ0
α
, (7.11)

Ω(ǫ0) : = ]0,+∞[×
]

− ǫ0
4
,
ǫ0
4

[

. (7.12)

19



α

N

N

D

Ωα,
NDN

/2

x1

x2

ε0

Ω(ε  )0

Figure 1: Domain ΩNDNα,ǫ0 .

Then, by gauge invariance and invariance under translation of the domain,
µNDN (α, ǫ0) is the bottom of the spectrum of P : = D2

x1
+ (Dx2 − x1)

2 on
ΩNDNα,ǫ0 with a Neumann condition on the two half-lines of the boundary and
a Dirichlet condition on the curve. We denote by q the form associated to P .
Before proving (7.9), we give a lemma :

Lemma 7.3. The bottom of the spectrum of PÃ,Ω(ǫ0)
with Ã = (0, x1), denoting

by λ(Ω(ǫ0)), is strictly positive.

Proof : Using Persson Lemma 2.2 and the notation Ωr(ǫ0) :=]r,+∞[×
]

− ǫ0
4 ,

ǫ0
4

[

,
the bottom of the essential spectrum of PÃ,Ω(ǫ0)

can be expressed by :

inf σess(PÃ,Ω(ǫ0)
) = sup

r>0
inf

||u||L2(Ω(ǫ0))=1

{

∫

Ω(ǫ0)

|∇Ãu|2dx, u ∈ C∞
0 (Ωr(ǫ0))

}

≥ inf
u∈H1

Ã(Ω(ǫ0)),u6=0

∫

Ω(ǫ0)

|∇Ãu|2dx

||u||2L2(Ω(ǫ0))

. (7.13)

So we have :
inf σess(PÃ,Ω(ǫ0)

) ≥ µ(Ω(ǫ0)). (7.14)

Let us define ψ(x) = x1x2 for x ∈ Ω(ǫ0), then, by gauge transform :

µ(Ω(ǫ0)) = inf
||u||L2(Ω(ǫ0))=1

{

∫

Ω(ǫ0)

|∇Ã+∇ψu|2dx, u ∈ H1
Ã+∇ψ(Ω(ǫ0))

}

. (7.15)

A Fourier transform according to the first coordinate x1 leads to define the real
µ(ξ1) for any ξ1 ∈ R by :

µ(ξ1) : = inf
u∈C∞

0 ([− ǫ0
4 ,

ǫ0
4 ]),u6=0

∫
ǫ0
4

− ǫ0
4

(ξ1 − x2)
2|u(x2)|2 + |Dx2u(x2)|2 dx2

∫

ǫ0
4

− ǫ0
4

|u(x2)|2 dx2

.(7.16)
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Easily lim
ξ1→±∞

µ(ξ1) = +∞. Furthermore, µ is positive and continuous on R,

so there exists a lower bound µ > 0 of µ(ξ1) for every ξ1 ∈ R. Consequently,
µ(Ω(ǫ0)) ≥ µ > 0 and a fortiori, recalling (7.14), inf σessPÃ,Ω(ǫ0)

≥ µ > 0.
Assuming that the smallest eigenvalue of PÃ,Ω(ǫ0)

is equal to 0, then there exists

a normalized function u ∈ DN (PÃ,Ω(ǫ0)
) such that :

Dx1u = 0, (Dx2 − x1)u = 0 in D′(Ω(ǫ0)).

We deduce by these relations that u = 0 in D′(Ω(ǫ0)), which is not possible. So
the smallest eigenvalue of PÃ,Ω(ǫ0)

is strictly positive, thus λ(Ω(ǫ0)) > 0. �

Let us use Lemma 7.3 to prove (7.9).
We assume (7.9) does not hold. So there exists a sequence vαn ∈ H1

Ã(ΩNDNαn,ǫ0 )
such that ||vαn ||L2(ΩNDN

αn,ǫ0
) = 1 and lim

αn→0
q(vαn) = 0. The inclusion Ω(ǫ0) ⊂

ΩNDNαn,ǫ0 , Lemma 7.3 and the min-max principle bound from below q(vαn) by :

q(vαn) ≥
∫

Ω(ǫ0)

|Dx1vαn |2+|(Dx2−x1)vαn |2dx ≥ λ(Ω(ǫ0))||vαn ||2L2(Ω(ǫ0))
. (7.17)

By assumptions, lim
αn→0

q(vαn) = 0 so lim
αn→0

||vαn ||L2(Ω(ǫ0)) = 0 since λ(Ω(ǫ0)) > 0.

Let χ1 be a regular cut-off function defined on R with 0 ≤ χ1 ≤ 1 and :

χ1(x2) =

{

1 if x2 ≥ ǫ0
4 ,

0 if x2 ≤ − ǫ0
4 .

(7.18)

We also define χ2 =
√

1 − χ2
1 and easily deduce :

q(vαn) = q(χ1vαn)+q(χ2vαn)−||Dx2χ1 vαn ||2L2(ΩNDN
αn,ǫ0

)−||Dx2χ2 vαn ||2L2(ΩNDN
αn,ǫ0

).

(7.19)
Looking at the support of (Dx2χj)j=1,2, we define a : = ǫ0

4 tan αn

2 and Ω2(ǫ0) : =
ΩNDNαn,ǫ0 ∩] − a, 0] ×

]

− ǫ0
4 ,

ǫ0
4

[

and so there exists a constant c > 0 such that :

||Dx2χj vαn ||2L2(ΩNDN
αn,ǫ0

) ≤
c

ǫ20
||vαn ||2L2(Ω(ǫ0)∪Ω2(ǫ0))

, j = 1, 2. (7.20)

We know that lim
αn→0

||vαn ||L2(Ω(ǫ0))=0, so it is enough to estimate ||vαn ||2L2(Ω2(ǫ0))
.

Since vαn vanishes on the curve of the boundary, we can use some Poincaré tech-
niques to establish :

∫

Ω2(ǫ0)

|vαn(x1, x2)|2 dx1 dx2 ≤ a2q(vαn). (7.21)

Relations (7.17) and (7.21) prove the existence of α̃ and C(ǫ0) > 0 such that :

||vαn ||2L2(Ω(ǫ0)∪Ω2(ǫ0))
≤ C(ǫ0)q(vαn), ∀αn ≤ α̃. (7.22)

Let ǫ > 0, (7.19), (7.20) and (7.22) show that there exists α̃0 ≤ α̃ such that :

∀αn ≤ α̃0, q(vαn) ≥ q(χ1vαn) + q(χ2vαn) − ǫ. (7.23)

By comparison with the operator PÃ,R×R+ , using gauge transform and invari-
ance under domain’s translation, we deduce :

q(χ1vαn) ≥ Θ0||χ1vαn ||2L2(ΩNDN
αn,ǫ0

) and q(χ2vαn) ≥ Θ0||χ2vαn ||2L2(ΩNDN
αn,ǫ0

).
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Thus :
q(vαn) ≥ Θ0||vαn ||2L2(ΩNDN

αn,ǫ0
) − ǫ. (7.24)

This is impossible since vαn is normalized. �

Corollary 7.4. We denote by uk,α the k-th normalized eigenfunction for Pα.
Then, for all ǫ > 0, there exist δ > 0 and α0 > 0 such that :

∀α ≤ α0, ∀T ≥ ǫ

α
,

∫

]T,+∞[×]− 1
2 ,

1
2 [

|uk,α|2 dt dη ≤ e−
δ
α . (7.25)

8 First term of the asymptotic expansion

8.1 Weak lower bound

Theorem 8.1. For every ǫ > 0, there exists α0 > 0 such that :

µ(α) ≥ α√
3
− ǫα, ∀α ≤ α0.

The proof of Theorem 8.1 consists of comparing the eigenvalue of the ope-
rator Pα with the first eigenvalue of Lmean by using min-max principle and
estimating the decay of the first eigenvector of Pα.
Looking at the operator Pα, we see that the term 1

t is difficult to analyze when
t becomes very large. So, we avoid this problem by dealing with new operators
defined on a bounded domain :

ΩT : =]0, T [×
]

−1

2
,
1

2

[

,

we estimate the bottom of the spectrum for these new operators and compare
with the old ones. We begin with some lemmas preparing the proof of the lower
bound in Theorem 8.1. As we will see in the following, remainders coming from
the cut-off are very small and we will estimate the error.

8.2 The mean operator Lmean,T

We show that the bottom of the spectrum of Lmean is very close to the bottom
obtained from the realization of Lmean on a bounded domain. We define :

VNmean,T : = {u ∈ L2(0, T )|
√
tDtu ∈ L2(0, T ), u|t=T

= 0},
ℓmean,T (u, v) : = ℓmean(u, v), ∀u, v ∈ VNmean,T,

λmean,T
1 : = inf

u∈VN
mean,T,u6=0

ℓmean,T (u, u)

||u||2L2(0,T )

. (8.1)

Lemma 8.2. There exists a positive constant c̃ such that :

λmean
1 ≤ λmean,T

1 ≤ λmean
1 + c̃e

− T
2
√

3 , ∀T ≥ 1. (8.2)

Proof : The proof is very easy. The inclusion VNmean,T ⊂ VNmean gives immediately

λmean
1 ≤ λmean,T

1 . For the second inequality, we use the eigenvector umean
1 of

Lmean which is exponentially decreasing and a cut-off function χ with support

in ΩT . We estimate the Rayleigh quotient
ℓmean,T (χumean

1 ,χumean
1 )

||χumean
1 ||2

L2(ΩT )

to achieve the

proof. �

22



8.3 The operator P T
α on a truncated sector

In order to compare λ(α) and λmean,T
1 , we introduce the new operator PTα as-

sociated to the form aα, restricted to ΩT , with a Dirichlet boundary condition
at t = T and a Neumann boundary condition at η = ± 1

2 defined on :

VNT,0 : =

{

u ∈ L2(ΩT )

∣

∣

∣

∣

1√
t
∂ηu ∈ L2(ΩT ),

√
tDtu ∈ L2(ΩT ), u|t=T

= 0

}

.

The domain of PTα is given by the construction of the Friedrichs extension. We
do not need to characterize it explicitly because we work with the quadratic
form qTα . We denote by λT (α) the bottom of the spectrum of PTα :

λT (α) = inf
u∈VN

T,0,u6=0

qTα (u)

||u||2L2(ΩT )

with qTα (u) =

∫

ΩT

2t|(Dt−η)u|2+
1

2α2t
|Dηu|2 dt dη.

(8.3)

Lemma 8.3. For every ǫ > 0, there exist δ > 0 and α0 > 0 such that :

∀α ≤ α0, ∀T ≥ ǫ

α
, λ(α) ≤ λT (α) ≤ λ(α) + e−

δ
α . (8.4)

Proof : By inclusion of the form domain, we deduce the lower bound :

λT (α) ≥ λ(α). (8.5)

To establish an upper bound, we multiply the functions in the domain VN by
a cut-off function, so they belong to the form domain VNT,0 and we estimate
the error coming from a cutting. We consider a regular real cut-off function
χ, defined on R

+, with support in [0, 1] and equal to 1 on [0, 1
2 ]. For T > 0,

we define χT : = χ
(

.
T

)

on R
+ and uα a normalized eigenvector for λ(α). We

remark that χTuα ∈ VNT,0 and easily prove that :

qTα (χTuα) = Re
〈

χ2
T Pαuα, uα

〉

L2(ΩT )
+ || |∇χT |uα||2L2(ΩT ). (8.6)

By assumption on uα and construction of χT , there exists a positive constant c
independent of α and T such that :

qTα (χTuα) ≤ λ(α)||χT uα||2L2(ΩT ) +
c

T
||uα||2L2(] T

2 ,T [×]− 1
2 ,

1
2 [). (8.7)

According to Corollary 7.4, there exist δ > 0 and α0 > 0 such that :

1 − e−
δ
α ≤ ||χTuα||2L2(ΩT ) ≤ 1. (8.8)

The min-max principle concludes to (8.4) (with a smaller δ). �

8.4 The regularized operator P T,ρ

To avoid the singularity on Pα with the term 1
t which tends to 0 when t tends

to infinity, we deal with the operator PTα and we can bound from below 1
t by 1

T
which is a constant. So it is quite natural to introduce the self-adjoint extension
PT,ρ to the form aT,ρ defined on VN,DT as follows :

VN,DT : =
{

u ∈ L2(ΩT )| (Dt − η)u ∈ L2(ΩT ), Dηu ∈ L2(ΩT ), u|t=T
= 0
}

,

aT,ρ(u, v) : =

∫

ΩT

(

2t(Dt − η)u(Dt − η)v +
ρ

2
DηuDηv

)

dt dη. (8.9)
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We denote by ν(T, ρ) the bottom of the spectrum of PT,ρ defined on DN,D(PT,ρ) :

DN,D(PT,ρ) : =
{

u ∈ VN,DT | (Dt − η)t(Dt − η)u ∈ L2(ΩT ), D2
ηu ∈ L2(ΩT ),

tDtu|t=0
= 0, Dηu|η=± 1

2
= 0
}

,

PT,ρ : = 2(Dt − η)t(Dt − η) +
ρ

2
D2
η. (8.10)

Let us define the continuous, bounded and self-adjoint projector Π0 by :

Π0 : L2(ΩT ) → L2(ΩT ), f 7→
∫ 1

2

− 1
2

f(t, η) dη. (8.11)

Lemma 8.4. We assume that T > 1 and T
ρ is uniformly bounded from above.

Then there exists Ĉ such that :

ν(T, ρ) ≤ λmean,T
1 ≤ ν(T, ρ) + Ĉ

√

T

ρ
. (8.12)

Furthermore, if we denote by uT,ρ1 a normalized eigenvector associated to ν(T, ρ),
there exists a constant C such that :

||(Id− Π0)u
T,ρ
1 ||L2(ΩT ) ≤

C√
ρ
, (8.13)

1 − C

ρ
≤ ||Π0u

T,ρ
1 ||L2(ΩT ) ≤ 1. (8.14)

Proof : By the inclusion VNmean,T ⊂ VN,DT , we immediately see that :

ν(T, ρ) ≤ λmean,T
1 , ∀ρ ≥ 0. (8.15)

Combining (8.2) and (8.15), we bound from above ν(T, ρ) by λmean
1 + c̃ =: C′.

By definition of ν(T, ρ) and uT,ρ1 , we have ν(T, ρ) = aT,ρ(uT,ρ1 , uT,ρ1 ) and deduce :

||Dηu
T,ρ
1 ||L2(ΩT ) ≤

√

2

ρ
C′. (8.16)

Using the projector Π0, we write uT,ρ1 as a sum of two functions :

uT,ρ1 = Π0(u
T,ρ
1 ) + ũT,ρ. (8.17)

We identify the range of Π0 with L2(0, T ) : L2(0, T ) is injected in L2(ΩT ) by
defining g 7→ i(g) = g. Now, we omit take i .

By definition of Π0(u
T,ρ
1 ) and ũT,ρ, it is easy to see that :

||Dηũ
T,ρ||L2(ΩT ) ≤

√
2C′
√
ρ
,

∫ 1/2

−1/2

ũT,ρ(t, η) dη = 0, Dηũ
T,ρ

|
η=± 1

2

= 0. (8.18)

Properties (8.18) show that ũT,ρ is orthogonal to constant functions and since
π2 is the smallest positive eigenvalue for −∂2

η on ] − 1
2 ,

1
2 [, we deduce that :

||Dηũ
T,ρ||L2(ΩT ) ≥ π||ũT,ρ||L2(ΩT ). (8.19)
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Relation (8.19) and the lower bound (8.18) achieve the proof of (8.13) with

C =
√

2C′

π . Since ||Π0(u
T,ρ
1 )||2L2(ΩT ) = 1 − ||ũT,ρ||2L2(ΩT ), Relation (8.13) leads

to (8.14). We know that :

2(Dt − η)t(Dt − η)uT,ρ +
ρ

2
D2
ηuT,ρ = ν(T, ρ)uT,ρ. (8.20)

We apply the projector Π0 to Relation (8.20) and so :

Lmean,TΠ0(u
T,ρ
1 ) +

∫ 1
2

− 1
2

2(Dt − η)t(Dt − η)ũT,ρ dη = ν(T, ρ)Π0(u
T,ρ
1 ).

We take the scalar product with Π0(u
T,ρ
1 ) and obtain, after simplifications :

〈

Lmean,TΠ0u
T,ρ
1 ,Π0u

T,ρ
1

〉

L2(0,T )
= ν(T, ρ)||Π0u

T,ρ
1 ||2L2(0,T )−2i

∫

ΩT

ηũT,ρ Π0u
T,ρ
1 dtdη

+2

∫

ΩT

ηtDtũ
T,ρΠ0u

T,ρ
1 dtdη−2

∫

ΩT

tη2ũT,ρ Π0u
T,ρ
1 dtdη. (8.21)

We now estimate each term of (8.21) :

•
∣

∣

∣

∣

∫

ΩT

ηũT,ρ Π0u
T,ρ
1 dt dη

∣

∣

∣

∣

≤ 1

2

C′′
√
ρ

according to (8.13) and (8.14).

•
∣

∣

∣

∣

∫

ΩT

η2tũT,ρ Π0u
T,ρ
1 dt dη

∣

∣

∣

∣

≤ C′′

4

√

T

ρ
||
√
tΠ0u

T,ρ
1 ||L2(ΩT ).

• For the third term, we use an integration by parts and then :

∣

∣

∣

∣

∫

ΩT

ηtDtũ
T,ρ Π0u

T,ρ
1 dt dη

∣

∣

∣

∣

≤ C′′

2
√
ρ

+
C′′√T
2
√
ρ

||
√
tDtΠ0u

T,ρ
1 ||L2(0,T ).

We define C(T, ρ) : =
〈

Lmean,TΠ0u
T,ρ
1 ,Π0u

T,ρ
1

〉

L2(0,T )
and remark that :

||
√
tΠ0u

T,ρ
1 ||L2(0,T ) ≤

√
6
√

C(T, ρ) and ||
√
tDtΠ0u

T,ρ
1 ||L2(0,T ) ≤

√

C(T, ρ).

Then an upper bound coming from Relation (8.21) and previous estimates of
each term lead to the bound :

C(T, ρ) ≤ ν(T, ρ) +
3C′′
√
ρ

+ 4C′′

√

T

ρ

√

C(T, ρ).

We assume that T ≥ 1 and that there exists a constant M such that T
ρ ≤ M .

Then C(T, ρ) is finite and there exists a constant C(∞) > 0 independent of T
and ρ such that : C(T, ρ) ≤ C(∞) < +∞. This combined with (8.14) leads to

the bound (8.12) of λmean,T
1 . �
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8.5 Proof of the lower bound on Theorem 8.1

Let η > 0. We apply Lemmas 8.2 and 8.4 with ǫ = η

2Ĉ
and T = ǫ

α , then :

ν

(

T,
1

α2T

)

≥ λmean
1 − η

2
. (8.22)

Since λT (α) ≥ ν
(

T, 1
α2T

)

, Lemma 8.3 shows that with the previous choice of ǫ,
there exist α0 > 0 and δ > 0 such that :

λ(α) ≥ ν

(

T,
1

α2T

)

− e−
δ
α , ∀α ∈]0, α0]. (8.23)

So there exists α1 ≤ α0 such that for any α ∈]0, α1], e
− δ

α ≤ η
2 ; then (8.22) and

(8.23) lead to :

λ(α) ≥ λmean
1 − η. (8.24)

Since µ(α) = αλ(α), we can also achieve the proof of Theorem 8.1. �

9 Behavior of eigenvectors

It is easy to deduce from the proof of Theorem 8.1 the behavior of the eigen-
vectors of PT,ρ and Lmean,T as follows.

Proposition 9.1. There exist c > 0 and T0 > 0 such that the first eigenvalue

of PT,ρ is simple for any ρ and T ≥ T0 such that 1
ρ +
√

T
ρ ≤ c. Denoting by uT,ρ1

and umean,T
1 the first normalized eigenvectors for PT,ρ and Lmean,T respectively,

there exists C such that for T ≥ T0 and ρ > 0 with 1
ρ +

√

T
ρ ≤ c :

||Π0(u
T,ρ
1 ) − umean,T

1 ||2L2(0,T ) ≤ C

(

1

ρ
+

√

T

ρ

)

, (9.1)

||uT,ρ1 − umean,T
1 ||2L2(ΩT ) ≤ C

(

1

ρ
+

√

T

ρ

)

. (9.2)

Proof : Let uT,ρ1 be a normalized eigenfunction associated to the first eigenvalue

for PT,ρ and we define the function u0
T,ρ : = Π0(u

T,ρ
1 ) on ]0, T [. After a pos-

sible multiplication by a complex number, we assume that u0
T,ρ is decomposed

according to a basis of eigenvectors for Lmean,T with a0 ≥ 0 :

u0
T,ρ = a0u

mean,T
1 + ũ0

T,ρ, (9.3)

with ũ0
T,ρ orthogonal to umean,T

1 . We estimate
〈

Lmean,Tu0
T,ρ, u

0
T,ρ

〉

L2(0,T )
with

(8.21), Relation (8.15) and the expression (9.3). Then there exists a constant A
independent of T and ρ such that if T ≥ 1 and T

ρ is uniformly bounded, then :

〈

Lmean,Tu0
T,ρ, u

0
T,ρ

〉

L2(0,T )
≤ λmean,T

1 (a2
0 + ||ũ0

T,ρ||2L2(0,T )) +A

√

T

ρ
. (9.4)
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We denote by λmean,T
2 the second eigenvalue for Lmean,T and apply the min-max

principle, then :

〈

Lmean,Tu0
T,ρ, u

0
T,ρ

〉

L2(0,T )
≥ λmean,T

1 a2
0 + λmean,T

2 ||ũ0
T,ρ||2L2(0,T ). (9.5)

From (9.4) and (9.5), we deduce that :

(

λmean,T
2 − λmean,T

1

)

||ũ0
T,ρ||2L2(0,T ) ≤ A

√

T

ρ
. (9.6)

We can bound from below λmean,T
2 by λmean

2 and according to (8.2), we have :

1

λmean,T
2 − λmean,T

1

≤ 1

λmean
2 − λmean

1 − c̃e
− T

2
√

3

. (9.7)

Due to (9.7), there exist T0 and Ã independent of ρ such that for all T ≥ T0 :

||ũ0
T,ρ||2L2(0,T ) ≤ Ã

√

T

ρ
. (9.8)

This shows that ||ũ0
T,ρ||2L2(0,T ) tends to 0 when ρ tends to infinity.

We use the decomposition of u0
T,ρ, Relations (8.14) and (9.8) to obtain :

1 − C̃′′

ρ
− Ã

√

T

ρ
≤ a2

0 ≤ 1. (9.9)

This leads to Relation (9.1) since :

||u0
T,ρ − umean,T

1 ||2L2(0,T ) = (1 − a0)
2 + ||ũ0

T,ρ||2L2(0,T ) ≤
C

ρ
+ C

√

T

ρ
. (9.10)

Due to the decomposition of uT,ρ1 = Π0(u
T,ρ
1 ) + ũT,ρ, we have :

||uT,ρ1 − umean,T
1 ||2L2(ΩT ) ≤ 2||Π0(u

T,ρ
1 ) − umean,T

1 ||2L2(ΩT ) + 2||ũT,ρ||2L2(0,T ).

This last relation coupled with estimates (9.1) and (8.13) achieve the proof of
(9.2).
Let us assume by contradiction that the first eigenvalue of PT,ρ is not simple,
then there exists a normalized eigenvector denoted by vT,ρ1 , orthogonal to uT,ρ1

for the smallest eigenvalue. Using Proposition 9.1 with uT,ρ1 and vT,ρ1 , we have :

||vT,ρ1 − uT,ρ1 ||2L2(ΩT ) ≤ 2||vT,ρ1 − umean,T
1 ||2L2(ΩT ) + 2||uT,ρ1 − umean,T

1 ||2L2(ΩT )

≤ C′
(

1

ρ
+

√

T

ρ

)

. (9.11)

This is in contradiction with the fact that ||vT,ρ1 − uT,ρ1 ||2L2(ΩT ) = 2 as soon as

C′
(

1
ρ +

√

T
ρ

)

< 2. Therefore ν(T, ρ) is simple in this case. �

We also can compare the first eigenvectors for Lmean and Lmean,T :
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Proposition 9.2. Let umean
1 be the normalized positive eigenvector associated

to λmean
1 , umean,T

1 be the normalized positive eigenvector associated to λmean,T
1

and ũmean,T
1 its extension by 0 on [T,+∞[. Then :

||umean
1 − ũmean,T

1 ||L2(R+) = O
(

e
− T

4
√

3

)

as T → +∞. (9.12)

Proof : We decompose ũmean,T
1 = a0u

mean
1 + v1, with a0 ≥ 0 (after a possible

multiplication of ũmean,T
1 by a complex number) and v1 orthogonal to umean

1 ,
then :

||ũmean,T
1 ||2L2(R+) = 1 = a2

0 + ||v1||2L2(R+). (9.13)

Furthermore :

λmean,T
1 =

〈

Lmeanũmean,T
1 , ũmean,T

1

〉

L2(R+)
≥ a2

0λ
mean
1 +λmean

2 ||v1||2L2(R+). (9.14)

Relations (9.13) and (9.14) lead to :

(λmean
2 − λmean,T

1 )||v1||2L2(R+) ≤ (λmean,T
1 − λmean

1 )a2
0 ≤ λmean,T

1 − λmean
1 .

From Lemma 8.2, we deduce :
(

λmean
2 − λmean

1 − c̃e
− T

2
√

3

)

||v1||2L2(R+) ≤ c̃e
− T

2
√

3 .

But observing that λmean
2 − λmean

1 = 2√
3
, we get ||v1||2L2(R+) = O

(

e
− T

2
√

3

)

and

a0 = 1+O
(

e
− T

2
√

3

)

as T tends to infinity. To achieve the proof, we just write :

||umean
1 − ũmean,T

1 ||2L2(R+) = (1 − a0)
2||umean

1 ||2L2(R+) + ||v1||2L2(R+).

So ||umean
1 − ũmean,T

1 ||2L2(R+) = O
(

e
− T

2
√

3

)

. �

10 Splitting between the two first eigenvalues

10.1 Main proposition

The upper bound of the bottom of the spectrum given in Section 6 proves
the existence of an eigenvalue with the asymptotics αλ(n) + O(α2n+3). In the
previous section, we have established the lower bound µ(α) ≥ α√

3
− ǫα. If the

splitting between the two first eigenvalues of PA0,Ωα is big enough or if we obtain
a “good” lower bound of the second eigenvalue, then spectral theorem will give
the asymptotics of µ(α).

Proposition 10.1. As α tends to 0, the number of eigenvalues of PA0,Ωα below
the essential spectrum tends to infinity. If we denote by µ(α), µ2(α) the two first
eigenvalues of PA0,Ωα and by λmean

1 , λmean
2 the smallest eigenvalues for Lmean,

then for every ǫ > 0, there exist α0 and C > 0 such that for all α ∈]0, α0] :

µ2(α) ≥ αλmean
2 − ǫα, (10.1)

µ2(α) − µ(α)

α
≥ (λmean

2 − λmean
1 ) − ǫ. (10.2)

To prove Proposition 10.1, we will use the same operators as in Section 8,
that is to say, the operators Lmean,T , PTα and PT,ρ defined respectively in (8.1),
(8.3), (8.10) and studied respectively in Subsections 8.2, 8.3 and 8.4.
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10.2 Estimates of the second eigenvalue

We use the index 2 to indicate the second eigenvalue (when it exists). We have
an expression of λ2(α) according to the min-max principle :

λ2(α) = sup
v∈L2(Ω0)

inf
u∈VN ,u⊥v

qα(u)

||u||2L2(Ω0)

. (10.3)

By the same principle, we have expressions for λT2 (α), λmean
2 , λmean,T

2 and
ν2(T, ρ). So we deduce that :

λmean
2 ≥ λ2(α), (10.4)

λT2 (α) ≥ λ2(α), (10.5)

λmean,T
2 ≥ λmean

2 , (10.6)

λmean,T
2 ≥ ν2(T, ρ), (10.7)

λT2 (α) ≥ ν2

(

T,
1

α2T

)

. (10.8)

Due to Relation (10.4), we can bound from above λ2(α) by a positive constant
and so µ2(α) = αλ2(α) tends to 0 with α. Then there exists α1 such that for
all α ≤ α1, µ2(α) < Θ0. By Lemma 2.3, we have established that the bottom of
the essential spectrum of PA0,Ωα is equal to Θ0 and so, µ2(α) is an eigenvalue
as soon as µ2(α) < Θ0.

10.3 Comparison between ν2 and λmean
2

Lemma 10.2. There exist ǫ0, α0 > 0 and c > 0 such that for ǫ ≤ ǫ0, α ≤ α0

and T = ǫ
α :

ν2

(

T,
1

α2T

)

≥ λmean
2 − cǫ. (10.9)

Proof : According to Proposition 9.1 with ρ = 1
α2T and T = ǫ

α , there exist ǫ0
and α0 such that for all ǫ ≤ ǫ0 and α ≤ α0, the smallest eigenvalue of PT,ρ

is simple. Let uT1 and uT2 the normalized eigenvectors associated respectively

to ν
(

T, 1
α2T

)

and ν2
(

T, 1
α2T

)

. We define uT,01 : = Π0u
T
1 , uT,02 : = Π0u

T
2 and

ũT1 = uT1 − uT,01 , ũT2 = uT2 − uT,02 . According to Lemma 8.4 and Relations (8.13)
and (8.14), there exists C′ independent of α and T such that :

||ũT1 ||L2(0,T ) ≤ C′√ǫ√α, ||ũT2 ||L2(0,T ) ≤ C′√ǫ√α, (10.10)

1 − C′ǫα ≤ ||uT,01 ||L2(0,T ) ≤ 1, 1 − C′ǫα ≤ ||uT,02 ||L2(0,T ) ≤ 1. (10.11)

We decompose uT,02 = a1u
mean,T
1 + ũT,02 with ũT,02 orthogonal to umean,T

1 , then

a2
1 + ||ũT,02 ||2L2(0,T ) ≤ 1, so |a1| ≤ 1. Since

〈

uT2 , u
T
1

〉

L2(ΩT )
= 0, we estimate :

〈

uT,02 , uT,01

〉

L2(0,T )
=
〈

ũT2 , ũ
T
1

〉

L2(ΩT )
−
〈

ũT2 , u
T
1

〉

L2(ΩT )
−
〈

uT2 , ũ
T
1

〉

L2(ΩT )
. (10.12)

The decomposition of uT,02 , the normalization of umean,T
1 and the orthogonality

between ũT,02 and umean,T
1 give an other expression for the scalar product :

〈

uT,02 , uT,01

〉

L2(0,T )
= a1 +

〈

a1u
mean,T
1 + ũT,02 , uT,01 − umean,T

1

〉

L2(0,T )
. (10.13)
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Relation (9.1) shows that ||uT,01 − umean,T
1 ||L2(0,T ) ≤ C̃ǫ. Furthermore, Re-

lations (10.10) bound from above
∣

∣

∣

〈

ũT2 , u
T
1

〉

L2(ΩT )

∣

∣

∣ and
∣

∣

∣

〈

uT2 , ũ
T
1

〉

L2(ΩT )

∣

∣

∣ by

C′√ǫ√α and also
∣

∣

∣

〈

ũT2 , ũ
T
1

〉

L2(ΩT )

∣

∣

∣
by C′2ǫα. We report these estimates in

(10.12) and (10.13) knowing that |a1| ≤ 1, then :

|a1| ≤ 2C̃ǫ+ 2C′√ǫ√α+ C′2ǫα. (10.14)

So there exist α1 ≤ α0 and C1 such that for α ≤ α1 :

|a1| ≤ C1

√
ǫ. (10.15)

Taking again (10.11) and (10.15), there exists Ĉ with :

1 − Ĉǫ ≤ ||ũT,02 ||2L2(0,T ) = ||uT,02 ||2L2(0,T ) − a2
1 ≤ 1. (10.16)

As we made for
〈

Lmean,TuT,01 , uT,01

〉

L2(0,T )
, we bound

〈

Lmean,TuT,02 , uT,02

〉

L2(0,T )
:

〈

Lmean,TuT,02 , uT,02

〉

L2(0,T )
≤ ν2

(

T,
1

α2T

)

||uT,02 ||2L2(0,T ) + Cǫ, (10.17)

and also :
〈

Lmean,TuT,02 , uT,02

〉

L2(0,T )
≥ a2

1λ
mean,T
1 + λmean,T

2 ||ũT,02 ||2L2(0,T ). (10.18)

We look at Relations (10.17), (10.18); we use (10.11), (10.15), (10.16) and (10.6)
to achieve the proof of (10.9). �

10.4 Comparison between λ2(α) and λT
2 (α)

Lemma 10.3. For every ǫ ∈
]

0, 2√
3

[

, there exist α0, δ > 0 and C > 0 such

that for α ∈]0, α0[ and T = ǫ
α :

0 ≤ λT2 (α) − λ2(α) ≤ Ce−
δ
α . (10.19)

Proof : As for the first eigenvalue, we show that λ2(α) is closed to λT2 (α) by using
spectral theorem. We define vTα = χTu2,α and estimate ||(PTα −λ2(α))vTα ||L2(ΩT ).
For (t, η) ∈ ΩT :

PTα v
T
α (t, η) = Pαv

T
α (t, η) = χTPαu2,α(t, η) + [Pα, χT ]u2,α(t, η).

By assumption, there exists C such that |DtχT | ≤ C
T and |D2

tχT | ≤ C
T 2 . Corol-

lary 7.4 proves the existence of δ > 0 and α0 > 0 such that for α ≤ α0 and
T = ǫ

α :

||u2,α||L2(] T
2 ,T [×]− 1

2 ,
1
2 [) ≤ e−

δ
α . (10.20)

So, with an integration by parts for the term ||tDtu2,αDtχT ||L2(ΩT ), we deduce :

||(PTα − λ2(α))vTα ||L2(ΩT ) ≤ Ce−
δ
α . (10.21)
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With ||vTα ||2L2(ΩT ) ≥ ||uT2,α||2L2(Ω T
2

) = 1 − ||uT2,α||2L2(] T
2 ,+∞[×]− 1

2 ,
1
2 [)

and (10.20),

there is c such that :

||vTα ||L2(ΩT ) ≥ 1 − ce−
δ
α . (10.22)

We apply a classical spectral theorem and Relations (10.21) and (10.22). So
there exist α1 ≤ α0, c̃ and for all T = ǫ

α , λTk (α) ∈ σ(PTα ) such that for α ≤ α1 :

|λTk (α) − λ2(α)| ≤ c̃e−
δ
α . (10.23)

We show that k ≥ 2 by contradiction. We assume k = 1. It is easy to see that :

λ2(α) − λmean,T
1 ≤ c̃e−

δ
α .

But, due to (10.8), we deduce :

ν2

(

T,
1

α2T

)

− λmean,T
1 ≤ c̃e−

δ
α .

We apply Lemmas 10.2 and 8.2 to establish the upper bound :

λmean
2 − λmean

1 ≤ c̃e−
δ
α + Ce

− T
2
√

3 + cǫ = c̃e−
δ
α + Ce

− ǫ
2
√

3α + cǫ. (10.24)

Since λmean
2 − λmean

1 = 2√
3
, (10.24) is impossible as soon as ǫ < 2√

3
. Thus k ≥ 2

and then λTk (α) ≥ λT2 (α). We deduce (10.19) by using (10.5). �

10.5 Proof of Proposition 10.1

Let η > 0. We apply Lemma 10.2 with ǫ = η
2c . Then, there exists α0 such that

for α ∈]0, α0] and T = ǫ
α :

ν2

(

T,
1

α2T

)

≥ λmean
2 − η

2
. (10.25)

With this choice of ǫ, Lemma 10.3 and Relation (10.8) give the existence of
α1 ≤ α0 such that for α ∈]0, α1] :

λ2(α) ≥ ν2

(

T,
1

α2T

)

− η

2
. (10.26)

We take the lower bounds (10.25) and (10.26), then, for α ∈]0, α1] :

λ2(α) ≥ λmean
2 − η. (10.27)

Since λ(α) ≤ λmean
1 , we deduce :

λ2(α) − λ(α) ≥ (λmean
2 − λmean

1 ) − η. (10.28)

�

We now use Proposition 10.1 to justify the asymptotics of µ(α).
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10.6 Asymptotics of µ(α)

Theorem 10.4. Let n a positive integer. We consider (mj)j≤n given recursively
by Proposition 5.1, then µ(α) has the asymptotics :

µ(α) = α

n
∑

j=0

mjα
2j + On(α

2n+3) as α→ 0. (10.29)

Proof : We take again U (n) and λ(n) defined in (6.2) and (6.1). According to
Proposition 6.1, there is α0 and for α ≤ α0, µN (α) ∈ σ(PA0,Ωα) such that :

|µN (α) − αλ(n)| ≤ Cα2n+1. (10.30)

Assume that N ≥ 2, then :

µN (α) − αλ(n) ≥ µ2(α) − αλ(n). (10.31)

We choose ǫ ≤ 1√
3
, then due to Proposition 10.1 and construction of λ(n), there

exists α1 ≤ α0 such that for α ∈]0, α1] :

µ2(α) ≥ αλmean
2 − α

ǫ

2
, αλ(n) ≤ αλmean

1 + α
ǫ

2
. (10.32)

We report (10.32) in (10.31), then, since λmean
2 − λmean

1 = 2√
3

:

µN (α) − αλ(n) ≥ α(λmean
2 − λmean

1 ) − αǫ ≥ α√
3
. (10.33)

This is impossible with (10.30), so N = 1 and µN (α) = µ(α). �

11 Estimates in the semi-classical case

11.1 Localization techniques

11.1.1 Localization with a partition of unity

As in [11], p. 617-621, we can give a lower bound and an upper bound for the
fundamental state of the Schrödinger operator with a non constant magnetic
field and a bounded open set of R

2 whose boundary is a curvilinear polygon.
Our goal is now to prove Theorem 1.2. The partition of unity plays an important
role and we recall its construction. The idea of the localization to compare the
model cases R

2, R × R
+ and Ωα comes from the following proposition :

Proposition 11.1. Let 0 ≤ ρ ≤ 1. There exist a constant C and a partition of
unity χhj of Ω satisfying :

χhj (x) = χj

( x

hρ

)

, with χj a partition of unity of R
2,

∑

j

|χhj |2 = 1, (11.1)

∑

j

|∇χhj |2 ≤ Ch−2ρ, (11.2)

supp(χhj ) ⊂ B(zj, h
ρ) s.t.















either supp(χhj ) ∩ ∂Ω = ∅,
either zj ∈ ∂Ω and

supp(χhj ) ∩ {Sk, k = 1, . . . , N} = ∅,
or zj = Sj .

(11.3)
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(with the choice of index j such that zj = Sj for j = 1, . . . , N).

We notice immediately :
∑

j

χhj (∇χhj ) = 0. (11.4)

To compare with models R
2, R × R

+ and Ωα, we share indices in three parts :

cor : = {j| zj = Sj}, bd : = {j| zj ∈ ∂Ω \ {S1, . . . , SN}}, int : = {j| zj ∈ Ω},
corresponding respectively to the corners, the regular points of the boundary
and the points of the interior. We deduce for every u ∈ H1

h,A(Ω) that :

qh,A,Ω(u) =
∑

int

qh,A,Ω(χhj u) +
∑

bd

qh,A,Ω(χhj u) +
∑

cor

qh,A,Ω(χhj u)

−h2
∑

j

|| |∇χhj |u||2L2(Ω). (11.5)

We see two kinds of errors : errors coming from approximation which suggest
the choice ρ large and errors coming from localization (last term of (11.5))
which suggest to choose ρ small. So we will try to optimize between these two
constraints.

11.1.2 Change of variables

To compare with the models R × R
+ and Ωα, we make a local change of vari-

ables.

Lemma 11.2. There exist positive constants h0 and C1 such that for any regular
point z ∈ ∂Ω \ {S1, . . . , SN}, for any ǫ < d(z, {S1, . . . , SN}), we can write for
u ∈ H1

h,A(Ω) with support in Ω ∩ B(z, ǫ) the form in the new domain R × R
+

by :

qh,A,Ω(u) =

∫

R×R+

∑

1≤k,l≤2

gk,l(x̃)

(

h
∂ũ

∂x̃k
− iÃkũ

)(

h
∂ũ

∂x̃l
− iÃlũ

)

√

det g dx̃,

(11.6)
with ũ and Ã deduced from u and A by change of variables.
Furthermore, for h ∈]0, h0] and u with support in B(z, hρ)∩ (Ω\{S1, . . . , SN}) :

(1 − C1h
ρ)qh,Ã,R×R+(ũ) ≤ qh,A,Ω(u) ≤ (1 + C1h

ρ)qh,Ã,R×R+(ũ). (11.7)

We obtain a similar result for corners.

Lemma 11.3. There exist positive constants h0 and C1 such that for any cor-
ners Sj, for any u ∈ H1

h,A(Ω) with support in Ω ∩ B(Sj, ǫ) (with ǫ < d(Sj , Sk)
for every k 6= j), we can write the form in the new domain Ωαj by :

qh,A,Ω(u) =

∫

Ωαj

∑

1≤k,l≤2

gk,l(x̃)

(

h
∂ũ

∂x̃k
− iÃkũ

)(

h
∂ũ

∂x̃l
− iÃlũ

)

√

det g dx̃,

(11.8)
with ũ and Ã deduced from u and A by change of variables.
Furthermore, for any h ∈]0, h0] and u with support in Ω ∩ B(Sj, h

ρ) :

(1 − C1h
ρ)qh,Ã,Ωαj

(ũ) ≤ qh,A,Ω(u) ≤ (1 + C1h
ρ)qh,Ã,Ωαj

(ũ). (11.9)

The main difficulty in Lemma 11.2 is to control the uniformity with respect
to z. Details on the proofs of Lemmas 11.2 and 11.3 are given in [6].
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11.1.3 Gauge transform

We assume that we have chosen the coordinates such that z = (0, 0) ∈ ∂Ω. By
gauge transform, we can assume that A(0) and the linear part of the potential
A are respectively equal to 0 and Aℓin : = B(0)A0 (with A0 defined on (1.2)).
We define A′ : = A−Aℓin, then there exists a positive constant C̃ such that :

|A − Aℓin| = |A′| ≤ C̃|x|2. (11.10)

By the decomposition of A as the sum Aℓin + A′, we write :

qh,A,Ω(v) =

∫

Ω

(

∣

∣(h∂x1 − iAℓin1 )v
∣

∣

2
+
∣

∣(h∂x2 − iAℓin2 )v
∣

∣

2
)

dx

+2 Re i

∫

Ω

(

(h∂x1 − iAℓin1 )vA′
1v + (h∂x2 − iAℓin2 )vA′

2v
)

dx

+

∫

Ω

(

|A′
1v|2 + |A′

2v|2
)

dx. (11.11)

There exists a constant C such that if v has a support in Ω ∩ B(0, hρ), then :

qh,A,Ω(v) ≤ qh,Aℓin,Ω(v) + Ch2ρ||v||2L2(Ω). (11.12)

11.2 Lower bound

Proposition 11.4. Under the assumptions of Theorem 1.2, there exist h0 and
a constant C such that for any h ∈]0, h0[ :

µ(h,B,Ω) ≥ hmin

(

b,Θ0b
′, inf
j=1,...,N

µ(αj)B(Sj)

)

− Ch5/4. (11.13)

Proof : We have to estimate each term of (11.5). From (11.2), we deduce :

h2
∑

j

|| |∇χhj | u||2L2(Ω) ≤ Ch2−2ρ||u||2L2(Ω). (11.14)

This estimate shows that, for ρ = 3
8 , the error is in O

(

h
5
4

)

.

Observing that [hDx1 −A1, hDx2 −A2] = i h B, we deduce the estimate :

∑

int

qh,A,Ω(χhj u) ≥ h
∑

int

∫

Ω

B(x)|χhj u(x)|2dx, (11.15)

where we have used that suppχhj ⊂ Ω, for j ∈ int.

We have now to estimate the terms which are localized at the boundary. Let
j ∈ cor∪bd. By change of variables, we send locally the domain onto R × R

+ or
Ωα. We apply Lemmas 11.2 and 11.3, so there exists a constant C1 independent
of h such that, for every v with support in Ω ∩ B(zj, h

ρ),

(1 − C1h
ρ)qh,Ã,Ωα

(ṽ) ≤ qh,A,Ω(v) ≤ (1 + C1h
ρ)qh,Ã,Ωα

(ṽ). (11.16)

So it is enough to analyze qh,Ã,Ωα
(ṽ). We now omit the tilda due do the change of

variables. We make a gauge transform such that the linear term of the magnetic
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potential is equal to Aℓin : = B(zj)A0. We denote by A′ the remainder :
A′ = A−Aℓin. Relation (11.11) gives :

qh,A,Ω(v)≥qh,Aℓin,Ω(v)−2Im

∫

Ω

(

(h∂x1 − iAℓin1 )v A′
1v + (h∂x2 − iAℓin2 )v A′

2v
)

dx.

A Cauchy-Schwarz inequality leads to :

∣

∣

∣

∣

∫

Ω

(h∂xk
− iAℓink )vA′

kvdx

∣

∣

∣

∣

≤ h2θ

2

∫

Ω

∣

∣(h∂xk
− iAℓink )v

∣

∣

2
dx+

h−2θ

2

∫

Ω

|A′
kv|

2
dx.

(11.17)
But, by a Taylor expansion, we see that |A′

k| ≤ C|x − zj| ≤ Chρ where C is a
constant independent of h and zj. Using this estimate, taking account of the
error due to the change of variables (11.16) and choosing v = χhj u, we get :

qh,A,Ω(χhj u) ≥ (1 − h2θ − C1h
ρ)hµ(αj)B(zj)

∫

Ω

|χhj u|2 dx− C̃2h4ρ−2θ||χhj u||2.
(11.18)

The estimates (11.14), (11.15) and (11.18) give the following lower bound
for qh,A,Ω(u) :

qh,A,Ω(u)≥ h
∑

int

∫

B(x)|χhj u|2dx− Ch2−2ρ||u||2

+(1 − h2θ − Chρ)hΘ0

∑

bd

B(zj)

∫

Ω

|χhj u|2dx − C2h4ρ−2θ
∑

bd

||χhj u||2

+(1 − h2θ − Chρ)h
∑

cor

µ(αj)B(Sj)

∫

Ω

|χhj u|2dx− C2h4ρ−2θ
∑

cor

||χhj u||2.

We choose ρ = 3
8 and θ = 1

8 , so there exist a positive constant C and h0 > 0
such that for every h ∈]0, h0], we have the lower bound for any u ∈ H1

h,A(Ω) :

qh,A,Ω(u) ≥
(

hmin

(

b,Θ0b
′, inf
j=1,...,N

µ(αj)B(Sj)

)

− C0h
5/4

)

||u||2L2(Ω).

We apply the min-max principle and get (11.13). �

11.3 Upper bound

Proposition 11.5. Under the assumptions of Theorem 1.2 and assuming that
µ(αj) < Θ0 for any j = 1, . . . , N , then there exist h0 and a constant C such
that for any h ∈]0, h0[ :

µ(h,B,Ω) ≤ hmin

(

b,Θ0b
′, inf
j=1,...,N

µ(αj)B(Sj)

)

+ Ch4/3. (11.19)

Proof : We establish three upper bounds :

1. µ(h,B,Ω) ≤ h inf
j=1,...,N

µ(αj)B(Sj) + C0h
4/3.

2. µ(h,B,Ω) ≤ hb′Θ0 + C0h
4/3.

3. µ(h,B,Ω) ≤ hb+ C0h
4/3.

35



• We begin with looking at the vertices. Let Sj be a vertex. By change of
variables, we send locally Ω onto Ωαj . We will consider a function u with a

support in a ball Ω ∩ B(Sj , h
ρ), so according to (11.9), it is enough to estimate

qh,A,Ωαj
(u) with the new coordinates and the error is in hρ.

By assumption µ(αj) < Θ0, then µ(αj) is an eigenvalue. We use the normalized
eigenfunction v0 associated to the Schrödinger operator PA0,Ωαj

and we define :

∀x ∈ Ωαj , vh(x) =

√

B(Sj)

h
v0

(
√

B(Sj)

h
x

)

.

With a gauge transform, we assume that A = Aℓin+A′ with the same notations
as in Subsection 11.1.3.
We consider χ a smooth function defined on R

2 such that :

suppχ ⊂ B1, χ = 1 on B1/2, 0 ≤ χ ≤ 1. (11.20)

We denote by χhρ : = χ
(

.−x0

hρ

)

where x0 will be chosen later. We now compute
qh,A,Ωαj

(χhρvh) :

qh,A,Ωαj
(χhρvh) = qh,Aℓin,Ωαj

(χhρvh) +

∫

Ωαj

|A′|2|χhρvh|2 dx

+2 Re i

∫

Ωαj

2
∑

j=1

(h∂xj − iAℓinj )(χhρvh)A′
jχhρvh dx.

By construction of vh and assumptions about χhρ and A′, we deduce that there
exists a positive constant C such that :

qh,A,Ωαj
(χhρvφ) ≤ hB(Sj)µ(αj)||χhρvh||2L2(Ωαj

)+Ch
2−2ρ+Ch2+Ch

3
2 . (11.21)

We now bound from below the norm of χhρvh :

||χhρvh||2L2(Ωαj
) ≥ 1 − ||vh||2L2(Ωαj

)∩∁Bhρ/2)
≥ 1 − C1 e

−C2h
ρ− 1

2 , (11.22)

by using the behavior of the eigenfuction mentioned in Section 7 and particularly
in Theorem 7.1. Recalling (11.9), we deduce :

qh,Ã,Ω(χhρvh)

||χhρvh||2L2(Ω)

≤ (1 + C1h
ρ)

(

hB(Sj)µ(αj) + C
h2−2ρ + h2 + h

3
2

1 − C1 e−C2h
ρ− 1

2

)

≤ hB(Sj)µ(αj) + C(hρ+1 + h
3
2 + h2−2ρ). (11.23)

Choosing ρ = 1
3 , we get :

µ(h,B,Ω) ≤ hB(Sj)µ(αj) + Ch
4
3 . (11.24)

• Now, we prove the upper bound 2. Let x0 a point of the boundary such that
B(x0) = b′. Either x0 is a regular point, either x0 is a vertex. If x0 is a vertex,
we take account of B(x0) = b′, (11.24), the assumption µ(α) < Θ0 and deduce :

µ(h,B,Ω) ≤ hb′Θ0 + ch
4
3 . (11.25)
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Let us now assume that x0 is not a vertex. We use the same techniques as Helffer-
Morame [11], p. 648. By change of variables, we have a small perturbation of
the sesquilinear form on the half-plane and we use the following function as a
trial function :

∀x ∈ R × R
+, v(x) = h−

1
8 ei

q

b′
h ζ0x1

(

b′

h

)
1
4

φ

(
√

b′

h
x2

)

χ(x2)g
(

h−
1
4 x1

)

,

(11.26)
with g ∈ C∞

0 (R) L2-normalized supported by ] − 1
2 ,

1
2 [ and χ ∈ C∞

0 (R+) such
that :

χ(x2) =

{

1 if 0 ≤ x2 ≤ ǫ0
2 ,

0 if x2 ≥ ǫ0,

and φ, ζ0 defined by Proposition 2.1. We obtain the upper bound :

µ(h,B,Ω) ≤ hΘ0B(x0) + Ch3/2. (11.27)

Combining (11.25) and (11.27), we deduce :

µ(h,B,Ω) ≤ hΘ0b
′ + Ch4/3. (11.28)

• Let us analyze the upper bound 3. Let x0 ∈ Ω such that B(x0) = b. Either
x0 ∈ Ω, either x0 ∈ ∂Ω. If x0 ∈ ∂Ω, then b = b′. Since we have proved that
µ(h,B,Ω) ≤ hb′Θ0 + Ch4/3 and since Θ0 < 1, we deduce that :

µ(h,B,Ω) ≤ hb+ Ch4/3. (11.29)

Let us now assume x0 ∈ Ω, then there exists h0 > 0 such that B
(

x0, h
1
2
0

)

⊂ Ω.

Let h ∈]0, h0]. We consider the function u defined on Ω by :

u(x) =

√

B(x0)

4πh
exp

(−B(x0)|x− x0|2
4h

)

, ũ = exp

(

i
φ

h

)

u, (11.30)

with φ which realizes a gauge transform such that the linear expansion of A+∇φ
is equal to A0.
We use a cut-off function to localize ũ in B(x0, h

1
2 ) and we make a Taylor

expansion of A at the first order as mentioned in (11.12). We also get :

µ(h,B,Ω) ≤ hB(x0) + C0h
3/2 = hb+ C0h

3/2, (11.31)

with C0 a positive constant independent of h. Thanks to (11.29) and (11.31),
we obtain :

µ(h,B,Ω) ≤ hb+ C0h
3/2, (11.32)

Taking account of Relations (11.24), (11.28) and (11.32), we get the upper bound
(11.19). �

Remark 11.6. It seems that the assumption µ(α) < Θ0 holds for any angular
α ∈]0, π[ but it is not proved for the moment. If we do not make this assumption,
the result still holds with a worse remainder but we have a fourth case to study :
the case of a vertex Sj with angle αj < π and µ(αj) = Θ0 as inf

x∈∂Ω
B(x) = B(Sj).

Let us shortly explain how we can treat this case. Let us consider Tj a point of

37



the regular boundary such that d(Sj , Tj) = h
1
4 , we localize in a small ball around

Tj which do not meet corner or other piece of the boundary. After change of
variables near Tj to send locally Ω onto R × R

+, we consider instead of v defined
by (11.26) the new function for x ∈ R × R

+ :

v(x) = ei
q

B(Tj)

h ζ0x1

(

B(Tj)

h

)
1
4

φ

(
√

B(Tj)

h
x2

)

g2

(

x2

h
3
8

)

h−
3
16 g1

(

h−
3
8x1

)

,

(11.33)

with g1 ∈ C∞
0 (] − 1

2 ,
1
2 [,R) L2-normalized and g2 ∈ C∞

0 (R
+
) such that :

g2(x2) =

{

1 if 0 ≤ x ≤ 1
2

0 if x2 ≥ 1
,

and φ, ζ0 defined by Proposition 2.1. Computations lead to the estimate :

µ(h,B,Ω) ≤ hΘ0B(Tj) + Ch
9
8 . (11.34)

Using the Taylor formula, there exists a positive constant β such that :

B(Tj) ≤ B(Sj) + β|Tj − Sj | ≤ B(Sj) + βh
1
4 . (11.35)

We report (11.35) in (11.34) and so :

µ(h,B,Ω) ≤ hΘ0(B(Sj) + βh
1
4 ) + Ch

9
8 = hΘ0B(Sj) + O(h

9
8 ). (11.36)

This achieves the demonstration in the general case for the upper bound.

12 Conclusion

Some physicists [7, 20] were already interested in the smallest eigenvalue for
the Neumann realization of the Schrödinger operator with a constant magnetic
field in an angular sector Ωα and in its dependence on α. They gave already
estimates but these results are without rigorous proof. Relation (1.7) gives
an expansion at any order and goes far beyond the work of Brosens-Devreese-
Fomin-Moshchalkov [7] who mention only the first term α√

3
and a paper of

Schweigert-Peeters [20] who propose on the basis of numerical computations a
two-terms formula. As usual in the physical literature, the best one can hope
through their techniques is an upper bound of µ(α) because they only construct
quasi-modes. We emphasize that we have obtained here the asymptotics and a
control of the splitting between the first and the second eigenvalue. We have also
given some upper bounds of µ(α) and showed that the bottom of the spectrum
is an eigenvalue for any angular in ]0, π/2]. Let us recall these estimates and
give the localization of µ(α) on Figure 12.
Proposition 2.3 : ∀α ∈]0, 2π[, µ(α) ≤ Θ0, (1)
Proposition 4.1 : ∀α ∈]0, 2π[, µ(α) ≤ α√

3
, (2)

Relation (2.15) : ∀α ∈]0, π2 [, µ(α) ≤ Θ0

sinα − cosα
4 sinαφ(0)4, (3)

Relation (3.6) : ∀α ∈]0, π[, µ(α) ≥ Θ0
α
π , (4)

Proposition 4.2 : ∀α ∈]0, 2π[, µ(α) ≤ α√
3+α2

. (5)
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Figure 2: Localization of µ(α)

An open problem is to prove the monotony of µ(α). Computations by physicists
[20] confirmed by our own computations based on a finite elements method (cf
[6]) indeed suggest that µ(α) is increasing with α.
This paper also completes the results of Helffer-Morame [11], Jadallah [13], Pan
[16] by dealing with the case of the Schrödinger operator with non constant
magnetic field in a bounded open set with a curvilinear boundary.
Another point to establish is the localization of the ground state in the semi-
classical case. The aim is to prove that this state is localized at the corners
where the eigenvalue is the smallest. We hope to come back to this point in a
future paper.

References

[1] S. Agmon : Lectures on exponential decay of solutions of second order
elliptic equations. Math. Notes 29, Princeton University Press (1982).

[2] P. Bauman, D. Phillips and Q. Tang : Stable nucleation for the Ginzburg-
Landau system with an applied magnetic field. Arch. Rational Mech. Anal.
142, p. 1-43 (1998).

[3] A. Bernoff and P. Sternberg : Onset of superconductivity in decreasing
fields for general domains. J. Math. Phys. 39 (3), p. 1272-1284 (1998).

[4] P. Bolley et J. Camus : Sur une classe d’opérateurs elliptiques et dégénérés
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