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Abstract

The superconducting properties of a sample submitted to an exter-
nal magnetic field are mathematically described by the minimizers of
the Ginzburg-Landau’s functional. The analysis of the Hessian of the
functional leads to estimate the fundamental state for the Schrodinger
operator with intense magnetic field for which the superconductivity ap-
pears. So we are interested in the asymptotic behavior of the energy for
the Schrédinger operator with a magnetic field. A lot of papers have been
devoted to this problem, we can quote the works of Bernoff-Sternberg, Lu-
Pan, Helffer-Mohamed. These papers deal with estimates of the energy in
a regular domain and our goal is to establish similar results in a domain
with corners. Although this problem is often mentioned in the physical
literature, there are very few mathematical papers. We only know the
contributions by Pan and Jadallah which deal with very particular do-
mains like a square or a quarter plane. The physicists Brosens, Devreese,
Fomin, Moshchalkov, Schweigert and Peeters propose a non optimal up-
per bound for the energy. Here, we present a more rigourous analysis and
give an asymptotics of the smallest eigenvalue of the operator in a sector
Q. of angle a when « is closed to 0, an estimate for the eigenfunctions and
we use these results to study the fundamental state in the semi-classical
case.
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1 Introduction and main results

Let © C R? be an open, simply connected domain with lipschitzian boundary
and let v be the unit outer normal of the boundary I' = 02 when it is well
defined. We define I' as the set of the points of I' where the normal exists. We
consider a type II cylindrical superconducting sample of cross section €2 and we
apply a constant magnetic field along the cylindrical axis of intensity equal to o.
We denote by x the characteristic of the sample, called the “Ginzburg-Landau
parameter”. The type I superconductor corresponds to x small and type II to
% large. Then, up to normalization factors, the free energy writes

1

G, A) = 5/ (|(v —ikA)p? + %2(|1/}|2 — 1) + k?|curl A — 0|2) dr. (1.1)
Q

The superconducting properties are described by the minimizers (¢, .A) of this
Ginzburg-Landau functional G. The complex-valued function 1 is the order
parameter ; the magnitude |¢|? gives the density of superconducting electrons
and the phase determines the current flow. The vector field A defined on R? is
the magnetic potential and B = curl A is the induced magnetic field. To deter-
mine the apparition of the superconductivity, we linearize the Euler equation
associated to ([CI) near the normal state (¢, A) = (0,0.4p) , where

Ag: = = (22, —x1). (1.2)

N =

Therefore, defining the change of parameter h = %, we have to determine,

when h — 0, the bottom of the spectrum for the Neumann realization of the
operator P, .o defined on the domain DV (P, 4.0) by :

Phao= —V;%,A, with Vi, 4 = hV — 1A, (1.3)

DN(P}LA,Q): = {u S LQ(Q)|Vh,Au S LQ(Q), V,%,Au S LQ(Q), v - vh,AU|F/ = 0}.

We denote by g, 4,0 and ap, 4,0 the quadratic and sesquilinear forms associated
to the operator P, 4,0. These forms are defined on H} ,(2) by :

Hp 4(Q): ={ue L*(Q)| Viau € L*(Q)}. (1.4)

an,Aa(u,v) = / Vit Vi av dz and gp a4.0(u) = ap,a.0(u,u). (1.5)
Q

We omit h in the notation when h = 1.

It is well known that the spectrum of the operator P, 4, is invariant by gauge
transformation. So, when Q is simply connected, the spectrum of Py 4. de-
pends only on the magnetic field and not on the choice of the corresponding
magnetic potential. Then, we denote by u(h, B, ) the bottom of the spectrum
of Py 4,0 for any A such that curl A = B.

Bernoff-Sternberg [B], Helffer-Mohamed [I0], Helffer-Morame [I1], Lu-Pan
T4, [T5] have already analyzed the case of regular domains and our aim is to
give the proof of the results announced in [B] in order to establish similar results
for domains with corners. In the previous analysis, the model operator *Vi\o
on R x RT was playing an important role. Our new model to analyze the case



of a non smooth domain is the operator *Vi\o in an angular sector. We denote
by €, a sector with an angle equal to o and by p(a) the bottom of the spectrum
for Py, .0, If @ =m, we write :

Op: = p(m). (1.6)

This real Oy plays an important role in the study of regular cases. It appears
for the study of the bottom of the spectrum of the operator *Vi\o on a disk (cf
2], p. 24 and [18]) and for the estimate of u(h, B, ) given by Helffer-Morame
(cf [, p-617-621). We will prove that ©g is an upper bound of (). The main
result of this paper is the construction of an asymptotics for p(a) as a — 0 :

Theorem 1.1. There exists a real sequence (m;)jen recursively determined with

mgy = % such that :

VneN, pla) = aijQQj + O0n(®"3) as a — 0. (1.7)

Jj=0

To establish this result, we first determine the bottom of the essential spectrum
and then construct a regular function whose Rayleigh quotient is less than the
bottom of the essential spectrum.

The analysis of the model P4, q, is useful to approximate the case of the ope-
rator P, 4,0 with h a small parameter, B: = curl.A a non constant magnetic
potential and € a domain with corners, as we see in the following theorem :

Theorem 1.2. Let Q be a bounded open subset of R? whose boundary is a
curvilinear polygon with vertices S1,...,Sn. Let Q > x +— B(x) be a positive
magnetic field and let us define :

b= inf B(z) and V' = inf B(z). (1.8)
z€Q z€IQ
We denote by aa,...,an the angles for each vertex. Then, for h small, the

smallest eigenvalue u(h, B,Q) for the Neumann’s realization of —(hV — i.A)?
admits the following asymptotics :

wu(h, B,Q) = h inf (b, Oob’, %nf NM(CYj)B(Sj)) + O(h°Y). (1.9)
i=1,...,

We notice that for regular domains, Theorem gives the estimate of
w(h, B,Q) obtained by Helffer-Morame [I1], p. 617-621. The condition (CH)
takes in the case of a constant magnetic field a simpler form :

Corollary 1.3. For B constant, we have :

Jj=1,...,

w(h, B,Q) = inf < inf N,u(ozj),@o> Bh+ O(h%/*) as h — 0.

This article is organized as follows. In Section Bl we recall some results about
the Neumann realization of the Schrodinger operator with constant magnetic
field in the half plane and show that the bottom of the essential spectrum for
an angular sector is ©g, the bottom of the spectrum for the half plane. With
the notation :
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we analyze, in Subsection X1}, the operator D? + (t — {p)? to construct, in Sub-
section 23 a test function inspired by Pan [T6] and propose a first upper bound
of the bottom of the spectrum for an angular sector with angle close to 7.
Then, from Section Blto Section [ we analyze the bottom of the spectrum for
the Neumann realization of the Schrodinger operator with constant magnetic
field in an angular sector when the angle tends to 0. As it is more easy to deal
with a non variable domain, Section B shows how to reduce the problem to a
domain independent of the angle v of the sector and to deal with a new opera-
tor P,. This P, is the sum of two operators with different weight according to
a. Section H is devoted to the analysis of these two key-operators and leads in
Section [ to the construction of a formal asymptotics for the eigenvalue.
Section @l establishes an upper bound of the bottom of the spectrum p(a)) thanks
to the min-max principle and the computation of the Rayleigh quotient for the
previous formal solution.

Section [ uses Agmon’s techniques to prove the decay of eigenfunction which is
useful to give a weak lower bound of the first eigenvalue in Section

To prove that our formal construction gives further coefficients of the asymp-
totics of u(a) as writen in Theorem [l we estimate the splitting between the
two first eigenvalues and bound from below the second eigenvalue in Section [0
In Section [Tl the analysis of the Neumann realization of the Schrédinger oper-
ator with constant magnetic field in an angular sector coupled with the results
about the plane R? and the half plane R x Rt are useful to estimate the bottom
of the spectrum of —(hV —i4)? in a non smooth domain with B = curl A non
constant and % tending to 0.

2 Some remarks about ©, and applications

Let us recall from [8] the link between Oy, introduced in (L), and the operators
D? + (t—¢)? on RT.

2.1 Link with D? + (t — ()? on R"

Proposition 2.1. Let Ay (¢) be the bottom of the spectrum of the Neumann
realization in L>(R™) of the operator H(C) defined for ( € R by :

H(Q) = Dj + (t - ¢)*.

There exists a unique (o such that Ag((o) = Oo, Au({) is decreasing from
] — 00, o] onto [Og, +oo[ and increasing from [Co, +oo[ onto [Og, 1[. We denote
by ¢ the normalized eigenvector associated to A g ((o), then :
oo )\//
[ -@lop =0 o) =22, (2.1)
0 2¢o
We show briefly how the operator H(¢) appears in the analysis of P4, gxgr+-
We notice that after a gauge transform, we have to study the new operator :

(Dy, — 22)* + D2, on R x RT, with Neumann condition on 25 = 0.

Then, we make a partial Fourier transform in the first coordinate. The operator
P4, rxr+ is also unitary equivalent to :

(& —22)*+ D2, = H(&1).



So the study of the operators family H(¢) is linked to the Neumann realization
of —=VZ, on R x RF.

Furthermore, the bottom of the spectrum, Oy, is in the essential spectrum and
there is no point spectrum for the realization on R x RT.

2.2 Bottom of the essential spectrum

Let Q, C R? be an angular sector with angle a. The Persson Lemma (cf [T7])
may be generalized for unbounded domains of R? and Neumann realizations :

Lemma 2.2 (Persson). Let 2 be an unbounded domain of R? with lipschitzian
boundary and V be a semi-bounded from below reqular function. We denote by
inf oess(—A 4 + V) the bottom of the essential spectrum, then :

inf oess (A4 + V) = lim X(—A4+ V1), (2.2)

T —00

with, denoting B, = {x € Q| |z| <r} :

(—A ) ¢ /Q(|VA¢(:C)|2+V(:L'>|¢(;C)|2) dx
Y(-Aa+Vir): = in

i (23)
peC (Q\Br),p#0 /|¢)(:C)|2 dx
Q

We use this lemma to determine the bottom of the essential spectrum of the
Schrédinger operator in an angular sector:

Proposition 2.3. The bottom of the essential spectrum for the Neumann reali-
zation of —Vio in an angular sector 2, denoted by Pa, q,, 15 equal to Oy.

ol

Proof : We estimate X(Pa, q,,r) for r > 0 and show that it tends to ©g when
r tends to infinity. We use a partition of the unity which shares the sector in
three subdomains and we compare to the models R? and R x Rt according to
the support of the cut-off functions.

Let r > 0 and x be a regular function defined from R onto [0, 1] such that :

- _J 0, Vp<O,
X(p) = { 1, Vp>1. (2.4)
Let x; € C5°([—3, 3],[0,1]) be such that :

suppX;  C  [L, 4], Vi=1,2,3,

3

Zﬁ(@) = 1 o e [-1,1]. (2.5)

We define a cut-off function in polar coordinates :

11 6
+ x| =2 2|, ymeepol —v (25 (2). =
V(p,0) €R X] 55 [ x5 (p, 0) X(T)X] <a> i=123, (2.6)

and the associated functions in cartesian coordinates x;’a. We notice that :

3
Yo € O (Qa\ Br), Y X" 6= ¢ on 0a \ By (2.7)
j=1



Furthermore, it is easy to prove for all ¢ € C5°(Q, \ B;) the relation :

3 3
IV 4081120y = D IV40 OGO 720y = D_IOVNG NIZe(,)- (28)

J=1 J=1

By construction, there exists a constant C' independent of « and r such that :

3
o0/ T, C
¥ € CE @B, IV At o) = 3 IVa0 O DNt~ o 101220
j=1

(2.9)
It is well known that the bottom of the spectrum of P4, q, is invariant under
rotation or translation of the domain €,. So, using the fact that ©g < 1 and
the definition of ¥(Py, q,,7), we deduce :

C

Y(Pay,0.,7) = 69 — percl

(2.10)
This implies, taking the limit » — 400 and using Z32) :
inf Oess (P.AU,QQ) Z @O-

Now, we establish the upper bound. Let ¢ > 0 and 1; € C§°(R x Rt) be a
function such that :

Va 7/11 22
0 < || 0 2||L (RxR+) < O +e. (211)
11172y

By translation and rotation from 11, we define a function v € C§°(Qq4 \ B;)
such that :

IVaotillfe@rs) _ [IVa¥llZz0,) (2.12)
A 112 q)

It is enough to take the limit as r tends to co and € to 0 to achieve the proof. J

Using this proposition, as soon as we find a function in H}% (Qq) with a
Rayleigh quotient strictly less than ©g, then u(a) is an eigenvalue. For example,
Jadallah [I3] constructs a test-function for the quarter plane and we can use it
to see that (%) is an eigenvalue.

Remark 2.4. It would be interesting to show that u(a) is strictly bounded from
above by Oy for a €]0, x| and equal to ©¢ for a € [, 27].

2.3 First upper bound

The eigenfunction ¢ introduced in Proposition ZZJl will be used for the construc-
tion of a test function giving an upper bound for p(«). This first upper bound
follows the idea of Pan [I6] who constructs a quasi-mode in order to recover
Jadallah’s result (cf [13]) and show that :

(5)<on



We use the same notations as in Proposition Bl Adapting the idea of Pan, we
construct a trial function, u, in polar coordinates :

u(p, ) = ePsind ¢ (TpSiIl (% + 9)) 0] (TpSiIl (% — 9)) , (2.13)

1
N = CO + and T=4/z7——. (2.14)
2T sin 5 2sin«

We obtain the following result :

with :

Proposition 2.5. For every a €]0, %] :

O cos o 4
< — 0)". 2.15
ula) < sin « 4sina¢( ) ( )
Furthermore, for every a € } 5 — 2arctan (%) . [, w(a) is an eigenvalue.

Proof : A change of coordinates sends the sector onto a quarter plane @ :

T in & o
(2)or(®5 =2 )(5)
T2 Slng 7COS§ T2

The expression of u in the new coordinates is :

) G(1)p(E2) = 0T ) h(31)p(2).  (2.17)

v(@1 — T2)

27 cos &

w(Z1,%2) = exp (z
2

After computing |(V — iAg)u|? with the choice [I4)) of v and 7, we obtain :

2 o]

v 22:T(m~_2~2/~2d~ o) [2di
IV a0l / (B2 — G0)20()? + & (3))dis / 16 () 2ty

+/Ow((:e2 —0)2p(72)? + ¢ (#2))d> /OOO |¢(f1)l2df1)

272 cos a

T sin o

</Ooo(i1 — Co)o(&1)%diy /Ooo(fz — (o) (Z2)?dis
1

—— [ (¢@1)VdE1 | (¢(22)%)diz ).
4 Jo 0
We use properties of ¢ recalled in Proposition ZTland deduce from the min-max
principle :
||VA0“||2L2(QQ) _ ©9  cosa
||u||%2(Qa) - sina 4sina

#(0)*. (2.18)

(o) <

According to Proposition 233 p(«) is an eigenvalue as soon as u(a) < O, it is
enough to solve :

(SH cos o

sinae  4sino

4
#(0)* < O <= tan (% — %) < (Z((g)o .

([l
We know the estimates of ©g and ¢(0) according to Saint James-De Gennes
[19] and computations whose details are given in [6] :

60 ~ 0.59, ¢(0) ~ 0.87. (2.19)
Remark 2.6. Approzimately, ju(c) is an eigenvalue for oo € [1.09, T].



3 Reduction to a domain independent of «

We are interested in the variation with respect to o of pu(a). The shape of the
domain €2, suggests to use polar coordinates (p,¢) and so we denote by Q£
the domain :

a o«
Qs =10, ool | -2, 2.
This change of variables leads to study the new quadratic form :

1 P2
_ 2
(u) = /ngl <|8pu| + —p2 (&z, +4 > ) U

To have a p-independent Neumann condition, we make a gauge transform :

>

) p dp do. (3.1)

2

ui(p, ): = exp ('p

i56) ulo.0), W(p.0) € 2

We make a last change of variables and another gauge transform to obtain a
quadratic form depending on « but defined on a domain independent of «,
whereas at the beginning, we had a constant operator on an a-dependent do-
main. We use the change of variables (p, ¢) € Q! — (t,1) € Q° with :

(o0 0. 11
(@U)-(CYQ’O[),Q-—RJFX} 2a2|:

Therefore, we have to study a family of quadratic forms ¢, defined on VN by :

1
_ 2 2
qo(u) = /QO (2t|Dtu —nul”+ 20[2t|('),7u| ) dt dn, (3.2)

1
Vi

We define the sesquilinear form a, associated to g, on V¥ :

VNV = {u € L*(Q°)

Oyu € LX(Q),VH(Dy — n) € L2(QO)} .

_ 1 _
aq(u,v) = /QU <2t (D —n)u (Dg —n)v + mﬁnu&]v) dt dn. (3.3)

So the spectrum of the operator P, associated to the form a, on Q° satisfies :
0(Pay,0.) = ao(Py). (3.4)

Particularly, by denoting A(«) the bottom of o(P,), we observe :
pla) = ai(a). (3.5)

The construction of the Friedrichs extension gives the domain of P, which re-
spects a Neumann boundary condition in 7 :

DN(P,): ={ueVN| Ju, € C§°(W) s.t. u, — uin L*(QY)

and u, is a Cauchy sequence for the norm ¢, } .

We work with the quadratic form and do not need to characterize the domain
of P, explicitly.

Furthermore, 1 is an eigenfunction associated to p(a) (if it exists) if and only
if 1, is an eigenfunction for A(«a), where ¢ and v, are linked by :



V(t,n) € Q% Ya(t,n) = e " (\/ 2 cos(am), /% Sin(om)) '
Remark 3.1. From the expression of the form q., we immediately see that :

a — au(a) is increasing and o — % 18 decreasing.

It would be interesting to show the monotonicity of u from |0, 7] onto ]0, ©g].

As we know from Dauge-Helffer [8], Helffer-Morame [I1], Lu-Pan [I5] and as we
recalled in Section 11 then :

Va €]0, 7], % > @ = %. (3.6)

4 Analysis of the two key-operators

4.1 Presentation

In the expression of a,, in [B3), two forms (and two associated operators) appear.
The first one is ¢ (with associated L) which will be defined just below and the
second is associated to the Neumann realization of —d; in | — 1,1[. We define
the sesquilinear form ¢, on :

A {u e L*(Q%)| VE(D: —n)u € L?(QO)} ,
by :
L(u,v) = /QO 2t(D; — n)u(Dy —n)v dt dn, Yu,v € V. (4.1)

Let P S (W) be the space of polynomial functions in 1 whose coefficients are
in S(Rt). We define the operator L on P ® S(R*) by :

L: =2(Dy —nt(Dy —n).
Then we verify :
Vu € P @ S(RY), Yo e VY, ((u,v) = (L, v) 2 (qo) - (4.2)

The form g, contains a term in % So when trying to minimize it, it is quite
natural to begin with studying the restriction of the form to functions which

are independent of 77 to cancel the term in %

4.2 A new key operator L™

We define the form ¢™°*" which appears naturally when we restrict ¢ to functions
independent of 1. Then the sesquilinear form ™" is defined on :

Viean: = {f € L(RT)| Vif € L*(RT), ViDif € L*(RY)},
by :
& E— 1
[mean(u, v) = / 2 (Dtu Div + Euﬁ) tdt, Yu,v e VrJrYean . (43)
0



The associated operator,

. t
L™ = 2Dyt Dy + ¢,

is self-adjoint and its domain can be characterized (cf []) as being Wi (R*): =
{u € HY(R")| tu € H*(R™)}. Its spectrum is discrete and the eigenvalues are
simple and given by A" = % for n > 0. Moreover each eigensubspace is

included in S(RT). Let us give the expression of the normalized eigenvector
u*" associated to the first eigenvalue of L™" denoted by A**" :

mean 1 mean 1 t
Al = % and (2 (t) = Wexp <ﬁ> , Vit € ]R+. (44)

We can use the function uf"**® as trial function to bound from above p(«) as
follows :

Proposition 4.1. For a < /30y, the bottom of the spectrum of Pay 0., 15 an
eigenvalue p(a) wich satisfies :

ple) < . (4.5)

Before being more precise about the operator L™¢*", let us mention an improv-
ment of the upper bound EH) due to Soeren Fournais :

oy V30 .
Proposition 4.2. For a < \/ﬁ, the bottom of the spectrum of P4, q. is an

o4

eigenvalue p(a) wich satisfies :

() <

«

V3+a?

Proof : The idea is to estimate (B for a function like 'z ?(1=9)(p) and choose
u and coefficient . This lead to define the function u € VN on Q° by :

(4.6)

u(t,n) = et~ %% with f = — >
(t,n) =% —
Then it is easy to compute :
B Bt 2
o = 2t (n(3% — 1 — = t dt d
Ga(u) /QO ( N6 = 1) +ig) + o | lult,n)l n

2 _ 12 2
(B Sav) [t

1
N /QO |u(t, n)|? dt dn. (4.7)

Thanks to the min-max principle, we deduce that p(a) <

\/317 . Proposi-

gonshows that u(a) is an eigenvalue for any angle a such that ﬁ < Og.

Remark 4.3. Approzimately, u(a) is an eigenvalue for o €]0,1.26].
Combining this with Remark 2D, we conclude with a good accuracy that p(a) is
an eigenvalue for o €]0, 5.

10



Furthermore, we deduce by standard Fredholm theory and a regularity theo-
rem (cf H]), the following lemma :

Lemma 4.4. Let (AP**",ui**™) the fundamental state of L™*". For every
f € S(RY) orthogonal to u*™, there exists a unique u € S(Rt) such that :

(Lmean . /\Enean>u — f on ]RJr7
/ u(t) @) dt = 0. (4.8)
0
Furthermore, if u is given by [@-3), then for all functions v € VN,
£ (u, v) — AP <U7U>L2(QU) = (faU>L2(QO) : (4.9)

In the case when the second member of EX) has the form Pul**" for some
polynomial P, we can explicit the solution as follows :

Lemma 4.5. Let P be a polynomial of degree n with coefficients py such that :
S (V) K i = 0.
k=0

We define the polynomial of degree n, P € P(RT), by its coefficients py, :

ﬁl — _p_20,
~ 1 2 ~
Pk = oz (— k—1)pr—1— pr— )7 Vk=2,...,n,
ez V5 = Pk = P (4.10)
Bo = =Y (V3)" K p.
k=1
Then u = Pu’{nean is the unique solution for the problem :
(Lmean _ /\Enean)ﬁ — Pu{nean,
/ a(t) arnE dt = 0. (4.11)
0
Proof : We first notice that :
Vk € N, / th[umean ()2 dt = k! (V3)E. (4.12)
0

We deduce immediately that :

n

S (VB kg =0+ /m Zn: @et" [uleen (1)]2 dt = 0. (4.13)
0

k=0 k=0

Relation [EI3) applied with ¢ = Py determined in [EI0) shows that @ is or-

thogonal to u***" and so the second condition of (Il holds.

According to I3 with gr = pr, we see that Pui®*® is orthogonal to uje".

Lemma B4 establishes that the problem [S) with f = Puf***" has a unique
mean

solution. So it is enough to prove that the function & = Pu"**" satisfies condi-
tions ([EII). With the expression of u{**" given in [EZ), we get :

. .9 . .
Lmean _ )\mean Pumean — umean _26 P + ta P _ 2ta2p) .
( 1 )( 1 ) 1 ( t \/g t t

11



According to ([EIT), the constant coefficient of —20, P+ %tatf? —2t9?P is equal
to —2p1 = po and the coefficient of t* for k =1,...,n is equal to :

2 2
—kpr — 2k(k + 1)p =-2(k+1 + —kpi
5" ( D41 ( )* Pt 5Pk = i

So, the first equation of I holds. O

—2(k + 1)prtr +

4.3 Study of —0>

An elementary study of the Neumann realization of —82 leads to the following
lemma :

1
Lemma 4.6. Let f € P ® S(RT) such that for all t € R, f(t,n) dn=0.

_1
2

Then there exists a unique i € P @ S(RT) such that :

—(972711 = 2tf on QO°,
3 4.14
87711‘71:7%7% =0 and / a(t,n) dn = 0. (4.14)

1
2

Then, for all v € VN, we have :

1 1
—/ =0yt Oyv dn dt = / f U dn dt. (4.15)
2 0o t 0o
As above, we have an explicit solution of problem EI4) :
Lemma 4.7. Let P(t,n) = Z (pe(t ¥ 4o (t)(in)*F ) be polynomial in
=0
n such that p, € S(RT), E (RT) and :
N I EAN
Vi eR — | = =0. 4.16
- Lmen () w19

Then the polynomial S defined by :

242 i2k+2
Z 2k + 1 2k +2) <(”7) 2k + 3)22k+2)

(im)2e+3 243y (4.17)
+2tz2k+2( 2k +3 22k+2)
is the unique solution for the problem :
—0;8 = 2t€ on Q°,
anS\n;%% =0 and ’ S(t,n) dn=0. (4.18)

1
2

Remark 4.8. The expression {{17) shows that S has the same parity as P.
Furthermore, if pi, and p}, are real, then S can be written as a polynomial in the
variable (in) with real coefficents in S(RT).
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1
3

Proof : We first notice that the condition ({ZI6) means exactly / P(t,n)dn = 0.
1

According to LemmalL, we know that the problem ([IR) has a unique solution
denoted by S. It is enough to prove that the explicit polynomial S given by

(ETD) fills conditions [EIF).
1
2
We remark that / S(t,n) dn =0 for every t € RT. It is easy to estimate 9,5,
_1

to verify the Neumann condition and to compute the second derivative of S. [J

5 Construction of a formal solution

5.1 First terms of the construction
We look for two sequences (my)reny € RY and (ug)reny € (P ® S(R_JF))N such

that, for all n € N, if we introduce U™ = Z o?*uy, and A (a) = o my,,
k=0 k=0
then, modulo O,,(a?"*+2), we have :

4o (U™, 1) = A" (a) <U(”), v>L2(m) Yo e VN,

We look for a formal solution U(**) and A(>®). We expand the equation in powers
of a and express that the coefficients of a?* (k > —1) should cancel.
The cancellation of the coefficient of # gives :

1
vv e VN, 3 Onuo 0y dt dn = 0. (5.1)
Q

The unique condition coming from this relation is that ug depends only on t.
The vanishing of the coefficient of a?*, for k > 0, gives :

k
1 1
(ug,v)+ 5/ gﬁnulﬁl&ﬁ dt dn = / g mjug—;  dt dn, Yo € VN, (5.2);
Qo Qo %
7=0

Let us show that this determines u; and mj recursively.

5.2 Algorithm for the determination of the coefficients

This method can be applied at every order to determine the other coefficients
and we will indeed prove the following proposition :

Proposition 5.1. We determine recursively the coefficients u; € P ® S(R_+)
and m; € R such that, formally :

oo oo oo
P, E ;| = E a?Im; E ;| . (5.3)
7=0 j=0 =0

For all j > 0, we can choose m; and u; = u} + u;, with uj € S(R+) and
i; € P ® S(RT) uniquely determined by the relations :

mo = )\rlnean, (54)0

13



ug = up™, (5.5)0
1 J
e = xpeng = [ Ly dy+ 3 mad
. -1 i=1 (5.5),
/ uf(t) upeen(t) dt = 0.
0
ug = 0, (5.6)0
j—1
fagaj = 2t <Z Mj_1—iU; — Luj1> ,
=0 (5.6),
&ﬂlj‘ 11:0 and /2ﬂjd77:
1=-33 -3

Proof : To prove Proposition Bl we expand in power of o Relation ([E3), can-
cel the coefficients of ¥ for k > —1. We have already studied the case k = —1
and deduce 4y = 0. We now look at Relations (B2, for £ > 0. We denote by
P(k), for k € N, the property :
P(k): “the cancellation of the coefficient a*, given by Relation &2y,
determines the real my and the functions ug, U1 which are given

by solving Ak, (BH)x and BEb)k+1”-

We now prove that P(k) holds for every k € N.

We look at the relation coming from the vanishing of the constant coefficient
given by Relation [&2)g. We restrict Relation (B2)o to functions only depending
on t and obtain a new relation :

Vv e Vn]\{eanv gmean(uo7 U) =mo <UO; U>L2(QO) . (57)

So we determine ug and mg by solving the spectral problem L™"uy = mgug
and we choose the fundamental state (A€ yjrean),
We return to the initial Relation ([&2)y where the only unknown is u; :

1 1
Yo e VN, 5 /QO Onu10,0 n dt dn = (x\?leanurlnean,wﬂ(m) — L(u* v). (5.8)

Since ue®® € S(RT), the integration by parts £(ui**" v) = (Luf*, V) 12(00)
holds for any v € V) and so we define the function vy: = ((AP*® — L)ujrean).

We can choose a function u; such that u; = uf 4 @; with u§ € S(R¥) free and
@1 only determined by Lemma B0 with f = vg. So P(0) holds.

Let k € N. We assume that property P(j) holds for any j < k. So, by
induction, we have determined the reals m;, the functions ug-’, u; satisfying
Relations (B4);, (EH); and &8); for j =0, ...,k and the function g4 solving
BB k1. We vanish the coefficient of o2 given by 241
We choose v = u***" in () x+1. By assumptions on m;, u]Q, u; and particularly
due to the expression of 4,11 given by [fl)k+1, we determine myq exactly by

(m)kJrl :

mg41 = <’l~14k+1, Lurlnean>L2(QU) . (59)

14



[

We now restrict Relation ([E2)y41 to functions v € VN, . Since / u; dn =0
1

forany j =1,...,k 4+ 1, we have to find ugﬂ independent of 1 such that :

o [k+1
Vo € Vileans £ (W) y,0) = —L(ig1, U)+/ ijug-i-l—j v dt. (5.10)
0 j=0

1 k
We define the function f: = — / Lty dn+ Z Mp1— ]u By regularity of
1
-2 7=0
U471 and assumptions on uO for j =0,...,k, it is easy to prove that f € S(Rﬂ

and f is orthogonal to u} ean We apply Lemmam and so obtain a unique u? k1
satisfying the spectral problem (ER) and so Relation (EIT). We see that uf

solves (BEH) g+1.

We now come back to Relation ()41 to determine @2 such that :

k+1
o e YV, / =0 U420,V dt dn = 2 <Z MjUpy1—; — LUpt1,v > .
v L2(Q0)

7=0
k+1 L
We apply Lemma B0 with f = ijukﬂﬂ- — Lugy1. Then f € P® S(RT)
j=0

and it is easy to show that / f(t,n) dn=0,Vt € RT (using / ajdn = 0 for
j =0,...,k+1 and the expression of (L™ — A"}y ). Then we choose
lig+2 uniquely determined by Relation (B8)xo.

So we have established that P(k + 1) holds.

Thus P(k) holds for every integer k¥ > 0 and Proposition Bl is established. O

5.3 Particular form of the coefficients in the asymptotics

We can determine an explicit expression for every coefficient given by Proposi-
tion Bl and (BA);, @H),;, (BH);. Just before, we make an easy remark about

yimean
Remark 5.2. The application :
O: P (w7 L(Pui“e"m)
is well defined from P (R+ x |—3,3[) onto P (RT x ]f% %[).
If P(t,n) Zpk F with pr € P(RY), then ®(P Zpk

with Py € ’P(R*‘) such that for k=0,.

p (1 t) + 2L o ”+2(1 ! )—|—4t’ 2t
k=\|—"7=—% )P+ —7=pr— — —=Dk- 1 — 2tpr—2,

p /36 p \/gpk Py \/§p 1 Pr—1 Pr—2

with the convention p_1 =0 and p_o = 0.

So we deduce immediately that if pr are real for every k < n, then py are real.
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By induction, Remark B2 Lemmas BEH and B easily lead to the proposition :

Proposition 5.3. For k € N, we consider u9 and 4y determined by Rela-
tions A), and @D),. Then there exist two polynomials PP € P (]—%,%D

and P, € P (RJF X ]—l %D such that :

2
uf = PouPe™™ and iy, = Ppule™,
Furthermore Py, has the form Py(t,n) = Zﬁj(t)(in)j with p; € P(RT) real.
Jj=0
Proposition Bl gives an expression of all the coefficients m;, ug and ;.
According to Proposition B3 we knoviz that there exist polynomials PJQ and Pj
such that u} = Pui** and 4; = Pju". So we deduce an algorithm to

determine my, PJQ and ]5]- recursively with formal computations.
At the first order, we have :

mo =, FPo(t)=1, Polt,n)=0.
For the second term :
23
m = ——,
! 35v/3
19 23 11 2
PYt) = —— 4 ——t+—t*— 3,
1 (1) 42 7 703 210 189v/3
. 7 t t 12 2 2 12
Pt = — 2 4in- (14— ) —n?= +in> [ 2t — —¢? 47
) 0 +w72( +\/§) U U R

The same algorithm works for any finite expansion.

6 Upper bound for the asymptotics of u(«)

Proposition 6.1. Let n be a positive integer and my, be the reals determined
by Proposition [, for k < n. We define :

A = Za%mk. (6.1)
k=0

Then there exist ag > 0 and a positive constant ¢ such that :
Yo €]0, apl, p(a) < ar™ + ca? 3,
Furthermore, there exists an eigenvalue fi(c) of Pa,.q, such that :

fi(a) = aA™ + O(a* 1) when a — 0.

Proof : We consider the functions uy and the reals my determined by Proposi-
tion 1l and define for every integer n > 1 :

v = Za%uk, (6.2)
k=0
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We want to estimate the Rayleigh quotient for U™ . Let v € VN, then, by using
Proposition il the vanishing of the coefficient of a2 for k < n, given in [E2)z,

mean

and the definition of ug = u***", we have :

n—1 k
ao (U™ v) = Z oz%/ ijuk,j T dt dn 4+ " (un, v). (6.3)
k=0 Qe

=0
k
In [@3), we rewrite the sum g MjUp—j
Jj=0
n k n—1 n
g a?k E MjUk—j =My _ o2n+2 E a?k E Mitnti—jttj.  (6.4)
k=0 §=0 k=0 j=k+1

Thus, there exists a constant C' such that for a < 1 and for every v € V¥ :

ao (U™ v) — A <U("),v>

L2(0) < " E(um 1)) - Jgo m; <un*jv U>L2(QU)

+Ca2"+2||v||L2(Qo). (65)

We bound from below the norm ||U™)|| 2 (g0 as follows :

042

||U(")||L2(Q0) > 1-— :sup 1_—a2

[[wr]| L2 (o)
k=0,..., n

So there exist oy < 1 and a constant Cy > 0 such that for every « €]0, o] :
||U(n)||L2(Qo) > Cpy > 0. (66)

Due to the Cauchy-Schwarz inequality and the lower bound (&fl), a classical
spectral theorem shows that :

d(A™, 0(Py)) < O(a®).
By change of variables, there exists an eigenvalue ji(a) of Pa, o, with :
aA™ — (@) < O(a® ).

For using the min-max principle, we choose v = U in ([fH) and estimate
{(tn, U™) using B4, the orthogonality between u? and u*** and the rela-

tion £(tn, u"®™) = (tn, Lup™*™) 12 (o), then :

£, U(")) = l(tp, u*) + Z anﬁ(un, ug) = my, + Z oe%ﬁ(un, ug),
k=1 k=1

mean

Now, since uj is normalized, we deduce :

(wy, U(")) — i m; <un,]—, U(")>

L2(Q°
= (20)

n n

— Z a2k‘ E(un, Uk) — Z mJ (Un__j, uk>L2(Qo)

1 =0
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According to the expression of uy given in Proposition and Remarks
and 22 there exists a constant ¢, only dependent on n such that :

n) (n) 2
L, U ]Zomj <un iU >L2(QO) <cpa”. (6.7)

Using the upper bound (&), Inequality ([EH) and estimate of the norm (GH),
we get a constant ¢ > 0 such that :

aa (U™, UM)

TPRIE <A™ 4 a2 Yo €]0, agl. (6.8)
L2(Q0)

The min-max principle achieves the proof of Proposition EJl O

7 Some estimates of eigenfunctions

7.1 Agmon’s techniques

We give a priori estimates on the decay of the eigenfunctions. By using Agmon’s
paper [I], we propose some estimates for the localization of the eigenfunctions.
Let us recall principles of the Agmon’s estimates.

Let oy small enough such that pi(a) < ©g for every o €]0, a1] where py (o) is
the k-th element of the spectrum of P4, q,. We denote by uj o a normalized
eigenfunction associated to ().

Let ¢ be uniformaly lipschitzian on 2, then, by assumptions on wuy o :

/ (1 (0) + [V2) gl d:n:/ (Y — ido) (Pua)? do. (7.1)
Q

a e4

Let x1 and x2 be real, positive, regular functions on Q,, with support respec-
tively included in Qo N Bz and Q, \ By (where Br denotes {z € Q4| [z| < R})
such that |x1]> 4 [x2|> = 1 on Q,. We define x': = x; (%) on Qq, then :

QAo .0 (€7 Uk0) ZQAUQ Feluna) RQZHG uka VXS] 1220, (7-2)

We use the assumptions on Xj and report (C2) on ([ZT)), then the positivity of
qA0.0. (xFTe?uy o) leads to the upper bound :

C
Q0,00 (XF € URQ) < / <Mk( )+ [Vo|* + R2)62¢|Uk,a|2d$- (7.3)

o

Let us assume that there exists pu(a, R) > 0 such that :
05,00 (X3 € Ur0) > pile, R)|[X3 etk 0l 720, (7.4)

By assumption on the support of &, we can bound from below ||x£e®uy. o | |%2(Qa)
by ||e¢uk7a||%2(ﬂa\52]€)’ and so deduce from ([ZA) and ([Z3) that :

C
/ (ma,R) ~ nle) = VP - —2> ol de
Qo \Bar R

C
< / (Mk(m +|Vel* + R_) *|ug ol da. (7.5)
QaNB2r
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If we are able to bound respectively p(a, R) — px(a) — |[Vo|? — % from below
on Qq \ Bar and pi(a) +|V¢|? + 5 from above on Q4 N Bar by respective
positive constants C7 and C5 for o small enough and R large enough, then we
deduce from (1) :

/ e*up.o|* dr < (% + 1) exp (2 sup qﬁ(m)) . (7.6)
1

Qo r€QNB2Rr

7.2 Decay of eigenfunction

Theorem 7.1. Let oy small enough such that the k-th smallest element of
the spectrum of Pa,.q, verifies pp(a) < O for every a €]0,aq]. Let ugq
be a normalized eigenfunction associated to pg(a). For a < a1 and for all

€c

0,00 — sup pug(a)|, there exists a constant Ce o such that :
a€]0,a1]

/ e2V@o—me(@)=¢ Izl |y ()2 dz < O g (7.7)
Qo

Proof : By definition [Z3)) of X(Pa, q.,,r), the assumption () holds with
wla,r) = X(Pay.0.,7). Furthermore, [I0) gives a lower bound of ¥(P4,.q,, 7).
We define ¢ on Q, by ¢(z): = /O¢ — pr(a) — € |z|, then [CH) combined with
E&10) leads to :

c C 2¢ 2 c 2¢ 2
(6 — QQ—RQ — ﬁ) /QQ\BZRe |uk,0¢| dx < (@O —€+ ﬁ QQQBZRe |uk7a| de.
(7.8)

If we choose R = % big enough for that € — % — % > 5 and ©g — € +
£ < ©g — &, then () allows us to conclude that Relation () is true with

Cea = Cc€XD <4Cl Yy ®o—uk(a)—e>. O

[e3%

Theorem 7.2. Let g > 0. We define by VPN (a,eq) the bottom of the spec-
trum of fVi‘U on Qo \ Br with a Neumman boundary condition in 0, and
a Dirichlet boundary condition in |x| = R, with R = <>. Then, there erist
uNPN (e9) > 0 and ag > 0 such that :

NDN(

Va €]0, apl, 1 a,e0) > VPN (). (7.9)

Let uy, o be a normalized eigenvector associated to the k-th eigenvalue py () for
Paya.- Then, there exists a1 < ag such that for every a €]0, aq] :

[ T ) e < 42V (na0)
Qo

Proof : If (L) holds, we choose ¢(z) = wm and look at (ZH) with

wla, R) = uNPN(ep), then the conclusion of Theorem [ follows.
So, we have just to establish ([C3). As illustrated in Figure [, we define :

. €0
QYPN = {2z eR? (21 + R,x2) € Qs \ Br} WlthRZE, (7.11)
Qeo) @ = ]O,—l—oo[x}—%o,%o[. (7.12)
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Figure 1: Domain

NDN
Qyey -

Then, by gauge invariance and invariance under translation of the domain,
pN PN (a, €9) is the bottom of the spectrum of P: = D2 + (D,, — z1)? on
Qg g N with a Neumann condition on the two half-lines of the boundary and
a Dirichlet condition on the curve. We denote by g the form associated to P.
Before proving (L), we give a lemma :

Lemma 7.3. The bottom of the spectrum of Pj o, with A= (0,21), denoting
by MQ(eo)), is strictly positive.

Proof : Using Persson LemmaPZ2and the notation Q,(e): =]r, +00[x |-, <],
the bottom of the essential spectrum of Pz (o) CAI be expressed by :

r>0 HuHLZ(Q(eU)):l

/ IV qul?dx
Q(EU)

infoess(Pg o) = Sup inf {/ |V quldz, u€ Cgo(ﬂr(eo))}
7 Q(eo)

> in Rleo) (7.13)
u€H% (Q(e0)),u#0 ||u||%2(9(60))
So we have :
inf oess (PA,Q(EU)) > u(Q(ep)). (7.14)
Let us define t(x) = x129 for & € Q(eg), then, by gauge transform :
1w(Qeg)) = inf / |VA+ku|2dx, u € H}&_’_vw(ﬂ(eo)) . (7.15)
llullL2ageo)n =1 | /(eo0)

A Fourier transform according to the first coordinate x; leads to define the real
(&) for any & € R by :

€0

/T (&1 — 22)*|u(z2)|* + | Dayu(w)]? das

0

w(&): = inf —4 = .(7.16)
[ a2l doy
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Easily . hIIil w(&1) = +oo. Furthermore, p is positive and continuous on R,
1—I o0

so there exists a lower bound p > 0 of u(&1) for every & € R. Consequently,
1(€2(e0)) = > 0 and a fortiori, recalling (LI, inf oess Pg o) = 1 > 0.
Assuming that the smallest eigenvalue of Pz O(eo) 18 equal to 0, then there exists
a normalized function u € DV (Pj Q(ey)) Such that :

Dyyu=0, (Dyy —21)u =0 in D' (Qe)).

We deduce by these relations that v = 0 in D’(€(eg)), which is not possible. So
the smallest eigenvalue of Pj o, is strictly positive, thus A(©(eo)) > 0. O
Let us use Lemma [ to prove [Z3).

We assume () does not hold. So there exists a sequence vq, € HY(QNPN)
such that ||van||L2(ng£%) =1 and aliriloq(van) = 0. The inclusion Q(ey) C

QNDN T emma [[3 and the min-max principle bound from below ¢(vq,, ) by :

Qn,€0 7

q(Va, ) > /Q( lDzlvanFH(Dm—xl)van|2dz > MQUeo))|van 172y - (7-17)
€0

By assumptions, limoq(van) = 0so limO Ve, [ L2 (Q(e0)) = 0 since A(2(ep)) > 0.

Let x1 be a regular cut-off function defined on R with 0 < y; <1 and :

1if > @,
Xl(“):{ 0 if zizf%. (7.18)

We also define y2 = /1 — x? and easily deduce :

q(va,) = a(x1va,. ) +4(X2va, ) = || Dz x1 Uan||2L2(ng£g\(f))—||Dsz2 Uan,||%2(ﬂgggg)-
(7.19)
(]

Looking at the support of (Dz, x;)j=1,2, we define a: = < tan %* and Qa(eg): =

QPN —a,0] x |-, [ and so there exists a constant ¢ > 0 such that :

C .
|| DX Uan,||%2(ngggg) < 6_2||Uan||%2((2(50)Uf22(60))a Jj=12. (7.20)
’ 0

We know that 04le30| [Va, || L2((e0))=0, S0 it is enough to estimate ||vg,, | |%2(Qz(60))'

Since v,,, vanishes on the curve of the boundary, we can use some Poincaré tech-
niques to establish :

/ |van(x1,x2)|2 dri dry < a2q(van). (7.21)
Q2 (€o)

Relations ([[CIM) and ([ZZI) prove the existence of & and C(ey) > 0 such that :
Ve 1172 (02(co) s (e0)) < C€0)4(Var, ), Yeu, < @ (7.22)
Let € > 0, (CI9), (C20) and [ZZJ) show that there exists &y < & such that :

Vo, < ao, q(Va,) > ¢(X1Va,) + q(X2Va,) — € (7.23)

By comparison with the operator P A RxR+> USIng gauge transform and invari-
ance under domain’s translation, we deduce :

q(X1va,,) > @0||X1Uan||%2((zgggj) and ¢(x2va,,) > 90||X2Uan||%2((zggg,)-
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Thus :
q(va,) = @0||van||%2(szggg)) — € (7.24)

This is impossible since v,,, is normalized. (]

Corollary 7.4. We denote by uy o the k-th normalized eigenfunction for P,.
Then, for all € > 0, there exist § > 0 and g > 0 such that :

Va < ag, VT > 5,/ g ol? dt dy < e 5. (7.25)
O IT 4oolx]- 4. 41

8 First term of the asymptotic expansion

8.1 Weak lower bound

Theorem 8.1. For every € > 0, there exists ag > 0 such that :

ula) > % —ea, Ya < ap.

The proof of Theorem Bl consists of comparing the eigenvalue of the ope-
rator P, with the first eigenvalue of L™" by using min-max principle and
estimating the decay of the first eigenvector of P,.
Looking at the operator P,, we see that the term % is difficult to analyze when
t becomes very large. So, we avoid this problem by dealing with new operators

defined on a bounded domain :

11
Qr: =]0,T[x |—=, =
re 0,70 |-5.3]
we estimate the bottom of the spectrum for these new operators and compare
with the old ones. We begin with some lemmas preparing the proof of the lower
bound in Theorem Bl As we will see in the following, remainders coming from
the cut-off are very small and we will estimate the error.

8.2 The mean operator LT

We show that the bottom of the spectrum of L™*" is very close to the bottom
obtained from the realization of L™¢*" on a bounded domain. We define :

Ve = {u€L*(0,T) VtDwu € L*(0,T), uj,_, = 0},
meanT(qy p) s o= MO (y, ), Yu,v € VélveamT,
gmean,T
Apean.T me O (ww) (8.1)

u€VN 0 1ouA0 ||u||2L2(O,T)
Lemma 8.2. There exists a positive constant ¢ such that :
mean mean,T’ mean s o
AT N AT 4 Ge 2vE ) VT > 1. (8.2)

Proof : The proof is very easy. The inclusion Vﬁean’T C VA .., gives immediately

Apean. < AT For the second inequality, we use the eigenvector ul"®® of

L™ which is exponentially decreasing and a cut-off function x with support
mean,T mean mean
in Q7. We estimate the Rayleigh quotient qu(rf‘ﬁi‘llz XUy to achieve the
1 L2(Qr)
proof. (I
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8.3 The operator P! on a truncated sector

In order to compare A(a) and AP**™7 | we introduce the new operator P as-

sociated to the form ay, restricted to Qp, with a Dirichlet boundary condition
at t =T and a Neumann boundary condition at n = :l:% defined on :

ijy,ol = {U S LQ(QT)

1
%a,]u e L*(Qr), VtDwu € L*(Q7), U,y = 0} .
The domain of P is given by the construction of the Friedrichs extension. We
do not need to characterize it explicitly because we work with the quadratic
form ¢Z. We denote by AT («) the bottom of the spectrum of PT :

T
M(a) = inf %27(@ with ¢ (u) :/ 2t|(Dy—n)ul*+ dt dn.
uEV%’YO,uio ||u||L2(QT) Qr
(8.3)
Lemma 8.3. For every € > 0, there exist 6 > 0 and ag > 0 such that :
Va < ag, VT > E, Ma) <M (a) < Ma) + e (8.4)
!
Proof : By inclusion of the form domain, we deduce the lower bound :
M(a) > Ma). (8.5)

To establish an upper bound, we multiply the functions in the domain VN by
a cut-off function, so they belong to the form domain VTO and we estimate

the error coming from a cutting. We consider a regular real cut-off function

X, defined on R*, with support in [0,1] and equal to 1 on [0, é] For T > 0,

we define xr: = x (%) on RT and u, a normalized eigenvector for A(er). We
remark that xru. € Vﬁ o and easily prove that :

Ga(XTa) = Re (X7 Palia,ta) 2, + I [VXT[UalT2(0p)-  (8:6)

By assumption on u, and construction of yr, there exists a positive constant ¢
independent of a and T such that :

qg(XTUa) < )‘(Q)HXTUaHZL?(QT) + = ||“a||L2 1Z,7[x]-1,1p- (8.7)
According to Corollary [ there exist § > 0 and «g > 0 such that :
s
1 <[lxrualfaay < 1 (53)

The min-max principle concludes to B4l (with a smaller §). O

8.4 The regularized operator P7*

To avoid the singularity on P, with the term % which tends to 0 when ¢ tends

to infinity, we deal with the operator P and we can bound from below % by %
which is a constant. So it is quite natural to introduce the self-adjoint extension
PT:¢ to the form a™>* defined on Vév D as follows

VP = {ue L2(Qr)| (Dy — n)u € L*(Qr), Dyu € L*(Qr), u),_, =0},

alP(u,v): = / (2t(Dt —n)u(Dy — n)v + gDnanv) dt dn. (8.9)
Qrp

23



We denote by v(T, p) the bottom of the spectrum of PT+* defined on DV:P (PT:r)

DNP(PTr) = {uGVﬁDHDyfmﬂDyfmueL%Qﬂ,

Diu € L*(Qr),
tDtU\t:o =0, Dﬁu\n:i% = 0}

p
PP =2(D; — n)t(Dy — ) + 5D,%. (8.10)
Let us define the continuous, bounded and self-adjoint projector IIy by

LX(Qr) - LX), fro | fltn) dn

_1
2

(8.11)

Lemma 8.4. We assume that T > 1 and % is uniformly bounded from above
Then there exists C' such that :

(T, p) < AT T < (T, p) + C

NE

(8.12)

Furthermore, if we denote by ulT’p a normalized eigenvector associated to v(T, p)
there exists a constant C' such that :

C
(Id — To)uy || 207y < 7 (8.13)
1- > < ||H0U1T’p||L2((zT) <L (8.14)

Proof : By the inclusion V¥ can,T C V , we immediately see that :

v(T,p) < AT, vp > 0.

(8.15)
Combining [82) and ®&IH), we bound from above v(T, p) by Apea? + ¢ =: '
By definition of v(T, p) and ul**

Tp

, we have v(T, p) = aZP(ul* ul

) and deduce :

2
T,
1DsT 52y < /2 (5.16)

Using the projector I1p, we write u;’” as a sum of two functions :

TP = Tlg(ul?) + a. (8.17)
We identify the range of Iy with L2(0,7) : L?(0,T) is injected in L?(Qr) by
defining g — i(g) = g. Now, we omit take ¢
By definition of Ho(ulT’p) and 47°?, it is easy to see that :

1/2
||D U p||L2(QT) < \/_ /1/2 ~Tp t T]) dn—O D n ’p‘

. =0. (8.18)

n==+3
Properties (BIX) show that @7** is orthogonal to constant functions and since
72 is the smallest positive eigenvalue for —92 on | — 1,1

5. 51, we deduce that :

1Dyl 2y = 7@l 2(00)-

(8.19)
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Relation (BIJ) and the lower bound [BIF) achieve the proof of [&IJ) with
C = 22 Since [[To(u] )22, = 1 = [[i7||q, ), Relation (BTF) leads
to (BI4). We know that :

2(Dy — n)t(Dy — n)ur., + nguTyp = u(T, p)ur,. (8.20)

We apply the projector IIy to Relation (820) and so :

%
e Tl ) + [ 2D~ Dy~ i iy = AT, p)o(u ),

1

2

We take the scalar product with Il (ulT’p ) and obtain, after simplifications :

(Lmen o ou) - = v(T.p)[Touf ’P||%Z<O,T>—2"/Q i Touy " dtdn
T

L2(0,T)

+2/ ntDtﬂT”’HoulT”’dtdn—2/ tn?a™ P Toul P dtdny. (8.21)
QT QT

We now estimate each term of (82 :

1"

— 1C
/ nalP Toul ™ dt dn’ < 5 according to (BT3)) and &T4).
Qr VP

B RS C// T
/ nztuT,p Hou,{7p dt d’]’]‘ S T ;||\/gHOUT7p||L2(QT).
Qr \/

e For the third term, we use an integration by parts and then :

N o C//\/T T
ntD TP Toul™* dt dn} < + VD Ioui || 2 0.1)-
/QT 1 2\/5 2\/5 || 1 || (0,T)
We define C (T, p): = <LmeaanH0u1T’p, HoulT’p>L2(0 » and remark that :

[|ViTouy *|| L2 0.7y < V6y/C(T, p) and [|[VED,Tlouy || 20,1y < v/C(T, p).

Then an upper bound coming from Relation [BZI]) and previous estimates of
each term lead to the bound :

C(T,p) <v(T,p) + 3\% + 40”\/§\/C(T, p)-

We assume that T" > 1 and that there exists a constant M such that % < M.
Then C(T, p) is finite and there exists a constant C'(c0) > 0 independent of T'
and p such that : C(T,p) < C(c0) < +00. This combined with (BT leads to
the bound ®IJ) of AT, 0
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8.5 Proof of the lower bound on Theorem
Let n > 0. We apply Lemmas and B4 with € = 57]5 and T'= £, then :

1 mean
14 (717 ﬁ) Z )\1 -

Since AT (a) > v (T 1 ), Lemma K3 shows that with the previous choice of e,

' 2T

there exist ap > 0 and 6 > 0 such that :

(8.22)

N3

Aa) > v (T ) — e, Ya €0, aq). (8.23)

" a2T
So there exists a3 < ag such that for any « €]0, a1], e < #; then (822) and
B2 lead to :

Alar) > AP — . (8.24)

Since p(a) = aA(a), we can also achieve the proof of Theorem O

9 Behavior of eigenvectors

It is easy to deduce from the proof of Theorem the behavior of the eigen-
vectors of PT# and L™e*™T a5 follows.

Proposition 9.1. There exist ¢ > 0 and Ty > 0 such that the first eigenvalue
of PT? is simple for any p and T > Ty such that %—i— \/% < c. Denoting by ulT’p
and uTean’T the first normalized eigenvectors for PP and L™*™T respectively,
there exists C' such that for T' > Ty and p > 0 with % + \/% <ec:

1 T
T, mean,T
Mo (uy *) — uy ||%2(0,T) < COl=+4/= ) (9.1)
p p
1 T
T, mean,T’
[luy™? = uy F2@m < C <; + ;) : (9.2)

Proof : Let ulT’p be a normalized eigenfunction associated to the first eigenvalue
for PT* and we define the function uf. ,: = I (ul"*) on ]0,T[. After a pos-
sible multiplication by a complex number, we assume that u% , is decomposed
according to a basis of eigenvectors for L™¢*™T with ag > 0 :

0 _ mean,T ~0
ur, = aouy +ar ,, (9.3)

“th 70 mean, T’ : mean,T, 0,0 :
with a7 , orthogonal to u; . We estimate (L uTyp,uT7p>L2(07T) with

EZ1), Relation (BTH) and the expression [@3). Then there exists a constant A
independent of T" and p such that if 7' > 1 and % is uniformly bounded, then :

/T
mean mean,T’ ~
<L 1Tug—‘,p’ u%7p>L2(O,T) S )\1 «“ (a’(% + ||ug—‘,p||%2(0,T)) + A ; (94)
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We denote by A3**™”" the second eigenvalue for L™ and apply the min-max
principle, then :

<Lmean,T 0 0 > )\mean A 2 /\mean T

uT,pﬂuT,p>L2(01T) Z ||UT p||L2(0,T)- (9.5)

From (@) and ([@3), we deduce that :

mean, m n, IT
()\ ean, T ea. T) ||U/TP||L2(07T) S A ; (96)

We can bound from below AJ**™ by Amean and according to (B), we have :

1 1

<
mean,T mean,T — . T -
)\2 — )\1 )\gnean )\Enean ce 23

(9.7)
Due to 1), there exist Ty and A independent of p such that for all T > T, :

||a%,p||%2(O,T) < A s (9.8)

This shows that ||’L~ng7p||%2(07T) tends to 0 when p tends to infinity.
We use the decomposition of uf, »» Relations (Td) and (LF) to obtain :

1 - T
1—C——A —<ap<1. (9.9)
P P

This leads to Relation (@) since :

C T
mean,T’ ~
|ug, —u 720y = (1= a0)® + |7, 17201 < ” + 4 s (9.10)

Due to the decomposition of u;* = Ilg(ul *) + @T*, we have :

T, T2 T,p T ~T.p||2
[y ? —uy ™" ||L2(QT) < 2o (uy?) — uy™™ ||L2(QT) +2[|a p||L2(o,T)'
This last relation coupled with estimates (@1l) and [8I3]) achieve the proof of
E©.2).
Let us assume by contradiction that the first eigenvalue of P7** is not simple,
then there exists a normalized eigenvector denoted by UlT’p , orthogonal to ulT’p

for the smallest eigenvalue. Using Proposition [l with ulT’p and UlT’p , we have :

T, T, T, T T
||U1 P - Uy p||%2(QT) < 2||’Ul P - mean ||L2(QT + 2||’LL urlnean ||%2(QT)
< (1 + Z) : (9.11)
p p
This is in contradiction with the fact that |[v]” — u] p||L2(QT) = 2 as soon as
' (% + 4 /%) < 2. Therefore v(T, p) is simple in this case. d

We also can compare the first eigenvectors for L™ and LmeanT .
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Proposition 9.2. Let u**®" be the normalized positive eigenvector associated

; T . Iy . . an,T
to Apean - "M be the normalized positive eigenvector associated to A"

and @™ its extension by 0 on [T, +oc[. Then :

[luyea™ — ﬂlflean’T||L2(]R+) =0 (67%) as T — +o0. (9.12)

Proof : We decompose @™ = agu®™ 4 vy, with ag > 0 (after a possible

multiplication of @**” by a complex number) and v; orthogonal to wea,

then :

~mean,T

||ay ||2L2(1R+) =1l=ag+ ||U1||2L2(1R+)- (9.13)

Furthermore :

mean, T __ mean ~mean,T ~mean,T
Ay = <L Uy U

Uiy > ag AT + AT 1|2 ey (9-14)

> L2(RT)
Relations ([@II3)) and @I4) lead to :

(A = AT D)o [Fary < AT = AP ag < AT — e,
From Lemma B2 we deduce :

Amean _ )\mean _ 66_% ||’U 2 < ~ —L\/_
2 1 1||L2(]R+) < ce 2V,

T
But observing that AQear — \jpean — %, we get ||’U1||%2(R+) =0 (e‘m) and

T
ap=14+0 (e_ 2v3 ) as T tends to infinity. To achieve the proof, we just write :

[Juy" " — @Iflean’TH%Z(Rﬂ = (1= ao)?[[ud ™[ F2@+y + 01122 @ty
So [[upesn — @ T2, ) = O (e*%). O

10 Splitting between the two first eigenvalues

10.1 Main proposition

The upper bound of the bottom of the spectrum given in Section B proves
the existence of an eigenvalue with the asymptotics aA(™ + O(a?"+3). In the
previous section, we have established the lower bound u(a) > 5 —ea. If the
splitting between the two first eigenvalues of P4, o, is big enough or if we obtain
a “good” lower bound of the second eigenvalue, then spectral theorem will give
the asymptotics of p(«).

Proposition 10.1. As « tends to 0, the number of eigenvalues of Pa, q, below
the essential spectrum tends to infinity. If we denote by p(«), pa(a) the two first
eigenvalues of Py, q, and by AP, A3 the smallest eigenvalues for L™",
then for every € > 0, there exist ag and C > 0 such that for all o €]0, ap] :

ua(a) > aAy™ —ea, (10.1)
:LLQ(Q) — [L(Oé) > ()\IQnean - )\rlnean) [ (102)
e
To prove Proposition [0l we will use the same operators as in Section §,

that is to say, the operators L™ PT and PT+r defined respectively in (§1I),
E3), @Id) and studied respectively in Subsections B2 and
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10.2 Estimates of the second eigenvalue

We use the index 2 to indicate the second eigenvalue (when it exists). We have
an expression of Az(«) according to the min-max principle :

Ao(@) = sup inf _Ga(w) (10.3)

ver2(Qo) ueVN ulv ||ul |%2(QO) -

By the same principle, we have expressions for Al (), Ajpean, )\;nean’T and
vo(T, p). So we deduce that :

Aean >\ (), (10.4)

A (@) = Ag(a), (10.5)

ageam T ymean (10.6)

Apean T s (T, p), (10.7)
1

M) > (Tﬁ) (10.8)

Due to Relation [[Idl), we can bound from above A;(a) by a positive constant
and so pg(a) = az(a) tends to 0 with a. Then there exists oy such that for
all @ < aq, po(a) < ©g. By Lemma Z3] we have established that the bottom of
the essential spectrum of P4, o, is equal to Oy and so, u2(a) is an eigenvalue
as soon as fg(a) < Oy.

e4

10.3 Comparison between v, and A\5**"

Lemma 10.2. There exist €g, ag > 0 and ¢ > 0 such that for e < €y, a < ag
and T = § :

1 mean

1] (T, 042—T> Z )\2 ean _ Ce. (109)
Proof : According to Proposition @l with p = ale and T' = =, there exist ¢
and o such that for all € < ¢y and o < ag, the smallest eigenvalue of PT:*
is simple. Let uf and uZ the normalized eigenvectors associated respectively
to v (T, ﬁ%) and o (T, aZLT) We define ulT’O: = Hou?, u2T’O: = Ioul and
@l =uT —ul®, 4l = ul —ul®. According to Lemma R and Relations (&I3)
and (BT, there exists C’ independent of o and T' such that :

it l|z20m) < C'Veva, @z ||e20m) < C'Veva, (10.10)
1—Clea < |lui (|20 <1, 1—Clea < [Jug®l|p2(0.m) < 1. (10.11)
We decompose s’ = a1u*™ " + 2% with @2"° orthogonal to «**™ then

at + ||112T’0||%2(0,T) <1, s0 |ay| < 1. Since (u3,uf) = 0, we estimate :

L2(Q7)
T,0 T,0 _ /=T ~T ~T T T ~T
<u2 » Uy >L2(O,T)7 <u2 » Up >L2(QT)7 <u2 » Up >L2(QT)7 <u2 » Up >L2(QT) : (1012)
The decomposition of ug’o, the normalization of ullnean’T and the orthogonality
between ﬂQT’O and ullnean’T give an other expression for the scalar product :
7,0 T,0 mean,T’ ~T,0 T,0 mean,T’
Uy’ yUp’ :a+<au To4us, T, uy —u > . (10.13
< 20 >L2(0,T) ! th 20 ! £2(0,T) ( )
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Relation (LT) shows that ||u]® — urlneanTHLz(QT) < Ce. Furthermore, Re-
lations ([@Id) bound from above ‘<u2T,u1T>L2(QT)‘ and ‘(uQT,ﬁlT>L2(QT)‘ by
C'\/ey/a and also ’(dQT,QElT>L2(QT)‘ by C%ea. We report these estimates in
@I and M@I3) knowing that |a1| < 1, then :

la1| < 2Ce + 2C"Vev/a + Cea. (10.14)

So there exist a1 < g and Cq such that for o < ag :

lai] < Civ/e (10.15)
Taking again ([LTT) and ([LIH), there exists C' with :
1-Ce< ||ﬁ ||L2(0 T) = ||u ||2L2(0,T) —af <1 (10.16)

T T T T
As we made for <Lmean7Tu1 ’O, uy ’O> , we bound <Lmean,Tu2 70, ul ,0> :
L2(0,T) L2(0,T)

1
mean,T T,0 T,0 T,0
<L us®, ug >L2(O,T)§V2 <T, —aQT)HuQ 720+ Ce, (10.17)

and also :

: T,0 T,0
<Lmeo\n,Tu27 U s

mean,T’ mean, T || ~T,0
5 apA e A A g T,y (10.18)

>L2(0 T) —

We look at Relations (ILT7), ([IIR); we use ([IL1), (L1H), (LIG) and ([ED:G])
to achieve the proof of (IILJ).

10.4 Comparison between \y(a) and A («)

Lemma 10.3. For every € € }0, f[ there exist cg, & > 0 and C > 0 such
that for a €]0, | and T = £
0 < AL(q) = Aoa) < Ce =, (10.19)

Proof : As for the first eigenvalue, we show that Ao () is closed to A (a) by using
spectral theorem. We define v2' = xrus,o and estimate ||(PL—Xz2(a))vl | 12(00)-
For (t,n) € Qp :

ngg( ) P Va ( 77) XTPa'UQ,a(tv 77) + [Pa; XT]’UQ,a(t; 7’)-

By assumption, there exists C' such that |Dyxr| S and |D?xr| < T2 Corol-
lary [Z4] proves the existence of § > 0 and ag > 0 such that for o < ay and
T=<:

s

||u2qa||L2(]%7T[><]7%,%[) <e e, (10.20)

So, with an integration by parts for the term |[tDyug o DiX 7|12 (021, We deduce :

1(PT = Xa ()0l || 2y < Ce™a (10.21)
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With ||UT||L2(QT) 2 ||u2 a||L2(QT) ||u2 a||L2( +00[><]*%1%D and (mna
there is ¢ such that :

)

il 2@y > 1—cea. (10.22)

We apply a classical spectral theorem and Relations ([LZIl) and (L2Z). So
there exist oy < ap, ¢ and for all T = £, X[ («) € o(PL) such that for o < oy :

(@) = Aola)] < Gew. (10.23)

We show that & > 2 by contradiction. We assume k = 1. It is easy to see that :

Qe

)\g(a)—)\inean’T < cée”

But, due to (LX), we deduce :

1 mean,T ~ 9
I/Q(T,OéQ—T>)\1 < ce «.

We apply Lemmas and to establish the upper bound :
Aot — \Frean < Ge~h + Ce 33 4 ce = e + Ce avia + ce. (10.24)

Since A — Apean —

and then A (o) > A\l (a

([[@24) is impossible as soon as € < f Thus k& > 2

2
Z,
). We deduce ([ILTJ) by using ([[IH). O

10.5 Proof of Proposition M0.1]

Let 7 > 0. We apply Lemma A with ¢ = 5L. Then, there exists ag such that
for a €]0, 0] and T = £

(10.25)

N3

1 mean
V2 <T, CYQ—T) > N —

With this choice of ¢, Lemma and Relation (LY give the existence of
a1 < ag such that for a €]0, aq] :

1 n

We take the lower bounds (IL2H) and ([[IL26]), then, for a €]0, 4] :
Ag(a) > A5t — . (10.27)
Since A(a) < A2 we deduce :

Ao(a) — M) > (A = APeat) — . (10.28)

We now use Proposition [Tl to justify the asymptotics of u(«).
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10.6 Asymptotics of pu(«)

Theorem 10.4. Let n a positive integer. We consider (m;);<n given recursively
by Proposition i), then u(a) has the asymptotics :

ula) = aijQQj + On(a2”+3) as a — 0. (10.29)
§=0

Proof : We take again U™ and A\(™ defined in 3Z) and (EI)). According to
Proposition ], there is ap and for o < ag, pny(a) € 0(Pa, q.) such that :

lun (@) — o | < Ca?n L (10.30)

Assume that N > 2, then :
pn(a) —ad™ > ps(a) —ar™, (10.31)
We choose ¢ < %, then due to Proposition [ and construction of A there

exists a1 < ap such that for a €]0, aq] :

po(a) > aAFem — ag, aX(™ < gamean | a%. (10.32)

1 3 mean mean 2 .
We report (II32) in ([L3T), then, since AJea? — yjpean — 2

pn(e) —aA™ > g(apean _ \meany ¢ (10.33)

> @
ju— \/g'
This is impossible with [[II3), so N = 1 and ux(a) = p(a). O

11 Estimates in the semi-classical case

11.1 Localization techniques
11.1.1 Localization with a partition of unity

As in [I1], p. 617-621, we can give a lower bound and an upper bound for the
fundamental state of the Schrodinger operator with a non constant magnetic
field and a bounded open set of R? whose boundary is a curvilinear polygon.
Our goal is now to prove Theorem[[C2 The partition of unity plays an important
role and we recall its construction. The idea of the localization to compare the
model cases R?2, R x Rt and Q, comes from the following proposition :

Proposition 11.1. Let 0 < p < 1. There exist a constant C and a partition of
unity X? of Q satisfying :
X?(m) = X5 (%) , with x; a partition of unity of R?,

SIGP =1, (11.1)
i
SV < cnt, (11.2)
i

etther supp(xg?) nNoQ =0,
either z; € 0§) and

supp(x?) N {Sk,k=1,...,N} =0,
or z; = Sj_

supp(x;-‘) C B(zj,h”) s.t. (11.3)
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(with the choice of index j such that z; = S; for j=1,...,N).

We notice immediately :

Zx;‘(Vx?) =0. (11.4)

To compare with models R?, R x Rt and €, we share indices in three parts :
or: ={j| zj =S}, bd: ={j| z; € 0Q\ {S1,...,Sn}}, int: = {j] z; € Q},

corresponding respectively to the corners, the regular points of the boundary
and the points of the interior. We deduce for every u € Hj ,(Q) that :

qn,A.0(u ZQhAQ JFZ(]hAQ +Z%AQ XJ u)

int cor
2
=12 Y1V ullFa - (11.5)
J
We see two kinds of errors : errors coming from approximation which suggest
the choice p large and errors coming from localization (last term of ([TH))

which suggest to choose p small. So we will try to optimize between these two
constraints.

11.1.2 Change of variables

To compare with the models R x RT and §,, we make a local change of vari-
ables.

Lemma 11.2. There exist positive constants hg and Cy such that for any reqular
point z € OQ\ {S1,..., SN}, for any € < d(2,{S1,...,Sn}), we can write for
u € H,{,A(Q) with support in QN B(z,¢€) the form in the new domain R x RT

by :

on ou ~
W2 A (R A ) /det dz,
QhAsz /}RX]R+ Z gkl < 07 k)( 0% l) g

1<k, l1<2
(11.6)

with @ and A deduced from v and A by change of variables. _
Furthermore, for h €]0, ho] and u with support in B(z, h*) N (Q2\ {S1,...,Sn}) :

(1= C1h")ay, arxr+ (@) < ananu) < (1+C1h°)g, 1rgge (@) (11.7)
We obtain a similar result for corners.

Lemma 11.3. There exist positive constants hg and Cy such that for any cor-
ners S, for any u € H}, 4(0) with support in QN B(Sj,€) (with e < d(S;, Sk)
for every k # j), we can write the form in the new domam Qq; by :

(JhAQ / Z gkl ,f (ha— - zAku) (hg—;;l - ’L;lla) v/ det g dz,

<k,l<2

~ (11.8)
with @ and A deduced from u and A by change of variables.
Furthermore, for any h €]0, ho] and u with support in QN B(S;, k") :

(1= Cil)ay g0, (@) < anao() < (1 CilP)gy 1o, (@ (119)

The main difficulty in Lemma [[T.2is to control the uniformity with respect
to z. Details on the proofs of Lemmas and are given in [6].
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11.1.3 Gauge transform

We assume that we have chosen the coordinates such that z = (0,0) € Q. By
gauge transform, we can assume that A(0) and the linear part of the potential
A are respectively equal to 0 and A“": = B(0).Ay (with Ay defined on ([2)).
We define A’: = A — A% then there exists a positive constant C such that

|A— Al = |4 < Cla]?. (11.10)

By the decomposition of A as the sum A“" + A’, we write :
ana0) = /Q (‘(h@zl — iA{"")U‘Q + |(hOzy — iAgi")v‘Q) dx
+2Re /Q ((ham — i AP YWATY + (R, —z‘Agi")vATu) dz
+/Q (JA v + | A5v]?) da. (11.11)
There exists a constant C' such that if v has a support in Q N B(0, h?), then :
gha0(®) < gparm ov) + Ch?[[0][72q)- (11.12)

11.2 Lower bound

Proposition 11.4. Under the assumptions of Theorem [L3, there exist hg and
a constant C' such that for any h €]0, ho| :

EEREE)

u(h, B,Q) > hmin <b, Oob', _inf Nu(aj)B(Sj)> —Ccn/t, (11.13)
Proof : We have to estimate each term of (ITH). From ([T2), we deduce :

W2 Y1V ullfag) < CR272[ullZs o) (11.14)

J

This estimate shows that, for p = %, the error is in O (h%)
Observing that [hD,, — A1, hD,, — As] =i h B, we deduce the estimate :

> ananld) >h2/ o)X u(e)2de, (11.15)
int int

where we have used that supp x? C (Q, for j € int.

We have now to estimate the terms which are localized at the boundary. Let
j € corUbd. By change of variables, we send locally the domain onto R x RT or
Qq. We apply Lemmas and [[T3 so there exists a constant C; independent
of h such that, for every v with support in QN B(z;, h*),

(1—Cih")ay, 1.0, (0) < qnaa(v) < (1+Cih")g, 4q, (). (11.16)

So it is enough to analyze g;, 7 o (9). We now omit the tilda due do the change of
variables. We make a gauge transform such that the linear term of the magnetic
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potential is equal to A“": = B(z;)A4p. We denote by A’ the remainder :
A = A — A", Relation [T gives :

qn,A,0(v)> Qh,A“",Q(v)*QIm/ ((haml - iA{i")v Tﬂ) + (h0, — iAg”)“ Tzv) d.
Q

A Cauchy-Schwarz inequality leads to :

h29 i 9 h—29 9
< —/ |(hOy, — A )| dx+ / |ALv|” da.
2 Ja 2 Ja
(11.17)
But, by a Taylor expansion, we see that |[A)| < C|x — z;| < Ch? where C' is a
constant independent of h and z;. Using this estimate, taking account of the
error due to the change of variables (II0) and choosing v = X?u, we get :

/ (hds, — i AT AT oda
Q

an.a(xju) > (1—h* — Clhp)hu(aj)B(Zj)/Q Gl de — CPR=20|xGul .

(11.18)

The estimates ([[TI4)), (ILTH) and [TIX) give the following lower bound
for gn,a,0(u) :

an,A0(u)> hZ/B(z)|x?u|2d$ — Ch22||ul?

nt
+(1—h%* — C’hp)hGOZB(zj)/ ulPdz — CPhA =20 7|yl |?
Q

bd bd

(1= 12— ChO)RS (o) B(S)) /Q a2 — C2 1203 |

cor cor

, 80 there exist a positive constant C' and hg > 0
, we have the lower bound for any u € H} ,(€?) :

ool

We choose p = % and 6 =
such that for every h €]0, hg

=1,...,

a0 > (nmin (b0, u(a)B(S)) ~ o) [l
We apply the min-max principle and get ([TI3). O

11.3 Upper bound

Proposition 11.5. Under the assumptions of Theorem [LA and assuming that
wlaj) < Oq for any j = 1,..., N, then there exist hy and a constant C such
that for any h €]0, ho[ :

u(h, B,Q) < hmin (b, Oob', _inf Nu(aj)B(Sj)) + Ch*/3. (11.19)
]:

Proof : We establish three upper bounds :
L op(h,B,Q) <h _inf pu(a;)B(S)) + Coh*/3,
J=1

2. u(h, B,Q) < hb'©y + Coh*/3.
3. pu(h, B,Q) < hb+ Coh*/3.
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e We begin with looking at the vertices. Let S; be a vertex. By change of
variables, we send locally €2 onto €2,,. We will consider a function u with a
support in a ball QN B(S;, h*), so according to (), it is enough to estimate
Qh, A0, (u) with the new coordinates and the error is in h?.

By assumption p(a;) < Oy, then u(a;) is an eigenvalue. We use the normalized
eigenfunction vy associated to the Schrédinger operator PAmQaj and we define :

Vo € Qq;, vn(z) = @vo< @x)

With a gauge transform, we assume that A = A"+ A’ with the same notations
as in Subsection [TT3
We consider x a smooth function defined on R? such that :

suppx C Bi, x=1on By, 0<x <1 (11.20)
We denote by xpr: = x (;f") where zy will be chosen later. We now compute
A0, (XneVh)
A0, (Xnevn) = anarin g, (XneUn) +/ |A'[?|xhoon|? da

]

2
+2Rei / > " (n0, — iA™) (o vn) AT X oo da.
Q

e g=1

By construction of v, and assumptions about xp» and A’, we deduce that there
exists a positive constant C' such that :

. A0, (Xnovg) < hB(Sj)u(aj)||thvh||§2(9aj)+Ch2*2p+0h2+0h%, (11.21)
We now bound from below the norm of ypevy, :
ol
||XhPUh||2L2(Qaj 21- ||Uh||2L?(Qaj)m[:Bhp/z) >1-Cre @ 2 (11.22)

by using the behavior of the eigenfuction mentioned in Section [Mand particularly
in Theorem [l Recalling [TTZ9), we deduce :

4n, 4,0 (Xnevn)

||thvh||%2(g)

2—2p 2 3
(14 Cyh?) (hB(Sjm(aj)wh e h )

1-— Cl e_Cth7%

< hB(S) (o) + C(hPT' + h3 4+ h27%). (11.23)
Choosing p = %, we get :
w(h, B,Q) < hB(S;)u(c;) + Chs. (11.24)

e Now, we prove the upper bound 2. Let xy a point of the boundary such that
B(xzg) = b'. Either ¢ is a regular point, either ¢ is a vertex. If xg is a vertex,
we take account of B(xg) = ¥/, ([LZ4), the assumption p(a) < Oy and deduce :

w(h,B,Q) < htOy+ chs. (11.25)
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Let us now assume that x is not a vertex. We use the same techniques as Helffer-
Morame [I1]], p. 648. By change of variables, we have a small perturbation of
the sesquilinear form on the half-plane and we use the following function as a
trial function :

1 . 7 / % / 1
Vz € R xRT, v(x) = h_Eez\/gcﬂml (%) & (ﬁ / %x2> x(z2)g (h_zm) ,

(11.26)
with g € C§°(R) L*normalized supported by ] — £, 1[ and x € C§°(RT) such
that :

= { L 0<m<g
X\r2) = 0 if i) Z €0,

and ¢, (o defined by Proposition ZZIl We obtain the upper bound :

u(h, B,Q) < h©¢B(xq) + Ch3/2. (11.27)
Combining (IT2H) and ([T27), we deduce :
w(h, B,Q) < h©yb' + Ch*/3. (11.28)

e Let us analyze the upper bound 3. Let zg € Q such that B(zg) = b. Either
o € Q, either g € 90. If g € 9, then b = b’. Since we have proved that
w(h, B,Q) < hb'©q + Ch*/3 and since Oy < 1, we deduce that :

w(h, B,Q) < hb+ Ch*/3. (11.29)

1
Let us now assume xg € €2, then there exists hg > 0 such that B (:I:O, hé) c Q.
Let h €]0, hg]. We consider the function u defined on 2 by :

u(z) = % exp (%}T_W) . = exp (z%) u, (11.30)

with ¢ which realizes a gauge transform such that the linear expansion of A+V ¢
is equal to Ap.

We use a cut-off function to localize @ in B(zo,h?) and we make a Taylor
expansion of A at the first order as mentioned in (ILIZ). We also get :

p(h, B,Q) < hB(x0) + Coh®/? = hb + Coh®/?, (11.31)

with Cy a positive constant independent of h. Thanks to ([IT29) and ([T3T),
we obtain :

w(h, B,Q) < hb+ Coh®/?, (11.32)

Taking account of Relations ([(T24l), (IT28) and (T332, we get the upper bound
(TTD. O

Remark 11.6. [t seems that the assumption u(a) < ©q holds for any angular
a €]0, 7| but it is not proved for the moment. If we do not make this assumption,
the result still holds with a worse remainder but we have a fourth case to study :
the case of a vertex S; with angle a; < m and p(a;) = O as zienafﬂB(:c) = B(S5;).

Let us shortly explain how we can treat this case. Let us consider T} a point of
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the reqular boundary such that d(S;,T;) = h%, we localize in a small ball around
T; which do not meet corner or other piece of the boundary. After change of
variables near T to send locally  onto R x RY, we consider instead of v defined

by (IZZ4) the new function for v € R x RT :

h h
(11.33)

with g1 € C§°(] — 5, 3[,R) L?-normalized and g» € C§° (EJF) such that :

(SIS

1 i 0<a<y
92(””2)_{0 if w>1

and ¢,y defined by Proposition 2. Computations lead to the estimate :
((h, B,Q) < hOoB(T;) + Ch*. (11.34)
Using the Taylor formula, there exists a positive constant 3 such that :
B(Ty) < B(S;) + BIT; — Sj| < B(S;) + Bht. (11.35)
We report (IL34) in {II.34) and so :
(1(h, B,) < h©o(B(S;) + Bh1) + Ch¥ = hOB(S;) + O(h%).  (11.36)

This achieves the demonstration in the general case for the upper bound.

12 Conclusion

Some physicists [7, 20] were already interested in the smallest eigenvalue for
the Neumann realization of the Schrodinger operator with a constant magnetic
field in an angular sector €2, and in its dependence on . They gave already
estimates but these results are without rigorous proof. Relation () gives
an expansion at any order and goes far beyond the work of Brosens-Devreese-
Fomin-Moshchalkov [7] who mention only the first term % and a paper of
Schweigert-Peeters [20] who propose on the basis of numerical computations a
two-terms formula. As usual in the physical literature, the best one can hope
through their techniques is an upper bound of u(a)) because they only construct
quasi-modes. We emphasize that we have obtained here the asymptotics and a
control of the splitting between the first and the second eigenvalue. We have also
given some upper bounds of p(a) and showed that the bottom of the spectrum
is an eigenvalue for any angular in ]0,7/2]. Let us recall these estimates and

give the localization of u(a) on Figure

Proposition Z3: Vo €]0,27], p(a) < Oy, (1)
Proposition ETl: - Va €]0,2x[, p(e) < 7, (2)
Relation ZIH) : Va €]0,Z[, p(a) < 2o — £5240)4,  (3)
Relation B8) : Vo €]0,n[, pla) > 602, (4)
Proposition B2 :  Va €]0,2n[, p(e) < 7= (5)
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Figure 2: Localization of p(«)

An open problem is to prove the monotony of p(a). Computations by physicists
20] confirmed by our own computations based on a finite elements method (cf
[6]) indeed suggest that u(«) is increasing with «.

This paper also completes the results of Helffer-Morame [I1], Jadallah [I3], Pan
[[6] by dealing with the case of the Schrédinger operator with non constant
magnetic field in a bounded open set with a curvilinear boundary.

Another point to establish is the localization of the ground state in the semi-
classical case. The aim is to prove that this state is localized at the corners
where the eigenvalue is the smallest. We hope to come back to this point in a
future paper.
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