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Abstract

This paper is devoted to the spectral analysis of the magnetic Neumann Laplacian
on an infinite cone of aperture α. When the magnetic field is constant and parallel
to the revolution axis and when the aperture goes to zero, we prove that the first n
eigenvalues exist and admit asymptotic expansions in powers of α2.
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1 Introduction

1.1 Presentation of the problem

We are interested in the low-lying eigenvalues of the magnetic Neumann Laplacian with
a constant magnetic field applied to a “ peak ”, i.e. a right circular cone Cα, along to its
symmetry axis.
The right circular cone Cα of angular opening α ∈ (0, π) (see Figure 1) is defined in the
cartesian coordinates (x, y, z) by

Cα = {(x, y, z) ∈ R3, z > 0, x2 + y2 < z2 tan2 α
2 }.

Let B be the constant magnetic field

B(x, y, z) = (0, 0, 1)T.

We choose the following magnetic potential A:

A(x, y, z) =
1

2
(−y, x, 0)T,

which is compatible with the axisymmetry. We consider Lα the Friedrichs extension asso-
ciated with the quadratic form

QA(ψ) = ‖(−i∇+ A)ψ‖2L2(Cα),
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Figure 1: Geometric setting.

defined for ψ ∈ H1
A(Cα) with

H1
A(Cα) = {u ∈ L2(Cα), (−i∇+ A)u ∈ L2(Cα)}.

The operator Lα is (−i∇+ A)2 with domain:

H2
A(Cα) = {u ∈ H1

A(Cα), (−i∇+ A)2u ∈ L2(Cα), (−i∇+ A)u · ν = 0 on ∂Cα}.

We define the n-th eigenvalue λn(α) of Lα by using Rayleigh quotients:

λn(α) = sup
Ψ1,...,Ψn−1∈H1

A(Cα)

inf
Ψ∈[Ψ1,...,Ψn−1]⊥

Ψ∈H1
A(Cα), ‖Ψ‖L2(Cα)=1

QA(Ψ) = inf
Ψ1,...,Ψn∈H1

A(Cα)
sup

Ψ∈[Ψ1,...,Ψn]
‖Ψ‖L2(Cα)=1

QA(Ψ).

(1.1)
Let ψn(α) be a normalized associated eigenvector (if it exists).

Remark 1.1 In the constant magnetic field case, due to the dilation invariance of the
cone and to the scaling x = b−1/2X, the operator (−i∇x + bA(x))2 with b > 0 is unitarily
equivalent to b(−i∇X + A(X))2.

1.2 Motivation

Let us describe the motivation of this paper. The main motivation comes from the theory
of superconductivity where the linearization of the Ginzburg-Landau leads to the study
of the magnetic Laplacian. It is well-known (see [9]) that an applied magnetic field strong
enough makes superconductivity break down. This critical value of the magnetic field1

above which superconductivity disappears is directly related to the lowest eigenvalue of
(−i∇ + A)2 (see [12], [7, Proposition 1.9], [5, Theorem 1.4] for example). The spectral
study of the magnetic Laplacian has given rise to numerous investigations in the last fifteen
years, in particular in the strong magnetic field limit i.e. when one considers (−i∇+ bA)2

with large b (for non smooth domains, see [3, 8, 17]). One of the most interesting results
is provided by Helffer and Morame in [10] where they prove that superconductivity, in 2D,
concentrates near the points of the boundary where the (algebraic) curvature is maximal.

1This critical value, denoted by HC3 , is called “third critical field of the Ginzburg-Landau functional”.
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This nice property aroused interest in domains with corners, which somehow correspond
to points of the boundary where the curvature becomes infinite (see [11, 14] for the quarter
plane and [2, 3] for more general domains). Denoting by Sα the sector in R2 with angle α
and considering the magnetic Neumann Laplacian with constant magnetic field of intensity
1, it is proved in [2] that, as soon as α is small enough, a bound state exists. Its energy is
denoted by µ(α). An asymptotic expansion at any order is even provided (see [2, Theorem
1.1]):

µ(α) ∼ α
∑
j≥0

mjα
2j , with m0 =

1√
3
. (1.2)

In particular, this proves that µ(α) becomes smaller than the lowest eigenvalue, denoted
by Θ0, of the magnetic Neumann Laplacian in the half-plane with constant magnetic field
(of intensity 1). An important consequence is that the third critical field is larger when
there are corners than in the regular boundary case (see [5]). As already mentioned, this
result only concerns dimension 2. Nevertheless the case of the 2D sector can be used to
describe the infinite wedge with magnetic field parallel to the edge. This motivates the
study of dihedral domains (see [16]). Another possibility of investigation in 3D, with which
the present paper is concerned, is the case of a conical singularity of the boundary (and,
for sake of simplicity, with a magnetic field parallel to the cone axis). We would especially
like to answer the following questions: Can we go below µ(α) and can we describe the
structure of the spectrum when the aperture of the cone goes to zero ?

1.3 The magnetic Laplacian in spherical coordinates

Due to the geometry setting, it is natural to deal with the spherical coordinates which are
combined with a dilation:

Φ(t, θ, ϕ) := (x, y, z) = α−1/2(t cos θ sinαϕ, t sin θ sinαϕ, t cosαϕ).

We denote by P the semi-infinite rectangular parallelepiped

P := {(t, θ, ϕ) ∈ R3, t > 0, θ ∈ [0, 2π), ϕ ∈ (0, 1
2)}.

Let ψ ∈ H1
A(Cα). We write ψ(Φ(t, θ, ϕ)) = α1/4ψ̃(t, θ, ϕ) for any (t, θ, ϕ) ∈ P in these new

coordinates and then, using Appendix A, we have

‖ψ‖2L2(Cα) =

∫
P
|ψ̃(t, θ, ϕ)|2 t2 sinαϕdtdθ dϕ,

and:
QA(ψ) = αQα(ψ̃),

where the quadratic form Qα is defined on the form domain H1
Ã

(P) by

Qα(ψ) :=

∫
P

(
|∂tψ|2 +

1

t2 sin2 αϕ

∣∣∣∣(−i∂θ +
t2 sin2 αϕ

2α

)
ψ

∣∣∣∣2 +
1

α2t2
|∂ϕψ|2

)
dµ̃, (1.3)

with the measure
dµ̃ = t2 sinαϕdtdθ dϕ,

and, using (A.1),

H1
Ã

(P) = {ψ ∈ L2(P, dµ̃), (−i∇+ Ã)ψ ∈ L2(P, dµ̃)}.

3



We consider Lα the Friedrichs extension associated with the quadratic form Qα. We define
the n-th eigenvalue λ̃n(α) of Lα by using the Rayleigh quotients as in (1.1) and ψ̃n(α) a
normalized associated eigenvector if it exists. We have

λn(α) = αλ̃n(α), ψn(α)(x, y, z) = ψ̃n(α)(t, θ, ϕ).

1.4 Main result

In this paper we aim at estimating the discrete spectrum, if it exists, of Lα. For that
purpose, we shall first determine the bottom of its essential spectrum. From Persson’s
characterization of the infimum of the essential spectrum, it is enough to consider the
behavior at infinity. Far away from the origin, the magnetic field makes an angle α/2 with
the boundary of the cone so that we can compare with a half-space model and deduce the
following proposition (see Section 2).

Proposition 1.2 Let us denote by spess(Lα) the essential spectrum of Lα. We have:

spess(Lα) =
[
σ
(
α
2

)
,+∞

)
,

where σ(θ) is the bottom of the spectrum of the Schrödinger operator with constant mag-
netic field B = (0, cos θ, sin θ) which makes the angle θ with the boundary of the half-space
R3

+ (see Section 2.1).

At this stage we have still not proved that discrete spectrum exists. As it is the case in 2D
(see [2]) or in the case on infinite wedge (see [16]), there is hope to prove such an existence
in the limit α→ 0.

Philosophy of the investigation Let us explain the structure of our analysis. The
first natural step to perform the investigation of the discrete spectrum is the introduction
of appropriate quasi-eigenpairs2 whose energy is below the essential spectrum. Then we
have to prove that the constructed quasi-eigenpairs exactly describe the lowest eigenval-
ues. This is in fact the most delicate part of the analysis. As often in the study of the
magnetic operator, the spectral behavior is deeply related to localization and microlocal-
ization properties of the eigenfunctions. The localization estimates are standardly given
by the so-called Agmon estimates, whereas the microlocal behavior is more subtle to in-
vestigate. In order to succeed, the key point is to introduce a system of coordinates which
is compatible with the geometry of the magnetic field. Here our initial choice of gauge and
the spherical coordinates play this role. In the present situation, the phase variable that
we should understand is the dual variable of θ given by a Fourier series decomposition and
denoted by m ∈ Z. In other words, we realize a Fourier decomposition of Lα with respect
to θ and we introduce the family of 2D-operators (Lα,m)m∈Z acting on L2(R, dµ):

Lα,m = − 1

t2
∂tt

2∂t +
1

t2 sin2(αϕ)

(
m+

sin2(αϕ)

2α
t2
)2

− 1

α2 t2 sin(αϕ)
∂ϕ sin(αϕ)∂ϕ,

with
R = {(t, ϕ) ∈ R2, t > 0, ϕ ∈ (0, 1

2)},

and
dµ = t2 sin(αϕ) dtdϕ.

2By “eigenpair” we mean a pair (λ, ψ) where λ is an eigenvalue and ψ a corresponding eigenfunction.
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We denote Qα,m the quadratic form associated with Lα,m. This normal form is also the
suitable form to construct quasimodes. Then an integrability argument proves that the
eigenfunctions are microlocalized in m = 0, i.e. they are axisymmetric. This allows a re-
duction of dimension. It remains to notice that the last term in Lα,0 is penalized by α−2 so
that the Feshbach-Grushin projection on the groundstate of −α−2(sin(αϕ))−1∂ϕ sin(αϕ)∂ϕ
(the constant function) acts as an approximation of the identity on the eigenfunctions. In
other words the spectrum of Lα,0 is described modulo lower order terms by the spectrum
of the average of Lα,0 with respect to ϕ.

Organization of the paper and main result Let us now explain the scheme of our
investigation. We will construct quasimodes (independent from θ) for the operator Lα by
using an asymptotic expansion in α2 of Lα,0 as explained in Section 3 (see Proposition
3.1). Using these quasimodes, we will prove that there exist eigenvalues below the essential
spectrum for angles small enough.

The main part of the analysis is to prove that the quasi-eigenpairs constructed in the
proof of Proposition 3.1 exactly give asymptotic expansion of the eigenpairs. As a first step,
using the comparison between the bottom of the essential spectrum given in Proposition
1.2 and the upper-bound of the n-th eigenvalue established in Corollary 3.4, we prove in
Section 4 a rough localization of the eigenfunctions with respect to z when α is small enough
(see Proposition 4.1). In a second step (see Section 5), we use the rough space estimates to
prove that the operators Lα,m with m 6= 0 can not contribute for the low-lying eigenvalues
i.e. that the first eigenfunctions are axisymmetric. In a last step (see Section 6), we need
to establish an accurate estimate of the spectral gap between the eigenvalues through the
Feshbach-Grushin method (see Proposition 6.1). Finally, combining Propositions 3.1 and
6.1, we deduce our main result which provides the complete asymptotic expansion for the
low-lying eigenpairs of Lα:

Theorem 1.3 For all n ≥ 1, there exist α0(n) > 0 and a sequence (γj,n)j≥0 such that,
for all α ∈ (0, α0(n)), the n-th eigenvalue exists and satisfies:

λn(α) ∼
α→0

α
∑
j≥0

γj,nα
2j ,

with γ0,n = ln = 2−5/2(4n− 1).

Remark 1.4 In particular Theorem 1.3 states that λ1(α) ∼ 3
25/2

α. We have 3
25/2

< 1√
3

so

that the lowest eigenvalue of the magnetic cone goes below the lowest eigenvalue of the 2D
magnetic sector (see (1.2)). In terms of the third critical field HC3 in Ginzburg-Landau
theory, this means that HC3 is higher. In other words it is possible to apply a larger
magnetic field to the superconducting sample before superconductivity breaks down: This
phenomenon motivates our terminology “peak power”.

Remark 1.5 As a consequence of Theorem 1.3, we deduce that the lowest eigenvalues
are simple as soon as α is small enough. Therefore, the spectral theorem implies that the
quasimodes (see (3.4)) constructed in the proof of Proposition 3.1 are approximations of
the eigenfunctions of Lα. In particular, using the rescaled spherical coordinates, for all
n ≥ 1, there exist αn > 0 and Cn such that, for α ∈ (0, αn):

‖ψ̃n(α)− fn‖L2(P,dµ̃) ≤ Cnα2,

where fn is defined in Corollary C.2. From the Ginzburg-Landau point of view, this means
that superconductivity spreads in the cone at the scale α−1/2.
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2 Essential spectrum

This section is devoted to the proof of Proposition 1.2.

2.1 Magnetic Laplacian on a half-space

As explained in the introduction, the magnetic field makes an angle α/2 with the boundary
of the cone. Therefore, it is quite intuitive, using Persson’s lemma (see Lemma 2.1), that
the Schrödinger operator in R3

+ with constant magnetic field B = (0, cos α2 , sin
α
2 ) will

determine the bottom of the essential spectrum. Let us recall some results of [12, 4]
concerning this operator. Let θ ∈ (0, π/2) and Pθ be the Neumann realization on the
half-space R3

+ = {(r, s, t) ∈ R3, t > 0} of

D2
s +D2

t + (Dr − t cos θ + s sin θ)2.

The bottom of the spectrum, which is essential, is denoted by σ(θ). From [12] (see also [4]),
we know that the function θ 7→ σ(θ) is analytic and increasing from (0, π2 ) onto (Θ0, 1),
where the definition of Θ0 is recalled below Formula (1.2).

2.2 Proof of Proposition 1.2

Let us first recall the Persson’s lemma (see [15]) which characterizes the essential spectrum:

Lemma 2.1 Let Ω be an unbounded domain of R3 with Lipschitzian boundary. Then the
bottom of the essential spectrum of the Neumann realization of the Schrödinger operator
−∆A := (−i∇+ A)2 is given by

inf spess(P ) = lim
R→∞

Σ(−∆A, R),

with

Σ(−∆A, R) = inf
ψ∈C∞0 (Ω∩{BR)

∫
Ω |(−i∇+ A)ψ|2∫

Ω |ψ|2
,

where BR denotes the ball of radius R centered at the origin and {BR = R2\BR.

Lower bound for Σ(−∆A, R) Let us first prove a lower bound for Σ(−∆A, R) for
large R. In order to do this, we introduce a partition of unity (χj)j = (χj,R)j such that:∑

j

χ2
j = 1,

and which satisfies, in cartesian coordinates:

supp (χj) ⊂ B(Pj , R
−1/4) and

∑
j

‖∇χj‖2L2(Cα) ≤ CR
−1/2.

We can also assume that the balls which intersect the boundary have their centers on it.
Let us also fix R such that R > (tan α

2 )−4/3 (thus any ball centered on the boundary at a

point Pj such that ‖Pj‖ = Rj > R and of radius R1/4 does not intersect the cone axis).
For ψ ∈ C∞0 (Cα ∩ {BR), we want to prove a lower bound for QA(ψ). The “IMS” formula
gives:

QA(ψ) =
∑
j

QA(χjψ)−
∑
j

‖∇χjψ‖2L2(Cα).
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This implies:

QA(ψ) ≥
∑
j

QA(χjψ)− CR−1/2‖ψ‖2L2(Cα). (2.1)

Let us consider j such that B(Pj , R
1/4) ∩ ∂Cα = ∅. Then, we can extend the function

χjψ by zero to R3 and by the min-max principle applied to the Schrödinger operator with
constant magnetic field equal to 1 in R3, the following inequality holds:

QA(χjψ) ≥ ‖χjψ‖2L2(Cα). (2.2)

Let us now analyze the other balls and consider j such that B(Pj , R
1/4) ∩ ∂Cα 6= ∅.

For such ball, it is convenient to use the normal coordinates which parametrize Cα (see
Appendix B). Denoting ψj the function χjψ in the normal coordinates (ρ, θ, τ) ∈ Dα, the
quadratic form can be written (see (B.1)):

QA(χjψ) = Q̂α(ψj) =

∫
Dα

(
|∂ρψj |2 + |∂τψj |2 + V −1

α

∣∣∣∣(−i∂θ +
Vα
2

)
ψj

∣∣∣∣2
)

dµ̂,

with

Dα = {(ρ, θ, τ) ∈ R3, ρ > 0, θ ∈ [0, 2π), τ ∈ (0, ρ tan α
2 )},

Vα(ρ, τ) = (ρ sin α
2 − τ cos α2 )2, dµ̂ = (ρ sin α

2 − τ cos α2 ) dρdθ dτ.

Let us use the translation ρ = Rj + ρ̃ and denote ψ̃j(ρ̃, θ, τ) = ψj(ρ, θ, τ). We first notice
that (ρ sin α

2 − τ cos α2 ) is close to Rj sin α
2 on the support of ψj . Indeed, we have there

|ρ̃ sin α
2 − τ cos α2 | ≤ 2R1/4 and thus, since R < Rj , there exists C > 0 such that for all j

and for all (ρ̃, θ, τ) on the support of ψj , we have

|(ρ sin α
2 − τ cos α2 )−Rj sin α

2 | = |ρ̃ sin α
2 − τ cos α2 | ≤ 2R1/4 ≤ CR−3/4Rj sin α

2 .

With a possibly larger C, we have:

(1− CR−3/4)Rj sin α
2 ≤ |ρ sin α

2 − τ cos α2 | ≤ (1 + CR−3/4)Rj sin α
2 ,

(1− CR−3/4)R−2
j sin−2 α

2 ≤ Vα(Rj + ρ̃, τ)−1 ≤ (1 + CR−3/4)R−2
j sin−2 α

2 .
(2.3)

Using (2.3), we have

Q̂α(ψj)

Rj sin α
2

(
1− CR−3/4

) ≥ ∫
Dα

|∂ρψ̃j |2 + |∂τ ψ̃j |2 + Ṽ −1
α

∣∣∣∣∣
(
−i∂θ +

Ṽα
2

)
ψ̃j

∣∣∣∣∣
2
 dρ̃dθ dτ,

(2.4)
where Ṽα(ρ̃, θ, τ) = Vα(Rj + ρ̃, τ). Let us deal with the third term in (2.4):

−i∂θ +
Ṽα
2

= −i∂θ +Rj sin α
2 (ρ̃ sin α

2 − τ cos α2 ) + Cj +
(ρ̃ sin α

2 − τ cos α2 )2

2
,

where Cj = 1
2 sin2 α

2R
2
j can be erased modulo a gauge transform: ψ̃j = e−iθCjvj . We write,

using (2.3), for all η ∈ (0, 1):

Ṽ −1
α

∣∣∣∣∣
(
−i∂θ +

Ṽα
2

)
ψ̃j

∣∣∣∣∣
2

≥ (1−CR−3/4)(1− η)

∣∣∣∣(− i

Rj sin α
2

∂θ + ρ̃ sin α
2 − τ cos α2

)
vj

∣∣∣∣2
− η−1

4

(ρ̃ sin α
2 − τ cos α2 )4

R2
j sin2 α

2

|vj |2.
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We have
(ρ̃ sin α

2 − τ cos α2 )4

4R2
j sin2 α

2

≤ R

4R2
j sin2 α

2

≤ C

R
.

After the change of variable θ̃ = Rj sin α
2 θ and denoting wj(ρ̃, θ̃, τ) = vj(ρ̃, θ, τ), the lower

bound (2.4) becomes

Q̂α(ψj)

1− CR−3/4
≥
∫
R3
+

(
|∂ρ̃wj |2+|∂τwj |2+(1−CR−3/4)(1−η)

∣∣(−i∂θ̃ + ρ̃ sin α
2 − τ cos α2

)
wj
∣∣2

− C

ηR
|wj |2

)
dρ̃dθ̃ dτ

≥ (1−CR−3/4)(1−η)

∫
R3
+

(
|∂ρ̃wj |2 + |∂τwj |2 +

∣∣(−i∂θ̃ + ρ̃ sin α
2 − τ cos α2

)
wj
∣∣2) dρ̃dθ̃ dτ

− C

ηR

∫
R3
+

|wj |2 dρ̃dθ̃ dτ,

where we have extended the function wj by zero outside its support and then defined
a function in the half-space. Thus, applying the min-max principle for the Schrödinger
operator with a constant magnetic field which makes an angle α/2 with the boundary of
the half-space (see Section 2.1), we deduce (returning in (ρ, θ, τ) variables)

Q̂α(ψj) ≥
(

1− CR−3/4
)
Rj sin α

2

[
(1− CR−3/4)(1− η)σ

(α
2

)
− C

ηR

] ∫
Dα
|ψj |2 dρ dθ dτ.

(2.5)
Let us now estimate the norm ‖ψj‖L2(Dα, dµ̂) with (2.3):

‖ψj‖2L2(Dα,dµ̂) =

∫
Dα
|ψj |2|ρ sin α

2 − τ cos α2 |dρdθ dτ

≤
(

1 + CR−3/4
)
Rj sin α

2

∫
Dα
|ψj |2 dρdθ dτ. (2.6)

Relations (2.5) and (2.6) give

QA(χjψ) = Q̂α(ψj) ≥
1− CR−3/4

1 + CR−3/4

[
(1− CR−3/4)(1− η)σ

(α
2

)
− C

4ηR

]
‖χjψ‖2L2(Cα).

(2.7)
Combining (2.1) with (2.7) and (2.2), we deduce for R large enough and η small enough
(since σ(α2 ) ≤ 1):

QA(ψ) ≥ 1− CR−3/4

1 + CR−3/4

[
(1− CR−3/4)(1− η)σ

(α
2

)
− C

4ηR

]∑
j

‖χjψ‖2L2(Cα)−
C

R1/2
‖ψ‖2L2(Cα).

Thus we get:

Σ(−∆A, R) ≥ 1− CR−3/4

1 + CR−3/4

[
(1− CR−3/4)(1− η)σ

(α
2

)
− C

4ηR

]
− C

R1/2
,

and
lim
R→∞

Σ(−∆A, R) ≥ (1− η)σ(α2 ).

This relation is available for any η ∈ (0, 1). Therefore, we have with Lemma 2.1

inf spess(Lα) ≥ σ(α2 ).
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Upper bound for Σ(−∆A, R) We have now to prove the upper-bound. Let α be fixed.

By the min-max principle applied to the operator Pα
2

, for any ε, there exists ψ ∈ C∞0 (R3
+)

such that

σ
(α

2

)
≤

∫
R3
+

(
|∂sψ|2 + |∂tψ|2 + |(−i∂r + t cos α2 − s sin α

2 )ψ|2
)

dr dsdt∫
R3
+
|ψ|2 dr dsdt

≤ σ
(α

2

)
+ ε.

(2.8)
We can assume that

supp(ψ) ⊂ {(r, s, t) ∈ R3
+, r ∈ (−`, `), s ∈ (−`, `), t ∈ (0, `)},

with ` > 0. For any R > 0, let us construct, using ψ, a function u ∈ C∞0 (Dα ∩ {BR) in
normal coordinates such that

Q̂α(u) ≤ (σ(α2 ) + o(1))‖u‖2L2(Dα, dµ̂).

Let us analyze Q̂α(u) by using the previous computations for the lower bound. We assume
that

supp(u) ⊂ {(ρ, θ, τ) ∈ R3, ρ ∈ (R− `, R+ `), θ ∈ (−π, π), τ ∈ (0, `)}.

We use the change of variables ρ = R+ ρ̃. Thus, we have on the support of u:

|(ρ sin α
2 − τ cos α2 )−R sin α

2 | = |ρ̃ sin α
2 − τ cos α2 | ≤ 2`. (2.9)

Thus there exists C > 0 such that:

(1− C`R−1)R sin α
2 ≤ |ρ sin α

2 − τ cos α2 | ≤ (1 + C`R−1)R sin α
2 ,

(1− C`R−1)R−2 sin−2 α
2 ≤ Vα(R+ ρ̃, τ)−1 ≤ (1 + C`R−1)R−2 sin−2 α

2 .
(2.10)

Using (2.10) and denoting ũ(ρ̃, θ, τ) = u(ρ, θ, τ) and Ṽα(ρ̃, θ, τ) = Vα(R+ ρ̃, τ), we have:

Q̂α(u)

R sin α
2 (1 + C`R−1)

≤
∫
Dα

|∂ρũ|2 + |∂τ ũ|2 + Ṽ −1
α

∣∣∣∣∣
(
−i∂θ +

Ṽα
2

)
ũ

∣∣∣∣∣
2
 dρ̃dθ dτ.

(2.11)
Let us deal with the third term in (2.11):

−i∂θ +
Ṽα
2

= −i∂θ +R sin α
2 (ρ̃ sin α

2 − τ cos α2 ) +
1

2
sin2 α

2R
2 +

(ρ̃ sin α
2 − τ cos α2 )2

2
.

We let ũ = e−
i
2
θ sin2 αR2

v and we have∣∣∣∣∣
(
−i∂θ +

Ṽα
2

)
ũ

∣∣∣∣∣ =

∣∣∣∣(−i∂θ +R sin α
2 (ρ̃ sin α

2 − τ cos α2 ) +
(ρ̃ sin α

2 − τ cos α2 )2

2

)
v

∣∣∣∣ .
We write, using (2.9) and (2.10), for all η ∈ (0, 1):

Ṽ −1
α

∣∣∣∣∣
(
−i∂θ +

Ṽα
2

)
ũ

∣∣∣∣∣
2

≤ (1 + C`R−1)

(
(1 + η)

∣∣∣∣( −i∂θR sin α
2

+ (ρ̃ sin α
2 − τ cos α2 )

)
v

∣∣∣∣2 +
(
1 + η−1

) C`4
R2
|v|2
)
.
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Let us now make the change of variable θ̃ = θR sin α
2 (denoting w(ρ̃, θ̃, τ) = v(ρ̃, θ, τ)

extended to R3
+ by 0 outside its support), the upper bound (2.11) reads

Q̂α(u)

1 + C`R−1
≤
∫
R3
+

(
|∂ρ̃w|2+|∂τw|2+(1+C`R−1)(1+η)

∣∣(−i∂θ̃ + (ρ̃ sin α
2 − τ cos α2 )

)
w
∣∣2

+ (1 + C`R−1)
(
1 + η−1

) C`4
R2
|w|2

)
dρ̃dθ̃ dτ

≤ (1 + C`R−1)(1 + η)

∫
R3
+

(
|∂ρ̃w|2 + |∂τw|2 +

∣∣(−i∂θ̃ + (ρ̃ sin α
2 − τ cos α2 )

)
w
∣∣2) dρ̃dθ̃ dτ

+ (1 + C`R−1)
(
1 + η−1

) C`4
R2

∫
R3
+

|w|2 dρ̃dθ̃ dτ.

Let us now estimate the norm ‖u‖L2(P, dµ̂) with (2.10):

‖u‖2L2(P, dµ̂) =

∫
Dα
|u|2|ρ sin α

2 − τ cos α2 | dρdθ dτ

≥
(
1− C`R−1

)
R sin α

2

∫
R3
+

|u|2 dρ dθ dτ

=
(
1− C`R−1

) ∫
R3
+

|w|2 dρ̃dθ̃ dτ. (2.12)

We use for w the function ψ satisfying (2.8). Therefore, we get:

Σ(−∆A, R−`) ≤
Q̂α(u)

‖u‖2
L2(Dα,dµ̂)

≤ (1 + C`R−1)2

1− C`R−1

(
(1 + η)

(
σ
(α

2

)
+ ε
)

+
(
1 + η−1

) C`4
R2

)
,

and
lim

R→+∞
Σ(−∆A, R) ≤ (1 + η)(σ(α2 ) + ε).

Since this relation is available for any η ∈ (0, 1), we deduce

inf spess(Lα) ≤ σ(α2 ) + ε, ∀ε > 0.

3 Construction of quasimodes

This section deals with the proof of the following proposition.

Proposition 3.1 There exists a sequence (γj,n)j≥0,n≥1 such that for all N ≥ 1 and J ≥ 0,
there exist CN,J and α0 such that for all 0 < α < α0 and 1 ≤ n ≤ N , we have:

dist

spdis(Lα),

J∑
j=0

γj,nα
2j+1

 ≤ CN,J α2J+3,

where γ0,n = ln = 2−5/2(4n− 1).

Proof: We construct quasimodes which do not depend on θ. In other words, we look
for quasimodes for:

Lα,0 = − 1

t2
∂tt

2∂t +
sin2(αϕ)

4α2
t2 − 1

α2 t2 sin(αϕ)
∂ϕ sin(αϕ)∂ϕ.
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We write a formal Taylor expansion of Lα,0 in powers of α2:

Lα,0 ∼ α−2L−1 + L0 +
∑
j≥1

α2jLj ,

where:

L−1 = − 1

t2ϕ
∂ϕϕ∂ϕ, L0 = − 1

t2
∂tt

2∂t +
ϕ2t2

4
+

1

3t2
ϕ∂ϕ.

We look for quasi-eigenpairs expressed as formal series:

ψ ∼
∑
j≥0

α2jψj , λ ∼ α−2λ−1 + λ0 +
∑
j≥1

α2jλj ,

so that, formally, we have:
Lα,0ψ ∼ λψ.

Term in α−2. We are led to solve the equation:

L−1ψ0 = − 1

t2ϕ
∂ϕϕ∂ϕψ0 = λ−1ψ0.

We choose λ−1 = 0 and ψ0(t, ϕ) = f0(t), with f0 to be chosen in the next step.

Term in α0. We shall now solve the equation:

L−1ψ1 = (λ0 − L0)ψ0.

We look for ψ1 in the form: ψ1(t, ϕ) = t2ψ̃1(t, ϕ) + f1(t). The equation provides:

− 1

ϕ
∂ϕϕ∂ϕψ̃1 = (λ0 − L0)ψ0. (3.1)

For each t > 0, the Fredholm condition is 〈(λ0 − L0)ψ0, 1〉L2((0, 1
2

),ϕ dϕ) = 0, that reads:∫ 1
2

0
(L0ψ0)(t, ϕ)ϕdϕ =

λ0

23
f0(t).

Moreover we have:∫ 1
2

0
(L0ψ0)(t, ϕ)ϕdϕ = − 1

23t2
∂tt

2∂tf0(t) +
1

28
t2f0(t),

so that we get: (
− 1

t2
∂tt

2∂t +
1

25
t2
)
f0 = λ0f0.

Using Corollary C.2, we are led to take:

λ0 = ln and f0(t) = fn(t).

For this choice of f0, we infer the existence of a unique function denoted by ψ̃⊥1 (in the
Schwartz class with respect to t) orthogonal to 1 in L2((0, 1

2), ϕdϕ) which satisfies (3.1).
Using the decomposition of ψ1, we have:

ψ1(t, ϕ) = t2ψ̃⊥1 (t, ϕ) + f1(t),

where f1 has to be determined in the next step.

11



Further terms. Let us consider k ≥ 1 and assume that we have already constructed
(λj)j=−1,...,k−1, (fj)j=0,...,k−1, (ψj)j=0,...,k−1 (which are in the Schwartz class with respect
to t) and that, for j = 0, . . . , k, we can write:

ψj(t, ϕ) = t2ψ̃⊥j (t, ϕ) + fj(t),

where (ψ̃⊥k (t, ϕ))j=0,...k are determined functions in the Schwartz class (and orthogonal to
1 in L2((0, 1

2), ϕdϕ)) and where fk has to be determined.

We write the equation corresponding to α2k, L−1ψk+1 =
∑k

j=0(λj − Lj)ψk−j that reads:

L−1ψk+1 = λkψ0 + λ0ψk − L0ψk +Rk,

where Rk is a determined function in the Schwartz class with respect to t:

Rk =

k−1∑
j=1

(λj − Lj)ψk−j − Lkψ0.

We look for ψk+1 in the form ψk+1(t, ϕ) = t2ψ̃k+1(t, ϕ) + fk+1(t) and we can write:

− 1

ϕ
∂ϕϕ∂ϕψ̃k+1 = λkψ0 + λ0ψk − L0ψk +Rk. (3.2)

The Fredholm alternative provides 〈λkψ0 +Rk + (L0−λ0)ψk, 1〉L2((0, 1
2

),ϕ dϕ) = 0 and thus:(
− 1

t2
∂tt

2∂t +
1

25
t2 − λ0

)
fk = λkf0 + rk, (3.3)

where rk is a determined function in the Schwartz class. The Fredholm alternative implies
that:

λk = −〈rk, f0〉t.

For this choice, we can find a unique normalized fk in the Schwartz class such that it
satisfies (3.3) and 〈fk, f0〉t = 0. Then, we obtain the existence of a unique function denoted
by ψ̃⊥k+1, in the Schwartz class with respect to t and orthogonal to 1 in L2((0, 1

2), ϕdϕ)
which satisfies (3.2).

We define:

ΨJ
n(α)(t, θ, ϕ) =

J∑
j=0

α2jψj(t, ϕ), ∀(t, θ, ϕ) ∈ P, (3.4)

ΛJn(α) =
J∑
j=0

α2jλj . (3.5)

Due to the exponential decay of the ψj and thanks to Taylor expansions, there exists Cn,J
such that:

‖
(
Lα − ΛJn(α)

)
ΨJ
n(α)‖L2(P, dµ̃) ≤ Cn,Jα2J+2‖ΨJ

n(α)‖L2(P,dµ̃).

Using the spectral theorem and going back to the operator Lα by change of variables, we
conclude the proof of Proposition 3.1 with γj,n = λj .

Considering the main term of the asymptotic expansion, we deduce the three following
corollaries.
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Corollary 3.2 For all N ≥ 1, there exist C and α0 and for all 1 ≤ n ≤ N and 0 ≤ α ≤ α0,
there exists an eigenvalue λ̃k(n,α)(α) of Lα such that

|λ̃k(n,α)(α)− ln| ≤ Cα2.

Corollary 3.3 We observe that for 1 ≤ n ≤ N and α ∈ (0, α0):

0 ≤ λ̃n(α) ≤ λ̃k(n,α)(α) ≤ ln + Cα2.

This last corollary implies:

Corollary 3.4 For all n ≥ 1, there exist α0(n) > 0 and Cn > 0 such that, for all
α ∈ (0, α0(n)), the n-th eigenvalue exists and satisfies:

λn(α) ≤ Cnα,

or equivalently λ̃n(α) ≤ Cn.

4 Rough Agmon estimates

In our way to prove Theorem 1.3 we will need rough localization estimates “à la Agmon”
satisfied by the first eigenfunctions. We shall prove the following proposition.

Proposition 4.1 Let C0 > 0. There exist α0 > 0 and C > 0 such that for any α ∈ (0, α0)
and for all eigenpair (λ, ψ) of Lα satisfying λ ≤ C0α:∫

Cα
eα|z||ψ|2 dx dy dz ≤ C‖ψ‖2L2(Cα), (4.1)

and
QA(eα|z|ψ) ≤ Cα‖ψ‖2L2(Cα). (4.2)

Proof: Let (λn(α), ψn,α) = (λ, ψ) an eigenpair for Lα. Let us introduce a smooth
cut-off function 0 ≤ χ ≤ 1 such that χ = 1 on [−1, 1] and χ(z) = 0 for |z| ≥ 2 and let us
also consider, for R ≥ 1:

ΦR(z) = αχ
( z
R

)
|z|.

We can write the Agmon identity:

QA(eΦRψ) = λ‖eΦRψ‖2L2(Cα) − ‖∇ΦRe
ΦRψ‖2L2(Cα).

We have λ ≤ C0α. Moreover we have ‖∇ΦR‖ ≤ α + 2α‖χ′‖∞. There exists α0 > 0 such
that for α ∈ (0, α0) and all R ≥ 1, we have:

QA(eΦRψ) ≤ Cα‖eΦRψ‖2L2(Cα).

We introduce a partition of unity with respect to z:

χ2
1(z) + χ2

2(z) = 1,

where χ1(z) = 1 for 0 ≤ z ≤ 1 and χ1(z) = 0 for z ≥ 2. For j = 1, 2 and γ > 0, we let:

χj,γ(z) = χj(γ
−1z),

13



so that:
‖χ′j,γ‖L∞(Cα) ≤ Cγ−1.

The “IMS” formula provides:

QA(eΦRχ1,γψ) +QA(eΦRχ2,γψ)− C2γ−2‖eΦRψ‖2L2(Cα) ≤ Cα‖e
ΦRψ‖2L2(Cα). (4.3)

We want to write a lower bound for QA(eΦRχ2,γψ). In order to do that we integrate by
slices and neglect the z-derivative part:

QA(eΦRχ2,γψ) ≥
∫
z>0

(∫
x2+y2≤z2 tan2 α

2

|(−i∇+ A)(eΦRχ2,γψ)|2 dx dy

)
dz

≥
∫
z>0

(∫
x2+y2≤z2 tan2 α

2

|(Dx − y
2 )(eΦRχ2,γψ)|2 + |(Dy + x

2 )(eΦRχ2,γψ)|2 dx dy

)
dz.

Let us denote by µ1 (ρ) the lowest eigenvalue of
(
Dx − y

2

)2
+
(
Dy + x

2

)2
on the disk D(0, ρ)

with Neumann condition. From the min-max principle, we infer:

QA(eΦRχ2,γψ) ≥
∫
Cα
µ1

(
z tan α

2

)
|eΦRχ2,γψ|2 dx dy dz. (4.4)

We choose γ = 2R0
α . On the support of χ2,γ , we have:

z tan α
2 ≥ z

α
2 ≥ R0.

We recall (see [1, 6]) that there exists ρ0 > 0 such that, for ρ̃0 ≥ ρ0:

µ1(ρ̃0) ≥ Θ0

2
. (4.5)

We choose R0 = ρ0. With (4.3), (4.4) and (4.5), we infer:∫
Cα

(
Θ0

2
− C(R0)(α+ α2)

)
|eΦRχ2,γψ|2 dx dy dz ≤ C(R0)‖eΦRχ1,γψ‖2L2(Cα).

We deduce that there exist α0 > 0, C > 0 such that for α ∈ (0, α0) and R > 0:∫
Cα
|eΦRχ2,γψ|2 dx dy dz ≤ C‖eΦRχ1,γψ‖2L2(Cα).

With our choice of γ(= 2R0α
−1), we infer:∫

Cα
|eΦRχ2,γψ|2 dx dy dz ≤ C‖ψ‖2L2(Cα),

and ∫
Cα
|eΦRψ|2 dx dy dz ≤ C‖ψ‖2L2(Cα).

Taking the limit R→ +∞ and using the Fatou lemma, it follows:∫
Cα
eα|z||ψ|2 dx dy dz ≤ C‖ψ‖2L2(Cα),

which is (4.1). Using again (4.3), we infer (4.2).

Remark 4.2 We can guess with the construction of quasimodes given in Section 3 that
the decay of Proposition 4.1 is not optimal. Nevertheless this rough Agmon estimate is
enough to establish the optimal length scale (z ∼ α−1/2 or t ∼ 1) in Proposition 6.3. In
addition, once Theorem 1.3 will be proved we will know that the quasimodes of Section 3
actually approximate the eigenfunctions which inherit the same decay.
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5 Axisymmetry of the first eigenfunctions

In this section, we prove that the first eigenfunctions of Lα are axisymmetric as soon as α
is small anough.

Notation 5.1 From Propositions 1.2 and 3.1, we infer that, for all n ≥ 1, there exists
αn > 0 such that if α ∈ (0, αn), the n-th eigenvalue λ̃n(α) of Lα exists. Due to the fact
that −i∂θ commutes with the operator, one deduces that for each n ≥ 1, we can consider
a basis (ψn,j(α))j=1,···J(n,α) of the eigenspace of Lα associated with λ̃n(α) such that

ψn,j(α)(t, θ, ϕ) = eimn,j(α)θΨn,j(t, ϕ).

As an application of the localization estimates of Section 4, we prove the following propo-
sition.

Proposition 5.2 For all n ≥ 1, there exists αn > 0 such that if α ∈ (0, αn), we have:

mn,j(α) = 0, ∀j = 1, . . . , J(n, α).

In other words, the functions of the n-th eigenspace are independent from θ as soon as α
is small enough.

In order to succeed, we use a contradiction argument: We consider an L2-normalized
eigenfunction of Lα associated to λ̃n(α) in the form eim(α)θΨα(t, ϕ) and we assume that
there exists α > 0 as small as we want such that m(α) 6= 0 or equivalently |m(α)| ≥ 1.

We introduce a smooth cut-off function χα,η(t) = χ
(
α

1
2

+ηt
)

where χ is 1 near 0, and

η ∈
(
0, 1

100

)
. For short, we let:

Ψcut(t, ϕ) = χα,η(t)Ψα(t, ϕ).

5.1 Dirichlet condition on the axis ϕ = 0

Let us prove the following lemma.

Lemma 5.3 For all t > 0, we have Ψcut(t, 0) = 0.

Proof: We recall the eigenvalue equation:

Lα,m(α)Ψα = λ̃n(α)Ψα,

so that:
Lα,m(α)Ψ

cut = λ̃n(α)Ψcut + [Lα,m(α), χα,η]Ψα. (5.1)

Thanks to Agmon’s estimates and to Corollary 3.4, we deduce:

Qα,m(α)(Ψ
cut) ≤ C‖Ψcut‖2L2(R, dµ).

This implies:∫
R

1

t2 sin2(αϕ)

(
m(α) +

sin2(αϕ)

2α
t2
)2

|Ψcut(t, ϕ)|2 dµ ≤ C‖Ψcut‖2L2(R,dµ) < +∞.

Using the inequality (a+ b)2 ≥ 1
2a

2 − 2b2, it follows:

m(α)2

2

∫
R

1

t2 sin2(αϕ)
|Ψcut(t, ϕ)|2 dµ− 2

∫
R

t2 sin2(αϕ)

4α2
|Ψcut(t, ϕ)|2 dµ < +∞,
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so that:

m(α)2

∫
R

1

t2 sin2(αϕ)
|Ψcut(t, ϕ)|2 dµ < +∞,

and: ∫
R

1

t2 sin2(αϕ)
|Ψcut(t, ϕ)|2 dµ < +∞. (5.2)

Therefore, for almost all t > 0, we have:∫ 1
2

0

1

sin2(αϕ)
|Ψcut(t, ϕ)|2 sin(αϕ) dϕ < +∞. (5.3)

The function R 3 (t, ϕ) 7→ Ψcut(t, ϕ) is smooth by elliptic regularity inside Cα (thus R).
In particular, it is continuous at ϕ = 0. By the integrability property (5.3), this imposes
that, for all t > 0, we have Ψcut(t, 0) = 0.

5.2 The operator −(sin(αϕ))−1∂ϕ sin(αϕ)∂ϕ

Notation 5.4 For α ∈ (0, π), let us consider the operator on L2
((

0, 1
2

)
, sin(αϕ) dϕ

)
de-

fined by:

Pα = − 1

sin(αϕ)
∂ϕ sin(αϕ)∂ϕ,

with domain:

Dom (Pα) =
{
ψ ∈ L2

(
(0, 1

2), sin(αϕ) dϕ
)
,

1

sin(αϕ)
∂ϕ sin(αϕ)∂ϕψ ∈ L2

(
(0, 1

2), sin(αϕ) dϕ
)
, ∂ϕψ

(
1
2

)
= 0, ψ(0) = 0

}
.

We denote by ν1(α) its first eigenvalue.

The aim of this subsection is to establish the following lemma:

Lemma 5.5 There exists c0 > 0 such that for all α ∈ (0, π):

ν1(α) ≥ c0.

Proof: We consider the associated quadratic form pα:

pα(ψ) =

∫ 1
2

0
sin(αϕ)|∂ϕψ|2 dϕ.

We have the elementary lower bound:

pα(ψ) ≥
∫ 1

2

0
αϕ

(
1− (αϕ)2

6

)
|∂ϕψ|2 dϕ ≥ 1

2

∫ 1
2

0
αϕ|∂ϕψ|2 dϕ,

since 0 ≤ αϕ ≤ π
2 . We are led to analyze the lowest eigenvalue γ ≥ 0 of the operator on

L2
((

0, 1
2

)
, ϕdϕ

)
defined by − 1

ϕ∂ϕϕ∂ϕ with Dirichlet condition at ϕ = 0 and Neumann

condition at ϕ = 1
2 . Let us prove that γ > 0. If it were not the case, the corresponding

eigenvector ψ would satisfy:

− 1

ϕ
∂ϕϕ∂ϕψ = 0,
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so that:
ψ(ϕ) = c lnϕ+ d, with c, d ∈ R.

The boundary conditions provide c = d = 0 and thus ψ = 0. By contradiction, we infer
that γ > 0.
We deduce that:

pα(ψ) ≥ γ

2

∫ 1
2

0
αϕ|ψ|2 dϕ ≥ γ

2

∫ 1
2

0
sin(αϕ)|ψ|2 dϕ.

By the min-max principle, we conclude that, for all α ∈ (0, π):

ν1(α) ≥ γ

2
=: c0 > 0.

5.3 End of the proof of Proposition 5.2

Let us recall that (5.1) holds so that:

Lα,m(α)(tΨ
cut) = λ̃n(α)tΨcut + t[Lα,m(α), χα,η]Ψα + [Lα,m(α), t]Ψ

cut. (5.4)

We have:

[Lα,m(α), t] = [−t−2∂tt
2∂t, t] = −2∂t −

2

t
.

We take the scalar product of the equation (5.4) with tΨcut. We notice that:

〈[Lα,m(α), t]Ψ
cut, tΨcut〉L2(R,dµ) = −2‖Ψcut‖2L2(R, dµ) + 3‖Ψcut‖2L2(R, dµ) = ‖Ψcut‖2L2(R, dµ).

The Agmon estimates provide:

|〈t[Lα,m(α), χα,η]Ψα, tΨ
cut〉L2(R, dµ)| = O(α∞)‖Ψcut‖2L2(R, dµ).

We infer:
Qα,m(α)(tΨ

cut) ≤ C(‖tΨcut‖2L2(R, dµ) + ‖Ψcut‖2L2(R, dµ)),

and especially:

α−2

∫
R
|∂ϕΨcut|2 dµ ≤ C

(
‖tΨcut‖2L2(R, dµ) + ‖Ψcut‖2L2(R, dµ)

)
.

Lemmas 5.3 and 5.5 imply that:

c0α
−2

∫
R
|Ψcut|2 dµ ≤ C

(
‖tΨcut‖2L2(R, dµ) + ‖Ψcut‖2L2(R,dµ)

)
.

Due to support considerations, we have:

c0α
−2‖Ψcut‖2L2(R, dµ) ≤ C̃

(
α−1−2η‖Ψcut‖2L2(R, dµ) + ‖Ψcut‖2L2(R, dµ)

)
.

We infer that, for α small enough, Ψcut = 0. With the Agmon estimates, this implies that
Ψα = 0, and this is a contradiction.
This ends the proof of Proposition 5.2.
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6 Accurate estimate of the spectral gap

This section is devoted to the proof of the following proposition.

Proposition 6.1 For all n ≥ 1, there exists α0(n) > 0 such that, for all α ∈ (0, α0(n)),
the n-th eigenvalue exists and satisfies:

λn(α) ≥ γ0,nα+ o(α),

or equivalently λ̃n(α) ≥ γ0,n + o(1).

We first establish approximation results satisfied by the eigenfunctions in order to
investigate their behavior with respect to the t-variable. Then, we can apply a reduction
of dimension and we are reduced to a family of 1D model operators which is studied in
Appendix C.

6.1 Approximation of the eigenfunctions

Let us consider N ≥ 1 and let us introduce:

EN (α) = span{ψcut
n,1(α), 1 ≤ n ≤ N},

where ψcut
n,1(α)(t, θ, ϕ) = χα,η(t)Ψn,1(t, ϕ) are considered as functions defined in P (see

Notation 5.1).

Proposition 6.2 For all N ≥ 1, there exist α0(N) > 0 and CN > 0 such that, for all
ψ ∈ EN (α):

‖t−1(ψ − ψ)‖2L2(P, dµ̃) ≤ CNα
2‖ψ‖2L2(P, dµ̃), (6.1)

‖ψ − ψ‖2L2(P, dµ̃) ≤ CNα
2
(
‖ψ‖2L2(P, dµ̃) + ‖tψ‖2L2(P, dµ̃)

)
, (6.2)

‖t(ψ − ψ)‖2L2(P, dµ̃) ≤ CNα
2
(
‖ψ‖2L2(P, dµ̃) + ‖tψ‖2L2(P, dµ̃) + ‖t2ψ‖2L2(P, dµ̃)

)
, (6.3)

where:

ψ(t) =
1∫ 1

2
0 ϕdϕ

∫ 1
2

0
ψ(t, ϕ)ϕdϕ. (6.4)

Proof: It is sufficient to prove the proposition for ψ = ψcut
n,1(α) and 1 ≤ n ≤ N . We

have:
LαΨn,1(α) = λ̃n(α)Ψn,1(α).

It follows:
Lαχα,ηΨn,1(α) = λ̃n(α)χα,ηΨn,1(α) + [Lα, χα,η]Ψn,1(α). (6.5)

Due to Agmon’s estimates (see Proposition 4.1), we can write:

Qα(ψ) ≤ (λ̃N (α) +O(α∞))‖ψ‖2L2(P, dµ̃).

In particular, this provides:
Qα(ψ) ≤ C‖ψ‖2L2(P,dµ̃),

and thus, seeing ψ as a function on P:

1

α2

∫
P
t−2|∂ϕψ|2 dµ̃ ≤ C‖ψ‖2L2(P, dµ̃).
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We get: ∫
P
|∂ϕψ|2 sinαϕdt dθ dϕ ≤ Cα2‖ψ‖2L2(P,dµ̃),

so that (using the inequality sin(αϕ) ≥ αϕ
2 ):∫

P

αϕ

2
|∂ϕψ|2 dtdθ dϕ ≤ Cα2‖ψ‖2L2(P, dµ̃).

We infer: ∫
P
αϕ|∂ϕ(ψ − ψ)|2 dtdθ dϕ ≤ Cα2‖ψ‖2L2(P, dµ̃).

Let us consider the Neumann realization of the operator − 1
ϕ∂ϕϕ∂ϕ on L2((0, 1

2), ϕdϕ).
The first eigenvalue is simple, equal to 0 and associated to constant functions. Let δ > 0
be the second eigenvalue. The function ψ − ψ is orthogonal to constant functions in

L2((0, 1
2)ϕdϕ) by definition (6.4). Then, we apply the min-max principle to ψ − ψ and

deduce: ∫
P
δαϕ|ψ − ψ|2 dt dθ dϕ ≤ Cα2‖ψ‖2L2(P, dµ̃),

and: ∫
P
t−2|ψ − ψ|2 dµ̃ ≤ C̃α2‖ψ‖2L2(P, dµ̃),

which ends the proof of (6.1). We multiply (6.5) by t and we take the scalar product with
tψ to get:

Qα(tψ) ≤ λ̃N (α)‖tψ‖2L2(P,dµ̃) +
∣∣〈[−t−2∂tt

2∂t, t]ψ, tψ〉L2(P, dµ̃)

∣∣+O(α∞)‖ψ‖2L2(P, dµ̃).

We recall that:

[−t−2∂tt
2∂t, t] = −2∂t −

2

t
.

We get:
Qα(tψ) ≤ C‖tψ‖2L2(P, dµ̃) + C‖ψ‖2L2(P,dµ̃).

We deduce (6.2) in the same way as (6.1).
Finally, we multiply (6.5) by t2 and take the scalar product with t2ψ to get:

Qα(t2ψ) ≤ λ̃N (α)‖t2ψ‖2L2(P,dµ̃) +
∣∣〈[−t−2∂tt

2∂t, t
2]ψ, t2ψ〉L2(P, dµ̃)

∣∣+O(α∞)‖ψ‖2L2(P, dµ̃).

The commutator is:
[−t−2∂tt

2∂t, t
2] = −6− 4t∂t.

This implies:

Qα(t2ψ) ≤ C(‖ψ‖2L2(P,dµ̃) + ‖tψ‖2L2(P, dµ̃) + ‖t2ψ‖2L2(P, dµ̃)).

The approximation (6.3) follows.
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6.2 Control of the eigenfunctions with respect to t

Proposition 6.3 For all N ≥ 1, there exist α0(N) > 0 and C > 0 such that, for all
α ∈ (0, α0(N)) and ψ ∈ EN (α), we have:

‖tψ‖L2(P, dµ̃) ≤ C‖ψ‖L2(P, dµ̃). (6.6)

Proof: It is again enough to prove the proposition for ψ = ψcut
n,1(α) and 1 ≤ n ≤ N .

We have:
Qα(ψ) ≤ C‖ψ‖2L2(P, dµ̃),

and this implies in particular that:∫
P

sin2(αϕ)

4α2
t2|ψ|2 dµ̃ ≤ C‖ψ‖2L2(P,dµ̃). (6.7)

We now want to replace ψ by ψ. For that purpose, we write:∫
P

sin2(αϕ)

4α2
t2|ψ|2 dµ̃−

∫
P

sin2(αϕ)

4α2
t2|ψ|2 dµ̃ =

∫
P

sin2(αϕ)

4α2

(
|tψ|2 − |tψ|2

)
dµ̃.

We infer:∣∣∣∣∫
P

sin2(αϕ)

4α2
t2|ψ|2 dµ̃−

∫
P

sin2(αϕ)

4α2
t2|ψ|2 dµ̃

∣∣∣∣
≤ C‖tψ − tψ‖L2(P, dµ̃)

(
‖tψ‖L2(P, dµ̃) + ‖tψ‖L2(P,dµ̃)

)
. (6.8)

Let us compare ‖tkψ‖L2(P, dµ̃) and ‖tkψ‖L2(P, dµ̃) for k = 0, 1. Using the Jensen inequality

and the comparison αϕ
2 ≤ sinαϕ ≤ αϕ available for any ϕ ∈ (0, 1

2), α ∈ (0, π), we have

(denoting c−1 =
∫ 1

2
0 ϕdϕ):

‖ψ‖2L2(P, dµ̃) = c2

∫
t>0

∫ 2π

θ=0

∫ 1/2

φ=0

(∫ 1/2

ϕ=0
ψ(t, ϕ)ϕdϕ

)2

t2 sinαφdtdθ dφ

≤ C

∫
t>0

∫ 2π

θ=0

∫ 1/2

φ=0

sinαφ

α

(∫ 1/2

ϕ=0
|ψ(t, ϕ)|2αϕdϕ

)
t2 dtdθ dφ

≤ C‖ψ‖2L2(P,dµ̃),

and similarly:

‖tψ‖2L2(P, dµ̃) = c2

∫
t>0

∫ 2π

θ=0

∫ 1/2

φ=0
t2

(∫ 1/2

ϕ=0
ψ(t, ϕ)ϕdϕ

)2

t2 sinαφdt dθ dφ

≤ C

∫ 1/2

φ=0

sinαφ

α
dφ

∫
t>0

∫ 2π

θ=0
t2
∫ 1/2

ϕ=0
|ψ(t, ϕ)|2 t2αϕdt dθ dϕ

≤ C‖tψ‖2L2(P, dµ̃). (6.9)

Then, putting together (6.7), (6.8) and (6.9), we deduce:∫
P

sin2(αϕ)

4α2
t2|ψ|2 dµ̃ ≤ C‖ψ‖2L2(P,dµ̃) + C‖tψ‖L2(P,dµ̃)‖tψ − tψ‖L2(P, dµ̃).
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Since ψ does not depend on the ϕ-variable, we can write:

∫
P

sin2(αϕ)

4α2
t2|ψ|2 dµ̃ =

∫ 1
2

0 sin3(αϕ) dϕ

4α2
∫ 1

2
0 sin(αϕ) dϕ

∫
P
|tψ|2 dµ̃. (6.10)

We notice that: ∫ 1
2

0 sin3(αϕ) dϕ

4α2
∫ 1

2
0 sin(αϕ) dϕ

= 2−5 +O(α2). (6.11)

Therefore, we get:∫
P
|tψ|2 dµ̃ ≤ C‖ψ‖2L2(P,dµ̃) + C‖tψ‖L2(P,dµ̃) ‖tψ − tψ‖L2(P,dµ̃).

With Proposition 6.2, we infer:

‖tψ‖2L2(P,dµ̃) ≤ C‖ψ‖
2
L2(P, dµ̃)

+ Cα‖tψ‖L2(P, dµ̃)

(
‖ψ‖L2(P, dµ̃) + ‖tψ‖L2(P, dµ̃) + ‖t2ψ‖L2(P, dµ̃)

)
. (6.12)

We use the elementary inequality:

‖tψ‖2L2(P, dµ̃) ≤ 2(‖tψ‖2L2(P, dµ̃) + ‖t(ψ − ψ)‖2L2(P, dµ̃)). (6.13)

We notice that, thanks to the support of ψ, we can write:

‖t2ψ‖L2(P,dµ̃) ≤ Cα−1/2−η‖tψ‖L2(P,dµ̃). (6.14)

Combining (6.12), (6.3) of Proposition 6.2 and (6.13), we deduce:

‖tψ‖2L2(P, dµ̃) ≤ C‖ψ‖
2
L2(P, dµ̃) + Cα1/2−η‖tψ‖2L2(P,dµ̃),

and (6.6) follows.

6.3 Proof of Proposition 6.1

We have now the elements to prove Proposition 6.1. The main idea is to apply the min-max
principle to the quadratic form Qα and to the space EN (α).

Lemma 6.4 For all N ≥ 1, there exist αN > 0 and CN > 0 such that, for all α ∈ (0, αN )
and for all ψ ∈ EN (α):∫
P

(
|∂tψ|2 + 2−5|tψ|2 +

1

α2t2
|∂ϕψ|2

)
dµ̃ ≤ λ̃N (α)‖ψ‖2L2(P,dµ̃) + CNα

1/2−η‖ψ‖2L2(P,dµ̃).

Proof: We recall that, for all ψ ∈ EN (α), we have:

Qα(ψ) ≤ λ̃N (α)‖ψ‖2L2(P, dµ̃) +O(α∞)‖ψ‖2L2(P, dµ̃).

We infer that:∫
P

(
|∂tψ|2 +

sin2(αϕ)

4α2
|tψ|2 +

1

α2t2
|∂ϕψ|2

)
dµ̃ ≤

(
λ̃N (α) +O(α∞)

)
‖ψ‖2L2(P,dµ̃).
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We shall analyze the term
∫
P

sin2(αϕ)
4α2 |tψ|2 dµ̃. We recall that (6.8) and (6.9) still hold.

With Proposition 6.3, we get:∣∣∣∣∫
P

sin2(αϕ)

4α2
t2|ψ|2 dµ̃−

∫
P

sin2(αϕ)

4α2
t2|ψ|2 dµ̃

∣∣∣∣ ≤ C‖tψ − tψ‖L2(P,dµ̃)‖ψ‖L2(P, dµ̃),

and thus:∫
P

sin2(αϕ)

4α2
t2|ψ|2 dµ̃ ≥

∫
P

sin2(αϕ)

4α2
t2|ψ|2 dµ̃− C‖tψ − tψ‖L2(P, dµ̃)‖ψ‖L2(P,dµ̃).

Relation (6.14) and Propositions 6.2 and 6.3 provide:

‖tψ − tψ‖L2(P, dµ̃) ≤ Cα1/2−η‖ψ‖L2(P,dµ̃), (6.15)

so that: ∫
P

sin2(αϕ)

4α2
t2|ψ|2 dµ̃ ≥

∫
P

sin2(αϕ)

4α2
t2|ψ|2 dµ̃− Cα1/2−η‖ψ‖2L2(P, dµ̃).

We recall that (6.10) and (6.11) hold. We deduce:∫
P

sin2(αϕ)

4α2
t2|ψ|2 dµ̃ ≥ (2−5 − Cα2)

∫
P
|tψ|2 dµ̃− Cα1/2−η‖ψ‖2L2(P, dµ̃). (6.16)

We have, for all ε ∈ (0, 1):

‖tψ‖2L2(P, dµ̃) ≥ (1− ε)‖tψ‖2L2(P,dµ̃) − ε
−1‖t(ψ − ψ)‖2L2(P, dµ̃).

Due to (6.15), it follows:

‖tψ‖2L2(P, dµ̃) ≥ (1− ε)‖tψ‖2L2(P, dµ̃) − Cε
−1α1−2η‖ψ‖2L2(P,dµ̃).

We choose ε = α1/2−η and get:

‖tψ‖2L2(P, dµ̃) ≥ (1− α1/2−η)‖tψ‖2L2(P, dµ̃) − Cα
1/2−η‖ψ‖2L2(P, dµ̃).

Proposition 6.3 and (6.16) provide:∫
P

sin2(αϕ)

4α2
t2|ψ|2 dµ̃ ≥ 2−5

∫
P
|tψ|2 dµ̃− Cα1/2−η‖ψ‖2L2(P, dµ̃).

A straightforward consequence of Lemma 6.4 is:

Lemma 6.5 For all N ≥ 1, there exist αN > 0 and CN > 0 such that, for all α ∈ (0, αN )
and for all ψ ∈ EN (α):∫

P

(
|∂tψ|2 + 2−5|tψ|2 +

1

α2t2
|∂ϕψ|2

)
dµ̆ ≤

(
λ̃N (α) + CNα

1/2−η
)
‖ψ‖2L2(P, dµ̆),

with dµ̆ = t2ϕdtdϕdθ.

Proof: It is sufficient to write for any ϕ ∈ (0, 1
2):

ϕ =
1

α
sin(αϕ)

αϕ

sin(αϕ)
=

1

α
sin(αϕ)(1 +O(α2)) as α→ 0.

Combining Lemma 6.5 and Corollary C.3, we deduce (from the min-max principle) that
there exists αN such that

∀α ∈ (0, αN ), λ̃N (α) ≥ lN − Cα1/2−η.

This achieves the proof of Proposition 6.1.
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7 Numerical simulations

In this section, we illustrate the asymptotics expansion for the low-lying eigenpairs of Lα,0
denoted by (ln(α), un(α))n≥1. According to Section 3 and Theorem 1.3, we have for α
small enough

ln(α) = ln +O(α2), and ‖un(α)− fn‖L2(R, dµ) ≤ Cα2.

Numerically, we compute the eigenpairs of the operator Lα,0 on the rectangle R` = (0, `)×
(0, 1

2) with a Dirichlet condition on the artificial boundary t = `. We denote then by L`α,0
this operator and (ln(α, `), un(α, `)) its eigenpairs. We use the finite elements library
Mélina ([13]) with 40× 10 square elements of degree Q10 and ` = 40. Figures 2 illustrate
the convergence of the low-lying eigenvalues as α tends to 0. In particular, Figure 2(a)
displays the first term of the asymptotic expansion of the eigenvalues, whereas Figure 2(b)
confirms the asymptotic expansion in powers of α2: we represent on Figure 2(b) the
function

log10
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π

)
7→ ρn,1(α) = log10(ln(α, `)− ln).
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Figure 2: Approximations of ln(α) for 0 ≤ α ≤ 0.1, 1 ≤ n ≤ 12, ` = 40.

A Spherical coordinates

In dilated spherical coordinates (t, θ, ϕ) ∈ P such that

(x, y, z) = Φ(t, θ, ϕ) = α−1/2(t cos θ sinαϕ, t sin θ sinαϕ, t cosαϕ),

the magnetic potential reads

A(t, θ, ϕ) =
α−1/2

2
(−t sin θ sinαϕ, t cos θ sinαϕ, 0)T.
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The Jacobian matrix associated with Φ is

DΦ(t, θ, ϕ) = α−1/2

cos θ sinαϕ −t sin θ sinαϕ α t cos θ cosαϕ
sin θ sinαϕ t cos θ sinαϕ α t sin θ cosαϕ

cosαϕ 0 −α t sinαϕ

 .

We can compute

(DΦ)−1(t, θ, ϕ) = α1/2t−1

 t cos θ sinαϕ t sin θ sinαϕ t cosαϕ
− sin θ(sinαϕ)−1 cos θ(sinαϕ)−1 0

1
α cos θ cosαϕ 1

α sin θ cosαϕ − 1
α sinαϕ

 .

Consequently, the metric becomes

G = (DΦ)−1 T(DΦ)−1 = α

1 0 0
0 t−2(sinαϕ)−2 0
0 0 (αt)−2

 .

The change of variables leads to define the new magnetic potential

Ã(t, θ, ϕ) = TDΦ A(t, θ, ϕ) = α−1

(
0,
t2 sin2 αϕ

2
, 0

)
. (A.1)

Let ψ be a function in the form domain H1
A(Cα) of the Schrödinger operator (−i∇ + A)2

and ψ̃(t, θ, ϕ) = α−1/4ψ(x, y, z) (where α−1/4 is a normalization coefficient). The change
of variables on the norm and quadratic form reads

‖ψ‖2L2(Cα) =

∫
P
|ψ̃(t, θ, ϕ)|2 t2 sinαϕdtdθ dϕ,

∫
Cα
|(−i∇+ A)ψ(x, y, z)|2 dx dy dz

=

∫
P
〈G(−i∇t,θ,ϕ + Ã)ψ̃, (−i∇t,θ,ϕ + Ã)ψ̃〉 t2 sinαϕdtdθ dϕ

= α

∫
P

(
|∂tψ̃|2 +

1

t2 sin2 αϕ

∣∣∣∣(−i∂θ +
t2 sin2 αϕ

2α

)
ψ̃

∣∣∣∣2 +
1

α2t2
|∂ϕψ̃|2

)
t2 sinαϕdt dθ dϕ.

B Normal coordinates

Let us introduce the system of coordinates associated with the exponential map of the
cone (see Figure 3). We can use the new coordinates (ρ, θ, τ) in the orthonormal basis

eθ =

 − sin θ
cos θ

0

 , eρ =

 sin α
2 cos θ

sin α
2 sin θ

cos α2

 , eτ =

 − cos α2 cos θ
− cos α2 sin θ

sin α
2

 .

We consider the following change of variables

Φ(ρ, θ, τ) = (x, y, z) =

 (ρ sin α
2 − τ cos α2 ) sin θ

(ρ sin α
2 − τ cos α2 ) cos θ

ρ cos α2 + τ sin α
2

T

,
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α

Cα

eρ
eτ

Figure 3: Normal coordinates.

whose differential is given by

DΦ(ρ, θ, τ) =

 sin α
2 cos θ −(ρ sin α

2 − τ cos α2 ) sin θ − cos α2 cos θ
sin α

2 sin θ (ρ sin α
2 − τ cos α2 ) cos θ − cos α2 sin θ

cos α2 0 sin α
2

 .

Thus

TDΦ(ρ, θ, τ) =

 sin α
2 cos θ sin α

2 sin θ cos α2
−(ρ sin α

2 − τ cos α2 ) sin θ (ρ sin α
2 − τ cos α2 ) cos θ 0

− cos α2 cos θ − cos α2 sin θ sin α
2

 ,

( TDΦ DΦ)−1 =

 1 0 0
0 (ρ sin α

2 − τ cos α2 )−2 0
0 0 1

 ,

and detDΦ = ρ sin α
2 − τ cos α2 . The considered magnetic potential is

A =
1

2

 −yx
0

 =
1

2

 −(ρ sin α
2 − τ cos α2 ) sin θ

(ρ sin α
2 − τ cos α2 ) cos θ

0

 .

The change of variables leads to consider the new magnetic potential :

Â = TDΦ A =
1

2

 0
(ρ sin α

2 − τ cos α2 )2

0

 .

Thus the quadratic form QA becomes in the new coordinates

QA(ψ) = ‖(−i∇+ A)ψ‖2L2(Cα) = Q̂α(ψ̂)

=

∫
Dα

(
|∂ρψ̂|2 +

1

(ρ sin α
2 − τ cos α2 )2

∣∣∣(i∂θ + 1
2(ρ sin α

2 − τ cos α2 )2
)
ψ̂
∣∣∣2 + |∂τ ψ̂|2

)
dµ̂,

(B.1)

with dµ̂ = (ρ sin α
2 − τ cos α2 ) dρdθ dτ and

Dα = {(ρ, θ, τ) ∈ R3, ρ > 0, θ ∈ [0, 2π), τ ∈ (0, ρ tan α
2 )}.
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C Model operators

Proposition C.1 Let Hω be defined on L2(R+, t
2 dt) by

Hω = − 1

t2
∂tt

2∂t + t2 +
ω2

t2
.

The eigenmodes of Hω are (lωn , f
ω
n)n≥1 given by

lωn = 4n− 2 +
√

1 + 4ω2, fn(t) = Pωn (t2) e−t
2/2,

with Pωn a polynomial function of degree n− 1.

Proof: We recognize partially in Hω the radial part of the harmonic oscillator. We
first conjugate the operator Hω by tγet

2/2 with a good choice for γ. We have

t−γet
2/2Hω(tγe−t

2/2u) = −∂2
t u+ 2

(
t− (γ + 1)

1

t

)
∂tu+ (2γ + 3)u+ (ω2 − γ(γ + 1))

1

t2
.

We cancel the term in t−2 by choosing

γ =
−1 +

√
1 + 4ω2

2
.

This choice leads to deal with the following operator acting on L2(t2(1+γ)e−t
2

dt):

t−γet
2/2Hωt

γe−t
2/2 = −∂2

t +

(
2t− (1 +

√
1 + 4ω2)

1

t

)
∂t + 2 +

√
1 + 4ω2.

The change of variables r = t2 transforms the operator on

−4r∂2
r + 4

(
r − 1−

√
1 + 4ω2

2

)
∂r + 2 +

√
1 + 4ω2,

acting on L2(R+, r
1+γe−r dr). This operator is symmetric and stabilizes the polynomial

functions of degree at most n − 1. Therefore it can be diagonalized on Rn−1[X] and by
identification, we determine a sequence of eigenpairs (4n − 2 +

√
1 + 4ω2, Pωn ), with Pωn

a polynomial function of degree n − 1. Since the family (Pωn ) is total, the spectrum is
completely determined.

Corollary C.2 The eigenmodes of the operator

H̃ = − 1

t2
∂tt

2∂t +
1

25
t2,

defined on L2(R+, t
2 dt) are given by

ln = 2−5/2(4n− 1), fn(t) = 2−5/4f0n(2−5/4t) = 2−5/4P 0
n(2−5/4t)e−t

2/27/2 .

Proof: It is enough to apply Proposition C.1 with ω = 0 and make the change of
variable t̃ = 2−5/4t.
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Corollary C.3 Let T(α) be the Neumann realization on L2(P, dµ̆) ( dµ̆ = t2ϕdtdθ dϕ):

T(α) = − 1

t2
∂tt

2∂t + 2−5t2 − 1

α2t2ϕ
∂ϕϕ∂ϕ.

We denote by l̆n(α) the n-th eigenvalue of T(α). Then, for all N ≥ 1, there exists αN
such that

∀1 ≤ n ≤ N, ∀α ∈ (0, αN ), l̆n(α) = ln.

Proof: Let us first realize the change of variable t̃ = 2−5/4t, the operator T(α) reads

T(α) = 2−5/2

(
− 1

t2
∂tt

2∂t + t2 − 1

α2t2ϕ
∂ϕϕ∂ϕ

)
.

Let us denote by (ck)k≥1 the increasing sequence of the eigenvalues of − 1
ϕ∂ϕϕ∂ϕ on

L2((0, 1
2), ϕdϕ). We notice that c1 = 0 and that ck > 0 for k ≥ 2. The spectrum of

T(α) is then given by

sp(T(α)) = 2−5/2
∞⋃
k=1

sp

(
− 1

t2
∂tt

2∂t + t2 +
ck
α2t2

)
.

Applying Proposition C.1 with ω =
√
ck/α, we deduce

sp(T(α)) =

{
2−5/2

(
4n− 2 +

√
1 +

4ck
α2

)
, n ≥ 1, k ≥ 1

}
.

This implies that the lowest eigenvalues of T(α) are the lowest eigenvalues of the operator
−t−2∂tt

2∂t + 2−5t2, that is to say ln, as soon as α is small enough.
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