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Abstract

We present here a simplified version of results obtained with F. Alouges,
M. Dauge, B. Helffer and G. Vial (cf [4, 7, 9]). We analyze the Schrödinger
operator with magnetic field in an infinite sector. This study allows to deter-
mine accurate approximation of the low-lying eigenpairs of the Schrödinger
operator in domains with corners. We complete this analysis with numerical
experiments.
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1 Introduction

Let Ω ⊂ R2 be an open, simply connected domain with Lipschitz boundary and
let ν be the unit outer normal on the boundary Γ = ∂Ω. We assume that ν is well
defined on Γ with the possible exception of a finite number of points (the corners
of Ω). We consider a cylindrical superconducting sample of cross section Ω and
we apply a constant magnetic field of intensity σ along the cylindrical axis. We
denote by κ the characteristic of the sample, called the “Ginzburg-Landau param-
eter” and consider κ large (corresponding to a type II superconductor). Then, up
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to normalization factors, the free energy writes

G(ψ,A) =
1

2

∫

Ω

(
|(∇− iκA)ψ|2 +

κ2

2
(|ψ|2 − 1)2 + κ2|curl A− σ|2

)
dx.

(1)
The superconducting properties are described by the minimizers (ψ,A) of this
Ginzburg-Landau functional G. The complex-valued function ψ is the order pa-
rameter (cf [13]) ; the magnitude |ψ|2 represents the density of superconducting
electrons and the phase determines the current flow. The vector field A defined
on R2 is the magnetic potential and B = curl A is the induced magnetic field.
To determine the onset of the superconductivity, we linearize the Euler equation
associated with (1) near the normal state (ψ,A) = (0, σA0) , where

A0 : =
1

2
(x2,−x1). (2)

From now, we put A = A0 and assume Ω bounded. Defining the change of
parameter h = 1

κσ , we are interested in the asymptotic behavior, when h → 0, of
the Neumann realization Ph of the Schrödinger operator with a magnetic field and
semi-classical parameter h > 0. We define the associated quadratic form ph on
H1(Ω) by :

ph(u) =

∫

Ω

|(h∇− iA)u(x)|2 dx.

This leads to define the operator Ph = −(h∇− iA)2 on D(Ph) with :

D(Ph) =
{
u ∈ H2(Ω), ν · (h∇− iA)u

∣∣
Γ

= 0
}
.

It is well known that the spectrum of the operator Ph,A is invariant by gauge trans-
formation. So, when Ω is simply connected, the spectrum of Ph depends only
on the magnetic field and not on the choice of the corresponding magnetic po-
tential. Then, we denote by µh,n the n-th eigenvalue of Ph for any A′ such that
curl A′ = curl A.
Many papers have been devoted to this problem among which we quote the works
by Bernoff-Sternberg [3], Lu-Pan [19, 20], Helffer-Mohamed [15, 16] and more
recently Fournais-Helffer [12]. These papers deal with the case of regular do-
mains and propose an asymptotics of the bottom of the spectrum. Although the
interest for a non smooth domain is often mentioned in the physical literature,
there are very few mathematical papers : We only know the contributions by Pan
[22] and Jadallah [18] which deal with very particular domains like a square or a

2



quarter plane. Our goal is to give asymptotics for the low-lying eigenvalues and
localization of the corresponding eigenvectors in a domain with corners.
In the analysis of smooth domains, the model operator −(∇ − iA)2 on R2 and
R × R+ was playing an important role. Our new model for domains with cor-
ners is the operator −(∇ − iA)2 in angular sectors. We analyze this model in
Section 2. We recall results proved in [7]. We use these results, in Section 3,
to construct quasi-modes for the operator Ph in polygonal domain. This gives
the asymptotics of µh,n when the domain in a polygon in Section 4. We propose
also some numerical experiments which show the decay of the eigenfunctions, the
convergence of the eigenvalues and a numerical illustration of a tunnelling effect.
The bottom of the spectrum of the Schrödinger operator with magnetic field on
an infinite sector is an eigenvalue when the opening is less than π/2 whereas it
equals the bottom of the essential spectrum for the half-plane. This generates
very different results for a polygonal domain and for a smooth domain.

2 The model case of an infinite sector

This section is devoted to the analysis of the Neumann realization of the Schrödin-
ger operator with magnetic field−(∇−iA)2 on an infinite sector. We recall results
developed in [5, 7] and we just propose some sketches of proofs here.

2.1 Notations

LetGα be the sector inR2 with opening α and X = (X1, X2) the coordinates on the
sector. The Neumann realization Qα of the Schrödinger operator with magnetic
field −(∇ − iA)2 on Gα is associated with the quadratic form qα defined on the
variational space V(qα) as follows :

V(qα) =
{

Ψ ∈ L2(Gα), (∇− iA)Ψ ∈ L2(Gα)
}
, (3)

qα(Ψ) =

∫

Gα

|(∇− iA)Ψ(X)|2 dX, ∀Ψ ∈ V(qα). (4)

The norm attached with the space V(qα) is

||Ψ||2V(qα) = ||Ψ||2L2(Gα) + ||(∇− iA)Ψ||2L2(Gα).
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Note that if Ψ ∈ V(Gα), then for any ball B, Ψ ∈ H1(Gα ∩ B). We denote by
Qα the operator associated with the form qα. Then,

Qα = −(∇− iA)2,

is defined on D(Qα) with :

D(Qα) =
{

Ψ ∈ V(qα), (∇− iA)2Ψ ∈ L2(Gα), ν · (∇− iA)Ψ
∣∣
∂Gα = 0

}
.

Definition 2.1. Let µk(α) be the k−th smallest element of the spectrum of Qα,
given by the max-min principle:

µk(α) = max
Ψ1,··· ,Ψk−1

min

{
qα(Ψ)

〈Ψ, Ψ〉
, Ψ ∈ V(qα), Ψ ∈ [Ψ1, · · · , Ψk−1]

⊥
}

. (5)

Here 〈·, ·〉 denotes the hermitian scalar product of L2(Gα).

2.2 Essential spectrum

Proposition 2.2. The infimum of the essential spectrum of Qα is equal to Θ0 :=
µ1(π).

Proof. This result is a consequence of the Persson Lemma (cf [23]) which can be
generalized to unbounded domains of R2 and Neumann realizations :

Lemma 2.3. Let Ω be an unbounded domain of R2 with Lipschitz boundary. We
denote by inf σess(−(∇− iA)2) the bottom of the essential spectrum, then :

inf σess(−(∇− iA)2) = lim
r→∞

Σr(−(∇− iA)2), (6)

with, denoting Ωr = {X ∈ Ω| |X| > r} :

Σr(−(∇− iA)2) : = inf
φ∈C∞

0
(Ωr),φ '=0

∫

Ω

|(∇− iA)φ(X)|2 dX

∫

Ω

|φ(X)|2 dX

. (7)

Relying on this lemma, we use a partition of unity which splits the sector into three
subdomains which can be compared to the modelsR2 orR × R+ respectively.
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2.3 Decay of eigenfunctions

Proposition 2.4. Let k be a positive integer and α > 0 such that µk(α) < Θ0.
We denote by Ψα

k a normalized eigenfunction associated with µk(α). Then Ψα
k

satisfies the following exponential decay estimate

∀ε > 0, ∃Cε,α :

∣∣∣∣

∣∣∣∣ e
(√

Θ0−µk(α)−ε
)
|X| Ψα

k

∣∣∣∣

∣∣∣∣
V(qα)

≤ Cε,α. (8)

Proof. Agmon’s estimates (cf [1]) are useful to prove this result. We recall their
principle. Let φ be a uniformly lipschitzian function on Gα, then, by assumption
on Ψα

k :
∫

Gα

(
µk(α) + |∇φ|2

)
e2φ|Ψα

k |2 dX =

∫

Gα

|(∇− iA)(eφΨα
k )|2 dX. (9)

Let BR be the ball in R2 centered on 0 with radius R and χ1, χ2 be real, positive,
smooth functions, with support respectively in B2 and R2 \ B1, and such that
|χ1|2 + |χ2|2 ≡ 1. We define χR

j : = χj

(
.
R

)
, then :

qα(eφΨα
k ) =

2∑

j=1

qα(χR
j eφΨα

k ) − 1

R2

2∑

j=1

||eφΨα
k |∇χR

j | ||2L2(Gα).

The two last relations combined with the positivity of qα(χR
1 eφΨα

k ) lead to :

qα(χR
2 eφΨα

k ) ≤
∫

Gα

(
µk(α) + |∇φ|2 +

C

R2

)
e2φ|Ψα

k |2dX. (10)

We can prove (cf Lemma 2.3 and [7] for details) that :

qα(χR
2 eφΨα

k ) ≥
(

Θ0 −
C

R2

)
||χR

2 eφΨα
k ||2L2(Gα). (11)

To obtain aL2-estimate, we put together (10) and (11). We bound ||χR
2 eφΨα

k ||2L2(Gα)

from below by ||eφΨα
k ||2L2(Gα\B2R), choose φ(x) : =

√
Θ0 − µk(α) − ε |X| and

split the integral over Gα in two parts, respectively overGα \B2R and B2R ∩Gα.
To end the proof, it is enough to use (9) again.
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2.4 Estimates of µ1(α)

Theorem 2.5.
(i) For all α ∈ (0, π

2 ], µ1(α) < Θ0 and, therefore, µ1(α) is an eigenvalue.
(ii) There exists a real sequence (mj)j∈N, with m0 = 1/

√
3, such that :

µ1(α) ∼ α
∞∑

j=0

mjα
2j as α → 0.

Furthermore, µ1(α) ≤ α/
√

3 for any α ∈ (0, π].

Proof. After a change of variables, a scaling and a gauge transformation, we get a
new operator which is now defined on a constant domainω : = R+×

]
−1

2 ,
1
2

[
with

coordinates (t, η) (instead of the constant operator−(∇−iA)2 on an α-dependent
domain Gα). This new operator is associated with the sequilinear form :

aα(u, v) : =

∫

ω

(
2αt(Dt − η)u (Dt − η)v +

1

2αt
Dηu Dηv

)
dt dη,

defined on :

V : =

{
u ∈ L2(ω)|

√
t(Dt − η)u ∈ L2(ω),

1√
t
Dηu ∈ L2(ω)

}
,

We look for two sequences : (uk)k∈N and (mk)k∈N with mk real such that for all

n ∈ N∗, if we define U (n) =
n∑

k=0

α2kuk and µ(n)(α) =
n∑

k=0

α2kmk, then, modulo

On(α2n+2), we have :

aα(U (n), v) ≡ µ(n)(α)〈U (n), v〉L2(ω), ∀v ∈ V.

We expand the equation in powers of α and express that the coefficients of α2k

(k ≥ −1) should cancel. The construction shows that functions uk belong to the
space of polynomial functions in η whose coefficients are in S(R+).

Remark 2.6. From the expression of the form aα, we immediately see that the
function α 2→ αµ1(α) is increasing and α 2→ µ1(α)/α is decreasing over (0, 2π).
According to results on µ1(α) (cf [7]) and numerical computations (cf [4]), we
conjecture that µ1 is strictly increasing from (0, π] onto (0, Θ0] and equal to Θ0

on [π, 2π). Figure 1 presents numerical estimates of µ1(α) that we have obtained
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(with G. Vial) using a finite element method. To realize these computations, we
consider a truncated sectorGα

c . We keep Neumann magnetic boundary conditions
on the common boundary between Gα

c and Gα and a Dirichlet conditions on the
other part of the boundary of Gα

c . So we are ensured to obtain an upper-bound of
µ1(α), α ∈ {kπ/100, k = 1, . . . , 85}. For any opening, we consider a uniform
mesh with 48 quadrangular elements and a tensor product polynomial of degree
10.
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Figure 1: Estimates of µ1(α) by a finite element method.

3 Construction of quasi-modes for polygonal domains

Results presented in this section are proved in [9].

3.1 Notation and localized model operators

Let Ω ∈ R2 be a convex bounded polygon with straight edges, Σ be the set of
its vertices s, and αs be its angle at s ∈ Σ. The spectrum of Ph is in close re-
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lation with the spectra of the model operators Qαs , for s describing the set of
corners Σ. As a first step in the explanation of this relation, we introduce, for
each vertex s, the semi-model operator Q̃h,s defined by the same operator as Ph,
but on the infinite plane sector G̃s which coincides with Ω near the vertex s: Let
d = mins'=s′∈Σ d(s, s′) andRs be the rotation of angle βs such that

{Rs(x − s), x ∈ Ω ∩ B(s, d)} ⊂ Gαs ,

and let us denote
G̃s = {R−1

s X + s, X ∈ Gαs}.

Finally Q̃h,s is the operator −(h∇− iA)2 on G̃s.

Lemma 3.1. The following relation holds between the spectra of the operators
Q̃h,s and Qαs respectively denoted by σ(Q̃h,s) and σ(Qαs) :

σ(Q̃h,s) = h σ(Qαs).

The corresponding eigenvectors are deduced from each other by a change of vari-
ables and a gauge transformation

V(qαs) −→ V(q̃h,s) =
{

ψ ∈ L2(G̃s), (h∇− iA)ψ ∈ L2(G̃s)
}
,

Ψα
k 2−→ ψ̃h,s,k s.t. ψ̃h,s,k(x) = 1√

h
exp

(
i

2hx ∧ s
)

Ψα
k

(
Rs(x−s)√

h

)
.
(12)

We now use results on angular sectors and Lemma 12 to construct functions which
are good approximations of the eigenfunctions of Ph.

3.2 Quasi-modes

Lemma 3.2. Let s ∈ Σ and ds be the distance to other vertices

ds = dist(s, Σ \ {s}).

Let d′ < ds and χs be a smooth cut-off function with support in B(s, ds), equal to
1 in B(s, d′) and such that 0 ≤ χs ≤ 1.
We consider Ψαs a normalized eigenfunction of Qαs on Gαs for the eigenvalue
µk(αs). Using the transformation (12), we define :

ψ̃h,s,k(x) =
e

i
2h

x∧s

√
h

Ψαs

k

(
Rs(x − s)√

h

)
on G̃s, (13)
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ψh,s,k(x) = χs(x) ψ̃h,s,k(x) on Ω. (14)

Then, for any ε > 0, there exists Cε such that

∣∣1 − ||ψh,s,k||2Ω
∣∣ ≤ Cε exp

(
− 2√

h

(
d′

√
Θ0 − µk(αs) − ε

))
,

∣∣∣∣
ph(ψh,s,k)

||ψh,s,k||2Ω
− hµk(αs)

∣∣∣∣ ≤ Cε exp

(
− 2√

h

(
d′

√
Θ0 − µk(αs) − ε

))
,

||Phψh,s,k − hµk(αs)ψh,s,k||Ω ≤ Cε exp

(
− 1√

h

(
d′

√
Θ0 − µk(αs) − ε

))
,

where || · ||Ω denotes the L2-norm on Ω.

The proof relies on the decay of the eigenfunctions Ψαs

k . The following lemma
shows how we can split the corners of the polygon to obtain global informations.

3.3 Partition of unity

Lemma 3.3. For any s ∈ Σ, we consider a real-valued cut-off function χs with
support inB(s, ds). We assume furthermore that for any s 4= s′, suppχs∩suppχ′

s =
∅. We define χ0 on Ω by χ2

0 = 1 −
∑

s∈Σ χ2
s . Then, for any ψ̃ ∈ H1(Ω),

ph(ψ̃) =
∑

s∈Σ∪{0}

ph(χsψ̃) − h2
∑

s∈Σ∪{0}

||ψ̃∇χs||2L2(Ω).

4 Approximation of σ(Ph) with the model operators

4.1 Asymptotics

Notation 4.1. Let us denote by λn the n−th eigenvalue of ⊕s∈ΣQαs counted with
multiplicity as defined by the min-max principle, and let N be the largest integer
such that λN < Θ0. We assume that N ≥ 1. For any n ≤ N , we denote by Σn

the subset of vertices

Σn =
{
s ∈ Σ, λn is an eigenvalue for Qαs

}
,

9



and by rn the distance

rn = r(λn) = min
s∈Σn

d(s, Σ \ {s}).

Let n ≤ N . We denote by µh,n the n−th eigenvalue of Ph counted with mul-
tiplicity. For any s ∈ Σn, we denote by Ψαs a normalized eigenvector for Qαs

associated with λn and by ψ̃h,s the function deduced from Ψαs by (13), then ψ̃h,s

is a normalized eigenfunction of Q̃h,s for hλn. Let ε > 0. We consider a smooth
cut-off function χs ∈ C∞

0 (Ω, [0, 1]) as in Lemma 3.2 with d′ < rn and we define
ψh,s = χsψ̃h,s as in (14).

As we will see in the following theorem, according to repetitions of the same
values in {λ1, · · · , λN}, the eigenvalues µh,n are gathered into clusters.

Theorem 4.2. With Notation 4.1, for any ε > 0, there exists Cε such that for any
n ≤ N ,

µh,1 ≤ hλ1 + Cε exp

(
− 2√

h

(
r1

√
Θ0 − λ1 − ε

))
,

|µh,n − hλn| ≤ Cε exp

(
− 1√

h

(
rn

√
Θ0 − λn − ε

))
.

Proof. Upper-bound of µh,1 is a consequence of Lemma 3.2 applied with µk(αs) =
λ1 and d′ = r1 − ε and the min-max principle.
Let n ≤ N , s ∈ Σn and d′ = rn − ε. We deduce from Lemma 3.2 and the spectral
theorem that :

d(σ(Ph), hλn) ≤ Cεexp

(
− 1√

h

(
rn

√
Θ0 − λn − ε

))
. (15)

To prove a lower bound of µh,n, we use [10, 24].

To approximate eigenvectors of Ph, we have to take account of clusters as ex-
plained in the following result.

Notation 4.3. Using Notations 4.1, we denote by {Λ1 < · · · < ΛM} the set of
distinct values in {λ1, · · · , λN}. Letm ≤ M , we define the distances

ρm = r(Λm).
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For n ≤ N , we denote by (µh,n, uh,n) the n-th eigenpair of Ph. We introduce the
cluster of eigenspaces of Ph by

Fh,m = span{uh,n for any n such that λn = Λm},

and the cluster of quasi-modes

Eh,m = span{ψh,s,k = χsψ̃h,s,k for any s ∈ Σ, k ≥ 1 such that µk(αs) = Λm}.

Here, χs is a real-valued smooth cut-off function equal to 1 in B(s, ρm − δ).

Theorem 4.4. Under Notation 4.1 and 4.3, for any ε > 0, there exists Cε such
that for any m ≤ M ,

d(Eh,m; Fh,m) ≤ Cεexp

(
− 1√

h

(
(ρm − δ)

√
Θ0 − Λm − ε

))
,

where, if we denote ΠEh,m
, ΠFh,m

the orthogonal projections on Eh,m and Fh,m

respectively, d is the distance defined by :

d(Eh,m; Fh,m) = ||ΠEh,m
− ΠFh,m

ΠEh,m
||L2(Ω).

Proof. The proof of this theorem relies on Proposition 4.1.1, p. 30 of [14] (cf also
[17]) which we recall now :

Theorem 4.5. Let A be a self-adjoint operator in a Hilbert space H. Let I ⊂
R be a compact interval, ψ1, . . . , ψN ∈ H linearly independents in D(A) and
µ1, . . . , µN such that :

Aψj = µjψj + rj with ||rj||H ≤ η. (16)

Let a > 0 and assume that σ(A)∩ (I +B(0, 2a) \ I) = ∅. Then, if E is the space
spanned by ψ1, . . . , ψN and if F is the space associated with σ(A) ∩ I , we have :

d(E, F ) ≤ η
√

N

a
√

λmin
S

, (17)

where λmin
S is the smallest eigenvalue of S = (〈ψj , ψk〉H) and d is the non-

symmetric distance as :

d(E, F ) = ||ΠE − ΠF ΠE||H,

denoting by ΠE , ΠF the orthogonal projections on E and F respectively.
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4.2 Numerical experiments

This section is devoted to numerical computations on a square. In this case, we
have

λ1 = λ2 = λ3 = λ4 ≈ 0.509905.

We present computations of the eigenpairs realized by M. Dauge with the Finite
Element Method code MELINA (cf [21]). For any h, we use a uniform mesh with
64 elements and tensor product polynomial of degree 10. When h is very small,
very fast oscillations (cf Figure 4) appear on the eigenfunctions as expected in
(12) and it is better to increase the degree of the polynomial than reduce the size
of the mesh. We can note this by looking at [8, 2, 6] where we use an adapted
mesh refinement based on a posteriori error estimates and a low order degree; we
need many elements.
Figure 2 presents the behavior of the twelve first eigenvalues µh,n/h for n =
1, . . . , 12, as function of 1/h. We draw the exponential tube

λ1 ± exp

(
−r1

√
Θ0 − λ1√

h

)
.

According to Theorem 4.2, we expect that the four first eigenvalues are concen-
trated in this tube.
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Figure 2: h−1µh,n versus h−1
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Let us now present the modulus and the real part of the first eigenfunction accord-
ing h in Figures 3 and 4 respectively. We can observe the exponential concentra-
tion near the corners in

√
h. Figure 4 displays concentration in e−c/

√
h together

with oscillations in 1/h which appear in the construction of the quasi-modes in
(13). Looking at the symmetry of these figures, we see the linear combination of
the four modes constructed from the quarter plane. Figure 2 is a numerical illus-
tration of a tunnelling effect. We hope to propose a theoretical interpretation by
analyzing an interaction matrix.

Figure 3: h = 0.1, 0.08, 0.06, 0.04, 0.02, 0.01

5 Conclusion

Even if we have given some informations about the bottom of the spectrum of Qα

as a function of α, an open problem is to prove the monotonicity of µ1(α).
Furthermore, this paper completes the results of Helffer-Morame [16], Jadallah
[18], Pan [22] by dealing with the low-lying eigenstates of the Schrödinger oper-
ator with constant magnetic field in a polygon and proving the localization of the
eigenfunctions. We can generalize these results (with some assumptions, cf [9])
to the Schrödinger operator with non constant magnetic field in a bounded open
domain with a curvilinear boundary.
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Figure 4: h = 0.1, 0.08, 0.06, 0.04, 0.02, 0.01
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38, 3 (1983), 295–308.

16


