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Abstract

Motivated by the superconductivity, we are interested in the funda-
mental state of the Schrödinger operator with magnetic field in a domain
with corners. In this paper, we propose a numerical approach based on
the finite elements method to determine the bottom of the spectrum of
this operator in general domains. We improve the numerical results by
using mesh-refinment techniques based on a posteriori error estimates de-
veloped in [6]. We also look at the monotonicity of the bottom of the
spectrum in an angular sector according to the angle to complement the
theoretical study of [5, 7].

1 Introduction

1.1 Physical motivation

A superconducting sample cooled below a certain critical temperature TC al-
lows the current to flow with no resistance and so could carry current with no
loss, we say that it is in a “superconductor state”. This characteristic can ex-
plain the increasing interest of the experimental engineering for studying this
phenomenon. An other advantage of superconductors is the exclusion of any
magnetic field, that is to say a superconductor sample will not allow a magnetic
field to penetrate its interior. This effect, called the Meissner Effect, occurs
only for relatively small magnetic field. If the magnetic field becomes too large,
the sample loses its superconducting behavior by penetration of the external
magnetic field, it is the “normal state”.
We distinguish two kinds of superconductors. The first, called “Type I su-
perconductor”, goes from the normal state to the superconductor state with
Meissner effect if the external magnetic field crosses a critical value called HC

by decreasing. The second, called “Type II superconductor”, passes from the
normal state to the superconductor state with Meissner effect by going through
a “mixed state” where the sample is superconductor but the external mag-
netic field penetrates by some vortices. This phenomenon was described by the
Ginzburg-Landau theory developed by De Gennes [14] and Tinkham [26].
We consider a type II cylindrical superconducting sample and we denote by
Ω ⊂ R2 the cross section and apply a magnetic field H along the cylindrical
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axis. Then, up to normalization factors, the free energy writes

G(ψ,A) =
1

2

∫

Ω

{

|(∇− iκA)ψ|2 + κ2|curlA−H|2 +
κ2

2
(|ψ|2 − 1)2

}

dx. (1.1)

The superconducting properties are described by the minimizers (ψ,A) of this
Ginzburg-Landau functional G.
We consider Ω a curvilinear polygon whose vertex are denoted by S1, . . . , SN
with corresponding angles α1, . . . , αN . The complex-valued function ψ is the
order parameter ; the magnitude |ψ|2 gives the density of superconducting elec-
trons and the phase determines the current flow. In the normal state, ψ ≃ 0
and in the superconducting state, |ψ| ≃ 1. The vector field A defined on R2

is the magnetic potential and B = curlA is the induced magnetic field. Two
parameters are needed in the free energy (1.1) : H is the intensity of the applied
magnetic field, assumed to be constant. The characteristic of the sample κ is
called the “Ginzburg-Landau parameter”, equal to the ratio between the coher-
ence length and the penetration depth. The type I superconductor corresponds
to κ < 1√

2
, and type II to κ > 1√

2
. We now assume κ large.

We notice that the Ginzburg-Landau functional is gauge invariant since

∀φ ∈ H2(Ω), G(ψeiκφ,A + ∇φ) = G(ψ,A). (1.2)

Revelant physical quantities are gauge invariant : the magnitude |ψ|2, the in-
tensity of the magnetic field B, the energy G and the superconducting current
j: = − i

2κ (ψ∇ψ−ψ∇ψ)−|ψ|2A. We can easily see that when ψ = 0 then j = 0 ;
this means that the superconductivity is destroyed and there is no supercurrent.

The critical points of the Ginzburg-Landau functional (1.1) are solutions of
the following Euler equation (cf [17, 14]) where Γ′ is the set of the boundary
where the unit outward normal vector ν is well defined and with the notation
curl 2A = (∂2(curlA),−∂1(curlA))















−(∇− iA)2ψ = κ2(1 − |ψ|2)ψ, in Ω,

curl 2A = − i
2κ (ψ∇ψ − ψ∇ψ) − |ψ|2A + curlH, in Ω,

∂ψ
∂ν − iκAψ · ν = 0, in Γ′,

curlA−H = 0 in ∂Ω.
(1.3)

1.2 Link with the Schrödinger operator

The analysis of the Hessian of the functional G leads to estimate the fundamental
state for the Neumann realization of the Schrödinger operator with intense mag-
netic field for which the superconductivity occurs. We define the sesquilinear
form aA,Ω in the form domain

H1
A(Ω) = {u ∈ L2(Ω)|∇Au ∈ (L2(Ω))2} with ∇A = ∇− iA, (1.4)

by

aA,Ω(u, v) =

∫

Ω

∇Au · ∇Av dx, ∀u, v ∈ H1
A(Ω). (1.5)

2



The sesquilinear form aA,Ω is semi-bounded from below and so admits a unique
self-adjoint extension PA,Ω: = −∇2

A defined on the domain

DN (PA,Ω): = {u ∈ H1
A(Ω)| ∇2

Au ∈ L2(Ω), ν · ∇Au|Γ′
= 0}.

Our goal is to determined the fundamental state for the operator PA,Ω. The
weak formulation of this problem reads

Find (µ, u) ∈ R ×H1
A(Ω) with the smallest µ s.t.

∀v ∈ H1
A(Ω),

{ ∫

Ω ∇Au · ∇Avdx = µ
∫

Ω uvdx,
∫

Ω |u|2dx = 1.
(1.6)

Let us recalling the gauge invariance.

Proposition 1.1. For any φ ∈ H2(Ω), the operators PA,Ω and PA+∇φ,Ω are
unitary equivalent. Furthermore, (µ, u) is in the spectrum of PA,Ω if and only
if (µ, ueiφ) is in the spectrum of PA+∇φ,Ω.

Proof : Let φ ∈ H2(Ω), we define the unitary transform U from DN (PA,Ω) onto
DN (PA+∇φ,Ω) by Uu = eiφu for all u ∈ DN (PA,Ω). Thus

UPA,Ω = PA+∇φ,ΩU. (1.7)

The two operators are unitary equivalent and have therefore the same spectrum.
�

Proposition 1.1 shows that the bottom of the spectrum of PA,Ω depends only
on the magnetic field and not on the magnetic potential. Then, we denote
by µ(B,Ω) the bottom of the spectrum of PA,Ω for any potential A such that
curlA = B. Furthermore, if A is a potential with constant magnetic field B,
then the operator PA,Ω has the same spectrum as PBA0,Ω with the notations

A0 =
1

2
(x2,−x1). (1.8)

Due to the min-max principle, µ(B,Ω) is equal to

µ(B,Ω) = inf
u∈H1

A
(Ω),u6=0

∫

Ω
|(∇− iA)u|2 dx

∫

Ω
|u|2 dx for any A s. t. curlA = B. (1.9)

A lot of papers [15, 16, 17, 22, 23] deal with estimates of µ(B,Ω) and localiza-
tion of the fundamental state in regular domains ; particularly Helffer-Morame
[15, 16] prove the localization of the fundamental state in the boundary and
more precisely at points with maximum curvature. We want to carry on their
analysis by determining the effects of a non regularity of the boundary. Some re-
sults are announced by the Physicists Brosens, Devreese, Fomin, Moshchalkov,
Schweigert and Peeters in [11, 13, 25] but not proved. Jadallah [19, 20] and Pan
[24] study the effect of the right corner and a more general theoretical analysis
is proposed in [5, 7]. As illustrated in Figures 1 and 2, a partition of identity
and a change of variables reduce the study of PA,Ω for any curvilinear domain
Ω to the study of three models operators

PA0,R2 , PA0,R×R+ and PA0,Ωα
, (1.10)
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where Ωα: =
{

x ∈ R2| x1 > 0, |x2| < tan α
2 x

}

is the angular sector defined for
α ∈]0, 2π]. We denote more lightly by µ(α) = µ(1,Ωα) the bottom of the
spectrum of PA0,Ωα

. Due to [5, 7], we know that the first eigenfunction of PBA0,Ω

is exponentially localized in corners Sj where µ(αj) is minimum. This present
paper is more devoted to the numerical computation of µ(α) and localization of
the eigenfunction in any domain. For the numerical treatment of the problem,
we restrict our study to potential A with constant magnetic field and, due to
gauge invariance (Proposition 1.1), we assume that A = BA0. The exponential
localization in some points of the boundary makes the numerical treatment
particularly ill conditioned and difficult.

This article is organized as follows. In Section 2, we first recall some easy
invariance properties of PA0,Ω. These properties can explain in Section 2.3 why
the standard method consisting in constructing the stiffness and mass matrices
and computing the generalized eigenvalues, is unefficient for this problem. Sec-
tion 2.4 proposes a robuster method respecting invariance properties. To know
if we catch the solution with a good accuracy, Section 3 shows how we can use
a mesh-refinement method coupled to a posteriori error estimates given in [6]
to improve accuracy. We see the performance of this method by comparing it
with the computations on uniform meshes. In the last Section 4, we use this
method to compute µ(α) and see its monotonicity according to the angle. We
also test the robustness of this method on several domains having one corner
with smallest angle or domain with one point with maximum curvature.

2 Numerical modelization

2.1 Invariance properties

We quickly present classical properties of the spectrum of PBA0,Ω. These prop-
erties can easily be justified by change of variables and construction of an unitary
transformation.

Remark 2.1.

1. Let Ω be a domain invariant under dilatation, then the spectrum of PBA0,Ω

is deduced from the spectrum of PA0,Ω multiplied by B.
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2. We denote by Ωt: = {y ∈ R2|y − t ∈ Ω} the domain deduced from Ω af-
ter translation by t. Then the operators PBA0,Ω and PBA0,Ωt

are unitary
equivalent. Furthermore, u is an eigenvector for the operator PBA0,Ω as-
sociated to the egenvalue µ if and only if ut is an eigenvector associated
to the eigenvalue µ for the operator PBA0,Ωt

, with ut defined on Ωt by

ut(y): = ei
B
2 y∧t u(y − t). (2.1)

3. Let Ωη: = {(ρ, φ) ∈ R2| (ρ, φ − η) ∈ Ω} the domain deduced from Ω after
a rotation of angle η. Then the two operators PBA0,Ω and PBA0,Ωη have
the same smallest eigenvalue and the eigenfunctions are deduced one from
the other by a change of variables.

2.2 Computation of a generalized eigenvalue

Let A and M be two positive definite hermitian matrices. We want to determine
the smallest µ and a vector x such that

{

Ax = µMx,
〈Mx, x〉L2(Ω) = 1.

(2.2)

The problem (2.2) consists in minimizing 〈Ax, x〉L2(Ω) with respect to the con-

straint 〈Mx, x〉L2(Ω) = 1.

Proposition 2.2. Let x0 be a vector such that 〈Mx0, x0〉L2(Ω) = 1. For any
n ≥ 0, we consider wn the solution of the minimization problem

min
w|〈Mxn,w〉

L2(Ω)=0
〈A(xn + w), xn + w〉L2(Ω) . (2.3)

Let us define

xn+1: =
xn + wn

√

〈M(xn + wn), xn + wn〉L2(Ω)

. (2.4)

Then, the vector xn is normalized with respect to M , the associated energy is
decreasing, tending to a generalized eigenvalue of (A,M) denoted by E∞. If
the generalized eigenvalue E∞ is simple, then (xn) converges to a normalized
eigenvector x∞ for E∞ ; otherwise, there exists a subsequence of (xn) which
converges to a normalized eigenvector for E∞.

Proof : For n ≥ 0, we consider the solution wn of the minimization problem
(2.3). Euler equation for the problem (2.3) leads to

A(xn + wn) = 〈A(xn + wn), xn〉L2(Ω)Mxn. (2.5)

Taking the scalar product of (2.5) with wn, we easily deduce

〈A(xn + wn), wn〉L2(Ω) = 0. (2.6)

We now show that the energy associated to xn + wn is less than the one of xn.
From the assumption on wn, 〈Mxn, wn〉L2(Ω) = 0 and we have

〈A(xn + wn), xn + wn〉L2(Ω)

〈M(xn + wn), xn + wn〉L2(Ω)

=
〈A(xn + wn), xn + wn〉L2(Ω)

1 + 〈Mwn, wn〉L2(Ω)

, (2.7)
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since xn is normalized according M . According (2.6), we see that

〈A(xn + wn), xn + wn〉L2(Ω) = 〈Axn, xn〉L2(Ω) − 〈Awn, wn〉L2(Ω) . (2.8)

Thus, definition (2.4) of xn+1, Relations (2.7) and (2.8) lead to

〈Axn+1, xn+1〉L2(Ω) ≤ 〈Axn, xn〉L2(Ω) − 〈Awn, wn〉L2(Ω) . (2.9)

By sommation on n in (2.9), we prove that the serie
∑

n

〈Awn, wn〉L2(Ω) is con-

vergent and so 〈Awn, wn〉L2(Ω) and therefore wn tend to 0 as n→ ∞.

The energy of (xn) is decreasing, bounded from below by the smallest general-
ized eigenvalue for (A,M), so tends to a positive real number denoted by E∞
as n → ∞. The sequence (xn) is bounded, then there exists a subsequence of
(xn) converging to a vector denoted by x∞. Using (2.5), x∞ is a normalized
eigenvector for E∞, and we particularly deduce that E∞ is an eigenvalue. If
the eigenvalue E∞ is simple, then (xn) tends to x∞. Indeed, the sequence (xn)
has got at most two adherence values since an adherence value is an eigenfunc-
tion. But if (xn) has two adherence values, it has at least a third one because
(xn+1 − xn) tends to 0 when n→ ∞. �

Let us be more precise about the construction of wn. We define the orthogonal
projector Πn on (Mxn)⊥ and can establish from (2.3) that

ΠnAΠnwn = −ΠnAxn. (2.10)

The matrix ΠnAΠn is hermitian and positive definite on (Mxn)
⊥ and so we

can determine wn by a gradient conjugate method. This leads to the following
algorithm

Algorithm 2.3 (Generalized eigenvalue).

• Let us give a number of iterations nmax and an accuracy level ε.
• Initialization : ε0 = 1, n = 0, x0 verifying 〈Mx0, x0〉L2(Ω) = 1 and

µ0 = 〈Ax0, x0〉L2(Ω).

• While n < nmax and εn > ε :

1. Construction of the projector Πn:w 7→ w −
〈Mw,xn〉L2(Ω)

||Mxn||2L2(Ω)

Mxn. (we

just need to compute Πny for some y.)

2. Determination of wn such that ΠnAΠnwn = −ΠnAxn by a gradient
conjugate method with accuracy ε and maximum iterations nmax.

3. Construction of xn+1 =
xn + wn

√

〈M(xn + wn), xn + wn〉L2(Ω)

.

4. Computation of energy : µn+1 = 〈Axn+1, xn+1〉L2(Ω).

5. Computation of error : εn+1 = max(|µn − µn+1|, ||xn − xn+1||).

6. Increment n = n+ 1.
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Remark 2.4. Let us notice that each eigenvector is a critical point for Al-
gorithm 2.3. Nevertheless, we hope that numerical errors make Algorithm 2.3
converge to the smallest eigenvalue.

2.3 Standard method

We denote by Th a triangulation of Ω and Pk(Th) or Pk the triangular elements
based on polynomials of degree k. The weak formulation was recalled in (1.6)
and the associated discrete formulation consists in finding (µh, uh) ∈ R×Pk(Th)
such that µh is the smallest and
∫

Ω

|uh|2 dx = 1 and

∫

Ω

∇Auh·∇Avhdx = µh

∫

Ω

uhvhdx, ∀vh ∈ P
k(Th). (2.11)

The natural idea is to construct the mass and stiffness matrices. So, if we decom-
pose uh according the basis functions (φj)j , we have to determine coefficients
uj ∈ C and the smallest µh ∈ R such that

∑

j

|uj|2 = 1 and ∀k,
∑

j

uj

∫

Ω

∇Aφj · ∇Aφk dx = µh
∑

j

uj

∫

Ω

φj φk dx.

(2.12)
We construct the matricesM and A by their coefficients computed by numerical
integration and a quadrature formula with high order

Mj,k ≃
∫

Ω

φjφk dx and Aj,k ≃
∫

Ω

∇Aφj · ∇Aφk dx.

It is easily seen that the numerical problem deduced from (2.12) is to determine
the smallest generalized eigenvalue µh for (A,M) and its eigenvector U such
that

AU = µhMU and tUMU = 1. (2.13)

Remark 2.5. Formulation (2.13) is not gauge invariant. Indeed, if u is piece-
wise polynomial, then eiφu is not for any linear φ and so is not in the discretiza-
tion’s space.

We use Algorithm 2.3 to solve (2.13). We consider a mesh T 0
h of a domain Ω

and construct meshes T j
h deduced from T 0

h by a translation of vectors tj = (j, 0)

for j = 1, 2. So T j
h is a mesh of the domain Ωj deduced from Ω by translation

of tj. We denote by (µj , uj), (µjh, u
j
h) respectively the solution of the continuous

problem (1.6) and of the discrete problem (2.13) computed on each mesh T j
h

with the smallest µj and µjh for j = 0, 1, 2. According to Remark 2.1, we must
have for j = 1, 2

{

µj = µ0,

uj(x) = ei
B
2 x∧tju0(x− tj), ∀x ∈ Ωj .

(2.14)

We consider two initial meshes with respectively 138 and 1328 elements. We
apply a magnetic field with intensity equal to B = 10, 30, 50 Teslas. Table 1
gives the energy computed on each mesh.

The results partially presented in Figures 3 and 4 don’t agree with Re-
mark 2.1. The bad numerical results can be explained by the fact that a t-
translation generates phase oscillations due to the term B

2 x ∧ t as explained in
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B Mesh with 138 elements Mesh with 1328 elements
µ0
h µ1

h µ2
h µ0

h µ1
h µ2

h

B = 10 Teslas 4.3306 4.2551 5.4980 4.1860 4.1810 4.2330
B = 30 Teslas 14.3868 18.1965 30.2870 12.6555 12.9483 20.3891
B = 50 Teslas 27.6519 43.7395 51.1149 21.3263 26.7383 47.5876

Table 1: Energy computed on translated meshes.
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Figure 3: Modulus and real part of the fundamental state associated to trans-
lated meshes, B = 10 Teslas, mesh with 1328 elements.
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Figure 4: Modulus and real part of the fundamental state associated to trans-
lated meshes, B = 30 Teslas, mesh with 1328 elements.

(2.14). With a P1(T j
h ) discretization, a necessary condition to catch the oscilla-

tions obtained by the coefficient ei
B
2 x∧t is that the size of the space step h must
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be small compared to 1
B|t| . For a magnetic field equal to 10 Teslas, Figure 3

shows quite acceptable results since eigenvalues and moduli are close for every
meshes. If the mesh is too coarse, then it is impossible to catch these oscilla-
tions. This phenomenon appears in Figure 4. As soon as the translation is too
large or the magnetic fiel too big, then the fundamental state can’t be deter-
mined accurately. Unfortunately, the condition h < 1

Bt
is too much restrictive

since it is easily violated when B or t increases.
Therefore this method does not respect invariance properties due to gauge trans-
formation or translation of the domain and we have to find another numerical
modelization. Furthermore, we expect the eigenfunction to be localized on the
boundary, and more precisely on corners with smallest angle. This concentra-
tion leads us to use adaptive refinement mesh technique. Our new method not
only must be gauge invariant, but also has to be compatible with mesh refine-
ment techniques. As the phase plays an important role for a gauge transform
or a domain translation, we look for a formulation using the phase.

2.4 A new approach of the problem

As we see in previous section, the standard method is unefficient to solve this
numerical problem. Its weakness is due to its non gauge invariance and oscil-
lations coming from translation of the domain. To avoid these difficulties, we
look for a new formulation taking account of the phase. So it is quite natural
to decompose a function u ∈ H1(Ω) as soon it is possible as

∀x ∈ Ω, u(x) = ρ(x)eiθ(x). (2.15)

As soon ρ ∈ H1(Ω) ∩ L∞(Ω) and θ ∈ H1(Ω), we have
∫

Ω

|(∇− iBA0)u|2 dx =

∫

Ω

|∇ρ|2 + |(BA0 −∇θ)ρ|2 dx. (2.16)

Let us define the operator P θA,Ω by P θA,Ωρ: = −∇2ρ+ |A −∇θ|2ρ. Then

PBA0,Ω(ρeiθ) = eiθP θBA0,Ωρ. (2.17)

By gauge transform (cf Proposition 1.1), u = ρeiθ is an eigenvector with phase
θ for PBA0,Ω if and only if ρ is a real-valued eigenvector for P θBA0,Ω

. So, we are
lead to determine

µ̃(B,Ω): = inf
θ∈H1(Ω),ρ∈H1(Ω)∩L∞(Ω),ρ6=0

∫

Ω
(|∇ρ|2 + ρ2|BA0 −∇θ|2) dx

∫

Ω
|ρ|2 dx . (2.18)

Remark 2.6. Just by consideration about the domain, the min-max principle
shows that

µ(B,Ω) ≤ µ̃(B,Ω). (2.19)

If Ω is smooth and if the modulus ρ of the fundamental state for PBA0,Ω is uni-
formly bounded from below by a positive constant, then using works of Béthuel-
Zheng [4], Bourgain-Brezis-Mironescu [8, 9]

µ(B,Ω) = µ̃(B,Ω).

We can assume weaker conditions about ρ but it is not the main question here.
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Although the equality µ(B,Ω) = µ̃(B,Ω) is not proved, we use the new for-
mulation and take interest about the discretized formulation (2.20) naturally
derived from (2.18)

inf
(ρ,θ)∈Pk(Th),ρ6=0

∫

Ω(|∇ρ|2 + ρ2|BA0 −∇θ|2) dx
∫

Ω
|ρ|2 dx . (2.20)

Performance and robustness of the new formulation (2.20) justify this choice.

Proposition 2.7. Formulation (2.20) is gauge invariant if the gauge is in the
space of the phase’s discretization. It is also invariant under translation or
rotation of the domain as soon linear functions belong to the discretization’space.

Proof :
1. Let us consider a magnetic potential BA0 + ∇φ with φ ∈ Pk(Th) ; Proposi-
tion 1.1 says that the eigenvector associated to PBA0+∇φ,Ω is uφ = eiφu where
u is the fundamental state for PBA0,Ω. So (BA0 +∇φ)−∇(θ+φ) = BA0−∇φ.
Then formulation (2.20) is gauge invariant.
2. According Remark 2.1, ρeiθ is an eigenvector for PBA0,Ω if and only if ρei(θ−η)

is an eigenvector for PBA0,Ωη where Ωη is deduced from Ω by rotation. Since
∇(θ − η) = ∇θ, formulation (2.20) is invariant under rotation of the domain.
3. Let us assume that k ≥ 1, for that the Pk(Th) discretization contains linear

functions. Remark 2.1 gives the eigenvector ei
B
2 x∧tu(x − t) for PBA0,Ωt

where
Ωt is translated from Ω, according to u eigenvector for PBA0,Ω. We compute

easily ∇
(

B
2 x ∧ t+ θ

)

= B
2

(

t2
−t1

)

+ ∇θ, so we deduce

inf
θ∈Pk(Th)

∫

Ω

|BA0 −∇θ|2 dx = inf
θ∈Pk(Th)

∫

Ω

∣

∣

∣

∣

BA0 −∇
(

B

2
x ∧ t+ θ

)∣

∣

∣

∣

2

dx.

Thus formulation (2.20) is invariant under translation of the domain. �

Formulation (2.20) gives an algorithm to compute numerically µ̃(B,Ω).

Algorithm 2.8.

1. Computation of the mass matrix M .

2. Initial choice for ρ normalized and θ.

3. Determination of θ by minimization of the functional Jρ with a con-
jugate gradient method :

Jρ(θ) =

∫

Ω

ρ2(|∇θ|2 − 2BA0 · ∇θ) dx. (2.21)

4. Computation with (2.16) of the energy associated to ρeiθ.

5. Determination of the fundamental state (µh, ρ) of P θBA0,Ω
.

6. Reiteration with (ρ, θ) till convergence of the energy µh.
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We take again previous examples. We denote by (ρj , θj, µ
j
h)j=0,1,2 modu-

lus, phase and energy computed for the mesh T j
h . For an angular sector cut

smoothly, numerical results are presented in Table 2. Figures 5 and 6 give mod-
uli and phases for a magnetic field B = 30 and 100 Teslas respectively.

B Mesh with 138 elements Mesh with 1328 elements
T 0
h T 1

h T 2
h T 0

h T 1
h T 2

h

10 Teslas 4.2137 4.2153 4.2149 4.2144 4.2238 4.2166
30 Teslas 12.9965 12.9964 12.9954 12.6075 12.6084 12.6092
50 Teslas 22.6233 22.6232 22.6233 21.0096 21.0101 21.0107
100 Teslas 49.1604 49.1604 49.1605 42.1852 42.1857 42.1858

Table 2: Energy for translated meshes.
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Figure 5: Phase and moduli of eigenvectors in translated meshes, B=30 Teslas.
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Figure 6: Phase and moduli of eigenvectors in translated meshes, B=100 Teslas.

Let us analyze step by step effects of Algorithm 2.8. At the first step, ρ is
random, so we compute a smooth phase θ which is well determined and there is
no problem with the conditionment of the functional Jρ defined in (2.21). Then,
we compute the first eigenspace (µh, ρ) for P θBA0,Ω

with Algorithm 2.3. During
the second step, we determine a new phase θ by minimization of Jρ. We apply a
gradient conjugate method initialized with the previous phase. It is important
to see that the contribution in Jρ(θ) where ρ is close to zero is also very small.
That is to say, the phase θ stays quite constant all along iterations where the
modulus ρ is very small. So the minimization’s problem can be reduced to a
smaller area Ω \ Ωε with Ωε = {ρ < ε}. Obviously, the phase does not have
much signification on Ωε, since in this area, ρeiθ is close to zero. So step by step,
the phase will change where the modulus is not too small in order to minimize
Jρ whereas it stays constant elsewhere.
Considering Table 2, it is also interesting to see that the results are coherent
together : if you look at results associated to one size of triangulation, energies
for every meshes are quite the same. Differences between coarse and fine meshes

12



come from the bad accuracy for a coarse mesh.
We remark that the concentration of the eigenvector in the corner is faster and
faster when the magnetic fiel B is increasing as illustrated in Figures 5 and 6.
We also notice that this method is still robust and available for intense mag-
netic field whereas the standard method was already unefficient for magnetic
field B = 30 Teslas.

We now consider a triangular domain. As before, we mesh the triangle and
translate this mesh. We want to observe the effect of a translation. With the
previous notations, Remark 2.1 and Relation (2.14) show that

θj − θ0 = −B
2
x ∧ tj =

B

2
jx2 with tj = (j, 0), j = 1, 2. (2.22)

So the difference of phase between two translated meshes is constant according
x1-coordinates and linear according x2-coordinates. Figure 7 illustrates the

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1
−20

−15

−10

−5

0

5

10

15

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

−10

−5

0

5

10

15

−2

−1.5

−1

−0.5

0

0

0.2

0.4

0.6

0.8

1
−30

−20

−10

0

10

20

30

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1
0

1

2

3

4

5

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

1

2

3

4

5

−2

−1.5

−1

−0.5

0

0

0.2

0.4

0.6

0.8

1
0

1

2

3

4

5

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1
−10

−5

0

5

10

15

20

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1
−20

−10

0

10

20

30

40

Figure 7: Arguments, moduli and phase’differences for eigenvectors in translated
meshes, B = 50 Teslas.

application of Algorithm 2.8 : the first, second and third lines give respectively
θ0, θ1, θ2 ; ρ0 , ρ1, ρ2 and θ1 − θ0, θ2 − θ0. As it was explained in (2.22),
we observe that the difference θj − θ0 is constant according x1-coordinates and
linear according x2-coordinates. If we look at the slope of the curve, we find
exactly the slope given by (2.22), that is to say

∂x1(θj − θ0) = 0 and ∂x2(θj − θ0) =
B

2
j.
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Thus we find an algorithm invariant under translation, rotation of the do-
main and gauge invariant. The Algorithm 2.8 is particularly robust and powerful
because it is still available for intense magnetic field for which the concentration
of the eigenvector is essentially in a couple of elements of the triangulation (see
e. g. Figure 6).

We notice also that the order of the determination of arguments and moduli
is rather important : if in Algorithm 2.8, we choose to determine firstly the
modulus and after, we minimize the functional Jρ to find the phase θ, then we
keep similar problems as in standard method described in Section 2.3. Indeed,
the problem of minimization of Jρ is badly conditioned as soon ρ is very small in
some areas of the domain and it is the case for the modulus of the fundamental
state.

To validate this modelization, we have to compute error between continu-
ous and discrete solutions. For this, we construct localized a posteriori error
estimates. This technique is well adapted to the problem since the eigenvec-
tor is localized and it is probably not necessary to lose time of computation in
some areas of the domain. Theoretical study suggests that the boundary and
more precisely corners play the most important role of the domain and mesh-
refinement techniques can use these informations to perform computations.

3 A posteriori error estimate

3.1 Presentation

Since the last algorithm give us a numerical solution of the initial problem (1.6),
we want to determine the gap between the exact solution and the approximate
solution given by this algorithm. We propose here a criterion which permits to
know, using only computed numerical solution and data of the problem, if the
numerical solution is close to the exact solution with a prescribed accuracy. In
this aim, we have constructed a posteriori error estimates. The main advantage
of such a criterion is that we compute at each element of the mesh the local
error between exact and numerical solution. If the error is too large, we refine
this area to improve the accuracy. Let us recall some notations before giving
the main theorem about these estimates. This section is detailed in [6].

3.2 Notations

We use the same notations as Verfürth [27], p. 7-8. Let Th, h > 0 be a family
of triangulations of Ω filling the following conditions :

1. Any two triangles in Th share at most a common edge or a common vertex.

2. The minimal angle of all triangles in the whole family Th is bounded from
below by a strictly positive constant.

Let P2(Th) be the space of all continuous, quadratic finite element functions
corresponding to Th. We consider the following eigenvalue problem

Find (µh, uh) ∈ R × P2(Th) with the smallest µh s.t.

14



∀vh ∈ P2(Th),
{ ∫

Ω ∇Auh · ∇Avh = µh
∫

Ω uhvh,∫

Ω
|uh|2 = 1,

(3.1)

For any element T of the triangulation Th, we denote by E(T ) and N (T ) the
set of its edges and vertices respectively and we define

Eh: =
⋃

T∈Th

E(T ), Nh: =
⋃

T∈Th

N (T ).

For T ∈ Th and E ∈ Eh, we define hT and hE their diameter and length,
respectively. We assume hT , hE < h. We remark that if the triangulation
satisfies the condition 2, then the ratios hT

hE
and hT

hT ′
are bounded from below

independently of h for every T, T ′ ∈ Th such that N (T ) ∩ N (T ′) 6= ∅, and for
every E ∈ E(T ).
We split Eh as follow

Eh = Eh,Ω ∪ Eh,Γ,
with

Eh,Ω: = {E ∈ Eh|E ⊂ Ω}, Eh,Γ: = {E ∈ Eh|E ⊂ Γ},
For any E ∈ Eh, we define ωE : =

⋃

E∈E(T ′)

T ′ the set of elements which admit

E as edge. For any edge E ∈ Eh, we associate a unit vector nE (equal to ν if
E ⊂ Γ). For any E ∈ Eh,Ω and φ ∈ L2(ωE) such that φ|T ′

is continuous on T ′

for any T ′ ⊂ ωE , we denote by [φ]E the jump of φ across E in the direction nE .
We also define the space

X = R ×H1
A(Ω) and Xh = R × P

2(Th). (3.2)

For any (µ, u), (λ, v) ∈ X , we define

||(µ, u)||X : = {|µ|2 + ||u||2H1
A

(Ω)}1/2, (3.3)

〈F (µ, u), (λ, v)〉 : = Re

∫

Ω

(

∇Au · ∇Av − µuv
)

+ λ

(
∫

Ω

|u|2 − 1

)

. (3.4)

Our goal is to find (µ, u) ∈ X and (µh, uh) ∈ Xh such that µ and µh are the
smallest and

∀(λ, v) ∈ X, 〈F (µ, u), (λ, v)〉 = 0, (3.5)

∀(λh, vh) ∈ Xh, 〈F (µh, uh), (λh, vh)〉 = 0. (3.6)

3.3 A priori error estimate

By using spectral decomposition, we obtain first informations about the gap
between the continuous and the discrete solution

Theorem 3.1. There exists a constant C such that for (µ, u) and (µh, uh)
solutions of problems (3.5) and (3.6) respectively where µ and µh are the smallest
eigenvalues of the continuous and discrete operators, the following upper bounds
hold

||u− uh||H1
A

(Ω) ≤ Ch,

|µ− µh| ≤ Ch2.
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Of course, this result gives us global information but we are unable to use
theses estimates to know where the computation is not accurate. To solve this
problem, we now introduce an a posteriori error estimate and explain the great
advantage of such tools.

3.4 A posteriori error estimate

We define the a posteriori error estimator for all T ∈ Th

η2
T : = h2

T

∫

T

∣

∣−∇2
Auh − µhuh

∣

∣

2
+

∑

E∈E(T )∩Eh,Ω

hE

∫

E

|[nE · ∇Auh]E |2 . (3.7)

As we see in the following theorem, the estimator ηT has a fundamental role to
see if we are close to the exact solution or not and to increase accuracy of the
numerical solution.

Theorem 3.2. Let (µ, u) ∈ X and (µh, uh) ∈ Xh be respectively a solution for
the problem (3.5) and the problem (3.6) such that µ and µh are the smallest
eigenvalues of the continuous and discrete operators. Then, there exist h0 > 0
and constants c1, c2 which depend only on the regularity parameter of the tri-
angulation such that for all h ≤ h0 :

|µ− µh| + ||u− uh||H1
A

(Ω) ≤ c1

{

∑

T∈Th

η2
T

}1/2

, (3.8)

{

∑

T∈Th

η2
T

}1/2

≤ c2{|µ− µh| + ||u− uh||H1
A

(Ω)}. (3.9)

Estimators give the way to improve numerical results obtained by Algo-
rithm 2.8 by joining it with mesh-refinement techniques since Theorem 3.2 es-
tablishes a kind of norm’s equivalence between |µ− µh|+ ||u− uh||H1

BA0
(Ω) and

{

∑

T∈Th

η2
T

}1/2

.

3.5 Applications to mesh-refinement techniques

Let us consider Theorem 3.2. Let us give a tolerance level ε. If the local
estimator ηT at the element T of the triangulation is higher than ε, then

ε ≤ ηT ≤
{

∑

T∈Th

η2
T

}1/2

≤ c2

(

|µ− µh| + ||u− uh||H1
BA0

(Ω)

)

.

So, forgetting the constant c2, the gap between numerical and exact solution
is higher than ε. So the criterion ηT > ε means that the numerical solution is
badly computed on T and it is needed to refine this element. By this way, we
deduce an algorithm to refine locally mesh and improve numerical solution.
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Algorithm 3.3.

1. Data of an initial mesh Th,0 and a tolerance level ε.

2. Computation of a solution (µh,0, ρh,0e
iθh,0) with Algorithm 2.8.

3. Computation of a posteriori error estimator (ηT )T∈Th,0
by (3.7) and

of the norm η with η2 =
∑

T∈Th,0

η2
T .

4. While η > ε :
- Construction of a new mesh Th,1 deduced from the previous mesh

Th,0 by refining elements T ∈ Th,0 such that ηT >
ε√

Card T
.

- Interpolation of ρh,0 and θh,0 defined on Th,0 to Th,1.
- Computations of the eigenspace on Th,1 using Algorithm 2.8 initial-
ized with the interpolations of ρh,0 and θh,0.

We take again the example of the smoothly cut angular sector and we apply
Algorithm 3.3 with a magnetic field B = 30 Teslas. Table 3 gives informations
for each refinement. The convergence of error estimates and of eigenvalues are
precised in Figure 8. Figure 9 illustrates the mesh after six refinements and also
gives the phase and the modulus computed according to Algorithm 2.8.

number number of
refinement of elements degrees of freedom η µh

1 38 101 38.993385 15.572444
2 102 235 22.828768 13.815911
3 206 459 9.037603 12.826912
4 394 855 5.857042 12.670129
5 800 1699 2.240146 12.638226
6 1726 3593 0.792354 12.628898
7 3807 7826 0.272165 12.627361
8 8219 16742 0.104900 12.626788
9 15517 31446 0.060877 12.626605

Table 3: Estimates for an adaptive refinment method, B = 30 Teslas.

During refinements, estimates of the phase are not accurate due to a very
easy interpolation : let us consider a phase θ0 defined on a mesh Th,0. We inter-
polate it to θ1 in the refined mesh Th,1 by this way : the value of θ1 in a degree
of freedom in an element T1 ∈ Th,1 is the value of θ0 in a point of T0 ∈ Th,0
such that T1 ⊂ T0. This very easy interpolation does not perturb too much our
accuracy because the modulus is very small on these areas. We observe that
the refinement takes place essentially near the corner and also near the bound-
ary. This is in perfect agreement with results of localization announced by [5, 7].
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Figure 8: Convergence of eigenvalues and a posteriori error estimates according
to the number of refinements, B = 30 Teslas.
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Figure 9: Solution for the sixth refinment.

Let us now compare adaptive mesh refinement and uniform mesh refinement.
We apply Algorithm 2.8 on uniform meshes for a magnetic field B = 30 Teslas.
Results are presented in Table 4. Figures 10 and 11 compare convergence for
uniform and adaptive mesh refinements with magnetic field respectively equal
to 30 and 100 Teslas. An adaptative mesh refinement is more powerful and
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faster than an uniform method. Its power and robustness becomes bigger and
bigger when the magnetic field is increasing.

number number
refinement of elements of degrees of freedom η µh

1 38 101 39.711605 15.569330
2 48 125 22.754814 13.816984
3 70 171 14.493879 13.440501
4 193 428 8.227542 12.826351
5 522 1113 4.960995 12.687395
6 1349 2790 2.059195 12.641156
7 3593 7350 0.772448 12.630521
8 9583 19448 0.279150 12.627457

Table 4: Estimates for a uniform mesh refinement.
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4 Applications

As we have already seen, Algorithm 3.3 is well adapted to the problem and
we can find accurate numerical solution for the problem (1.6). As we explain
in introduction in (1.10), it is very important to determine with accuracy the
bottom of the spectrum for the operator PA0,Ωα

because informations about
this operator are usefull to localize superconductivity in general domains. This
operator is studied theoretically in [5, 7]. Let us just recall a couple of estimates
obtained for µ(α)

(1) ∀α ∈]0, 2π[, µ(α) ≤ Θ0,

(2) ∀α ∈]0, π[, µ(α) ≥ Θ0
α

π
,

(3) ∀α ∈]0, 2π[, µ(α) ≤ α√
3
,

(4) lim
α→0

µ(α)

α
=

1√
3
.

Since Ωα is invariant under dilatation, we know according Remark 2.1 that
µ(B,Ωα) = Bµ(α). We now apply Algorithm 3.3 to estimate µ(α). For this,
we use the previous cut-off angular sector : we consider an angular sector and
we cut it by a piece of circle so that the boundary is still smooth, except at the
corner. The bottom of the spectrum does not change (with an exponentially
small error) if the cutt-off is quite far the corner. The smooth cut-off does not
introduce new point of superconducting localization and does not change the
superconducting behavior of the sample. Numerical estimates of µ(α) are de-
scribed in Figure 12. We note that numerical estimates are in perfect agreement
with estimates (1), (2), (3) and (4) : the asymptotics near zero is conserved and
numerical results tend to convince us that µ is increasing from ]0, π] onto ]0,Θ0].
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(1)BΘ
0

Figure 12: Theoretical and numerical estimates of µ(α), B = 10 Teslas.
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We now briefly treat three general domains for which we apply Algorithm 3.3.
It is interesting to observe in Figure 13 that the localization takes place at one
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Figure 13: Superconductivity in general domains.

corner where the angle is the smallest. We notice that the third domain is
smooth : it is one half circle with one half ellipse and we illustrate results
obtained by Helffer-Morame [16] which mentionned that the fundamental state
is localized at points of the boundary where the curvature is maximal.

5 Conclusion

We proposed here a robust and powerful method to compute fundamental state
associated to the Schrödinger operator with magnetic field and join this method
with an adaptative mesh refinement technique deduced from the construction
of a posteriori error estimate. Thus, we propose some estimates of µ(α), the
bottom of the spectrum for the Schrödinger operator with a constant magnetic
field in an α-angular sector. These numerical estimates coupled with results
of [7] let suggest that the first eigenfunction of the Schrödinger operator with
magnetic field is exponentially localized in the smallest corners.
We hope to come back in an other paper for the localization of the supercon-
ductivity in domain with several minimal angles.
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