Problem set 1

Olivier Debarre

Due Thursday February 2, 2017

Problem 1. Recall that a topological space X is irreducible if it is non-empty and is not the union of two strict closed subsets. In other words, if X_{1} and X_{2} are closed subsets of X and $X=X_{1} \cup X_{2}$, then $X=X_{1}$ or $X=X_{2}$.
a) Let X be a topological space and let $V \subset X$ be a subset (endowed with the induced topology). Prove that V is irreducible if and only if its closure \bar{V} is irreducible.
b) Let X and Y be topological spaces and let $u: X \rightarrow Y$ be a continuous map. If X is irreducible, prove that $u(X)$ is irreducible

Problem 2. Let \mathbf{k} be an infinite (not necessarily algebraically closed) field. Let $C \subset \mathbf{k}^{2}$ be the vanishing set $V\left(X^{2}-Y^{3}\right)$.
a) Prove that the ideal of C is the ideal in $\mathbf{k}[X, Y]$ generated by $X^{2}-Y^{3}$ and that C is irreducible (Hint: use the "parametrization" $\mathbf{k} \rightarrow C$ given by $t \mapsto\left(t^{3}, t^{2}\right)$ and express $A(C)=\mathbf{k}[X, Y] / I(C)$ as a subring of $\mathbf{k}[T]$).
b) Prove that C is not isomorphic to \mathbf{k} (Hint: prove that $A(C)$ is not a principal ideal domain).
c) How do these these results generalize to the vanishing set $V\left(X^{r}-Y^{s}\right)$, where r and s are relatively prime positive integers?

Problem 3. Let \mathbf{k} be an infinite (not necessarily algebraically closed) field, let $u: \mathbf{P}_{\mathbf{k}}^{1} \rightarrow \mathbf{P}_{\mathbf{k}}^{3}$ be the regular map defined by $u(s, t)=\left(s^{3}, s^{2} t, s t^{2}, t^{3}\right)$, and set $C:=u\left(\mathbf{P}_{\mathbf{k}}^{1}\right)$.
a) Prove that no 4 distinct points of C are contained in a hyperplane in $\mathbf{P}_{\mathbf{k}}^{3}$.
b) Prove that any quadric in $\mathbf{P}_{\mathbf{k}}^{3}$ (i.e., any subset of $\mathbf{P}_{\mathrm{k}}^{3}$ defined by a non-zero homogoneous polynomial of degree 2) that contains 7 distinct points of C contains C.
c) Prove that C is the vanishing set in $\mathbf{P}_{\mathbf{k}}^{3}$ of the (homogeneous) ideal I in $\mathbf{k}\left[T_{0}, T_{1}, T_{2}, T_{3}\right]$ generated by the homogeneous polynomials $T_{0} T_{2}-T_{1}^{2}, T_{2}^{2}-T_{1} T_{3}, T_{1} T_{2}-T_{0} T_{3}$, which can be neatly expressed as the 2×2-minors of the matrix

$$
\left(\begin{array}{lll}
T_{0} & T_{1} & T_{2} \\
T_{1} & T_{2} & T_{3}
\end{array}\right)
$$

d) Prove that the ideal of C is I (Hint: prove that any polynomial $P \in \mathbf{k}\left[T_{0}, T_{1}, T_{2}, T_{3}\right]$ is congruent modulo I to a polynomial of the type $A\left(T_{0}, T_{1}, T_{3}\right)+T_{2} B\left(T_{3}\right)$ and that if P vanishes on C, one has $B=0$; then, use a similar method to show that A is divisible by $T_{1}^{3}-T_{0}^{2} T_{3}$).
e) (Extra credit) How do these results generalize to the regular map u : $\mathbf{P}_{\mathbf{k}}^{1} \rightarrow \mathbf{P}_{\mathbf{k}}^{n}(n \geq 3)$ defined by $u(s, t)=\left(s^{n}, s^{n-1} t, \ldots, s t^{n-1}, t^{n}\right)$?

