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Problem 1. Recall that a topological space X is irreducible if it is non-empty and is not the union
of two strict closed subsets. In other words, if X1 and X2 are closed subsets of X and X = X1∪X2,
then X = X1 or X = X2.

a) Let X be a topological space and let V ⊂ X be a subset (endowed with the induced topology).
Prove that V is irreducible if and only if its closure V is irreducible.

Proof. Assume that V is irreducible. If V = W1 ∪W2, where W1 and W2 are closed in V (hence
also in X), we have V = (V ∩W1) ∪ (V ∩W2), where V ∩W1 and V ∩W2 are closed in V . Since
V is irreducible, we obtain V = V ∩W1 or V = V ∩W2, hence V ⊂ W1 or V ⊂ W2. Since W1

and W2 are closed in X , this implies V ⊂ W1 or V ⊂ W2, hence V = W1 or V = W2. This proves
that V is irreducible.

For the converse, assume that V is irreducible. If V = W1 ∪W2, where W1 and W2 are closed in
V , we can write Wi = V ∩ Fi, where Fi is closed in X (we could take Fi = W i). We then have
V ⊂ F1 ∪ F2, hence V ⊂ F1 ∪ F2 and V = (V ∩ F1) ∪ (V ∩ F2). Since V is irreducible, we obtain
V = V ∩ F1 or V = V ∩ F2, hence V ⊂ F1 or V ⊂ F2 and V = W1 or V = W2. This proves that
V is irreducible.

b) Let X and Y be topological spaces and let u : X → Y be a continuous map. If X is irreducible,
prove that u(X) is irreducible.

Proof. Assume u(X) = W1 ∪ W2, where W1 and W2 are closed in u(X). We can write Wi =

u(X)∩Fi, where Fi is closed in Y . We have then u(X) ⊂ F1 ∪F2, hence X = u−1(F1)∪u−1(F2).
Since X is irreducible and u−1(Fi) is closed in X , we get X = u−1(F1) or X = u−1(F2), hence
u(X) ⊂ F1 or u(X) ⊂ F2. This implies u(X) = W1 or u(X) = W2 and proves that u(X) is
irreducible.

Problem 2. Let k be an infinite (not necessarily algebraically closed) field. Let C ⊂ k2 be the
vanishing set V (X2 − Y 3).

a) Prove that the ideal of C is the ideal in k[X, Y ] generated by X2 − Y 3 and that C is irreducible
(Hint: use the “parametrization” k → C given by t 7→ (t3, t2) and express A(C) = k[X, Y ]/I(C)

as a subring of k[T ]).

Proof. Obviously, X2 − Y 3 is in I(C). Assume that P ∈ k[X, Y ] vanishes on C. We have P (t3, t2)

for all t ∈ k. Since the field k is infinite, this implies that the polynomial P (T 3, T 2) ∈ k[T ]

vanishes. Modulo the ideal I generated by X2 − Y 3, one can write P ≡ A(Y ) +XB(Y ). We then
have A(T 2) + T 3B(T 2) = 0 in k[T ]. Since only even powers of T appear in A(T 2) and only odd
powers of T appear in T 3B(T 2), we obtain A = B = 0 and P ∈ I . This proves the opposite
inclusion I(C) ⊂ I .



So we have A(C) = k[X, Y ]/I and the parametrization k → C induces an isomorphism between
A(C) and the subring k[T 2, T 3] of k[T ]. The latter is obviously an integral domain, hence so is
A(C) and C is irreducible.

b) Prove that C is not isomorphic to k (Hint: prove that A(C) is not a principal ideal domain).

Proof. We saw in a) that A(C) is isomorphic to the subring k[T 2, T 3] of k[T ]. Let J be the ideal of
A(C) generated by T 2 and T 3. If it is generated by one element P (T ) ∈ J ⊂ k[T 2, T 3], we can write
T 2 = A(T )P (T ) and T 3 = B(T )P (T ), hence 2 = deg(A) + deg(P ) and 3 = deg(B) + deg(P ),
with deg(P ) ≥ 2 (because P ∈ J). Since each of these degrees is different from 1, we get a
contradiction.

c) How do these these results generalize to the vanishing set V (Xr−Y s), where r and s are relatively
prime positive integers?

Proof. The conclusions are the same but the arguments are slightly more complicated. For a), a
polynomial P ∈ k[X, Y ] that vanishes on C is such that P (T s, T r) vanishes in k[T ]. Write

P (X, Y ) = P0(Y ) +XP1(Y ) + · · ·+Xr−1Pr−1(Y )

modulo the ideal I generated by Xr − Y s. We then have

0 = P (T s, T r) = P0(T
r) + T sP1(T

r) + · · ·+ T s(r−1)Pr−1(T
r) ∈ k[T ].

The powers of T that appear in the term T siPi(T
r) are congruent to si modulo r. Since r and s are

relatively prime, these numbers are all different modulo r for i ∈ {0, . . . , r − 1}. It follows that
Pi = 0 for all i and P ∈ I . This proves I(C) = I and A(C) ' k[T s, T r].

To prove that A(C) is not a principal ideal domain, we may assume r < s. As a k-vector space,
A(C) is generated by all monomial Tmr+ns, with m,n non-negative integers. When of degree
< s, these monomials are of the type Tmr. If T r = A(T )P (T ) and T s = B(T )P (T ), we have
r = deg(A) + deg(P ) and s = deg(B) + deg(P ), with deg(P ) ≥ r, hence we may assume
P (T ) = T r. This implies B(T ) = T s−r ∈ k[T s, T r]. Since s − r < s, it must be a multiple of r,
which is absurd.

Problem 3. Let k be an infinite (not necessarily algebraically closed) field, let u : P1
k → P3

k be the
regular map defined by u(s, t) = (s3, s2t, st2, t3), and set C := u(P1

k).

a) Prove that no 4 distinct points of C are contained in a hyperplane in P3
k.

Proof. A hyperplane has equation L(x0, x1, x2, x3) = 0, where L is a non-zero linear form. If L
vanishes at 4 points of C, we have L(s3, s2t, st2, t3) = 0 for 4 distinct points (s, t) of P1

k. But this
is a non-zero homogeneous polynomial of degree 3 in two variables, hence it cannot have 4 distinct
zeroes in P1

k.

b) Prove that any quadric in P3
k (i.e., any subset of P3

k defined by a non-zero homogoneous polyno-
mial of degree 2) that contains 7 distinct points of C contains C.

Proof. A quadric has equation Q(x0, x1, x2, x3) = 0, where Q is a non-zero quadratic form. If Q
vanishes at 7 points of C, we have Q(s3, s2t, st2, t3) = 0 for 7 distinct points (s, t) of P1

k. But this
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is a non-zero homogeneous polynomial of degree 6 in two variables, hence it cannot have 7 distinct
zeroes in P1

k.

c) Prove that C is the vanishing set in P3
k of the (homogeneous) ideal I in k[T0, T1, T2, T3] generated

by the homogeneous polynomials T0T2−T 2
1 , T

2
2 −T1T3, T1T2−T0T3, which can be neatly expressed

as the 2× 2-minors of the matrix (
T0 T1 T2

T1 T2 T3

)
.

Proof. The set C is contained in V (I). Conversely, assume x := (x0, x1, x2, x3) ∈ V (I). If x0 6= 0,
we may take x0 = 1 and we have x2 = x2

1 and x3 = x1x2 = x3
1, hence x = u(1, x1) ∈ C. If x0 = 0,

we have x1 = 0, x2 = 0, hence x = u(0, 1) ∈ C.

d) Prove that the ideal of C is I (Hint: prove that any polynomial P ∈ k[T0, T1, T2, T3] is congruent
modulo I to a polynomial of the type A(T0, T1, T3) + T2B(T3) and that if P vanishes on C, one has
B = 0; then, use a similar method to show that A is divisible by T 3

1 − T 2
0 T3).

Proof. The inclusion I ⊂ I(C) is clear. Using the fact that I contains T0T2−T 2
1 , T1T2−T0T3, T

2
2 −

T1T3, we reduce modulo I any polynomial P to the form A(T0, T1, T3)+T2B(T3). If P vanishes on
C, we obtain as in Problem 2 (using the fact that k is infinite) A(S3, S2T, T 3) + ST 2B(T 3) = 0 in
k[S, T ]. Monomials of the type STm only appear in ST 2B(T 3), hence B = 0 and A(S3, S2T, T 3) =

0. The polynomial T 3
1 − T 2

0 T3 = −T1(T0T2 − T 2
1 ) + T0(T1T2 − T0T3) is in I , hence one can

write A(T0, T1, T3) ≡ A0(T0, T3) + T1A1(T0, T3) + T 2
1A2(T0, T3) (mod I), with A0(S

3, T 3) +

S2TA1(S
3, T 3)+S4T 2A2(S

3, T 3) = 0. Looking at the exponents of T that appear in this polynomial
modulo 3, we obtain A0 = A1 = A2, hence A ∈ I . This proves the opposite inclusion I(C) ⊂ I .

e) (Extra credit) How do these results generalize to the regular map u : P1
k → Pn

k (n ≥ 3) defined
by u(s, t) = (sn, sn−1t, . . . , stn−1, tn)?

3


