Problem set 1

Olivier Debarre

Due Thursday February 2, 2017

Problem 1. Recall that a topological space X is irreducible if it is non-empty and is not the union of two strict closed subsets. In other words, if X_{1} and X_{2} are closed subsets of X and $X=X_{1} \cup X_{2}$, then $X=X_{1}$ or $X=X_{2}$.
a) Let X be a topological space and let $V \subset X$ be a subset (endowed with the induced topology). Prove that V is irreducible if and only if its closure \bar{V} is irreducible.
Proof. Assume that V is irreducible. If $\bar{V}=W_{1} \cup W_{2}$, where W_{1} and W_{2} are closed in \bar{V} (hence also in X), we have $V=\left(V \cap W_{1}\right) \cup\left(V \cap W_{2}\right)$, where $V \cap W_{1}$ and $V \cap W_{2}$ are closed in V. Since V is irreducible, we obtain $V=V \cap W_{1}$ or $V=V \cap W_{2}$, hence $V \subset W_{1}$ or $V \subset W_{2}$. Since W_{1} and W_{2} are closed in X, this implies $\bar{V} \subset W_{1}$ or $\bar{V} \subset W_{2}$, hence $\bar{V}=W_{1}$ or $\bar{V}=W_{2}$. This proves that \bar{V} is irreducible.
For the converse, assume that \bar{V} is irreducible. If $V=W_{1} \cup W_{2}$, where W_{1} and W_{2} are closed in V, we can write $W_{i}=V \cap F_{i}$, where F_{i} is closed in X (we could take $F_{i}=\bar{W}_{i}$). We then have $V \subset F_{1} \cup F_{2}$, hence $\bar{V} \subset F_{1} \cup F_{2}$ and $\bar{V}=\left(\bar{V} \cap F_{1}\right) \cup\left(\bar{V} \cap F_{2}\right)$. Since \bar{V} is irreducible, we obtain $\bar{V}=\bar{V} \cap F_{1}$ or $\bar{V}=\bar{V} \cap F_{2}$, hence $V \subset F_{1}$ or $V \subset F_{2}$ and $V=W_{1}$ or $V=W_{2}$. This proves that V is irreducible.
b) Let X and Y be topological spaces and let $u: X \rightarrow Y$ be a continuous map. If X is irreducible, prove that $u(X)$ is irreducible.
Proof. Assume $u(X)=W_{1} \cup W_{2}$, where W_{1} and W_{2} are closed in $u(X)$. We can write $W_{i}=$ $u(X) \cap F_{i}$, where F_{i} is closed in Y. We have then $u(X) \subset F_{1} \cup F_{2}$, hence $X=u^{-1}\left(F_{1}\right) \cup u^{-1}\left(F_{2}\right)$. Since X is irreducible and $u^{-1}\left(F_{i}\right)$ is closed in X, we get $X=u^{-1}\left(F_{1}\right)$ or $X=u^{-1}\left(F_{2}\right)$, hence $u(X) \subset F_{1}$ or $u(X) \subset F_{2}$. This implies $u(X)=W_{1}$ or $u(X)=W_{2}$ and proves that $u(X)$ is irreducible.

Problem 2. Let \mathbf{k} be an infinite (not necessarily algebraically closed) field. Let $C \subset \mathbf{k}^{2}$ be the vanishing set $V\left(X^{2}-Y^{3}\right)$.
a) Prove that the ideal of C is the ideal in $\mathbf{k}[X, Y]$ generated by $X^{2}-Y^{3}$ and that C is irreducible (Hint: use the "parametrization" $\mathbf{k} \rightarrow C$ given by $t \mapsto\left(t^{3}, t^{2}\right)$ and express $A(C)=\mathbf{k}[X, Y] / I(C)$ as a subring of $\mathbf{k}[T]$).
Proof. Obviously, $X^{2}-Y^{3}$ is in $I(C)$. Assume that $P \in \mathbf{k}[X, Y]$ vanishes on C. We have $P\left(t^{3}, t^{2}\right)$ for all $t \in \mathbf{k}$. Since the field \mathbf{k} is infinite, this implies that the polynomial $P\left(T^{3}, T^{2}\right) \in \mathbf{k}[T]$ vanishes. Modulo the ideal I generated by $X^{2}-Y^{3}$, one can write $P \equiv A(Y)+X B(Y)$. We then have $A\left(T^{2}\right)+T^{3} B\left(T^{2}\right)=0$ in $\mathbf{k}[T]$. Since only even powers of T appear in $A\left(T^{2}\right)$ and only odd powers of T appear in $T^{3} B\left(T^{2}\right)$, we obtain $A=B=0$ and $P \in I$. This proves the opposite inclusion $I(C) \subset I$.

So we have $A(C)=\mathbf{k}[X, Y] / I$ and the parametrization $\mathbf{k} \rightarrow C$ induces an isomorphism between $A(C)$ and the subring $\mathbf{k}\left[T^{2}, T^{3}\right]$ of $\mathbf{k}[T]$. The latter is obviously an integral domain, hence so is $A(C)$ and C is irreducible.
b) Prove that C is not isomorphic to \mathbf{k} (Hint: prove that $A(C)$ is not a principal ideal domain).

Proof. We saw in a) that $A(C)$ is isomorphic to the subring $\mathbf{k}\left[T^{2}, T^{3}\right]$ of $\mathbf{k}[T]$. Let J be the ideal of $A(C)$ generated by T^{2} and T^{3}. If it is generated by one element $P(T) \in J \subset \mathbf{k}\left[T^{2}, T^{3}\right]$, we can write $T^{2}=A(T) P(T)$ and $T^{3}=B(T) P(T)$, hence $2=\operatorname{deg}(A)+\operatorname{deg}(P)$ and $3=\operatorname{deg}(B)+\operatorname{deg}(P)$, with $\operatorname{deg}(P) \geq 2$ (because $P \in J$). Since each of these degrees is different from 1, we get a contradiction.
c) How do these these results generalize to the vanishing set $V\left(X^{r}-Y^{s}\right)$, where r and s are relatively prime positive integers?
Proof. The conclusions are the same but the arguments are slightly more complicated. For a), a polynomial $P \in \mathbf{k}[X, Y]$ that vanishes on C is such that $P\left(T^{s}, T^{r}\right)$ vanishes in $\mathbf{k}[T]$. Write

$$
P(X, Y)=P_{0}(Y)+X P_{1}(Y)+\cdots+X^{r-1} P_{r-1}(Y)
$$

modulo the ideal I generated by $X^{r}-Y^{s}$. We then have

$$
0=P\left(T^{s}, T^{r}\right)=P_{0}\left(T^{r}\right)+T^{s} P_{1}\left(T^{r}\right)+\cdots+T^{s(r-1)} P_{r-1}\left(T^{r}\right) \in \mathbf{k}[T]
$$

The powers of T that appear in the term $T^{s i} P_{i}\left(T^{r}\right)$ are congruent to si modulo r. Since r and s are relatively prime, these numbers are all different modulo r for $i \in\{0, \ldots, r-1\}$. It follows that $P_{i}=0$ for all i and $P \in I$. This proves $I(C)=I$ and $A(C) \simeq \mathbf{k}\left[T^{s}, T^{r}\right]$.
To prove that $A(C)$ is not a principal ideal domain, we may assume $r<s$. As a k-vector space, $A(C)$ is generated by all monomial $T^{m r+n s}$, with m, n non-negative integers. When of degree $<s$, these monomials are of the type $T^{m r}$. If $T^{r}=A(T) P(T)$ and $T^{s}=B(T) P(T)$, we have $r=\operatorname{deg}(A)+\operatorname{deg}(P)$ and $s=\operatorname{deg}(B)+\operatorname{deg}(P)$, with $\operatorname{deg}(P) \geq r$, hence we may assume $P(T)=T^{r}$. This implies $B(T)=T^{s-r} \in \mathbf{k}\left[T^{s}, T^{r}\right]$. Since $s-r<s$, it must be a multiple of r, which is absurd.

Problem 3. Let \mathbf{k} be an infinite (not necessarily algebraically closed) field, let $u: \mathbf{P}_{\mathbf{k}}^{1} \rightarrow \mathbf{P}_{\mathbf{k}}^{3}$ be the regular map defined by $u(s, t)=\left(s^{3}, s^{2} t, s t^{2}, t^{3}\right)$, and set $C:=u\left(\mathbf{P}_{\mathbf{k}}^{1}\right)$.
a) Prove that no 4 distinct points of C are contained in a hyperplane in $\mathbf{P}_{\mathbf{k}}^{3}$.

Proof. A hyperplane has equation $L\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=0$, where L is a non-zero linear form. If L vanishes at 4 points of C, we have $L\left(s^{3}, s^{2} t, s t^{2}, t^{3}\right)=0$ for 4 distinct points (s, t) of $\mathbf{P}_{\mathbf{k}}^{1}$. But this is a non-zero homogeneous polynomial of degree 3 in two variables, hence it cannot have 4 distinct zeroes in $\mathbf{P}_{\mathbf{k}}^{1}$.
b) Prove that any quadric in \mathbf{P}_{k}^{3} (i.e., any subset of $\mathbf{P}_{\mathrm{k}}^{3}$ defined by a non-zero homogoneous polynomial of degree 2) that contains 7 distinct points of C contains C.
Proof. A quadric has equation $Q\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=0$, where Q is a non-zero quadratic form. If Q vanishes at 7 points of C, we have $Q\left(s^{3}, s^{2} t, s t^{2}, t^{3}\right)=0$ for 7 distinct points (s, t) of $\mathbf{P}_{\mathbf{k}}^{1}$. But this
is a non-zero homogeneous polynomial of degree 6 in two variables, hence it cannot have 7 distinct zeroes in $\mathbf{P}_{\mathbf{k}}^{1}$.
c) Prove that C is the vanishing set in $\mathbf{P}_{\mathbf{k}}^{3}$ of the (homogeneous) ideal I in $\mathbf{k}\left[T_{0}, T_{1}, T_{2}, T_{3}\right]$ generated by the homogeneous polynomials $T_{0} T_{2}-T_{1}^{2}, T_{2}^{2}-T_{1} T_{3}, T_{1} T_{2}-T_{0} T_{3}$, which can be neatly expressed as the 2×2-minors of the matrix

$$
\left(\begin{array}{lll}
T_{0} & T_{1} & T_{2} \\
T_{1} & T_{2} & T_{3}
\end{array}\right)
$$

Proof. The set C is contained in $V(I)$. Conversely, assume $x:=\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in V(I)$. If $x_{0} \neq 0$, we may take $x_{0}=1$ and we have $x_{2}=x_{1}^{2}$ and $x_{3}=x_{1} x_{2}=x_{1}^{3}$, hence $x=u\left(1, x_{1}\right) \in C$. If $x_{0}=0$, we have $x_{1}=0, x_{2}=0$, hence $x=u(0,1) \in C$.
d) Prove that the ideal of C is I (Hint: prove that any polynomial $P \in \mathbf{k}\left[T_{0}, T_{1}, T_{2}, T_{3}\right]$ is congruent modulo I to a polynomial of the type $A\left(T_{0}, T_{1}, T_{3}\right)+T_{2} B\left(T_{3}\right)$ and that if P vanishes on C, one has $B=0$; then, use a similar method to show that A is divisible by $T_{1}^{3}-T_{0}^{2} T_{3}$).
Proof. The inclusion $I \subset I(C)$ is clear. Using the fact that I contains $T_{0} T_{2}-T_{1}^{2}, T_{1} T_{2}-T_{0} T_{3}, T_{2}^{2}-$ $T_{1} T_{3}$, we reduce modulo I any polynomial P to the form $A\left(T_{0}, T_{1}, T_{3}\right)+T_{2} B\left(T_{3}\right)$. If P vanishes on C, we obtain as in Problem 2 (using the fact that \mathbf{k} is infinite) $A\left(S^{3}, S^{2} T, T^{3}\right)+S T^{2} B\left(T^{3}\right)=0$ in $\mathbf{k}[S, T]$. Monomials of the type $S T^{m}$ only appear in $S T^{2} B\left(T^{3}\right)$, hence $B=0$ and $A\left(S^{3}, S^{2} T, T^{3}\right)=$ 0 . The polynomial $T_{1}^{3}-T_{0}^{2} T_{3}=-T_{1}\left(T_{0} T_{2}-T_{1}^{2}\right)+T_{0}\left(T_{1} T_{2}-T_{0} T_{3}\right)$ is in I, hence one can write $A\left(T_{0}, T_{1}, T_{3}\right) \equiv A_{0}\left(T_{0}, T_{3}\right)+T_{1} A_{1}\left(T_{0}, T_{3}\right)+T_{1}^{2} A_{2}\left(T_{0}, T_{3}\right)(\bmod I)$, with $A_{0}\left(S^{3}, T^{3}\right)+$ $S^{2} T A_{1}\left(S^{3}, T^{3}\right)+S^{4} T^{2} A_{2}\left(S^{3}, T^{3}\right)=0$. Looking at the exponents of T that appear in this polynomial modulo 3, we obtain $A_{0}=A_{1}=A_{2}$, hence $A \in I$. This proves the opposite inclusion $I(C) \subset I$.
e) (Extra credit) How do these results generalize to the regular map $u: \mathbf{P}_{\mathbf{k}}^{1} \rightarrow \mathbf{P}_{\mathbf{k}}^{n}(n \geq 3)$ defined by $u(s, t)=\left(s^{n}, s^{n-1} t, \ldots, s t^{n-1}, t^{n}\right)$?

