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Problem 1. Recall that a topological space X is irreducible if it is non-empty and is not the union
of two strict closed subsets. In other words, if X; and X5 are closed subsets of X and X = X; U X5,
then X = X; or X = X,.

a) Let X be a topological space and let IV C X be a subset (endowed with the induced topology).
Prove that V is irreducible if and only if its closure V is irreducible.

Proof. Assume that V is irreducible. If V' = W, U W5, where W, and W, are closed in V' (hence
also in X), we have V = (V N W) U (V N W), where V N W, and V N W are closed in V. Since
V is irreducible, we obtain V = VN WyorV = VN Wy, hence V C Wy or V C Ws. Since W,
and W, are closed in X, this implies V C W; or V' C W, hence V = W; or V = W,. This proves
that V' is irreducible.

For the converse, assume that V is irreducible. If V' = W, U W, where W, and W, are closed in
V, we can write W, = V N F}, where F) is closed in X (we could take F; = TW;). We then have
V CFiUFy,henceV C FyUF,and V = (VN EF) U (V N E). Since V is irreducible, we obtain
V=VnForV=VnNFy,henceV C FyorV C Fyand V = W, or V = W,. This proves that
V' is irreducible.

b) Let X and Y be topological spaces and let u : X — Y be a continuous map. If X is irreducible,
prove that u(X) is irreducible.

Proof. Assume u(X) = Wy U W,, where W, and W5 are closed in u(X). We can write W; =
w(X) N F};, where F} is closed in Y. We have then u(X) C F} U Fy, hence X = w™ ! (F}) Uu™ ! (F).
Since X is irreducible and u~!(F;) is closed in X, we get X = u='(F}) or X = u~!'(Fy), hence
u(X) C Fy oru(X) C F,. This implies u(X) = Wj or u(X) = W, and proves that u(X) is
irreducible.

Problem 2. Let k be an infinite (not necessarily algebraically closed) field. Let C' C k? be the
vanishing set V(X2 — Y3).

a) Prove that the ideal of C is the ideal in k[ X, Y] generated by X? — Y and that C'is irreducible
(Hint: use the “parametrization” k — C given by ¢ — (¢3,¢*) and express A(C) = k[X,Y]/I(C)
as a subring of k[T)).

Proof. Obviously, X% — Y3 isin I(C). Assume that P € k[X, Y] vanishes on C. We have P(#3, t?)
for all ¢ € k. Since the field k is infinite, this implies that the polynomial P(T3 T?) € k[T
vanishes. Modulo the ideal I generated by X2 — Y3, one can write P = A(Y) + X B(Y'). We then
have A(T?) + T3B(T?) = 0 in k[T]. Since only even powers of T appear in A(T?) and only odd
powers of T appear in T°B(T?), we obtain A = B = 0 and P € I. This proves the opposite
inclusion /(C') C I.



So we have A(C') = k[X,Y]/I and the parametrization k — C' induces an isomorphism between
A(C) and the subring k[T?,T%] of k[T]. The latter is obviously an integral domain, hence so is
A(C) and C is irreducible.

b) Prove that C' is not isomorphic to k (Hint: prove that A(C') is not a principal ideal domain).

Proof. We saw in a) that A(C') is isomorphic to the subring k|72, 7] of k[T]. Let J be the ideal of
A(C) generated by T2 and T3. If it is generated by one element P(T') € J C k[T?, T3], we can write
T? = A(T)P(T) and T® = B(T)P(T), hence 2 = deg(A) + deg(P) and 3 = deg(B) + deg(P),
with deg(P) > 2 (because P € J). Since each of these degrees is different from 1, we get a
contradiction.

c¢) How do these these results generalize to the vanishing set V(X" —Y®), where r and s are relatively
prime positive integers?

Proof. The conclusions are the same but the arguments are slightly more complicated. For a), a
polynomial P € k[X, Y] that vanishes on C is such that P(7*,T") vanishes in k[T']. Write

PX,Y)=P(Y)+XP(Y)+ -+ X"'P._ (V)
modulo the ideal I generated by X" — Y*. We then have
0= P(T*,T") = Py(T") + T*Py(T") + - -- + TV P,_(T") € k[T).

The powers of T that appear in the term 7 P;(T") are congruent to si modulo r. Since r and s are
relatively prime, these numbers are all different modulo r for ¢ € {0,...,r — 1}. It follows that
P, =0foralliand P € I. This proves I(C') = I and A(C) ~ k[T*,T"].

To prove that A(C') is not a principal ideal domain, we may assume r < s. As a k-vector space,
A(C) is generated by all monomial 7" with m,n non-negative integers. When of degree
< s, these monomials are of the type 77"". If T" = A(T)P(T') and T* = B(T)P(T), we have
r = deg(A) + deg(P) and s = deg(B) + deg(P), with deg(P) > r, hence we may assume
P(T) = T". This implies B(T") = T*" € k[T*,T"]. Since s — r < s, it must be a multiple of r,
which is absurd.

Problem 3. Let k be an infinite (not necessarily algebraically closed) field, let u: Py — P} be the
regular map defined by u(s,t) = (s*, s*¢, st?,t*), and set C' := u(Py,).

a) Prove that no 4 distinct points of C' are contained in a hyperplane in P;}.

Proof. A hyperplane has equation L(zg, z1,x2,23) = 0, where L is a non-zero linear form. If L
vanishes at 4 points of C, we have L(s3, s%t, st>,t3) = 0 for 4 distinct points (s,?) of P. But this
is a non-zero homogeneous polynomial of degree 3 in two variables, hence it cannot have 4 distinct
zeroes in Py.

b) Prove that any quadric in Py (i.e., any subset of P} defined by a non-zero homogoneous polyno-
mial of degree 2) that contains 7 distinct points of C' contains C'.

Proof. A quadric has equation Q(zo, 1,2, 23) = 0, where () is a non-zero quadratic form. If )
vanishes at 7 points of C, we have Q(s*, s, st?, %) = 0 for 7 distinct points (s,t) of PL. But this
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is a non-zero homogeneous polynomial of degree 6 in two variables, hence it cannot have 7 distinct
zeroes in Py.

¢) Prove that C'is the vanishing set in P} of the (homogeneous) ideal I in k[Ty, T}, Tb, T3] generated
by the homogeneous polynomials TyT, — 172, T2 —T1 T3, Ty T> — Ty T3, which can be neatly expressed

as the 2 x 2-minors of the matrix
Ty Ty Tp
Ty, Ty)

Proof. The set C'is contained in V' (I). Conversely, assume = := (xg, x1, 2, x3) € V(I). If 29 # 0,
we may take 7o = 1 and we have 2o = 2% and 73 = 7,25 = 23, hence z = u(1,1,) € C. If 2y = 0,
we have 1 = 0, x5 = 0, hence x = u(0,1) € C.

d) Prove that the ideal of C'is I (Hint: prove that any polynomial P € k[Ty, T}, T3, T3] is congruent
modulo / to a polynomial of the type A(Ty, T}, T5) + 1> B(T5) and that if P vanishes on C, one has
B = 0; then, use a similar method to show that A is divisible by T} — TZT3).

Proof. The inclusion I C I(C) is clear. Using the fact that I contains TyTy, — T2, 1Ty — Ty T3, T3 —
T, T3, we reduce modulo [ any polynomial P to the form A(Tg, Ty, T3) + T2 B(T3). If P vanishes on
C, we obtain as in Problem 2 (using the fact that k is infinite) A(S®, S*T,T?) + ST?B(T?) = 0 in
k[S, T']. Monomials of the type ST™ only appear in ST?B(T?), hence B = 0 and A(S?, S*T,T3) =
0. The polynomial 77 — T¢Ty = —T(TyTy — T?) + To(Ty Ty — TyT3) is in I, hence one can
write A(Ty, Ty, Ty) = Ao(To, Ts) + TiAy(To, Ts) + T2A5(Ty, T3) (mod I), with Ag(S?,T?) +
SPT AL (S3,T3)+S4T? Ay (83, T3) = 0. Looking at the exponents of 7" that appear in this polynomial
modulo 3, we obtain Ay = A; = Ay, hence A € I. This proves the opposite inclusion [(C') C I.

e) (Extra credit) How do these results generalize to the regular map u: Pll( — P} (n > 3) defined
by u(s,t) = (s, s" 7 1t,... st" 1 t")?



