Problem set 2

Olivier Debarre
Due Thursday March 23, 2017
Everything is defined over an algebraically closed field \mathbf{k}.

Problem 1. Prove that a linear subspace L contained in a smooth hypersurface $X \subset \mathbf{P}^{n}$ of degree >1 has dimension $\leq(n-1) / 2$ and show by producing examples that for each integer $n \geq 1$, this bound is the best possible (Hint: look at the common zeroes on L of the partial derivatives of an equation of X).

Problem 2. Let \mathbf{A} be the affine space of $n \times n$-matrices with entries in \mathbf{k}, with $n>1$. Given $M \in \mathbf{A}$, the n^{2} entries of the matrix M^{n} are homogeneous polynomials of degree n in the n^{2} entries of M. Let I be the ideal in the polynomial ring $A(\mathbf{A})$ generated by these n^{2} polynomials. The n coefficients $\sigma_{1}, \ldots, \sigma_{n}$ of the characteristic polynomial of M (not counting its leading coefficient 1) are homogeneous polynomials of degrees $1, \ldots, n$ in the n^{2} entries of M. Let J be the ideal in $A(\mathbf{A})$ generated by these n polynomials.
a) Show that $V(I)=V(J)$ and that the ideal I is not radical. Let $\mathscr{N} \subset \mathbf{A}$ be the subvariety defined by I (or J). How are the elements of \mathscr{N} usually called?
b) Show that every component of \mathscr{N} has dimension $\geq n^{2}-n$.
c) Let $\mathscr{N}^{0}:=\left\{M \in \mathbf{A} \mid M^{n}=0, M^{n-1} \neq 0\right\}$. Prove that \mathscr{N}^{0} is irreducible smooth of dimension $n^{2}-n$ (Hint: use the fact that \mathscr{N}^{0} is homogeneous under the action of a connected algebraic group).
d) Prove that \mathscr{N}^{0} is dense in \mathscr{N} and that \mathscr{N} is irreducible of dimension $n^{2}-n$.
e) Prove that the singular locus of \mathscr{N} is exactly $\mathscr{N} \backslash \mathscr{N}^{0}$.
f) Show that the regular map

$$
\begin{aligned}
u: \mathbf{A} & \longrightarrow \mathbf{A}^{n} \\
M & \longmapsto\left(\sigma_{1}(M), \ldots, \sigma_{n}(M)\right)
\end{aligned}
$$

is surjective, that general fibers are smooth irreducible of dimension $n^{2}-n$, and that all fibers are irreducible of dimension $n^{2}-n$.

Problem 3. (Dual varieties) Let V be a k-vector space of dimension $n+1$ and let $X \subsetneq \mathbf{P} V$ be an irreducible (closed) proper subvariety. We let $X^{0} \subset X$ be the dense open subset of smooth points of X. If $x \in X^{0}$, the projective Zariski tangent space $\mathbf{T}_{X, x} \subset \mathbf{P} V$ was defined in the class notes (Example 4.5.5)); it is a projective linear subspace passing through x of the same dimension as the Zariski tangent space $T_{X, x}$. If $\pi: V \backslash\{0\} \rightarrow \mathbf{P} V$ is the canonical projection and $C X^{0}:=\pi^{-1}\left(X^{0}\right)$ (the affine cone over X), $\mathbf{T}_{X, x}$ is the image by π of $T_{C X^{0}, x^{\prime}}$, for any $x^{\prime} \in \pi^{-1}(x)$.
The set of hyperplanes in $\mathbf{P} V$ is the projective space $\mathbf{P} V^{\vee}$. We define the dual variety of X as the closure

$$
X^{\vee}:=\overline{\left\{H \in \mathbf{P} V^{\vee} \mid \exists x \in X^{0} \quad H \supset \mathbf{T}_{X, x}\right\}} \subset \mathbf{P} V^{\vee}
$$

a) Show that $X^{\vee} \subset \mathbf{P} V^{\vee}$ is an irreducible variety of dimension $\leq n-1$ and that for $H \in$ $\mathbf{P} V^{\vee} \backslash X^{\vee}$, the intersection $X^{0} \cap H$ is smooth (Hint: you might want to consider the variety $\left.\overline{\left\{(x, H) \in X^{0} \times \mathbf{P} V^{\vee} \mid \mathbf{T}_{X, x} \subset H\right\}} \subset \mathbf{P} V \times \mathbf{P} V^{\vee}\right)$.
b) If $X \subset \mathbf{P}^{n}$ is a hypersurface whose ideal is generated by a homogeneous polynomial F, show that X^{\vee} is the (closure of the) image of the so-called Gauss map

$$
\begin{aligned}
X & -\mathbf{P}^{n} \\
x & \longmapsto\left(\frac{\partial F}{\partial x_{0}}(x), \ldots, \frac{\partial F}{\partial x_{n}}(x)\right) .
\end{aligned}
$$

c) What is the dual of the plane conic curve $C \subset \mathbf{P}^{2}$ with equation $x_{0}^{2}+x_{1} x_{2}=0$? (Hint: the answer is different in characteristic 2 !).
d) Assume that V is the vector space of $2 \times(m+1)$-matrices with entries in \mathbf{k}. Recall that the set $X \subset \mathbf{P} V$ of matrices of rank 1 is a smooth variety of dimension $m+1$. What is the dual $X^{\vee} \subset \mathbf{P} V^{\vee}$? (Hint: find the orbits of the action of the group $\mathrm{GL}(2, \mathbf{k}) \times \mathrm{GL}(m+1, \mathbf{k})$ on $\mathbf{P} V$ or $\mathbf{P} V^{\vee}$.)
e) The aim of this question is to show that if the characteristic of \mathbf{k} is 0 , one has $\left(X^{\vee}\right)^{\vee}=X$ (where we identify $\mathbf{P} V^{\vee \vee}$ with $\mathbf{P} V$). We introduce the variety

$$
\begin{aligned}
I & :=\left\{(x, \ell) \in(V \backslash\{0\}) \times\left(V^{\vee} \backslash\{0\}\right) \mid \ell(x)=0\right\}, \\
I_{X} & :=\left\{(x, \ell) \in I\left|x \in C X^{0}, \ell\right|_{T_{C X^{0}, x}}=0\right\} .
\end{aligned}
$$

(i) What is the closure of the image of the projection $I_{X} \xrightarrow{p_{2}} V^{\vee} \backslash\{0\} \xrightarrow{\pi^{\vee}} \mathbf{P} V^{\vee}$?
(ii) Let $(x, \ell) \in I_{X}$. Prove that the Zariski tangent space $T_{I_{X},(x, \ell)}$ is contained in the vector space

$$
T_{I_{X},(x, \ell)}^{\prime}:=\left\{(a, m) \in V \times V^{\vee} \mid \ell(a)+m(x)=0, a \in T_{C X^{0}, x}\right\}
$$

and that $T_{I_{X},(x, \ell)}^{\prime}$ is also equal to $\left\{(a, m) \in T_{C X^{0}, x} \times V^{\vee} \mid m(x)=0\right\}$.
(iii) Prove that in characteristic 0 , one has $\left(X^{\vee}\right)^{\vee}=X$ (Hint: use generic smoothness for the map $\pi^{\vee} \circ p_{2}: I_{X} \rightarrow X^{\vee}$).
(iv) Show that this result does not always hold in positive characteristics (Hint: use question c)).

