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Everything is defined over an algebraically closed field k.

Problem 1. Prove that a linear subspace L contained in a smooth hypersurface X ⊂ Pn of degree
> 1 has dimension ≤ (n − 1)/2 and show by producing examples that for each integer n ≥ 1, this
bound is the best possible (Hint: look at the common zeroes on L of the partial derivatives of an
equation of X).

Proof. Assume L ⊂ X ⊂ Pn, where L is a linear subspace of dimension r and X is a hypersurface
defined by a homogeneous polynomial F of degree d > 1. We may choose coordinates x0, . . . , xn
such that L is defined by the equations xr+1 = · · · = xn = 0. Since F vanishes identically on
L, so do the partial derivatives ∂F

∂xi
for 0 ≤ i ≤ r. It follows that any common zero on L of the

(non-constant) n− r homogeneous polynomials ∂F
∂xr+1

, . . . , ∂F
∂xn

is singular on X . If X is smooth, we
must therefore have n− r > r.

If n = 2m is even, the smooth quadric in Pn with equation x0x1 + x2x3 + · · ·+ xn−2xn−1 + x2n = 0

contains the (m − 1)-dimensional linear space defined by the equations x0 = x2 = · · · = xn−2 =

xn = 0.

If n = 2m + 1 is odd, the smooth quadric in Pn with equation x0x1 + x2x3 + · · · + xn−2xn−1 = 0

contains the m-dimensional linear space defined by the equations x0 = x2 = · · · = xn−2 = 0.

Problem 2. Let A be the affine space of n × n-matrices with entries in k, with n > 1. Given
M ∈ A, the n2 entries of the matrix Mn are homogeneous polynomials of degree n in the n2 entries
of M . Let I be the ideal in the polynomial ring A(A) generated by these n2 polynomials. The n
coefficients σ1, . . . , σn of the characteristic polynomial of M (not counting its leading coefficient 1)
are homogeneous polynomials of degrees 1, . . . , n in the n2 entries ofM . Let J be the ideal inA(A)

generated by these n polynomials.

a) Show that V (I) = V (J) and that the ideal I is not radical. Let N ⊂ A be the subvariety defined
by I (or J). How are the elements of N usually called?

Proof. Both V (I) and V (J) are equal to the set of nilpotent matrices. By the Nullstellensatz,
√
I =√

J . Since the trace a11 + · · ·+ ann is in J , it is in
√
I; but it is not in I , since it is homogeneous of

degree 1 and I is generated by homogeneous polynomials of degree n. Hence I 6=
√
I .

b) Show that every component of N has dimension ≥ n2 − n.

Proof. The variety N is defined by the n equations σ1, . . . , σn in A. By Krull’s theorem, every
component of N has dimension ≥ dim(A)− n = n2 − n.

c) Let N 0 := {M ∈ A |Mn = 0, Mn−1 6= 0}. Prove that N 0 is irreducible smooth of dimension
n2−n (Hint: use the fact that N 0 is homogeneous under the action of a connected algebraic group).



Proof. An element M is in N 0 if and only if it is similar to

Nn :=


0 1 0 · · · 0
0 0 1 · · · 0
... . . . . . . . . . ...
... . . . . . . 1
0 · · · · · · · · · 0

 .

The irreducible group GL(n,k) therefore acts transitively on N 0 ⊂ An2 by conjugation, hence N 0

is irreducible and smooth. Its dimension is the dimension n2 of GL(n,k) minus the dimension of the

stabilizer of Nn. This stabilizer consists of matrices of the type


t1 t2 · · · · · · tn
0 t1 t2 · · · tn−1
... . . . . . . . . . ...
... . . . . . . t2
0 · · · · · · 0 t1

, with

t1, . . . , tn ∈ k and t1 6= 0 (all polynomials in N ). It has dimension n, hence dim(N 0) = n2 − n.

d) Prove that N 0 is dense in N and that N is irreducible of dimension n2 − n.

Proof. Any element M of N can be written as M = P−1NP , where N is upper triangular with
0 diagonal and P invertible. For t ∈ k, we have N(t) := P−1(N + tNn)P ∈ N . Moreover,
(N + tNn)

n−1 is a polynomial of degree exactly n − 1 in t (with matrix coefficients), hence there
exists a finite set F ⊂ k such that N + tNn (hence also N(t)) is in N 0 if and only if t ∈ k r F .
Since N(0) = M and the Zariski closure of k r F is k, we get M ∈ N 0. This proves N = N 0,
hence N is, as N 0, irreducible of dimension n2 − n.

e) Prove that the singular locus of N is exactly N r N 0.

Proof. It seems difficult to answer this question without knowing that the ideal of N is J , hence
is generated by σ1, . . . , σn.1 Once this is known, one can compute the Jacobian matrix of these n
equations at a point N of N r N 0: the rank of N is ≤ n − 2 and one sees that the differential
of σn = ± det at any such matrix (nilpotent or not) vanishes identically. The Jacobian matrix at N
therefore has a zero row hence its rank is < n and N is singular on V (J) = N .

f) Show that the regular map

u : A −→ An

M 7−→ (σ1(M), . . . , σn(M))

is surjective, that general fibers are smooth irreducible of dimension n2 − n, and that all fibers are
irreducible of dimension n2 − n.

1Proving this (i.e., that J is a radical ideal) without too much effort requires a bit of commutative algebra: since V (J)
has codimension in A equal to the number of its generators, it is enough, by the Unmixedness Theorem (Matsumura,
H., Commutative algebra, W.A. Benjamin Co., New York, 1970, p. 107 and Theorem 31, p. 108) to check that J is
“reduced” at some point of each component of V (J); since V (J) is irreducible, it is enough to check that the Jacobian
matrix of σ1, . . . , σn has rank n at some point of N . One checks that this is true at any point of N 0.
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Proof. Companion matrices give surjectivity. The fibers are stable by conjugation hence are unions
of conjugacy classes.

If its characteristic polynomial has no multiple roots (this occur over the dense open subset of A
defined by the non-vanishing of the discriminant of the characteristic polynomial), a matrix M is
similar to a diagonal matrix D with distinct diagonal coefficients. Its fiber u−1(u(M)) is therefore
homogeneous under the action of GL(n,k) by conjugation, hence is smooth irreducible. Its dimen-
sion is given by a theorem from the course as dim(A)− dim(An) = n2 − n.

The same reasoning as in question d) shows that matrices with the minimal number of Jordan blocks
are dense in any fiber. Since GL(n,k) acts transitively on this set of matrices, the fiber is irreducible.
Again, the centralizer of such a matrix consists of direct sums of matrices as in c), hence has dimen-
sion n. This implies that this set, hence also its closure the fiber, have dimension n2 − n.

Problem 3. (Dual varieties) Let V be a k-vector space of dimension n+ 1 and let X ( PV be an
irreducible (closed) proper subvariety. We let X0 ⊂ X be the dense open subset of smooth points
of X . If x ∈ X0, the projective Zariski tangent space TX,x ⊂ PV was defined in the class notes
(Example 4.5.5)); it is a projective linear subspace passing through x of the same dimension as the
Zariski tangent space TX,x. If π : V r {0} → PV is the canonical projection and CX0 := π−1(X0)

(the affine cone over X), TX,x is the image by π of TCX0,x′ , for any x′ ∈ π−1(x).
The set of hyperplanes in PV is the projective space PV ∨. We define the dual variety of X as the
closure

X∨ := {H ∈ PV ∨ | ∃x ∈ X0 H ⊃ TX,x} ⊂ PV ∨.

a) Show that X∨ ⊂ PV ∨ is an irreducible variety of dimension ≤ n − 1 and that for H ∈
PV ∨ \ X∨, the intersection X0 ∩ H is smooth (Hint: you might want to consider the variety
{(x,H) ∈ X0 ×PV ∨ | TX,x ⊂ H} ⊂ PV ×PV ∨).

Proof. Let IX := {(x,H) ∈ X0 × PV ∨ | TX,x ⊂ H} and set d := dim(X). The fibers of
the first projection IX → X0 are all isomorphic to Pn−d−1, hence IX is irreducible of dimension
d + n − d − 1 = n − 1. Since the image of the second projection IX → PV ∨ is X∨, this answers
the first part of the question.

For the second part, let x ∈ X0 ∩ H . The projective Zariski tangent space TX0∩H,x ⊂ PV is
contained in TX0,x (which has dimension d) and in TH,x = H . Since H 6⊃ TX,x, the intersection
TX0,x ∩H has dimension d− 1. Since X0 ∩H has dimension ≥ d− 1 by Krull’s theorem, we have

d− 1 ≤ dimx(X
0 ∩H) ≤ dim(TX0∩H,x) ≤ dim(TX0,x ∩H) = d− 1.

These numbers are all equal and X0 ∩H is smooth at x.

b) If X ⊂ Pn is a hypersurface whose ideal is generated by a homogeneous polynomial F , show
that X∨ is the (closure of the) image of the so-called Gauss map

X 99K Pn

x 7−→
( ∂F
∂x0

(x), . . . ,
∂F

∂xn
(x)
)
.
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Proof. The projective Zariski tangent space to X at a smooth point x ∈ X is the hyperplane with
equation

∂F

∂x0
(x)a0 + · · ·+

∂F

∂xn
(x)an = 0.

The result follows by definition of X∨.

c) What is the dual of the plane conic curve C ⊂ P2 with equation x20+x1x2 = 0? (Hint: the answer
is different in characteristic 2!).

Proof. Using b), we see that the dual C∨ ⊂ P2 is the image of the Gauss map

C −→ P2

x 7−→ (2x0, x2, x1)

(the curve C is smooth). If the characteristic of k is not 2, C∨ is the conic with equation (a0/2)
2 +

a1a2 = 0. If the characteristic of k is 2, C∨ is the line a0 = 0.

d) Assume that V is the vector space of 2 × (m + 1)-matrices with entries in k. Recall that the set
X ⊂ PV of matrices of rank 1 is a smooth variety of dimensionm+1. What is the dualX∨ ⊂ PV ∨?
(Hint: find the orbits of the action of the group GL(2,k)×GL(m+ 1,k) on PV or PV ∨.)

Proof. The groupG := GL(2,k)×GL(m+1,k) acts on PV (on the left) by (P,Q)·M = PMQ−1.
The orbit are the equivalence classes of (non-zero) matrices: the orbit X of matrices of rank 1 and
the orbit PrX of matrices of rank 2; the same description holds for the dual action of G on PV ∨.
One checks that the dual variety X∨ ⊂ PV ∨ is stable for the dual action of G on PV ∨. Since it has
dimension< 2m+1, it has to be the closed orbit, which is of dimensionm+1 (and non-canonically
isomorphic to P1 ×Pm and to X).

e) The aim of this question is to show that if the characteristic of k is 0, one has (X∨)∨ = X (where
we identify PV ∨∨ with PV ). We introduce the variety

I := {(x, `) ∈ (V r {0})× (V ∨ r {0}) | `(x) = 0},
IX := {(x, `) ∈ I | x ∈ CX0, `|TCX0,x

= 0}.

(i) What is the closure of the image of the projection IX
p2−−→ V ∨ r {0} π∨

−−→ PV ∨?

Proof. By definition, this is X∨ (note that IX is just the inverse image in (V r {0}) × (V ∨ r {0})
of the variety IX ⊂ PV ×PV ∨ of question a)).

(ii) Let (x, `) ∈ IX . Prove that the Zariski tangent space TIX ,(x,`) is contained in the vector
space

T ′IX ,(x,`) := {(a,m) ∈ V × V ∨ | `(a) +m(x) = 0, a ∈ TCX0,x}

and that T ′IX ,(x,`) is also equal to {(a,m) ∈ TCX0,x × V ∨ | m(x) = 0}.
Proof. Since IX ⊂ CX0× (V ∨r{0}), we have TIX ,(x,`) ⊂ {(a,m) ∈ V ×V ∨ | a ∈ TCX0,x}. Since
IX ⊂ I , we have TIX ,(x,`) ⊂ TI,(x,`) = {(a,m) ∈ V × V ∨ | `(a) +m(x) = 0}. This answers the
first part of the question. Now by definition of IX , we have `|TCX0,x

= 0, hence `(a) = m(x) = 0.
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(iii) Prove that in characteristic 0, one has (X∨)∨ = X (Hint: use generic smoothness for the
map π∨ ◦ p2 : IX → X∨).

Proof. In characteristic 0, generic smoothness tells us that the tangent map to π∨ ◦ p2 : IX → X∨ at
any point (x, `) ∈ IX is surjective for [`] ∈ X∨ general. This implies m(x) = 0 for all (x, `) ∈ IX
and all m ∈ TX∨,[`]. If we identify PV ∨∨ with PV , this means exactly that [x] ∈ PV = PV ∨∨ is
in (X∨)∨. In particular, the image by π ◦ p1 : IX → PV of an open dense subset of IX is contained
in (X∨)∨, hence X ⊂ (X∨)∨. This is not enough to conclude that there is equality. However, our
argument actually shows that IX is contained in IX∨ or equivalently, IX ⊂ IX∨ (with the notation of
the proof of question a)). We saw in that same proof that both are irreducible of the same dimension,
hence IX = IX∨ . This implies (X∨)∨ = p1(IX∨) = p1(IX) = X .

(iv) Show that this result does not always hold in positive characteristics (Hint: use ques-
tion c)).

Proof. If C ⊂ P2 is the conic of question c) in characteristic 2, the dual C∨ is the line a0 = 0, hence
(C∨)∨ is the point (1, 0, 0): it is not even contained in C.
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