Problem set 3

Olivier Debarre

Due Tuesday May 2, 2017

Problem 1. Let \mathbf{k} be a field. We consider two copies $U_{1}:=\operatorname{Spec}\left(\mathbf{k}\left[T_{1}\right]\right)$ and $U_{2}:=\operatorname{Spec}\left(\mathbf{k}\left[T_{2}\right]\right)$ of the affine line $\mathbf{A}_{\mathbf{k}}^{1}$.
a) Compute the Picard groups of $\mathbf{A}_{\mathbf{k}}^{1}$ and $\mathbf{A}_{\mathbf{k}}^{1} \backslash\{0\}$ (Hint: you may use without proof the fact that if A is a unique factorization domain, the Picard group of $\operatorname{Spec}(A)$ is trivial).
Proof. Since $\mathbf{A}_{\mathbf{k}}^{1}=\operatorname{Spec}(\mathbf{k}[T])$ and $\mathbf{A}_{\mathbf{k}}^{1} \backslash\{0\}:=\operatorname{Spec}\left(\mathbf{k}\left[T, T^{-1}\right]\right)$ and both rings $\mathbf{k}[T]$ and $\mathbf{k}\left[T, T^{-1}\right]$ are unique factorization domains, their Picard groups are trivial.
b) Let X be the scheme obtained by glueing U_{1} and U_{2} along the open subsets $U_{1} \backslash\{0\}=$ $\operatorname{Spec}\left(\mathbf{k}\left[T_{1}, T_{1}^{-1}\right]\right)$ and $U_{2} \backslash\{0\}=\operatorname{Spec}\left(\mathbf{k}\left[T_{2}, T_{2}^{-1}\right]\right)$ by the isomorphism $\mathbf{k}\left[T_{1}, T_{1}^{-1}\right] \xrightarrow{\sim} \mathbf{k}\left[T_{2}, T_{2}^{-1}\right]$ of \mathbf{k}-algebras sending T_{1} to T_{2}^{-1}. Which scheme is X ?
Asnwer. The scheme X is the projective line $\mathbf{P}_{\mathbf{k}}^{1}$.
c) Compute the Picard group of X (Hint: explain that you may use Leray's theorem to compute $\left.H^{1}\left(X, \mathscr{O}_{X}^{*}\right)\right)$.
Proof. The scheme X is covered by the affine subsets U_{1} and U_{2}. Moreover, $H^{q}\left(U_{i}, \mathscr{O}_{X}^{*}\right)=0$ for $q \geq 2$ because U_{i} has dimension 1, and for $q=1$ because $\operatorname{Pic}\left(U_{i}\right)=\operatorname{Pic}\left(\mathbf{A}_{\mathbf{k}}^{1}\right)=0$ by question a). Similarly, $H^{q}\left(U_{1} \cap U_{2}, \mathscr{O}_{X}^{*}\right)=0$ for $q>0$ for the same reasons. We may therefore apply Leray's theorem to compute $H^{1}\left(X, \mathscr{O}_{X}^{*}\right)$ as the cokernel of the map

$$
\begin{aligned}
\Gamma\left(U_{1}, \mathscr{O}_{X}^{*}\right) \times \Gamma\left(U_{2}, \mathscr{O}_{X}^{*}\right) & \longrightarrow \Gamma\left(U_{1} \cap U_{2}, \mathscr{O}_{X}^{*}\right) \\
\left(s_{1}, s_{2}\right) & \longmapsto s_{1} / s_{2} .
\end{aligned}
$$

Since $\Gamma\left(U_{i}, \mathscr{O}_{X}^{*}\right)=\mathbf{k}\left[T_{i}\right]^{*}=\mathbf{k}^{*}$ and $\Gamma\left(U_{1} \cap U_{2}, \mathscr{O}_{X}^{*}\right)=\mathbf{k}\left[T, T^{-1}\right]^{*}=\mathbf{k}^{*} \times\langle T\rangle \simeq \mathbf{k}^{*} \times \mathbf{Z}$, we obtain $\operatorname{Pic}(X) \simeq H^{1}\left(X, \mathscr{O}_{X}^{*}\right) \simeq \mathbf{Z}$.
d) Find the global sections of each invertible sheaf on X.

Proof. Let \mathscr{L}_{m} be the invertible sheaf on X corresponding to $\left(1, T_{1}^{m}\right) \in \mathbf{k}^{*} \times\left\langle T_{1}\right\rangle$. The sections of \mathscr{L}_{m} on X correspond to pairs $\left(P_{1}, P_{2}\right)$, where $P_{i} \in \Gamma\left(U_{i}, \mathscr{L}_{m}\right) \simeq \Gamma\left(U_{i}, \mathscr{O}_{U_{i}}\right) \simeq \mathbf{k}\left[T_{i}\right]$, with $P_{1}\left(T_{1}\right) / P_{2}\left(T_{1}^{-1}\right)=T_{1}^{m}$. It follows that $\Gamma\left(X, \mathscr{L}_{m}\right)$ is isomorphic to the space of polynomials in $\mathbf{k}[T]$ of degree $\leq m$: if $m \geq 0$, the sections are the pairs $\left(P\left(T_{1}\right), T_{2}^{m} P\left(T_{2}^{-1}\right)\right)$, where $\operatorname{deg}(P) \leq m$.
e) Let Y be the scheme obtained by glueing U_{1} and U_{2} as in b), but using now the isomorphism $\mathbf{k}\left[T_{1}, T_{1}^{-1}\right] \xrightarrow{\sim} \mathbf{k}\left[T_{2}, T_{2}^{-1}\right]$ that sends T_{1} to T_{2}. Compute the Picard group of Y (Hint: proceed as in c)).
Proof. The same proof as in c) gives $\operatorname{Pic}(Y) \simeq H^{1}\left(Y, \mathscr{O}_{Y}^{*}\right) \simeq \mathbf{Z}$.
f) Find the global sections of each invertible sheaf on Y.

Proof. Let \mathscr{L}_{m} be the invertible sheaf on Y corresponding to $\left(1, T_{1}^{m}\right) \in \mathbf{k}^{*} \times\left\langle T_{1}\right\rangle$. The sections of \mathscr{L}_{m} on Y correspond to pairs $\left(P_{1}, P_{2}\right)$, where $P_{i} \in \Gamma\left(U_{i}, \mathscr{L}_{m}\right) \simeq \Gamma\left(U_{i}, \mathscr{O}_{U_{i}}\right) \simeq \mathbf{k}\left[T_{i}\right]$, with $P_{1}\left(T_{1}\right) / P_{2}\left(T_{1}\right)=T_{1}^{m}$. It follows that $\Gamma\left(Y, \mathscr{L}_{m}\right) \simeq \mathbf{k}[T]$ for all m : if $m \geq 0$, the sections are the pairs $\left(T_{1}^{m} P\left(T_{1}\right), P\left(T_{2}\right)\right)$; if $m \leq 0$, the sections are the pairs $\left(P\left(T_{1}\right), T_{2}^{-m} P\left(T_{2}\right)\right)$. In all cases, $\Gamma\left(Y, \mathscr{L}_{m}\right)$ is isomorphic to $\mathbf{k}[T]$.
g) Prove that there are no ample invertible sheaves on Y.

Proof. If $m>0$, the global sections of \mathscr{L}_{m} all vanish at the origin on U_{1}; if $m<0$, the global sections of \mathscr{L}_{m} all vanish at the origin on U_{2}. Hence \mathscr{L}_{m} is never generated by global sections if $m \neq 0$. It follows that \mathscr{L}_{m} is not ample for any m (apply the definition of ampleness with $\mathscr{F}=\mathscr{L}_{1}$).

Problem 2. Prove that the scheme $Y_{n}:=\mathbf{A}_{\mathbf{k}}^{n} \backslash\{0\}$ is not an affine scheme for any $n \geq 2$ (Hint: use Leray's theorem to compute $\left.H^{1}\left(Y_{2}, \mathscr{O}_{Y_{2}}\right)\right)$.
Proof. The scheme Y_{2} is covered by the affine open subsets $U_{1}:=\mathbf{A}_{\mathbf{k}}^{1} \times \mathbf{k}\left(\mathbf{A}_{\mathbf{k}}^{1} \backslash\{0\}\right)=\operatorname{Spec}\left(\mathbf{k}\left[T_{1}, T_{2}, T_{2}^{-1}\right]\right)$ and $\left.U_{2}:=\left(\mathbf{A}_{\mathbf{k}}^{1} \backslash\{0\}\right) \times_{\mathbf{k}} \mathbf{A}_{\mathbf{k}}^{1}\right)=\operatorname{Spec}\left(\mathbf{k}\left[T_{1}, T_{1}^{-1}, T_{2}\right]\right)$. Since $\mathscr{O}_{Y_{2}}$ is a coherent sheaf, we can compute $H^{1}\left(Y_{2}, \mathscr{O}_{Y_{2}}\right)$ using Leray's theorem as the cokernel of the map

$$
\begin{aligned}
\Gamma\left(U_{1}, \mathscr{O}_{Y_{2}}^{*}\right) \times \Gamma\left(U_{2}, \mathscr{O}_{Y_{2}}^{*}\right) & \longrightarrow \Gamma\left(U_{1} \cap U_{2}, \mathscr{O}_{Y_{2}}^{*}\right) \\
\left(P_{1}, P_{2}\right) & \longmapsto P_{1}-P_{2} .
\end{aligned}
$$

We have

$$
\begin{aligned}
\Gamma\left(U_{1}, \mathscr{O}_{Y_{2}}^{*}\right) & =\mathbf{k}\left[T_{1}, T_{2}, T_{2}^{-1}\right], \\
\Gamma\left(U_{2}, \mathscr{O}_{Y_{2}}^{*}\right) & =\mathbf{k}\left[T_{1}, T_{1}^{-1}, T_{2}\right], \\
\Gamma\left(U_{1} \cap U_{2}, \mathscr{O}_{Y_{2}}^{*}\right) & =\mathbf{k}\left[T_{1}, T_{1}^{-1}, T_{2}, T_{2}^{-1}\right],
\end{aligned}
$$

hence $H^{1}\left(Y_{2}, \mathscr{O}_{Y_{2}}\right)$ is an infinite-dimensional \mathbf{k}-vector space with basis $\left(T_{1}^{m} T_{2}^{n}\right)_{m, n<0}$. In particular, Y_{2} is not affine. Since Y_{2} is a closed subscheme of Y_{n} for all $n \geq 2$ and a closed subscheme of an affine scheme is affine, Y_{n} is also not an affine scheme for all $n \geq 2$.

Problem 3. Let X be a projective scheme over a field and let \mathscr{L} and \mathscr{M} be invertible sheaves on X. a) If \mathscr{L} is generated by global sections and \mathscr{M} is very ample, the invertible sheaf $\mathscr{L} \otimes \mathscr{M}$ is very ample (Hint: use a Segre embedding).
Proof. Since \mathscr{L} is generated by global sections, there exists a morphism $u: X \rightarrow \mathbf{P}_{\mathbf{k}}^{m}$ such that $u^{*} \mathscr{O}_{\mathbf{P}_{\mathbf{k}}^{m}}(1)=\mathscr{L}$. Since \mathscr{M} is very ample, there exists a closed embedding $v: X \hookrightarrow \mathbf{P}_{\mathbf{k}}^{n}$ such that $v^{*} \mathscr{O}_{\mathbf{P}_{\mathbf{k}}^{n}}(1)=\mathscr{M}$. The morphism $(u, v): X \rightarrow \mathbf{P}_{\mathbf{k}}^{m} \times \mathbf{P}_{\mathbf{k}}^{n}$ is then also a closed embedding (because its composition with the second projection is) and so is the composition

$$
w: X \xrightarrow{(u, v)} \mathbf{P}_{\mathbf{k}}^{m} \times \mathbf{P}_{\mathbf{k}}^{n} \xrightarrow{\text { Segre }} \mathbf{P}_{\mathbf{k}}^{(m+1)(n+1)-1} .
$$

Since $w^{*} \mathscr{O}_{\mathbf{P}_{\mathbf{k}}^{(m+1)(n+1)-1}}(1)=\mathscr{L} \otimes \mathscr{M}$, this proves that $\mathscr{L} \otimes \mathscr{M}$ is very ample.
b) If \mathscr{M} is ample, the invertible sheaf $\mathscr{L} \otimes \mathscr{M}^{\otimes r}$ is very ample for all sufficiently large integers r (Hint: we proved in class that $\mathscr{L} \otimes \mathscr{M}^{\otimes r}$ is ample for some integer $r>0$).
Proof. Since \mathscr{M} is ample, there exists an integer r_{0} such that $\mathscr{L} \otimes \mathscr{M}^{\otimes r}$ is generated by global sections for all $r \geq r_{0}$, and there exists an integer s_{0} such that $\mathscr{M}^{\otimes s_{0}}$ is very ample. For any $r \geq r_{0}+s_{0}$, the invertible sheaf $\mathscr{L} \otimes \mathscr{M}^{\otimes r}=\mathscr{L} \otimes \mathscr{M}^{\otimes\left(r-s_{0}\right)} \otimes \mathscr{M}^{\otimes s_{0}}$ is then very ample by a).

