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The noncrossing partition lattice of type W

@ Define R := {all reflections of W}.

@ ~ reflection length (or absolute length) /5. (forget about
the usual Coxeter length /g !)

@ Absolute order < :
u=<pv ifandonly if ¢a(u)+ La(u=1v) = la(v) .

@ Fix c : a Coxeter element in W (particular conjugacy class
of elements of length n = rk(W)).

Definition (Noncrossing partition lattice of type W)

NC(W,c) ={we W|w<=xc}

Note: the structure doesn’t depend on the choice of the
Coxeter element (conjugacy) ~- write NC(W).
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Prototype: noncrossing partitions of an n-gon

@ W := G&,, with generating set R := {all transpositions}
@ c:=n-cycle(123 ... n)
@ NC(W,c) +— {noncrossing partitions of an n-gon}
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FuB-Catalan numbers

Kreweras’s formula for multichains of noncrossing partitions
o W= Gn,
@ c: an n-cycle.

The number of multichains wy S wo < ... S Wp < cin
NC(W, c) is the FuB-Catalan number
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FuB-Catalan numbers of type W

Chapoton’s formula for multichains in NC( W)
@ W :=anirreducible reflection group of rank n;
@ c: a Coxeter element.

The number of multichains wy < wo < ... g Wp < cin
NC(W, c) is the FuB-Catalan number of type W

n n

di+ph 1

cat®(w) =[] 'd‘p =y L1+ o).
i=1 ! i=1

(di < --- < dp= h:invariant degrees of W)

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case!
Remark: Cat!") (W) (and Cat'?)(W)) appear in other contexts:
Fomin-Zelevinsky cluster algebras, nonnesting partitions...
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Factorisations of a Coxeter element

Definition (Block factorisations of c)

(wq,...,wp) € (W — {1})Pis a block factorisation of c if
@ Wy...wp=_C.
@ lp(wy) + -+ La(Wp) = Lr(C) = n.

FACTp(c) := {block factorisations of ¢ in p factors}.

@ “Factorisations «+ chains”.
@ Problem : < vs < ? Use conversion formulas:

p+1 p+1

k=1

)# FACTk(C)

@ Bad news : we obtain much more complicated formulas.

@ Good news : we can interpret some of them geometrically
(and even refine them); in particular for p = norn—1.
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e Geometry of the hyperplane arrangement and of the
discriminant

@ Discriminant and braid group
@ Geometric factorisations
@ Stratification and parabolic Coxeter elements
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Hyperplane arrangement

A = {reflecting hyperplanes of W} (Coxeter arrangement).

It's too simple, now make the ambient space V complex!
(replace V with V & C)

Vv o UH
HeA

1 3
e ()

What does it look like?
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The quotient-space V/W

W acts on the polynomial algebra C[V].

Chevalley-Shephard-Todd’s theorem

There exist invariant polynomials fi. . .., f;, homogeneous and
algebraically independent, s.t. C[V]" = C[f;, ..., f].

The degrees dy < --- < dp,=hoffy,...,f, (called invariant
degrees) do not depend on the choices of the fundamental
invariants.

~ isomorphism:  V/W = C"
Voo (B, (V).
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Discriminant of W

For H in A, denote by «a a linear form of kernel H.

Ay = ] av’® € CIV1" =C[A,....f] (discriminant of W)
HeA

equation of p(Uye 4 H) = H ,wherep: V — V/W.
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Example W = Az: discriminant (“swallowtail”

hypersurface  (discriminant) C W\V ~ C3
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Braid group

o Vet =V —Uycua H
@ W acts on V™ (freely)
@ Braid group of W:

B(W) := (V™8 /W) = 71 (C" — H)

Unramified covering V™ — V"¢ /W

~ fibration exact sequence
1 — m (V) — o (VW) — W — 1

m: B(W)—-» W “canonical” surjection.
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“Vertical loops”

An element of B(W) = a loop around H, up to homotopy.

Consider “vertical loops”, i.e. for which f;, ..., f,_1 remain
constant. They are just loops in a punctured complex plane.

Call o € B(W) the simplest (clock-wise) vertical loop around
(0,0,...,0).
Facts:

@ up to homotopy, this is also the simple vertical loop “around
all #”.

@ its image w(J) in W is a Coxeter element!

~~ We can break up § into smaller parts, using the homotopy.
~ factorisations of 7(¢) = ¢ !
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Bifurcation locus

Theorem (Orlik-Solomon)

If W is a real (or complex well-generated) reflection group, then
the discriminant A is monic of degree n in the variable f,.

Soif we fix fi, ..., f,_1, the polynomial Ay, viewed as a
polynomial in f,, has generically n distinct roots...
... it has multiple roots whenever (f, ..., f,_1) is a zero of

Dy = DiSC(Aw(f1,. R fn) ; fn) S (C[f1,. N fn—1]-

Definition
The bifurcation locus of Ay, (w.r.t. f,) is the hypersurface
of C"1:

K :={Dw = 0}




Bifurcation locus and geometric factorisations




Bifurcation locus and geometric factorisations

HCW\V~C?

© projection




Bifurcation locus and geometric factorisations

HCW\V~C?




Bifurcation locus and geometric factorisations

HCW\V~C?




Bifurcation locus and geometric factorisations

HCW\V~C?




Bifurcation locus and geometric factorisations

HCW\V~C?




Bifurcation locus and geometric factorisations

HCW\V~C8




Bifurcation locus and geometric factorisations




Bifurcation locus and geometric factorisations




Bifurcation locus and geometric factorisations




Bifurcation locus and geometric factorisations




Geometric factorisations
Y ~ C"1 (with coordinates fi, ..., f,_1).
facto: y € Y — (71,...,7p) € B(W)P — (w

(where w; = (%))

g ooy



Geometric factorisations
Y ~ C"1 (with coordinates fi, ..., f,_1).
facto:y € Y (1,...,v) € BIW)P — (wq,...,wp) € WP
(where w; = (%))

Facts:
@ vi...p=0and wy ... wp =7(d) =c.



Geometric factorisations
Y ~ C"1 (with coordinates fi, ..., f,_1).
facto:y € Y (1,...,v) € BIW)P — (wq,...,wp) € WP
(where w; = (%))

Facts:
@ yi...yp=0dand wy...wp =7(d) = cC.
o lfyeY—K,thenp=nandw,...,w,are reflections.



Geometric factorisations
Y ~ C"1 (with coordinates fi, ..., f,_1).

facto: y € Y (71,...,7p) € BIW)P — (wy,... . wp) € WP

(where w; = (%))

Facts:
@ vi...p=0and wy ... wp =7(d) =c.
o lfyeY—K,thenp=nandw,...,w,are reflections.

@ In general, /g(w;) equals the multiplicity of the
correponding point (y, x;) in the discriminant.



Geometric factorisations
Y ~ C"1 (with coordinates fi, ..., f,_1).
facto: y € Y (71,...,7p) € BIW)P — (wy,... . wp) € WP

(where w; = (%))

Facts:
@ vi...p=0and wy ... wp =7(d) =c.
o lfyeY—K,thenp=nandw,...,w,are reflections.

@ In general, /g(w;) equals the multiplicity of the
correponding point (y, x;) in the discriminant.

@ > ;lr(w;) = n,i.e., facto(y) is always a block factorisation
of c.



Geometric factorisations
Y ~ C"1 (with coordinates fi, ..., f,_1).
facto: y € Y (71,...,7p) € BIW)P — (wy,... . wp) € WP

(where w; = (%))

Facts:
@ vi...p=0and wy ... wp =7(d) =c.
o lfyeY—K,thenp=nandw,...,w,are reflections.

@ In general, /g(w;) equals the multiplicity of the
correponding point (y, x;) in the discriminant.

@ > ;lr(w;) = n,i.e., facto(y) is always a block factorisation
of c.

@ Better: the conjugacy class of w; is also dictated by the
geometry...
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Intersection lattice and parabolic subgroups

Stratification of V with the “flats” (intersection lattice):

L:={NgepH|B<S A} = PSG(W) (parabolic subgps of W)
L — W, (pointwise stabilizer of L)
@ A parabolic subgroup is a reflection group [Steinberg].

@ lts Coxeter elements are called parabolic Coxeter
elements.

Lyel ~ Wy e PSG(W) <« ¢y parabolic Coxeter elt
codim(Ly) = rk(Wo) = lr(co)
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Strata in H

Construct a stratification of V/W, image of the stratification L:
L=L/W=(p(L)ec=(W-L)iec.

L < PSG(W)/conj. <« {parab. Coxeter elts }/con;.
codim(A) = rank(Wh) = Cr(Wp)

Proposition
The set L is in canonical bijection with:

@ the set of conjugacy classes of parabolic subgroups of W;

@ the set of conjugacy classes of parabolic Coxeter
elements;

@ the set of conjugacy classes of elements of NC(W).
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Example of W = Az: stratification of the discriminant

H={Aw=0} C W\V~C3



Conjugacy classes of factors

For any factor w; in some facto(y):
@ w; is a parabolic Coxeter element;

@ its conjugacy class corresponds (via bijection above) to the
minimal stratum of £ in which lies the corresponding point

¥, Xi)-
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e Lyashko-Looijenga covering and geometric factorisations
@ The Lyashko-Looijenga covering
@ Enumeration of maximal factorisations
@ Enumeration of submaximal factorisations
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Definition
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Fibers of LL and block factorisations of ¢

Note: for y € Y, LL(y) and facto(y) have necessarily the same
associated composition of n.

Theorem (Bessis '07)
The product map:

LL x facto

Y En x FACT(c)

is injective, and is a bijection onto the set of “compatible” pairs.

Equivalently, for w € E,, the map facto induces a bijection
between the fiber L~ (w) and the set of block factorisations of
same “‘composition” as w.

v

~ a way to compute cardinalities of sets of factorisations using
algebraic properties of LL.



Maximal factorisations of a Coxeter element

(a.k.a reduced decompositions of ¢)

Corollary

| FACTh(c)| equals the cardinality of a generic (regular) fiber
of LL, i.e.,

n'h"”

144

| FACTh(C)| =
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Strata of codimension 2
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Submaximal factorisations of type A

Lo := {strataof £ of codimension 2}
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Submaximal factorisations of type A

Lo := {strataof £ of codimension 2}
< {conjugacy classes of elements of NC(W) of length 2}

Proposition
The (M), for A € L», are the irreducible components of K. J

~ we can write Dy, = H/\erjg D,r\", where ry > 1 and the Dy are
polynomials in fy, ..., f,_1.

Theorem (R.)

For \ € L», the number of submaximal factorisations of ¢ of
type A (i.e. , whose unique length 2 element lies in the
conjugacy class \) is:

(n— 1)1 A1

| FACT) 4(¢)| = W deg Dy .
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Submaximal factorisations of a Coxeter element

How to compute uniformly >~ deg Dy ?

@ Recall that Dy =[]z, Dr-

@ We found an interpretation of [ [, 7, D,’\A’1, as the
Jacobian J of the morphism LL.

@ Compute degJ, and then ), deg Dy = deg Dyy — deg J.

Corollary

The number of block factorisations of a Coxeter element c
in n— 1 factors is:

|FACTn,1(C)’: (n—’1l/)l/!hn1 <(n—1 h—‘er) .
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