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Introduction

V : real vector space of finite dimension.

W ≤ GL(V ): a finite reflection group, i.e. finite subgroup of
GL(V ) generated by reflections
( structure of a finite Coxeter group).

Note: results remain valid for a more general class of groups
(well-generated complex reflection groups).

Combinatorics of the
noncrossing partition lattice
of W (via factorisations of a
Coxeter element)

↔
Invariant theory of W
(via geometry of the
discriminant of W )
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The noncrossing partition lattice of type W

Define R := {all reflections of W}.
 reflection length (or absolute length) `R. (forget about
the usual Coxeter length `S !)
Absolute order 4R :

u 4R v if and only if `R(u) + `R(u−1v) = `R(v) .

Fix c : a Coxeter element in W (particular conjugacy class
of elements of length n = rk(W )).

Definition (Noncrossing partition lattice of type W )

NC(W , c) := {w ∈W | w 4 c}

Note: the structure doesn’t depend on the choice of the
Coxeter element (conjugacy) write NC(W ).
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Prototype: noncrossing partitions of an n-gon

W := Sn, with generating set R := {all transpositions}
c := n-cycle (1 2 3 . . . n)

NC(W , c) ←→ {noncrossing partitions of an n-gon}
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Fuß-Catalan numbers

Kreweras’s formula for multichains of noncrossing partitions
W := Sn;
c : an n-cycle.

The number of multichains w1 4 w2 4 . . . 4 wp 4 c in
NC(W , c) is the Fuß-Catalan number

Cat(p)(n) =
n∏

i=2

i + pn
i

=
1

pn + 1

(
(p + 1)n

n

)
.

(d1 ≤ · · · ≤ dn = h : invariant degrees of W )

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case!
Remark: Cat(1)(W ) (and Cat(p)(W )) appear in other contexts:
Fomin-Zelevinsky cluster algebras, nonnesting partitions...



Fuß-Catalan numbers of type W
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Factorisations of a Coxeter element
Definition (Block factorisations of c)
(w1, . . . ,wp) ∈ (W − {1})p is a block factorisation of c if

w1 . . .wp = c.
`R(w1) + · · ·+ `R(wp) = `R(c) = n.

FACTp(c) := {block factorisations of c in p factors}.

“Factorisations↔ chains”.
Problem : 4 vs ≺ ? Use conversion formulas:

#{w1 4 . . . 4 wp 4 c} =

p+1∑
k=1

(
p + 1

k

)
# FACTk (c)

Bad news : we obtain much more complicated formulas.
Good news : we can interpret some of them geometrically
(and even refine them); in particular for p = n or n − 1.
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Hyperplane arrangement

A := {reflecting hyperplanes of W} (Coxeter arrangement).

It’s too simple, now make the ambient space V complex!
(replace V with V ⊗ C)

V ⊃
⋃

H∈A
H

↓ ↓

V/W ⊃

( ⋃
H∈A

H

)/
W

What does it look like?
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The quotient-space V/W

W acts on the polynomial algebra C[V ].

Chevalley-Shephard-Todd’s theorem
There exist invariant polynomials f1, . . . , fn, homogeneous and
algebraically independent, s.t. C[V ]W = C[f1, . . . , fn].

The degrees d1 ≤ · · · ≤ dn = h of f1, . . . , fn (called invariant
degrees) do not depend on the choices of the fundamental
invariants.

 isomorphism: V/W ∼−→ Cn

v̄ 7→ (f1(v), . . . , fn(v)).
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Discriminant of W

For H in A, denote by αH a linear form of kernel H.

∆W :=

∏
H∈A

αH

2

∈ C[V ]

W = C[f1, . . . , fn] (discriminant of W )

equation of
⋃

H∈AH.

where p : V � V/W .
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∏
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Example W = A3: discriminant (“swallowtail”)⋃
H∈A

H ⊆ V
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Example W = A3: discriminant (“swallowtail”)

/W

⋃
H∈A

H ⊆ V

hypersurface H (discriminant) ⊆W\V ' C3



Braid group

V reg := V −
⋃

H∈AH
W acts on V reg (freely)
Braid group of W :

B(W ) := π1(V reg/W ) = π1(Cn −H)

Unramified covering V reg � V reg/W

 fibration exact sequence

1→ π1(V reg) ↪→ π1(V reg/W )�W → 1

π : B(W )�W “canonical” surjection.
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“Vertical loops”

An element of B(W ) = a loop around H, up to homotopy.

Consider “vertical loops”, i.e. for which f1, . . . , fn−1 remain
constant. They are just loops in a punctured complex plane.

Call δ ∈ B(W ) the simplest (clock-wise) vertical loop around
(0,0, . . . ,0).

Facts:
up to homotopy, this is also the simple vertical loop “around
all H”.
its image π(δ) in W is a Coxeter element!

 we can break up δ into smaller parts, using the homotopy.
 factorisations of π(δ) = c !
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Bifurcation locus

Theorem (Orlik-Solomon)
If W is a real (or complex well-generated) reflection group, then
the discriminant ∆W is monic of degree n in the variable fn.

So if we fix f1, . . . , fn−1, the polynomial ∆W , viewed as a
polynomial in fn, has generically n distinct roots...
... it has multiple roots whenever (f1, . . . , fn−1) is a zero of

DW := Disc(∆W (f1, . . . , fn) ; fn) ∈ C[f1, . . . , fn−1].

Definition
The bifurcation locus of ∆W (w.r.t. fn) is the hypersurface
of Cn−1:

K := {DW = 0}
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Geometric factorisations

Y ' Cn−1 (with coordinates f1, . . . , fn−1).

facto : y ∈ Y 7→ (γ1, . . . , γp) ∈ B(W )p 7→ (w1, . . . ,wp) ∈W p

(where wi = π(γi))

Facts:
γ1 . . . γp = δ and w1 . . .wp = π(δ) = c.
If y ∈ Y −K, then p = n and w1, . . . ,wn are reflections.
In general, `R(wi) equals the multiplicity of the
correponding point (y , xi) in the discriminant.∑

i `R(wi) = n, i.e., facto(y) is always a block factorisation
of c.
Better: the conjugacy class of wi is also dictated by the
geometry...
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Intersection lattice and parabolic subgroups

Stratification of V with the “flats” (intersection lattice):

L :=
{⋂

H∈B H | B ⊆ A
} ∼−→ PSG(W ) (parabolic subgps of W )

L 7→ WL (pointwise stabilizer of L)

A parabolic subgroup is a reflection group [Steinberg].
Its Coxeter elements are called parabolic Coxeter
elements.

L0 ∈ L ↔ W0 ∈ PSG(W ) ← c0 parabolic Coxeter elt
codim(L0) = rk(W0) = `R(c0)
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Strata in H

Construct a stratification of V/W , image of the stratification L:
L̄ = L/W = (p(L))L∈L = (W · L)L∈L.

L

= L/W

↔ {parabolic subgroups of W} ↔ {parab. Coxeter elts }/conj.
codim(Λ) = rank(WΛ) = `R(wΛ)

Proposition
The set L̄ is in canonical bijection with:

the set of conjugacy classes of parabolic subgroups of W;
the set of conjugacy classes of parabolic Coxeter
elements;
the set of conjugacy classes of elements of NC(W ).
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Conjugacy classes of factors

For any factor wi in some facto(y):
wi is a parabolic Coxeter element;
its conjugacy class corresponds (via bijection above) to the
minimal stratum of L̄ in which lies the corresponding point
(y , xi).
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Properties of the Lyashko-Looijenga morphism

Definition
LL : Y → En := {multisets of n points in C}

y 7→ {roots, with multiplicities, of ∆W (y , fn) in fn}

∆W = f n
n + a2f n−2

n + a3f n−3
n + · · ·+ an−1fn + an.

Definition (LL as an algebraic (homogeneous) morphism)

LL : Cn−1 → Cn−1

(f1, . . . , fn−1) 7→ (a2, . . . ,an)

Proposition (Bessis)
LL : Y −K� E reg

n is a topological covering, of degree

2h · 3h . . . nh
d1 . . . dn−1

=
n! hn

|W |
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Fibers of LL and block factorisations of c

Note: for y ∈ Y , LL(y) and facto(y) have necessarily the same
associated composition of n.

Theorem (Bessis ’07)
The product map:

Y
LL× facto−−−−−−→ En × FACT(c)

is injective, and is a bijection onto the set of “compatible” pairs.

Equivalently, for ω ∈ En, the map facto induces a bijection
between the fiber LL−1(ω) and the set of block factorisations of
same “composition” as ω.

 a way to compute cardinalities of sets of factorisations using
algebraic properties of LL.
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Maximal factorisations of a Coxeter element

(a.k.a reduced decompositions of c)

Corollary
| FACTn(c)| equals the cardinality of a generic (regular) fiber
of LL, i.e.,

| FACTn(c)| =
n!hn

|W |
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Submaximal factorisations of type Λ

L̄2 := {strata of L̄ of codimension 2}
↔ {conjugacy classes of elements of NC(W ) of length 2}

Proposition
The ϕ(Λ), for Λ ∈ L̄2, are the irreducible components of K.

 we can write DW =
∏

Λ∈L̄2
DrΛ

Λ , where rΛ ≥ 1 and the DΛ are
polynomials in f1, . . . , fn−1.

Theorem (R.)
For Λ ∈ L̄2, the number of submaximal factorisations of c of
type Λ (i.e. , whose unique length 2 element lies in the
conjugacy class Λ) is:

| FACTΛ
n−1(c)| =

(n − 1)! hn−1

|W |
deg DΛ .
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Submaximal factorisations of a Coxeter element

How to compute uniformly
∑

Λ∈L̄2
deg DΛ ?

Recall that DW =
∏

Λ∈L̄2
DrΛ

Λ .

We found an interpretation of
∏

Λ∈L̄2
DrΛ−1

Λ , as the
Jacobian J of the morphism LL.
Compute deg J, and then

∑
Λ deg DΛ = deg DW − deg J.

Corollary
The number of block factorisations of a Coxeter element c
in n − 1 factors is:

| FACTn−1(c)| =
(n − 1)! hn−1

|W |

(
(n − 1)(n − 2)

2
h +

n−1∑
i=1

di

)
.
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Danke schön!
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