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W finite real reflection group, S system of fundamental
reflections. Artin-Tits monoid of (W, S) :

A (W,S):=(S|VsteS, sts.. =15t )yon:

Mgt Mg ¢t
Alternative presentation [Tits] :
(W | w.w' = ww' whenever (g(w) + Ls(W') = Ls(WW))yon -
@ Garside monoid;
@ Garside element: (copy of) wy (the longest element);
@ simple elements: (copy of) W ={we W |w <sw}
(lattice for <), where

u=<s Ve ls(u)+ls(uv) = Lg(v);

@ A, (W,S) embeds in B(W) (the braid group of W).
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Dual braid monoid

Basic idea: replace S with R := {all reflections in W}.
~» new definition of length (/) and of partial order (x%).
Definition (Dual braid monoid of W)

M(W, c) is the monoid with presentation

<[1,c] | w.w' = ww' if L (W) + br(W') = eR(ww/)>.

@ Garside monoid;

@ Garside element: (copy of) ¢ (a Coxeter element);

@ simple elements: (copy of) [1,c]={we W | w < c}
(lattice for <R);

@ M(W,c) embeds in B(W), but is not isomorphic to the
Artin-Tits monoid.

@ the construction extends to (well-generated) complex
reflection groups.
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Complex reflection groups

V . complex vector space, of dim. n.

Definition
A (finite) complex reflection group is a finite subgroup of GL( V)

generated by complex reflections.
A complex reflection is an element s € GL(V) of finite order, s.t.

Ker(s — Idy) is a hyperplane:
5 e matrix Diag(¢, 1,...,1) , with ¢ root of unity.
Shephard-Todd’s classification (1954):

@ an infinite series with 3 parameters G(de, e, r) ;
@ 34 exceptional groups.
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Invariant theory

W a complex reflection group.
W acts on S(V*) (polynomial algebra C|vy, ..., va]).

Theorem (Chevalley-Shephard-Todd)

There exist fundamental invariant polynomials fi, ..., f,
(homogeneous), s.t.

S(VHW =clfy,....f] .

Their degrees d; < --- < dj, do not depend on the choice of
fi, ..., Iy (invariant degrees of W).

~ isomorphism: W\V = C"
Vo (A(V),... f(V)).
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The noncrossing partition lattice

Suppose W irreducible, well-generated.
Let ¢ be a fixed Coxeter element (i.e. €2™/h-regular, where
h = dp).

Definition (Noncrossing partition lattice of type W)

NCPy(c) ={we W |w=g c}

(the structure does not depend on the choice of ¢.)

Fundamental example

If W= &, (type A), NCPy ~ {noncrossing partitions of an
n-gon}.

Very rich combinatorial object.



The number of multichains wy < ... <

<R Wn <r CINNCPy is

ZW(N+1)_H

d,+Nh
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Multichains in NCPyy,

Chapoton’s formula

The number of multichains wy; <z ... <r Wy <r CIN NCPy is :
n

di+ Nh

Zw(N+1)=]]~ —

1

i=1

Called Fuss-Catalan numbers of type W : Cat!™ (W).



Multichains in NCPyy,

Chapoton’s formula

The number of multichains wy; <z ... <r Wy <r CIN NCPy is :
n

di+ Nh

Zw(N+1)=]]~ —

1

i=1

Called Fuss-Catalan numbers of type W : Cat!™ (W).

Proof (Athanasiadis, Reiner, Bessis): case-by-case using the
classification... even for N = 1 (formula for | NCPy |).
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Block factorisations of ¢

(will appear naturally in the geometry of B(W))
Definition
(wy,...,wp) is a block factorisation of ¢ if :

@ Wy...Wp=C;

@ wy,...,.wpe W—{1};

@ (r(Wy)+ -+ Llr(wp) =Llr(C)=n
(le. Wy SR WiWo SR ... SR Wi ... Wp_1 SR C).

FACTp(c) := {factorisations in p blocks}

~+ determines a partition of n, and even a composition (ordered
partition) of n.

Ex. : FACT,(c) = FACT+n(c) = Redg(c).

FACTp_1(C) = FACToiqn 2.



Factorisations vs multichains

Combinatorics of factorisations: similar to multichains.
But factors must be non-trivial (~ strict chains).



Factorisations vs multichains

Combinatorics of factorisations: similar to multichains.
But factors must be non-trivial (~ strict chains).

Conversion formulas

catM(w) = znj(N:1)FACTk(C)I

k=1

|FACTo(C)] = APZy(0) = Z( 1)P~ k( >Cat D (w)

(A:P— P(X+1)-P(X).)
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Discriminant of W

A = {reflection hyperplanes of W}. For H € A:
@ oy linear form with kernel H;
@ ey order of the parabolic subgroup Wy,.

Definition
Discriminant of W : Ay =[] ofr.

HeA

@ Ay cCIVIW =C[f,..., 1]
@ Ay is the equation of the hypersurface H, quotient of
Unea H, in W\V ~C".
Basic case in type A :
H (Xi - )(/)2 = DiSC(Tn — 01 -1 4+ 4 (_1)n0n; T)

1<i<j<n
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Suppose W acts irreducibly on V (of dim. n), and is
well-generated (i.e. can be generated by n reflections).



Discriminant of a well-generated group

Suppose W acts irreducibly on V (of dim. n), and is
well-generated (i.e. can be generated by n reflections).

Proposition
If W is well-generated, the discriminant A is monic of degree
nin f,. The fundamental invariants fi, ..., f, can be chosen s.t.:

AW = f,§l+ azf,?_2 aF a3f,r77_3 qF e o qF anf‘lfnJF an,

with a; € Clfy, ..., f,_1] (homogeneous polynomial of degree
ih).
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Lyashko-Looijenga morphism of type W

Definition (Lyashko-Looijenga morphism)
LL: cn-1 — cr-1
(f1,...,fn_1) — (82,...,an)
It is an algebraic morphism, which is quasi-homogeneous for
the weights deg(f;) = d; , deg(a;) = ih.
Define Y := SpecClfy,..., fr_1].
~ W\V ~Y xC.

LL: Y — E, = {configurations of n points in C}
y +— {roots, with multiplicities, of Aw(y, f,) in f,}
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Lyashko-Looijenga covering

E.*® := {configurations of n distincts points} C E,
K = LL-Y(E,-E}®)
= {yeY|Aw(y, ) has multiple roots in f,} with
{yeY|Du(y) =0},
D|_|_ = DiSC(Aw(y, fn); fn)
= Disc(f? + af? 2 4+ + an f,).

Theorem (Looijenga, Lyashko, Bessis)

@ The extension Clay, ..., an C Cl[fi,..., fh,_1] is free, with
rank n'th" /|W|.

@ LL /s a finite morphism.

@ its restriction Y — K — E,* is an unramified covering of
degree n'h" /|W|.
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Factorisations arising from topology

Hypersurface H C W\V ~ Y x C.

(y,x) eH <= xecllL(y)

Topological constructions by Bessis (tunnels)
~amap H — W
(¥, X) = Cyx
s.t., if (x1,..., Xp) is the ordered support of LL(y) (for the lex.
order on C ~ R?), then: (Cy.x,, .- ., Cyx,) € FACTp(C).

NOtation . @(y) = (Cy’X1 ge ey Cyﬁxp).

R-length and conjugacy class of ¢, x depend on the position of
(y,x)inH ...
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Stratification of W\ V and parabolic Coxeter elements

Stratification of V with the flats (intersection lattice) :
L:={NyegH|BC A} )

Quotient by W ~- stratification £ = W\L = (W - L) .
For A € £, A° := A minus its strata strictly included.
Bijection [Steinberg] :

L « {parabolic subgroups of W} =: PSG(W).

~» natural bijections :

L « PSG(W)/conj. <« Cox-parab(W)/coni.
codim(A) < rang(W’) - /()

Cox-parab(W) : parabolic Coxeter elements, i.e. Coxeter
elements of a p.s.g. of W.



Factorisations and LL
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Fixy € Y. Forall x € LL(y), ¢y x is a parabolic Coxeter element
of W. Its length is the multiplicity of x in LL(y); its conjugacy
class corresponds to the unique stratum A in L s.t. (y, x) € A°.
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Factorisations and LL

Proposition

Fixy € Y. Forall x € LL(y), ¢y x is a parabolic Coxeter element
of W. lts length is the multiplicity of x in LL(y), its conjugacy
class corresponds to the unique stratum A in L s.t. (y, x) € A°.

Block factorisations ~~ composition of n
w € E, ~ composition of n (multiplicities in the lex. order)
Prop. = compatibility of fact(y) and LL(y) (same comp.)

Theorem (Bessis)

LL x fact o . .
The map Y — == E, x FACT(c) is injective, and its image is

the set of compatible pairs.

Vw € Ep, fact induces LL ' (w) = FACT,(c), where 1 is the
composition of w.



|Redr(c)] = |FACT,(c)| foru=(1,...,1)
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|Redr(c)] = |FACT,(c)| forpu=(1,...,1)
= |l (W)

forw e Ep®

«O>» «Fr « =)

DA



Reduced decompositions of ¢

|Redr(c)| = |FACT,(c)| foru=(1,...,1)
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Can we compute in the same way
| FACT,—1(C)| = | FACT14n-2(C)| ?
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Irreducible components of K

Ramified part of LL : K — E, — E;®.
K={yeY|Du(y)=0}
L, = {strata of £ with codimension 2}
p: WA\V~YxC — Y
v=(x) =y
Proposition
The irreducible components of KC are the o(N), for A € Lo.
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Restriction of LL to a component of

Write D | = H/\eiz D/’\A, with D, irreducibles in C[fy, ..., fr_1]
s.t. (A) = {Dx = 0}.
Define the restriction
LLa : @(A) — En— ER®.
LLa corresponds to the extension

Cla,...,an)/(Dw) € Clfi,...,fa—1]/(Da) .

[Ideg(a;) /IIdeg(f) _ (n—2)!h"2
deg(D )/ deg(Dy) ~ |W]

deg Dy



For any stratum A in L :

e LL, is a finite morphism of degree "=

n—1
2|{/Iv|h deg Da ;

«0O0>» «F)>r « =

<

DA



Factorisations of type A

Theorem (R.)

For any stratum A in L5 :

@ LL, is a finite morphism of degree % deg Dy ;

@ the number of factorisations of ¢ in n — 2 reflections + one
(length 2) element of conjugacy class corresponding to A
(in any order) equals :

(n— 1)1 A1

|FACTS_4(0)| = W deg Dy .
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Submaximal factorisations

To obtain | FACT,—1(c)|, we need to compute } ).z, deg(Dn).
Recall D = H/\Eﬁ_g D;\A

Proposition
Let J, :=Jac(LL) = Jac((ao, ..., an)/(f1,-..,fn—1)). Then
Jo=[[ bR
/\E,C_g
Corollary

The number of factorisations of a Coxeter element c in n — 1
blocks is :

(i) = (n’1V)V!hn1 ((n12 h+Zd> .
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Thank yOu '

(Merci, gracias...)

o
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