Feuille 4 Séries numériques

Exercice 1 — Etudier la nature des séries dont voici le terme général

Exercice 1 — Etudier la nature des séries dont voici le terme général 1)
$$\frac{1}{n \log n}$$
 2) $\frac{1 + \log n}{n^2}$ 3) $\frac{2^n + 5}{3^n - 11}$ 4) $\frac{n + \ln n}{n^2 + 1}$ 5) $n^{\ln(a)}$ $(a > 0)$ 6) $e^{-\sqrt{n}}$ 7) $n^2 \sin(\frac{1}{2^n})$ 8) $(\frac{1}{2} + \frac{1}{n})^n$ 9) $\frac{(n!)^3}{(3n)!}$ 10) $(\frac{3n}{4n-1})^{2n+1}$ 11) $\frac{(n+1)^4}{n!+1}$ 12) $\frac{1! + \cdots (n-1)!}{n!}$ 13) $\frac{1! + \cdots (n-2)!}{n!}$ 14) $\frac{1}{(1+n)^{\alpha}} \ln(\cos(\frac{1}{n}))$ $(\alpha > 0)$ 15) $n^{(n^{-k})} - 1$ $(k \in \mathbb{R})$ 16) $n^{\frac{1}{1+n^2}} - 1$ 17) $n \cdot n^{\frac{1}{n}}$ 18) $n! (\frac{x}{n})^n$ $(x > 0)$ 19) $1 - \cos(\frac{1}{n})$ 20) $\frac{n^{\log n}}{(\log n)^n}$ 21) $(n^6 + 3)^a - (n^2 + 2)^{3a}$ $(a \in \mathbb{R})$ 22) $n^2 e^{-\sqrt{n}}$ 23) $\frac{n^{\alpha}}{(1+a)(1+a^2)\cdots(1+a^n)}$ $(a > 0, \alpha \in \mathbb{R})$

Exercice 2 — Soit α un nombre réel. Pour tout entier strictement positif n, on pose

$$u_n = \frac{1}{n^{\alpha}}$$
, $v_n = \frac{1}{n^{\alpha}} - \frac{1}{(n+1)^{\alpha}}$ et $w_n = \frac{1}{n^{\alpha}} - \frac{2}{(n+1)^{\alpha}} + \frac{1}{(n+2)^{\alpha}}$.

- 1. Pour quelles valeurs de α la suite (u_n) est-elle convergente?
- 2. Pour quelles valeurs de α la série de terme général v_n est-elle convergente? Dans ce cas, calculer sa somme.
- 3. Pour quelles valeurs de α la série de terme général w_n est-elle convergente? Dans ce cas, calculer sa somme.

Exercice 3 — Pour tout entier positif n, on pose $u_n = \frac{(-1)^n}{3n+1}$ et $v_n = \frac{3}{(6n+1)(6n+4)}$.

- 1. Montrer que la série de terme général v_n est convergente.
- 2. Calculer $u_{2n} + u_{2n+1}$ pour $n \in \mathbb{N}$.
- 3. Montrer que la série de terme général u_n est convergente et que $\sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} v_n$.

Exercice 4 — Pour quelles valeurs de $a \in \mathbb{R}_+^*$ la série de terme général $u_n = \frac{\cosh(n)}{a^n}$ converget-elle?

Exercice 5 — Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels strictement positifs. Pour tout $n\in\mathbb{N}$, on pose $S_n = u_0 + \dots + u_n$ et $v_n = \frac{u_n}{S_n}$.

1. Montrer que si la série de terme général u_n est convergente, alors la série de terme général v_n est convergente.

1

- 2. Montrer que pour tout $n \in \mathbb{N}$, on a $\prod_{k=1}^{n} (1 v_k) = \frac{u_0}{S_n}$.
- 3. On suppose que la série de terme général v_n est convergente.
 - (a) Quelle est la nature de la série de terme général $\log(1-v_n)$?
 - (b) Montrer que la série de terme général u_n est convergente.

Exercice 6 — Soient a et b deux nombres réels strictement positifs. Pour quelles valeurs de a et b la série de terme général $\frac{a^n 2^{\sqrt{n}}}{2^{\sqrt{n}} + b^n}$ converge-t-elle?

Exercice 7 — Pour tout
$$n \in \mathbb{N}^*$$
, on pose $u_n = \frac{(-1)^n}{\sqrt{n}} \exp\left(\frac{(-1)^n}{\sqrt{n}}\right)$ et $v_n = u_n - \frac{(-1)^n}{\sqrt{n}}$.

- 1. Montrer que la série de terme général v_n est divergente.
- 2. La série de terme général u_n est-elle convergente?

Exercice 8 — Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite de nombres complexes. On pose, pour $n>0, v_n=u_n+u_{n+1}+\cdots u_{2n}$.

- 1. On suppose que $u_n = a^n$, avec $a \in \mathbb{C}$.
 - (a) Montrer que la série de terme général u_n et la série de terme général v_n sont de même nature.
 - (b) Si la série de terme général v_n est convergente, calculer sa somme.
- 2. On suppose que $u_n = \frac{1}{n^{\alpha}}$, avec $\alpha \in \mathbb{R}$. Montrer que la série de terme général v_n est convergente si et seulement si $\alpha > 2$.

Exercice 9 — Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels. Parmi les assertions suivantes, lesquelles sont vraies? lesquelles sont fausses? Justifier la réponse.

- 1. Si pour tout n > 0 $u_n > 0$ et si la suite (u_n) est décroissante et a pour limite 0, alors la série de terme général u_n est convergente.
- 2. Si pour tout n > 0 $u_n > 0$ et si la série de terme général u_n est convergente, alors la suite (u_n) est décroissante à partir d'un certain rang.
- 3. Si pour tout n > 0 $u_n > 0$ et si la série de terme général u_n est convergente, alors la série de terme général $\sqrt{u_n}$ est convergente.
- 4. Si pour tout n > 0 $u_n > 0$ et si la série de terme général u_n est convergente, alors la série de terme général u_n^2 est convergente.
- 5. Si $\lim_{n\to+\infty}((-1)^n nu_n)=1$ alors la série de terme général u_n est convergente.
- 6. Si $\lim_{n\to+\infty}((-1)^nn^2u_n)=1$ alors la série de terme général u_n est convergente.

Exercice 10 — Démontrer, à l'aide d'un développement limité, que la suite de terme général u_n est convergente, avec $u_n = \sin(n\pi + \frac{1}{n} + \frac{1}{n^2})$.

Exercice 11 — Etudier, en fonction du paramètre $\alpha > 0$, la convergence des séries de terme général:

(a)
$$n^{2-\alpha}\cos(\frac{1}{n})$$
; (b) $\alpha^{\frac{n+\sqrt{\ln n}}{2}}$; (c) $\frac{(-\alpha)^n}{\ln n}$.

Exercice 12 — Soit f une fonction de classe C^2 sur [-1,1] telle que f(0)=0, f'(0)=f''(0)=1. Etudier les séries de terme général

(a)
$$f(\frac{1}{n})$$
; (b) $f(\frac{1}{n^2})$; (c) $f(\frac{(-1)^n}{n})$; (d) $f(\frac{(-1)^n}{\sqrt{n}})$ (ici f est de classe C^3).

Exercice 13 — Former le produit des séries de terme général u_n et v_n où

$$u_n = \frac{1}{n\sqrt{n}}$$
 et $v_n = \frac{1}{2^{n-1}}$.

Exercice 14 — Soit u_n une suite positive telle que la série de terme général u_n converge. On $pose v_n = \frac{1}{1 + n^2 u_n}$

Montrer, en raisonnant par l'absurde, que la série de terme général v_n est divergente.

Exercice 15 — Soient $u_n = \frac{(-1)^n}{n}$ et σ l'application de \mathbb{N}^* dans \mathbb{N}^* définie par $\forall p \in \mathbb{N}^*, \ \sigma(3p-2) = 2p-1 \ ; \ \sigma(3p-1) = 4p-2 \ ; \ \sigma(3p) = 4p.$

- 1. Montrer que σ est une bijection.
- 2. Comparer $\sum_{n=0}^{+\infty} u_n$ et $\sum_{n=0}^{+\infty} u_{\sigma(n)}$.

Exercice 16 — Calculer, si elles existent, les sommes des séries de terme général

$$(a) \ \frac{1}{n^2 - \frac{1}{4}} \ (n > 0) \ ; \ (b) \ \ln(1 - \frac{1}{n^2}) \ (n > 1) \ ; \ (c) \ \arctan(\frac{1}{2n^2}) \ (n > 0).$$

1)
$$\frac{(-1)^n}{(2n-1)^3}$$

2)
$$(-1)^n \frac{1+n}{n}$$

3)
$$\frac{(-1)^n}{n^2 + \ln n}$$

4)
$$\frac{\sin(n\theta)}{2^n}$$
 $(\theta \in \mathbb{R})$

$$5)\frac{1}{n+(-1)^n\sqrt{n}}$$

$$6) \frac{(-1)^n}{n-\ln n}$$

7)
$$\frac{(-1)^n}{2n + \cos(n\pi)}$$

8)
$$\frac{n+3}{(-1)^n\sqrt{n}-3n}$$

9)
$$(-1)^n \cosh(\frac{1}{n}) \sin(\frac{1}{n})$$

0)
$$\ln\left(n\cosh\left(\frac{1}{n}\right)\sin\left(\frac{1}{n}\right)\right)$$