EnglishFrançais

Site Web DMA

Bannière DMA Site de l'ENS Site Paris Sciences et Lettres Site du CNRS Accueil

Théorie des Modèles et Groupes

Horaires : Le mardi 10 octobre 2017, 16h - 17h30

Lieu : Sophie Germain, salle 1016

Groupes abéliens divisibles ordonnés ayant la propriété de relèvement

Salma Kuhlmann (Konstanz)

Le théorème de Hahn asserte que tout groupe abélien divisible ordonné (GADO) est (à isomorphie près) un sous groupe du produit de Hahn, et contient la somme de Hahn (le produit et la somme en question étant pris au-dessus du squelette de G). Le squelette de G étant un invariant valuatif, il est facile de voir que tout automorphisme de G induit un automorphisme de son squelette. Dans cet exposé, nous nous penchons sur la réciproque: peut-on caractériser les GADOs pour lesquels tout automorphisme du squelette se relève en un automorphisme du groupe?. Il est facile de vérifier que la somme et produit de Hahn, et en fait, tout groupe de séries de Hahn κ-bornées (pour un cardinal infini κ), ont cette propriété de relèvement, mais on est loin d'une caractérisation générale. En particulier, il serait utile de savoir si tout groupe exponentiel a cette propriété.

 

Autres séances du séminaire


45 rue d'Ulm - F 75230 PARIS cedex 05 | phone : (33) 1 44 32 20 49 | fax : (33) 1 44 32 20 69

Plan du site | Mentions légales | | Edition du site | Web site designed under SPIP