EnglishFrançais

Site Web DMA

Bannière DMA Site de l'ENS Site Paris Sciences et Lettres Site du CNRS Accueil

Théorie des Modèles et Groupes

Horaires : Le mardi 19 décembre 2017, 16h - 17h30

Lieu : Sophie Germain, salle 1016.

Elimination des quantificateurs dans les D-groupes

Zoé Chatzidakis (CNRS - ENS)

On sait que la théorie DCF_0 des corps différentiellement clos de caractéristique 0, élimine les quantificateurs dans le langage { + , - , · , 0 , 1 , D } des anneaux différentiels. Pierce et Pillay ont montré que tout ensemble définissable est une combinaison booléenne d'ensembles définis par des D-variétés. Une D-variété est une paire (V, s), où V est une variété algébrique, et s: V o t(V) une section du tangent tordu de V (sera défini). On pose alors {(V, s)^#={a in V | D(a) = s(a)}. Un produit cartésien de D-variétés est une D-variété, et une sous-D-variété de (V, s) est donnée par (W, s|W), où W est une sous-variété de V telle que pour a in W, on a s(a) in t(W). Toutes les sous-variétés de V ne donnent donc pas des sous-D-variétés. La question suivante se pose alors : étant donnée une D-variété (V, s), est-il vrai que tout sous-ensemble définissable de (V, s)^n est une combinaison booléenne de sous-D-variétés de (V, s)^n ? La réponse est positive quand (V, s) est un D-groupe. Le résultat est dû à Piotr Kowalski et Anand Pillay, dans : Quantifier-elimination for D-groups, TAMS 358 Nr1 (2005), 167 - 181. Je parlerai de leur preuve.

 

Autres séances du séminaire


45 rue d'Ulm - F 75230 PARIS cedex 05 | phone : (33) 1 44 32 20 49 | fax : (33) 1 44 32 20 69

Plan du site | Mentions légales | | Edition du site | Web site designed under SPIP