EnglishFrançais

Site Web DMA

Bannière DMA Site de l'ENS Site Paris Sciences et Lettres Site du CNRS Accueil

Séminaire Géométrie et théorie des modèles

Horaires : Le vendredi 31 janvier 2020,

Lieu : ENS, Salle W

Geometric quadratic Chabauty.

Bas Edixhoven (Leiden)

Determining all rational points on a curve of genus at least 2 can be difficult. Chabauty's method (1941) is to intersect, for a prime number p, in the p-adic Lie group of p-adic points of the jacobian, the closure of the Mordell-Weil group with the p-adic points of the curve. If the Mordell-Weil rank is less than the genus then this method has never failed. Minhyong Kim's non-abelian Chabauty programme aims to remove the condition on the rank. The simplest case, called quadratic Chabauty, was developed by Balakrishnan, Dogra, Mueller, Tuitman and Vonk, and applied in a tour de force to the so-called cursed curve (rank and genus both 3). This article aims to make the quadratic Chabauty method small and geometric again, by describing it in terms of only `simple algebraic geometry' (line bundles over the jacobian and models over the integers).

 

Autres séances du séminaire


45 rue d'Ulm - F 75230 PARIS cedex 05 | phone : (33) 1 44 32 20 49 | fax : (33) 1 44 32 20 69

Plan du site | Mentions légales | | Edition du site | Web site designed under SPIP