Perturbed Brownian Motions

Mihael PERMAN
Wendelin WERNER

LMENS - 96 - 13
Perturbed Brownian Motions

Mihael PERMAN*
Wendelin WERNER

LMENS - 96 - 13

May 1996

Laboratoire de Mathématiques de l’Ecole Normale Supérieure
45 rue d’Ulm 75230 PARIS Cedex 05
Tel : (33)(1) 44 32 00 00
Adresse électronique : wwerner@dmi.ens.fr

*Institute for Mathematics, Physics and Mechanics
University of Ljubljana, Jadranska 19
61111 Ljubljana, Slovenia
Adresse électronique :mihael.perman@uni-lj.si
Perturbed Brownian motions

Mihael Perman and Wendelin Werner

University of Ljubljana and C.N.R.S.

Abstract

The paper deals with one-dimensional Brownian motion perturbed when it hits its minimum and/or its maximum. It first presents some features of perturbed reflected Brownian motion defined as $|B| - \mu \ell$ where B is standard Brownian motion, ℓ its local time at 0 and μ a positive constant; in particular it is shown that the positive and negative excursions in the sense of Itô of this “one-sided” perturbed Brownian motion are two independent point processes, which in turn is used to construct two-sided perturbed Brownian motion. It is then shown that the constructed process is almost surely the unique solution of the implicit stochastic equation studied by Le Gall [11], Carmona, Petit and Yor [5] and Davis [6], even when no restrictions are imposed on the partial reflections. Finally, the Hausdorff dimension of sets of exceptional points for perturbed Brownian motion such as points of monotonicity are computed.

Mathematics Subject Classification (1991): 60J65

1 Introduction

Over the last few years, there has been an increased interest in “perturbed reflecting Brownian motion” which has been the subject of numerous papers. Perturbed reflecting Brownian motion is a process which behaves just as Brownian motion, except when it hits its minimum. More precisely, let B
denote standard linear Brownian motion, \(\ell \) its local time process at level 0, and \(\mu > 0 \) a fixed positive constant: then perturbed reflecting Brownian motion \(X \) is defined by

\[
X = |B| - \mu \ell.
\]

Note that Lévy’s identity (see e.g. [18], Theorem VI-(2,3)) shows that \(X \) is in fact linear Brownian motion when \(\mu = 1 \). When the perturbation factor \(\mu \) is greater than 1, the perturbation is “self-repelling” and when \(\mu < 1 \), it is “self-attracting”.

One of the main features of \(X \) is that its local times in the space variable taken at suitable stopping times are squared Bessel processes and one gets versions for perturbed reflecting Brownian motion of the well-known Ray-Knight theorems; this also yields generalizations for \(X \) of Lévy’s Arc-sine law for Brownian motion. Yor [23] provides an overview of the results; see also Abraham-Mazliak [1], Carmona, Petit and Yor [4], Perman [16], Petit [17], Shi-Werner [19] and Werner [22].

In the present paper we first prove (in section 2) an independence result for positive and negative parts of \(X \), which completes a result in [23] where the claim is established for \(\mu < 2 \). This also completes the arguments in [22] to give a simple proof of the two Ray-Knight Theorems for the local times of \(X \) initially derived by Le Gall and Yor [12] and Carmona, Petit and Yor [4].

In the third section of this paper, we use this independence result to construct and derive some results concerning Brownian motion perturbed at both extrema referred to as two-sided perturbed Brownian motion. Such processes are among the simplest continuous generalisations of self-interacting random walks in one dimension (see Tóth [21] and Davis [6]). Considering two independent perturbed reflecting Brownian motions \(X \) and \(X' \) (with two possibly different perturbation factors \(\mu \) and \(\nu \) respectively) and their point process of negative excursions \(e \) and \(e' \) respectively, we construct the two-sided perturbed Brownian motion \(\tilde{X} \) by sliding together \(-e \) and \(e' \), according to the local times at zero (just as Brownian motion is reconstructed from two reflected Brownian motions). We then identify \(\tilde{X} \) with the process that has been constructed in the case where \(|(\mu - 1)(\nu - 1)| \leq 1 \) by Le Gall [11], Carmona, Petir and Yor [5] and Davis [6] as the unique strong solution of the implicit stochastic equation,

\[
Y_t = W_t + (1 - 1/\mu) \sup_{s \in [0,t]} Y_s + (1 - 1/\nu) \inf_{s \in [0,t]} Y_s, \quad Y_0 = 0, \quad (1)
\]
where W is linear Brownian motion started from 0; their construction is based on a fixed-point argument which fails as soon as $|((\mu - 1)(\nu - 1))| > 1$, see [6]. We then generalise features (Arc-sine laws, Ray-Knight theorems) of X that have been derived by Carmona, Petit and Yor [5] in the case $|((\mu - 1)(\nu - 1))| < 1$, to all values $\mu > 0$, $\nu > 0$.

Davis also showed that when $|((\mu - 1)(\nu - 1))| > 1$, the equation (1) always has at least one solution, but that is has strictly more than one solution, for some well-chosen deterministic functions W. In the fourth section of this paper, we study this implicit stochastic equation and we show that, in the case where W is a linear Brownian motion, it almost surely has only one solution (for any fixed $\mu > 0$ and $\nu > 0$), and that this solution has the same law than $\sim X$.

Finally, in the last section of the paper we study some fine path properties of perturbed reflecting Brownian motion and two-sided perturbed Brownian motion, such as the existence of points of monotonicity and related questions, using Ray-Knight theorems for perturbed Brownian motions. Even though we are not using their results, these problems have many similarities with Brownian “slow points” (see e.g. Davis-Perkins [7] and the references therein).

Notation. The following notation will be valid throughout the paper. For $\mu > 0$, the processes X, B and ℓ are defined as above. For $x \in R$ and $t \geq 0$, let $(L^x_t, t \geq 0, x \in R)$ denote the semi-martingale local time process of X defined for times $t \geq 0$ and all levels x. Further, define for all $a \in R$ the hitting time of a by X:

$$T_a = \inf\{t \geq 0, X_t = a\}.$$

For any process $(Y_t, t \geq 0)$, s will be called a time of decrease for Y if there exists $\varepsilon > 0$, such that for all $u \in (0, \varepsilon)$, $Y_{s-u} > Y_s > Y_{s+u}$. Similarly, we define times of increase and of monotonicity for Y. A point x will be called a point of decrease Y if $Y_t = x$ for some time of decrease. Points of increase or of monotonicity are defined similarly.

\cong will denote identity in law between two processes or two random variables.

When $f : [0, \infty) \to R$ is a continuous function, we define

$$f^\ast(t) = \sup_{s \in [0, t]} f(s) \text{ and } f^\#(t) = \inf_{s \in [0, t]} f(s).$$

3
As in [23] and in [5], for $a > 0$ and $b > 0$, Z_a will denote a gamma random variable with parameter a and $Z(a, b)$ a Beta random variable with parameters a, b:

$$P(Z_a \in dt) = \frac{t^{a-1}e^{-t}dt}{\Gamma(a)} \text{ for } t > 0$$

and

$$P(Z(a, b) \in dt) = \frac{t^{a-1}(1-t)^{b-1}dt}{\text{B}(a, b)} \text{ for } t \in (0, 1),$$

where Γ (resp. B) is the Gamma (resp. Beta) function.

Finally, $\text{dim}(H)$ will denote the Hausdorff dimension of a set H.

2 An independence result

Define the processes A^+ and A^- as follows:

$$A^+_t = \int_0^t 1(X_s > 0) \, ds \quad \text{ and } \quad A^-_t = \int_0^t 1(X_s < 0) \, ds.$$

They count the time spent positive or negative up to time t by X. Define the right-continuous inverses of A^+ and A^- as

$$\kappa^+(t) = \inf\{u > 0, \ A^+_u > t\} \quad \text{ and } \quad \kappa^-(t) = \inf\{u > 0, \ A^-_u > t\}.$$

Proposition 1 Let X be perturbed reflecting Brownian motion. The two processes X^+ and X^- obtained from X by time changes

$$X^+_t = X_{\kappa^+(t)} \quad \text{ and } \quad X^-_t = X_{\kappa^-(t)}$$

are independent. Moreover, Y^+ is reflecting Brownian motion.

A proof of this result, in case $\mu < 2$, can be found in Yor [23]; see also [13].

Proof: The idea is to approximate the processes X^+ and X^- using up- and downcrossings by X: For all $\varepsilon > 0$, we define the stopping times (with respect to the filtration generated by (B, ℓ)), T^ε_n and S^ε_n as follows: $T^\varepsilon_1 = 0$ and for all $n \geq 1$,

$$S^\varepsilon_n = \inf\{t > T^\varepsilon_n, \ X_t = \varepsilon\},$$

$$T^\varepsilon_n = \inf\{t > T^\varepsilon_{n-1}, \ X_t = \varepsilon\},$$

and

$$\ell(t) = \inf\{u \in \mathbb{R}, \ X_u = 0, \ X_t = \varepsilon\}.$$
We also define the clocks corresponding to the up- and downcrossings from level 0 to \(\varepsilon \) by \(X \):

\[
A_\varepsilon^+(t) = \sum_{n \geq 1} \{\min(t, T_{n+1}^\varepsilon) - \min(t, S_n^\varepsilon)\},
\]

\[
A_\varepsilon^-(t) = \sum_{n \geq 1} \{\min(t, S_n^\varepsilon) - \min(t, T_n^\varepsilon)\}.
\]

Let \(\kappa_\varepsilon^+ \) and \(\kappa_\varepsilon^- \) denote their respective right-continuous inverses, and put, for all \(t \geq 0 \):

\[
X^{\varepsilon+}(t) = X(\kappa_\varepsilon^+(t)) \quad \text{and} \quad X^{\varepsilon-}(t) = X(\kappa_\varepsilon^-(t)).
\]

One now just needs to notice that

1. For all \(\varepsilon > 0 \), the two processes \(X^{\varepsilon+} \) and \(X^{\varepsilon-} \) are independent, which is readily derived from the strong Markov property for the process \((X, \ell) \) (notice that \(\ell_{T_{n+1}^\varepsilon} = \ell_{S_n^\varepsilon} \), because \(B_t > 0 \) for all \(t \in [S_n^\varepsilon, T_n^\varepsilon] \)).

2. Almost surely,

\[
\lim_{\varepsilon \to 0^+} A_\varepsilon^+ = A^+
\]

for instance in the sense of uniform convergence on compact intervals: Almost surely, for all \(t \in [0, T] \),

\[
|A_\varepsilon^+(t) - A^+(t)| = |A_\varepsilon^-(t) - A^-(t)| \leq \int_0^T 1_{\{X,t \in [0, \varepsilon]\}} ds \xrightarrow{\varepsilon \to 0} 0.
\]

This yields that for fixed \(t_1, \ldots, t_n \), almost surely,

\[
\lim_{\varepsilon \to 0} (X^{\varepsilon+}(t_1), X^{\varepsilon-}(t_1), \ldots, X^{\varepsilon-}(t_n)) = (X^+(t_1), X^-(t_1), \ldots, X^-(t_n)).
\]

Hence, for the pair of continuous processes \((X^{\varepsilon+}, X^{\varepsilon-}) = (X \circ \kappa_\varepsilon^+, X \circ \kappa_\varepsilon^-) \) the finite dimensional marginal distributions converge to those of \((X^+, X^-) = (X \circ \kappa^+, X \circ \kappa^-) \).

Combining 1 and 2 completes the proof of independence. The proof that \(Y^+ \) is reflecting Brownian motion is given in Yor [23].
3 Two–sided perturbed Brownian motion

As mentioned before, one can say informally that X behaves like Brownian motion while away from its past minimum. Some of the results in this section will give a more precise meaning to this statement. A natural extension would be a process that behaves like standard Brownian motion while away from either its past minimum or its past maximum whereas at its past extrema the process mimics the behaviour of one-sided perturbed reflecting Brownian motion. Several authors have considered such processes; see Le Gall [11], Carmona, Petit and Yor [5] and Davis [6].

To construct such a process, let X be perturbed reflecting Brownian motion and associate a point process e with X the same way the excursion process is associated to a diffusion with a recurrent point. This point process is defined on the space $(0, \infty) \times U$ with

$$U = \{ f \in C[0, \infty), \exists R > 0, f(s) \neq 0 \text{ if and only if } s \in (0, R) \}.$$

with the Borel σ–field inherited from the compact–open topology of $C[0, \infty)$. To be more precise, define $\{\tau_s^0, s > 0\}$ as the inverse local time at level 0 of X: $\tau_s^0 = \inf\{u > 0, L_u^0 > s\}$. It can be shown by a routine excursion calculation that almost surely $\lim_{t \to \infty} L_t = \infty$. The countably many points of e are hence of the form (s, e_s) where

$$e_s(u) = \begin{cases} X_{s-} + u & \text{for } 0 \leq u \leq \tau_s^0 - \tau_s - \\ 0 & \text{else} \end{cases}$$

for all s for which $\tau_s - \tau_s - > 0$. It is easily seen that this point process is discrete but it is not a Poisson point process (except when $\mu = 1$) because $(X_t, t \geq 0)$ is not Markov. First, a few simple properties of this point process are proved.

Proposition 2 Let e be the point process defined above, and let e^+ and e^- be the processes of positive and negative excursions respectively defined in the obvious way.

(i) The two processes e^+ and e^- are independent point processes.

(ii) e^+ has the same distribution as the point process of positive excursions of standard Brownian motion.
(iii) Let \(I(e_s) = \inf\{e_s(u) : u \geq 0\} \) be the infimum of an excursion. Conditionally on \(\{\inf_{s \leq t} I(e_s) = m\} \), the mean measure of the point process \(e^- \) restricted to \((t, \infty) \times U_m\) where \(U_m = \{f \in U, m \leq \inf_x f(u) < 0\} \) is just \((1/2)\lambda \times n_m\) where \(\lambda \) is Lebesgue measure and \(n_m \) is Itô’s excursion law restricted to \(U_m \). Furthermore, the conditional mean measure of the point process on \((t, \infty)\) with points \(\{u > t, (u, e_u) \in e, I(e_u) < m\} \) is \(du/(2|m|) \).

Proof: (i) The independence of \(e^+ \) and \(e^- \) is a simple consequence of the independence of \(X^+ \) and \(X^- \) because \(e^+ \) and \(e^- \) can be recovered from \(X^+ \) and \(X^- \) respectively.

(ii) \(e^+ \) is the excursion process of \(X^+ \) which is reflecting Brownian motion.

(iii) Let \(m < 0 \) and \(T_m = \inf\{t > 0, X_t = m\} \). The random variable \(T_m \) is a stopping time for the reflecting Brownian motion in the definition of \(X = |B| - \mu \ell \) (it is the hitting time of \(m/\mu \) by the local time of \(B \) at level 0). The strong Markov property shows that the process \(Y_u = X_{T_{m+u}} - m \) is also perturbed reflecting Brownian motion, and hence its “positive part” is reflecting Brownian motion. It can now easily be argued that the excursions from level \(|m| \) of that reflected Brownian motion that do not touch 0 are just like Brownian excursions. This also proves the second statement in (iii).

Remark: This proposition, combined with the arguments developed in Werner [22], provides a simple proof of the generalised Ray-Knight Theorems for the process \(X \) (see [4], [23], and also [1]), which will be used later in this paper.

The idea of constructing the two-sided perturbed Brownian motion is to replace the point process \(e^+ \) by an independent copy of \(-e^-\) with a possibly different \(\mu \), and then reconstruct a continuous process from this new point process. As \(e \) is not a Poisson point process, it needs to be argued that the reconstruction does give a continuous process (this is not true in general). Fix \(\mu, \nu > 0 \) and take two independent point processes \(e^{(1)} \) and \(e^{(2)} \) with the law of \(e^- \) for \(\mu \) and \(\nu \) respectively. Let \(e \) be the point process with points \((s, -e_s^{(1)}) \) and \((s, e_s^{(2)}) \). Note that (iii) of the above proposition yields that there are no “ties”; the combined point process \(e \) does not have two different points with the same “local time” \(s \). Call the measurable transformation that reconstructs a path from the point process of excursions by \(\Xi \). Such a reconstruction is possible in a measurable manner and is unique but we have
to check that the resulting path is continuous. We also have to check whether \(\hat{X} \) corresponds to the two-sided perturbed Brownian motion constructed by Le Gall [11], Carmona, Petit and Yor [5] and Davis [6] via the functional equation mentionned in the introduction. From now on, we put

\[\alpha = 1 - 1/\mu \text{ and } \beta = 1 - 1/\nu. \]

Proposition 3 Let \((\hat{X}_t, t \geq 0) = \Xi \varepsilon. \)

(i) \(\hat{X} \) is a continuous process with the Brownian scaling property.

(ii) The process \((\hat{X}_t, \hat{X}^*(t), \hat{X}^\#(t)) \) is a Markov process.

(iii) The process

\[W_t = \hat{X}_t - \alpha \hat{X}^*(t) - \beta \hat{X}^\#(t), \]

is a standard Brownian motion with respect to the filtration generated by the Markov process in (ii).

Proof: (i) Continuity follows from the continuity of the two processes obtained from \(\hat{X} \) by sliding together the positive and negative excursions. The two processes obtained this way are just the negative parts of one-sided perturbed Brownian motion. To prove the Brownian scaling property note that \(X \) has the same property and it follows that the property is inherited by \(\hat{X} \).

(ii) This property is a direct consequence of the fact that the process

\[(X^-_t, \inf_{s \leq t} X^-_s) \]

is a Markov process, which follows from the fact that \((|B|, \ell) \) is a Markov process.

(iii) The idea of the proof is simple. Introduce the stopping times (for the process \((\hat{X}, \hat{X}^#, \hat{X}^*) \)) \(\hat{T}^\varepsilon_1 = \inf\{t \geq 0, \hat{X}_t = \varepsilon\} \), and for all \(n > 0 \),

\[\hat{S}^\varepsilon_n = \inf\{t > \hat{T}^\varepsilon_n, \hat{X}_t = 0\}, \]

\[\hat{T}^\varepsilon_{n+1} = \inf\{t > \hat{S}^\varepsilon_n, \hat{X}_t = \varepsilon\}. \]

On the time interval \([\hat{S}^\varepsilon_n, \hat{T}^\varepsilon_{n+1}]\) (resp. \([\hat{T}^\varepsilon_{n}, \hat{S}^\varepsilon_{n+1}]\), the process \(\hat{X}^*_s \) (resp. \(\hat{X}^\#_s \)) is constant, and \(\hat{X} \) behaves exactly like perturbed reflecting Brownian motion.
(resp. the inverse of perturbed reflecting Brownian motion). Consequently, on each of these intervals,

\[\tilde{X}_t = \alpha \tilde{X}_s^* - \beta \tilde{X}_s^# \]

is a Brownian motion. Hence, the process \(W_{T^*} - W_{T^1} \) is a Brownian motion, which is independent from \((\tilde{X}_t, t \in [0, T^2_1])\). Letting \(\varepsilon \to 0 \) completes the proof.

We now state some properties of \(\tilde{X} \). From now on, \(T_\alpha \) will denote the hitting time

\[T_\alpha = \inf\{t > 0, \tilde{X}_t = a\} \]

of \(a \in \mathbb{R} \) by \(\tilde{X} \), and \(\tilde{L} \) will denote the local times of the process \(\tilde{X} \).

Proposition 4 (i) *(The first Ray-Knight theorem for \(\tilde{X} \))* Suppose that \(a > 0 \). The process \((\tilde{L}^{-a+}_x, x \in [0, a])\) is a squared Bessel process of index \(2/\nu \) started from 0, and reflected at 0. The process \((\tilde{L}^0_{T^*}, x \geq 0)\) is a squared Bessel process of index \(2 - 2/\mu \) started from \(\tilde{L}^0_{T^*} \) and absorbed at 0. In particular, the law of \(\tilde{L}^0_{T^*} \) is that of \(2aZ_{1/\nu} \).

(ii) The random variable \(\tilde{A}_t^*: = t^{-1} \int_0^t 1(\tilde{X}_s > 0)ds \) has the distribution \(Z(1/(2\nu), 1/(2\mu)) \).

(iii) If \(a > 0, b > 0 \), then

\[P(T_{-a} < T_b) = P \left(Z(1/\mu, 1/\nu) > \frac{b}{a+b} \right). \]

(iv) The explicit formulas for the density of the random variables \(T_\alpha, \tilde{X}_t, \tilde{X}_t^* \) and \(\tilde{X}_t^# \) stated in paragraph 3.3 in [5] hold for any \(\alpha < 1 \) and \(\beta < 1 \). So does also Proposition 3.7 in [5].

Remarks-

- We do not state the second Ray-Knight theorem for \(\tilde{X} \) as it is an even more immediate consequence of the second Ray-Knight Theorem for \(X \) (see e.g. [5] for a statement).
• (i) and (ii) are stated when \(|(1 - \mu)(1 - \nu)| < 1\) in Carmona-Petit-Yor [5]. In particular, (ii) shows that any Beta-random variable can be constructed as the time spent above zero, by a perturbed Brownian motion.

• (iii) for \(\mu = \nu\) is the continuous time version of some results of Nester [15]. When \(\mu = 1\), (iii) is exactly the hitting time property for the process \(X\) (see [22]).

Proof- (i) is a direct consequence of the two Ray-Knight theorems for the process \(X\); see e.g. Yor [23]. The last statement in (i) is another way to express (a) of Corollary 9.1.1 in Yor [23].

(ii) Let \((\sigma_s : s \geq 0)\) be the inverse local time of two–sided Brownian motion. By the scaling property it follows that

\[
\hat{A}_1^+ \overset{\mathcal{D}}{=} \frac{\hat{A}_{\sigma_1}^+}{\hat{A}_{\sigma_1}^+ + \hat{A}_{\sigma_1}^-},
\]

just like in the Brownian case. See e.g. [23], p. 104. The two random variables \(\hat{A}_{\sigma_1}\) and \(\hat{A}_{\sigma_2}\) are independent, and it is known from [23] that \(\hat{A}_{\sigma_1}^+ \overset{\mathcal{D}}{=} (8Z_{1/(2\mu)})^{-1}\) and \(\hat{A}_{\sigma_1}^- \overset{\mathcal{D}}{=} (8Z_{1/(2\nu)})^{-1}\).

(iii) The last statement of (i) and the independence between the positive and negative parts of \(\hat{X}\) imply that

\[
P(T_{-a} < T_b) = P(\hat{L}_{T_{-a}}^0 < \hat{L}_{T_b}^0) = P(aZ_{1/\nu} < bZ'_{1/\mu})
\]

(where \(Z'\) is another Gamma random variable independent of \(Z\)), and (iii) follows easily.

(iv) follows from (i) and the second Ray-Knight theorem exactly as in [5].

4 The implicit stochastic equation

Suppose that \(f\) is a continuous function with \(f(0) = 0\) and consider the equation:

\[
g(t) = f(t) + \alpha g^s(t) + \beta g^\#(t), \quad g(0) = 0. \tag{2}
\]

Then, it is known that:
• This equation has at least one solution \(g \), for all \(\alpha < 1, \beta < 1 \) and \(f \) (see Davis [6]).

• If \(|\rho| \leq 1 \), then this solution is unique (see Carmona-Petit-Yor [5], Davis [6]).

• If \(|\rho| > 1 \), then one can find functions \(f \) such that (2) has at least two distinct solutions (see Davis [6]).

The following result shows however, that when \(f \) is a linear Brownian motion, then the solutions are unique even if \(|\rho| > 1 \).

Proposition 5 When \(f \) is a linear Brownian motion started from \(0 \), then any two solutions of (2) are almost surely identical (for any fixed \(\alpha < 1 \) and \(\beta < 1 \)). Moreover, their law is that of \(\tilde{X} \).

We will first derive the following weaker statement:

Proposition 6 When \(f \) is a linear Brownian motion started from \(0 \), then any solution of (2) is identical in law to \(\tilde{X} \) (for any fixed \(\mu > 0 \) and \(\nu > 0 \), i.e. for any fixed \(\alpha < 1 \) and \(\beta < 1 \)).

There are various ways of deriving Proposition 6. One possibility would be to show that the positive and negative parts of a solution are independent, and to check that the positive (resp. negative) excursion process is identical to that of \(\tilde{X} \). We opt here for a direct proof, which does not use our construction of \(\tilde{X} \): Before proving the proposition, we first state two useful lemmas:

Lemma 1 Suppose that \(f \) is a continuous function, such that \(f(0) = 1 - \alpha \), and that \(\alpha < 1, \beta < 1 \). Then the equation

\[
g(t) = f(t) + \alpha g^+(t) + \beta \min(g^+(t), 0), \quad g(0) = 1 \tag{3}
\]

has a unique solution.

Proof of Lemma 1 The idea behind this lemma is similar to the ideas used by Davis [6]. Recall from [5], that the functional equation (2) has a unique solution, when \(\alpha = 0 \) or when \(\beta = 0 \). Suppose that \(g \) solves (3) and define \(t_1 = \inf\{t > 0, \ g(t) = 0\} \). Let \(g_1 \) denote the solution of the equation

\[
g_1(t) = f(t) + \alpha g^+_1(t), \quad g_1(0) = 1, \tag{4}
\]
and let \(t'_1 = \inf\{t > 0, g_1(t) = 0\} \). As the solution of the equation (4) on \([0, \min(t_1, t'_1))\) is unique, \(g = g_1 \) on the interval \([0, \min(t_1, t'_1))\) and consequently, \(t_1 = t'_1 \). Then, let \(g_2 \) denote the unique solution of the equation

\[
g_2(t) = f(t + t_1) + \alpha g_1^*(t_1) + \beta g_2^*(t), \quad g_2(0) = g_1(t_1) = 0,
\]

and \(t_2 = \inf\{t > 0, g_2^*(t) = g_1^*(t_1)\} \). Again, one necessarily has

\[
g(t_1 + t) = g_2(t) \text{ for all } t \in [0, t_2].
\]

Note also that for all \(M > 0 \), \(f \) is uniformly continuous on \([0, M]\), and therefore, it is easy to see that there exists \(\varepsilon > 0 \), such that either \(t_1 + t_2 > M \) or \(\min(t_1, t_2) > \varepsilon \). An easy induction completes the proof. We safely leave this to the reader.

Lemma 2 Suppose \(W \) denotes a linear Brownian motion started from 0 and define for all \(t > 0 \), \(z(t) = \sup\{s < t, W(s) = 0\} \). There exists a sequence \((u_n, n \geq 1)\) of stopping times (for \(W \)) such that almost surely,

\[
\lim_{n \to \infty} u_n = 0+,
\]

\[
W(u_n) = W^*(u_n) \geq n|W^#(u_n)|
\]

and

\[
2W^*(z(u_n)) \leq W^*(u_n)
\]

for all \(n \geq 1 \).

Proof of Lemma 2 Using the 0-1 law and the scaling property of Brownian motion, it is very easy to check that for all \(n \geq 1 \), the set

\[
A_n = \{t > 0; n|W^#(t)| < W^*(t) \text{ and } 2W^*(z(t)) < W^*(t)\}
\]

is such that \(0 \in \overline{A}_n \) almost surely. Let \(\tau \) denote the inverse local time of \(W \) at level 0. For all \(a > 0 \), \(A_n \cap [0, \tau(a)] \neq \emptyset \) a.s. Define now a deterministic sequence of positive numbers \(a_n \) in such a way that \(a_0 = 1 \), and for all \(n \geq 1 \),

\[
P(A_n \cap [\tau(a_n), \tau(a_{n-1})] = \emptyset) < e^{-n} \text{ and } P(\tau(a_n) \geq (n + 1)^{-1}) < e^{-n}.
\]

For all \(n > 1 \), we then define the stopping time

\[
u_n = \inf\{t > \tau(a_n), W_t \in A_n\}.
\]

Borel-Cantelli’s lemma implies that there exists a.s. \(n_0 > 1 \) such that for all \(n > n_0 \), \(u_n < \tau(a_{n-1}) < e^{-n} \), and the definition of \(u_n \) ensures that (5) and (6) are satisfied.
Proof of Proposition 6. We will focus only on the cases \(\{ \alpha > 0 \} \) and \(\{ \beta > 0 \} \), since the cases \(\{ \alpha \leq 0 \text{ and } \beta \leq 0 \} \) are already dealt with in Carmona, Petit and Yor [5] (in this case, \(|\rho| < 1 \)). With no loss of generality, we can assume that \(\alpha > 0 \) (change \(X \) into \(-X\) if \(\alpha \leq 0 \) and \(\beta > 0 \)).

Suppose first that

\[
V(t) = W(t) + \alpha V^*(t) + \beta V^#(t), \quad V(0) = 0
\]

(7)

for all \(t \geq 0 \), where \(W \) is a linear Brownian motion started from 0. Define the sequence \((u_n, n \geq 1) \) as in lemma 2. (7) and the fact that \(\alpha > 0 \) clearly implies that

\[
V^#(u_n) \geq W^#(u_n) + \max(\beta, 0) V^#(u_n)
\]

and hence, if we put \(\beta^+ = \max(0, \beta) \), (using (5)),

\[
|V^#(u_n)| \leq \frac{W^*(u_n)}{n(1 - \beta^+)}.
\]

Combined with (7), this yields

\[
W(u_n) + \alpha V^*(u_n) \geq V(u_n) \geq W(u_n) \left(1 - \frac{1}{n(1 - \beta^+)}\right) + \alpha V^*(u_n).
\]

(6) then implies easily that

\[
V^*(z(u_n)) \leq \frac{W^*(z(u_n))}{1 - \alpha} \leq \frac{W(u_n)}{2(1 - \alpha)} \leq \frac{V(u_n)}{2(1 - (n(1 - \beta^+))^{-1})};
\]

hence, for \(n \) large enough, \(V^* \) increases on the time interval \([z(u_n), u_n] \). It is then easy (as \(V \) can not hit its minimum on this interval), to conclude that for \(n > n_0 \) (\(n_0 \) is a deterministic integer)

\[
V(u_n) = V^*(u_n),
\]

and therefore that

\[
W(u_n) \geq (1 - \alpha) V(u_n) \geq W(u_n) \left(1 - \frac{1}{n(1 - \beta^+)}\right).
\]

Finally, this shows that almost surely,

\[
\lim_{n \to \infty} \frac{V^*(u_n) - V^#(u_n)}{W(u_n)} = (1 - \alpha)^{-1},
\]

(8)
and
\[
\lim_{n \to \infty} \frac{V^\#(u_n)}{W(u_n)} = 0. \tag{9}
\]

Note also that
\[
W(u_n) + (\alpha - 1)V^\#(u_n) + \beta V^\#(u_n) = 0. \tag{10}
\]

We now define the process (for fixed large \(n\)),
\[
\tilde{V}(u) = \frac{V(u_n + (V(u_n) - V^\#(u_n))^2 u) - V^\#(u_n)}{V(u_n) - V^\#(u_n)}.
\]

Define
\[
t = t(u) = u_n + (V(u_n) - V^\#(u_n))^2 u.
\]

Note that
\[
\tilde{V}^\#(u) = \frac{V^\#(t) - V^\#(u_n)}{V(u_n) - V^\#(u_n)}. \tag{11}
\]

and that
\[
\min(\tilde{V}^\#(u), 0) = \frac{V^\#(t) - V^\#(u_n)}{V(u_n) - V^\#(u_n)}. \tag{12}
\]

Define also the process
\[
\tilde{W}(u) = (1 - \alpha) + \frac{W(t) - W(u_n)}{V(u_n) - V^\#(u_n)}.
\]

As \(u_n\) is a stopping time for \(W\), the strong Markov property and the scaling property imply that \(\tilde{W}\) is a Brownian motion started from \((1 - \alpha)\), which is independent of \((W_n, u \in [0, u_n])\). Using (11), (12) and (10), one easily gets
\[
(V(u_n) - V^\#(u_n)) \left(\tilde{W}(u) + \alpha \tilde{V}^\#(u) + \beta \min(\tilde{V}^\#(u), 0) \right)
\]
\[= W(t) - W(u_n) + (1 - \alpha)(V(u_n) - V^\#(u_n)) + \alpha(V^\#(t) - V^\#(u_n)) \]
\[+ \beta(V^\#(t) - V^\#(u_n)) \]
\[= W(t) + \alpha V^\#(t) + \beta V^\#(t) - W(u_n) + (1 - \alpha)V(u_n) + (-1 - \beta)V^\#(u_n) \]
\[= V(t) - V^\#(u_n). \]
Hence,
\[\bar{V}(u) = \tilde{W}(u) + \alpha \tilde{V}^*(u) + \beta \min(\bar{V}^*(u), 0), \]
and the lemma shows that the law of \(\bar{V} \) is defined in a unique way. In other words, if \((U(u), u \geq 0)\) denotes another solution to the functional equation (7), then (with obvious notation), the two processes \(\bar{U} \) and \(\bar{V} \) are identical in law. Hence, for all large enough \(n \),
\[\frac{V(u_n + \cdot) - V^*(u_n)}{V(u_n) - V^*(u_n)} \geq \frac{U(u_n + \cdot) - U^*(u_n)}{U(u_n) - U^*(u_n)}. \]
Letting \(n \to \infty \) and using the estimates (8) and (9) then readily implies that \(U \) and \(V \) are identical in law.

Proof of Proposition 5 - We are now ready to derive Proposition 5: Suppose that \(f \) is a linear Brownian motion started from 0, and that \(g_1 \) and \(g_2 \) are two solutions of (2). Suppose furthermore that \(g_1 \neq g_2 \) with strictly positive probability. It is then easy to see that this implies that for some fixed deterministic time \(S > 0 \),
\[P(g_1(S) \neq g_2(S)) > 0. \]
Suppose for instance that
\[P(g_1(S) < g_2(S)) > 0. \]
We set \(E = 1 \) if \(g_1(S) \geq g_2(S) \), and \(E = 2 \) if \(g_2(S) > g_1(S) \) (note that a priori, \(g_E \) and \(\max(g_1, g_2) \) are not necessarily always equal, since \(g_1 \) and \(g_2 \) could cross). Clearly, \(g_E \) is a solution of (2). The law of \(g_E \) is different than that of \(g_1 \) because \(g_E(S) \geq g_1(S) \) and \(P(g_E(S) > g_1(S)) > 0 \). On the other hand, as the solutions of (2) are unique in law, the laws of \(g_E(S) \) and \(g_1(S) \) are identical, which contradicts the previous statement. Hence, \(g_1 = g_2 \) almost surely.

A consequence of this result is the following:

Proposition 7 Let \(\hat{X} \) denote the perturbed Brownian motion constructed in the previous section, and let
\[W = \hat{X} - \alpha \hat{X}^* - \beta \hat{X}^# \]
denote the linear Brownian motion defined in Proposition 3-(iii). Then, the filtrations generated by \(\hat{X} \) and \(W \) are almost surely identical.
Proof. Define W as in (13). Davis’ construction of a solution of the implicit stochastic equation shows that there exists a solution of

$$g = W + \alpha g^* + \beta g^\#,$$

that is measurable with respect to the filtration generated by W. As the solution to this equation is a.s. unique, the statement follows.

Remark. Davis [6] has pointed out that the discrete version of two-sided perturbed Brownian motion converges towards \bar{X}, as soon as $|\rho| = |\alpha \beta/((1 - \alpha)(1 - \beta))| = |(\mu - 1)(\nu - 1)| < 1$. It is reasonable to expect that this is the case even if $|\rho| \geq 1$, but we do not tackle this problem here.

5 Fine properties of X and \bar{X}

Let $\mu > 0$, $\nu > 0$ and $\alpha = 1 - 1/\mu$, $\beta = 1 - 1/\nu$, X and \bar{X} defined as above. We will in fact only prove results for X. We safely leave the analogous proofs for \bar{X} to the reader. It is well known that Brownian motion does not have any times of monotonicity (see e.g. Burdzy [3] and the references therein). As perturbed reflecting Brownian motion behaves just like Brownian motion when away from its past minimum any time of monotonicity is necessarily a time where X equals its past minimum. Since $X = |B| - \mu \ell$, times of monotonicity for X must be zeros of B and consequently $-\mu \ell_t$ must be a point of decrease (as it can not be a point of increase) of X for all such t.

When $\mu = 1$, Lévy’s identity shows that X is in fact itself a Brownian motion and \bar{X} has therefore almost surely no points of monotonicity. Hence, almost surely, for all $t \geq 0$ such that $B_t = 0$,

$$\limsup_{u \to 0^+} \frac{|B_{t+u}|}{\ell_{t+u} - \ell_t} \geq 1. \quad (14)$$

Consequently, if $\mu < 1$, a.s. for all $t \geq 0$, such that $B_t = 0$,

$$\limsup_{u \to 0^+} \frac{|B_{t+u}|}{\ell_{t+u} - \ell_t} > \mu$$

and X has no points of decrease either.

We are going to see that when $\mu > 1$, then X almost surely has points of decrease. More precisely, let H denote the set of points of decrease for X and D the set of times of decrease. Then:
Proposition 8 If \(\mu > 1 \), then \(D \) and \(H \) are almost surely non-empty. Moreover, the Hausdorff dimension of \(H \) is \(\alpha \) and that of \(D \) is \(\alpha/2 \). Almost surely, \(D \) and \(H \) are empty, for all \(\mu \leq 1 \).

Let us first make a few of remarks:

1. This implies the following weaker result: Almost surely,
 \[
 \inf_{t \in [0,1]} \limsup_{u \to 0^+} \frac{|B_{t+u}|}{\ell_{t+u} - \ell_t} = 1,
 \]
 which complements \((14)\). This strongly recalls the local ‘self-normalisation’ problems (see e.g. Knight \([10]\), Khoshnevisan \([9]\) and the references therein). Of course, for fixed \(t = 0 \),
 \[
 \limsup_{u \to 0^+} \frac{|B_u|}{\ell_u} = \infty \quad \text{a.s.}
 \]
 (using for instance Lévy’s identity).

2. When \(\mu \to 1^+ \), the Hausdorff dimensions of the sets \(D \) and \(H \) tend to zero, as one would expect. Also, when \(\mu \to \infty \), the Hausdorff dimension of \(D \) converges towards \(1/2 \), which is the Hausdorff dimension of the set \(\{t > 0, B_t = 0\} \).

3. Let \(\tau \) denote the right-continuous inverse of \(\ell \). \(\tau \) is a stable subordinator of index \(1/2 \). Necessarily, for \(t \in D \), one has \(X_t = -\mu \ell_t \), i.e. \(\tau(-X_t/\mu) = t \); hence
 \[
 \tau(-\Pi/\mu) = D. \tag{15}
 \]
 Hence, using the results of \([8]\), it is actually sufficient to prove that
 \[
 \dim(H) = 1 - \frac{1}{\mu},
 \]
 since \((15)\) then implies that \(\dim(D) = \dim(H)/2 \).

 The following similar result for \(\tilde{X} \) is an immediate consequence of Proposition 8:
Proposition 9 If \(\max(\alpha, \beta) > 0 \), then the Hausdorff dimension of the set of points (resp. times) of monotonicity of \(\tilde{X} \) is \(\max(\alpha, \beta) \) (resp. \(\max(\alpha, \beta)/2 \)). If \(\alpha \leq 0 \) (resp. \(\beta \leq 0 \)), then there are no times of increase (resp. decrease) for \(\tilde{X} \). If \(\alpha > 0 \) (resp. \(\beta > 0 \)) then the Hausdorff dimension of the set of point(s) of increase (resp. decrease) for \(\tilde{X} \) is \(\alpha \) (resp. \(\beta \)), and that of times of increase (resp. decrease) is \(\alpha/2 \) (resp. \(\beta/2 \)).

Before proceeding to the actual proof of proposition 8, let us first establish and recall some relevant results. We begin with excursion-theory preliminaries:

Let \(e = (e_s, s > 0) \) denote the excursion process of \(B \) just as in Revuz-Yor [18], Ch. 12. For an excursion \(e_s \), let \(M(e_s) = \sup e_s(u) \) denote its height, and \((L^x(e_s), x \geq 0)\) the associated local time process in the space variable.

Lemma 3 For the point process \(e \) one has:

(i) Almost surely, for all \(s > 0 \) such that \(M(e_s) > 0 \), and for all \(x \in (0, M(e_s)) \),

\[
L^x(e_s) > 0.
\]

(ii) For any fixed \(\mu > 0 \), almost surely, for every \(s < s' \),

\[
M(e_{s'}) \neq M(e_s) + \mu(s' - s).
\]

Proof of Lemma 3 (i) follows readily from the corresponding result for Brownian motion up to the inverse local time at 0 (using for instance the fact that the probability that only one excursion exceeds the level \(x \) before \(\tau_1 \) is strictly positive.

(ii) is a straightforward consequence of the fact that the number of excursions of \(B \) is countable.

The following consequence of the previous lemma will be used in the sequel.

Proposition 10 One has

\[
H = \cup_{q \in Q_+} \{ x \in (q, 0), \; L^x_{\tau_q} = 0 \}.
\]
Proof. Suppose that \(x \in \mathbb{H} \) and that for all \(u \in (0, \varepsilon) \), \(X_{u+t} < X_t = x \). Choose \(q \in Q \cap (\inf \{ X_{t+u}, u \in (0, \varepsilon) \}, x) \). As \(\{ s \leq T_q, \ X_s = x \} = \{ t \} \), one has

\[L_{x, T^+ q} = 0 \]

and hence

\[\mathbb{H} \subset \cup_{q \in Q_-} \{ x \in (q, 0), L_{x, T^+ q} = 0 \} . \]

Suppose now that \(L_{x, T^+ q} = 0 \) for some \(q < x < 0 \) and that \(x \notin \mathbb{H} \). Let \(t = \inf \{ s, X_s < x \} \). As \(x \notin \mathbb{H} \), \(t \) is not a time of decrease for \(X \), i.e. there exists a sequence \(t_n \to t^+ \) such that \(X_{t_n} \geq x \). The definition of \(t \) implies however that there exists a sequence \(t'_n \to t^+ \) such that \(X_{t'_n} < X_t \). Hence there exists a sequence \(r_n \to t^+ \) such that \(X_{r_n} = x \). We can furthermore assume that \(r_n < T_q \) for all \(n \)'s.

Part (ii) of the previous Lemma implies that \(r_n \)'s are not simultaneously maxima of excursions of \(|B| \). Hence, using Part (i) of the same Lemma and the fact that \(T_q > r_n \),

\[L_{x, T^+ q} > 0 , \]

which contradicts the hypothesis and concludes the proof of the proposition.

Proof of Proposition 8- We are now ready to show how Proposition 8 follows from the generalized Ray-Knight Theorem for the local times of \(X \) derived by Le Gall-Yor [12] (see also [22]), we now recall:

Proposition 11 (Le Gall-Yor [12]). For all fixed \(y < 0 \), the process \((L_{y+}^{y-x}, x \in [0,-y])\) is a squared Bessel process of dimension \(2/\mu \) started from 0.

Bessel processes of dimension \(\delta > 1 \) hit 0 for strictly positive time almost surely. Moreover (see e.g. Barlow-Pitman-Yor [2] and McKean [14]), its zero set has Hausdorff dimension \(1 - \delta/2 \). Hence, for all \(q \in Q_- \),

\[\dim (\{ x \in (q, 0), L_{x, T^+ q} = 0 \}) = 1 - \frac{1}{\mu} . \]

Proposition 8 follows immediately, using Proposition 10.
Remark. Recall Lévy’s identity
\[(|B|, \ell) = (W^* - W, W^*),\]
where \(W\) is a linear Brownian motion. Consequently, if \(\eta = \mu - 1\),
\[D = \{t > 0, W_t = W^*_t \text{ and } \exists \varepsilon > 0, \forall u \in (0, \varepsilon), W_{u+t} - W_t > -\eta(W^*_{u+t} - W^*_t)\}.

In other words, if we put for all \(t > 0, u > 0\),
\[I^t_u = \inf_{v \in (0, u)} (W_{t+v} - W_t)\]
and
\[S^t_u = \sup_{v \in (0, u)} (W_{t+v} - W_t),\]
then
\[D = \{t > 0, \ W_t = W^*_t \text{ and } \exists \varepsilon > 0, \forall u \in (0, \varepsilon), I^t_u > -\eta S^t_u\}.
\]

\(D\) is therefore a set of times of ‘approximate increase’ for \(W\). One could also have derived the fact that \(\dim (D) = \alpha/2\) using estimates analogous to those of Knight [10] (see also Khoshnevisan [9]) and the ‘classical’ techniques to compute Hausdorff measures (see e.g. the paper on slow points by Davis and Perkins [7] and the references therein). Similarly, one could also focus on the other exceptional sets like for instance
\[D^+ = \{t, \exists \varepsilon > 0, \forall u \in (0, \varepsilon), I^t_u > -\eta S^t_u\},\]
\[D^\pm = \{t, \exists \varepsilon > 0, \forall u \in (-\varepsilon, \varepsilon), I^t_u > -\eta S^t_u\}\]
and compute their Hausdorff dimension.

Acknowledgements. We thank Burgess Davis for having sent us versions of preprints [6] and [15], and Marc Yor for useful discussions.

References

[6] Davis, B.: Weak limits of perturbed Brownian motion and the equation $Y_t = B_t + \alpha \sup \{Y_s : s \leq t\} + \beta \inf \{Y_s : s \leq t\}$, Ann. Prob., to appear.

[11] Le Gall, J.F.: L’équation stochastique $Y_t = B_t + \alpha M_t^Y + \beta I_t^Y$ comme limite des équations de Norris-Rogers-Williams, unpublished notes (1986)

M.P.:
Institute for Mathematics, Physics and Mechanics
University of Ljubljana
Jadranska 19, 61111 Ljubljana
SLOVENIA
e-mail: mihael.perman@uni-lj.si

W.W.:
Laboratoire de Mathématiques
Ecole Normale Supérieure
45, rue d’Ulm, F-75230 Paris cedex 05
FRANCE
e-mail: wwerner@DMI.ENS.FR