A modified structured central scheme for
2D hyperbolic conservation laws

Theodoros KATSAOUNIS
Doron LEVY

LMENS - 98 - 30
A modified structured central scheme
for 2D hyperbolic conservation laws

Theodoros KATSAOUNIS
Doron LEVY

LMENS - 98 - 30

June 1998
A Modified Structured Central Scheme
for 2D Hyperbolic Conservation Laws

Theodoros Katsaounis‡  Doron Levy†

Abstract

We present a new central scheme for approximating solutions of two-dimensional systems of hyperbolic conservation laws. This method is based on a modification of the staggered grid proposed in [5] which prevents the crossings of discontinuities in the normal direction, while retaining the simplicity of the central framework. Our method satisfies a local maximum principle which is based on a more compact stencil. Unlike the previous method, it enables a natural extension to adaptive methods on structured grids.

Key words. Hyperbolic conservation laws, central difference schemes, non-oscillatory schemes, adaptive methods.

1 Introduction

In [5] Jiang and Tadmor presented a second-order two-dimensional central scheme for approximating solutions of systems of hyperbolic conservation laws which extends the one-dimensional Nessyahu-Tadmor (NT) scheme [7]. Similar approach was taken by Arminjon, et al. in [1], [3].

Following the central framework whose prototype is the Lax and Friedrichs scheme [4], a Godunov-type scheme was constructed. First, a piecewise-linear MUSCL-type [6] interpolant was reconstructed from the given cell-averages. Spurious oscillations in the reconstruction were avoided by implementing a non-linear limiting mechanism [8]. This interpolant was then evolved exactly in time and finally projected on its staggered cell-averages. Due to the staggering, there was no need to solve two-dimensional Riemann problems. Unfortunately, the staggering was not sufficient to eliminate the discontinuities from the problem, and one was actually left with one-dimensional Riemann problems in the normal direction. In the method proposed in [5], instead of explicitly solving these 1D Riemann problems, the values around the discontinuities were averaged. The dissipative treatment of those discontinuities in the normal direction resulted in several numerical consequences such as smearing of the discontinuities as evident in the numerical results presented in [5].

In this work we present a new central scheme which was designed to avoid the crossings of discontinuities in the normal direction. Our goal is obtained by exchanging the original staggered mesh with an alternative rotated and stretched mesh. All that follows, is a direct implementation of the previously designed methods with our new meshes. This new structured mesh can be viewed as a degenerate version of the unstructured mesh used in [2].

Along with the main advantage of our new method, several byproducts are in hand. First, the method in [5] when viewed in every two time steps consisted of a 9-points stencil. Our method, however, is based on a more compact 5-points stencil. Moreover, unlike the method in [5], our

‡Département de Mathématiques et d’Informatique, Ecole Normale Supérieure, 45 rue d’Ulm, 75230 Paris Cedex 05, France; dlevy@dmi.ens.fr, katsaoun@dmi.ens.fr
new method can be easily extended to adaptive central schemes which are based on structured staggered grids. Such an extension seems to be highly non-trivial in the previous framework.

This paper is organized as follows: we start in §2 by presenting our new central method. The simplicity compared with an adaptive unstructured framework is emphasized by the explicit formulation of the method outlined below. We then proceed in §3 to formulate and prove a maximum principle on the scheme. We end in §4 with several numerical examples.

Acknowledgment: Research was supported by Hyperbolic systems of conservation laws TMR grant #ERBFMRXCT960033. We would like to thank Prof. E. Tadmor for his remarks.

2 The 2D Method

We consider the two-dimensional system of conservation laws

\[ v_t + f(v)_x + g(v)_y = 0, \]  

(2.1)

augmented with the initial data, \( v_0(x, y) = v(x, y, t = 0) \). To approximate solutions of (2.1), we first introduce a uniform rectangular mesh in the \((x, y)\) plane, with spacings taken as \( \Delta x, \Delta y \). On top of this mesh, we then build a staggered mesh, whose cells are of the shape of diamonds, consult Figure 2.1 (a).

![Figure 2.1: (a) The Staggered Mesh. Solid lines - rectangular grid. Dotted lines - diamond-shaped grid. (b) A Structured Adaptive Grid.](image)

By \( \Omega_i \) and \( \tilde{\Omega}_i \) we denote the rectangular cells and the diamond cells, respectively. The resulting meshes are therefore abbreviated as \( \Omega = \bigcup \Omega_i \) and \( \tilde{\Omega} = \bigcup \tilde{\Omega}_i \). For simplicity of notations we use a fixed time-step \( \Delta t \), and denote the discrete time by \( t^n = n \Delta t \). By \( \tilde{u}^n_{\tilde{\Omega}_i} \) we denote an approximation to the cell-average \( \tilde{u}^n_{\tilde{\Omega}_i} \) in cell \( \tilde{\Omega}_i \) and at time \( t^n \). In the first phase of the staggering we assume that \( \tilde{u}^n_{\tilde{\Omega}_i} \) are given and we wish to compute \( \tilde{u}^{n+1}_{\tilde{\Omega}_i} \). In the second phase, the roles of \( \tilde{\Omega} \) and \( \Omega \) are exchanged.

The reconstruction of our Godunov-type second-order method starts by reconstructing a piecewise-linear interpolant from the given cell-averages

\[ u(x, y, t^n) = \sum_{\tilde{\Omega}_i} P_i(x, y, t^n) \chi_{\tilde{\Omega}_i}. \]  

(2.2)

Here, \( \chi_{\tilde{\Omega}_i} \) denoted the characteristic function of the cell \( \tilde{\Omega}_i \) while \( P_i \) is a linear polynomial

\[ P_i(x, y, t^n) = \tilde{u}^n_{\tilde{\Omega}_i} + u^i_{\tilde{\Omega}_i} \left( \frac{x - x_{c_i}}{\Delta x} \right) + u^i_{\tilde{\Omega}_i} \left( \frac{y - y_{c_i}}{\Delta y} \right), \]
where the center of $\tilde{\Omega}_i$ is denoted by $(x_{ci}, y_{ci})$, and $u_{\tilde{\Omega}_i}^t, u_{\tilde{\Omega}_i}^{t+1}$, are the discrete slopes in the $x$- and $y$-directions respectively, $u_{\tilde{\Omega}_i}^t \sim \Delta x \cdot u(x_{ci}, y_{ci}, t^n) + O(\Delta x)^2, u_{\tilde{\Omega}_i}^{t+1} \sim \Delta y \cdot u(y_{ci}, x_{ci}, t^{n+1}) + O(\Delta y)^2$.

The reconstruction of the slopes utilizes nonlinear limiters described in the remarks below.

\[ \int_{\tilde{\Omega}_i} f_x + \int_{\tilde{\Omega}_i} g_y \, dx \, dy \]
We start with the case described in Figure (b). Here, \( \mathcal{I}_1 = \tilde{u}^n_{i,j} = \frac{\Delta y}{2} \left[ f(u^{n+1/2}_{i,j}) \cdot \bar{n}_x + g(u^{n+1/2}_{i,j}) \cdot \bar{n}_y \right] \), and

\[
\mathcal{I}_2 = -\sqrt{x^2 + \mu^2} \cdot \sum_{\bar{O}_{i,j}} \left[ f(u^{n+1/2}_{i,j}) \cdot \bar{n}_x + g(u^{n+1/2}_{i,j}) \cdot \bar{n}_y \right].
\]

(2.6)

The mid-values, \( u^{n+1/2}_{i,j} \), required in (2.6) are once again predicted by Taylor expansion

\[
u^{n+1/2}_{i,j} = u^n_{i,j} - \frac{\Delta t}{2} \left[ f(u^n_{i,j}) \cdot u^{\prime}_{i,j} + g(u^n_{i,j}) \cdot v^{\prime}_{i,j} \right],
\]

where \( \bar{O}_{i,j} \) represents the center of the diamond cells, \( j = \{ \text{NE,SE,NW,SW} \} \) (see Figure 2.2 (b)). Here, \( \Delta u_{x} = \Delta u_{y} = \Delta u_{z} \) and \( \Delta u_{sw} = \Delta u_{sw} = \Delta u_{sw} \), with \( \Delta \) denoting the discrete derivative either in the \( x \)- or in the \( y \)-direction. The point-values, \( u^n_{i,j} \), are also computed by a Taylor expansion, e.g., \( u^n_{x} = u^n - \frac{\Delta x}{4} u'_x + \frac{\Delta y}{4} u'_y \).

Analogous computations hold for the last case described in Figure 2.2 (c). For the sake of brevity we list only the first term on the RHS of (2.5), \( \mathcal{I}_1 \), which in this case equals \( \mathcal{I}_1 = \tilde{u}^n_{i,j} = \frac{\Delta x + \Delta y}{2} + \frac{\Delta t}{6} (u^n - u'_n) \).

Remarks:

1. **Reconstruction of the Derivatives.** A reconstruction of the derivatives without creating spurious oscillations requires non-linear built-in limiters. One can use, for example, for the \( x \)-derivative in a rectangular cell \( (j,k) \), a limiting on the right/centered/left derivatives

\[
u^r_{j,k} = MM \left\{ \theta(\tilde{u}^n_{j+1,k} - \tilde{u}^n_{j,k}), \frac{1}{2}(\tilde{u}^n_{j+1,k} - \tilde{u}^n_{j-1,k}), \theta(\tilde{u}^n_{j,k} - \tilde{u}^n_{j-1,k}) \right\},
\]

with \( 1 \leq \theta \leq 2 \), and

\[
MM \{ u_1, u_2, \ldots \} = \begin{cases} 
\min \{ u_i \}, & \text{if } v_i > 0, \forall i, \\
\max \{ u_i \}, & \text{if } v_i < 0, \forall i, \\
0, & \text{otherwise}.
\end{cases}
\]

The choice of \( \theta = 1 \) agrees with the classical Min-Mod limiter (see [8] and [5] for more details). Analogous expression holds for the \( y \)-derivative. The same routine is repeated for the derivatives in the diamond cells. Only this time, since the cells are not aligned with the axes, one has to limit the derivatives after projecting them on the \( x \) and \( y \) directions. For systems, the derivatives are computed component-wise, i.e., \( f^r_{j,k} = f(u_{j,k})u^r_{j,k} \), where \( u^r_{j,k} \) are given by (2.7), consult [7, 5].

2. **Adaptive Mesh.** A possible extension of the method to adaptive method on unstructured meshes is demonstrated in Figure 2.1 (b). An equivalent extension with the previous method in [5] seems to be impossible, at least without dealing with complicated cases at the boundaries (corners, etc.) and with uneven divisions of the cells. Our method formulated on the new mesh requires no special corner treatment. We consider this to be the great advantage of our method over the other available structured 2D methods. Moreover, since there is no upwinding involved, none of the reflected-waves problems which are typical to upwinding methods on adaptive structured meshes should appear.
3 Efficient Implementation. We note that the simplicity of the scheme can be directly projected onto its implementation. It is unnecessary to use the standard methods of the unstructured framework in order to implement our method. The simplest data structure to store the values in the diamonds would be to divide them into triangles and to store the values in the triangles in a two-dimensional array, such that every point in the array corresponds to the rectangle which these triangles belong to. In fact, the values of only two triangles out of four in each rectangle should be stored as the values of the other two can be retrieved from the neighboring cells.

3 A Maximum Principle for Scalar Approximations

An equivalent maximum principle to Theorem 1 in [5] implies to our new scheme. Since our scheme is non-symmetric between the two phases of the staggering, it is natural to formulate the theorem in a non-staggered version by considering two joint time-steps. This results with a local bound on the cell-averages based on values taken from a 5-point stencil. An equivalent two time-steps formulation of Theorem 1 in [5] would be based on a 9-point stencil.

Theorem 3.1 Consider the two-dimensional scalar scheme (2.3), (2.5). Assume that the discrete slopes satisfy the limiter property (2.7). Then for any $1 \leq \theta < 2$ there exists a sufficiently small CFL number $C_\theta$, such that if the following CFL condition is fulfilled

$$\max_u |f_u(u)|, \mu \cdot \max_u |g_u(u)| \leq C_\theta,$$

then the following local maximum principle holds

$$\min\{\bar{u}_j^n_{-1,k}, \bar{u}_j^n_{k}, \bar{u}_j^n_{j+1,k}, \bar{u}_j^n_{j,k-1}, \bar{u}_j^n_{j,k+1}\} \leq \tilde{u}_j^n_{k} \leq \max\{\bar{u}_j^n_{-1,k}, \bar{u}_j^n_{j,k}, \bar{u}_j^n_{j+1,k}, \bar{u}_j^n_{j,k-1}, \bar{u}_j^n_{j,k+1}\}.$$

The proof of Theorem 3.1 is analogous to the proof of [5, Theorem 1] and we omit it for brevity. The key observation for the proof is that every new staggered cell average can be written as a convex combination of sums and differences of the cell-averages in the supporting cells.

4 Numerical Examples

In Table 4.1 we present the $L_1$ and $L_\infty$ errors and convergence rate estimates for the linear oblique advection $v_0 + v_x + v_y = 0$ subject to $v_0 = \sin(\pi(x+y))$. Equal spacings were used, $\Delta x = \Delta y = 1/N$. The CFL was taken as 0.2 and the time $T = 0.5$. We used the MM limiter with $\theta = 1$. These results are indeed comparable with those presented in [5, Table 4.1].

<table>
<thead>
<tr>
<th>$N$</th>
<th>$L_1$ error</th>
<th>$L_1$ order</th>
<th>$L_\infty$ error</th>
<th>$L_\infty$ order</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.334716</td>
<td>-</td>
<td>0.120738</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>0.020296</td>
<td>4.04</td>
<td>0.023076</td>
<td>2.39</td>
</tr>
<tr>
<td>80</td>
<td>0.005117</td>
<td>1.97</td>
<td>0.009852</td>
<td>1.23</td>
</tr>
<tr>
<td>160</td>
<td>0.001661</td>
<td>1.64</td>
<td>0.004155</td>
<td>1.25</td>
</tr>
<tr>
<td>320</td>
<td>0.000698</td>
<td>1.25</td>
<td>0.001740</td>
<td>1.26</td>
</tr>
</tbody>
</table>

Table 4.1: Linear Oblique Advection. $L_1$ and $L_\infty$ errors and convergence rates.
Figure 4.1: Periodic 2D-Burgers. $N = 160$; (a) - JT, CFL=0.4; (b) - JT, CFL=0.2; (c) - The new method, CFL=0.2.

We end by presenting an example demonstrating the non-oscillatory behavior of our method. In Figure 4.1 we show the results obtained for the periodic two-dimensional Burgers' equation,

$$v_t + v v_x + v v_y = 0$$

in $[-1,1] 	imes [-1,1]$, for time $T = 0.5$, subject to the initial conditions,

$$v_0(x, y) = \begin{cases} 
-1.0, & x < 0, y < 0, \\
-0.2, & x > 0, y < 0,
\end{cases} \quad v_0(x, y) = \begin{cases} 
0.8, & x < 0, y > 0, \\
0.5, & x > 0, y > 0.
\end{cases}$$

The label JT refers to the method of [5]. The contour plots in Figure 4.1 are zoomed into $[0,1] 	imes [-1,0]$. Clearly, our method handles better 'diagonal' waves compared with the method of [5], while less smearing the discontinuities (compare the results of both methods for the same CFL).

References


