Hydrodynamic Limits for the Vlasov-Navier-Stokes Equations:
Hyperbolic Scaling

T. Goudon
P.-E. Jabin
A. Vasseur

DMA - 02 - 29
Hydrodynamic Limits for the Vlasov-Navier-Stokes Equations: Hyperbolic Scaling

T. Goudon*
P.-E. Jabin**
A. Vasseur***

DMA - 02 - 29

October 2002

Département de mathématiques et applications - École normale supérieure
45 rue d’Ulm 75230 PARIS Cedex 05
Tel : (33)(1) 01 44 32 30 00
E-mail : preprints@dma.ens.fr

* Labo. J.A. Dieudonné, UMR 6621, Université Nice-Sophia Antipolis
 E-mail : goudon@math.unice.fr

** Département de Mathématiques et Applications, ENS
 E-mail : jabin@dma.ens.fr

*** Labo. J.A. Dieudonné, UMR 6621, Université Nice-Sophia Antipolis
 E-mail : vasseur@math.unice.fr
Hydrodynamic Limits for the Vlasov-Navier-Stokes Equations: Hyperbolic Scaling

Thierry Goudon1,2, Pierre-Emmanuel Jabin3 and Alexis Vasseur1

1 Labo. J.A. Dieudonné, UMR 6621
Université Nice-Sophia Antipolis, Parc Valrose
F-06108 Nice cedex 02
\texttt{goudon@math.unice.fr, vasseur@math.unice.fr}

2 INRIA-Sophia, project CAIMAN

3 Département de Mathématiques et Applications, ENS
45, rue d’Ulm,
F-75232 Paris
\texttt{jabin@dma.ens.fr}

Abstract

The paper is devoted to the analysis of the hydrodynamic limit for the Vlasov-Navier-Stokes equations in the hyperbolic limit. This system is intended to model the evolution of particles interacting with a fluid. The coupling arises from the force terms. The limit problem is the Navier-Stokes system with non constant density. The density which is involved in this system is the sum of the (constant) density of the fluid and of the macroscopic density of the particles. The proof relies on a relative entropy method.

AMS Subject classification. 35Q99 35B25

1 Introduction

In this paper, we investigate models of particles dispersed in an incompressible viscous fluid. The particles are described through a density function.
\(f(t, x, v) \geq 0 \): the quantity

\[
\int_0^T \int f(t, x, v) \, dv \, dx
\]

is interpreted as the probable number of particles occupying, at time \(t \geq 0 \), a position \(x \) in the set \(\Omega \subset \mathbb{R}^N \), and having velocity \(v \) in \(\mathcal{V} \subset \mathbb{R}^N \). The evolution of \(f \) is governed by the following Vlasov-type equation

\[
\partial_t f + \nabla_x \cdot (vf) + \nabla_v \cdot (Ff) = r \Delta_v f. \tag{1.1}
\]

In (1.1), \(F \) represents the density of friction forces acting on the particles while the right hand side models Brownian motion. In other words, \((v, F)\) is the acceleration of the particles in phase space and particles follow the trajectories \(X, V \) solution of the ODEs system

\[
\frac{d}{dt} X = V, \quad dV = F(X, V) dt + r dB,
\]

where \(B \) denotes the Brownian motion. Considering any family of solutions \((X_i, V_i)\) to the stochastic ODEs system, the associated distribution function \(f = \sum_i \delta(x - X_i) \delta(v - V_i) \) satisfies equation (1.1).

The particles evolve in a fluid which is described by its velocity field \(u(t, x) \in \mathbb{R}^N \). The cloud of particles is assumed highly dilute so that we can suppose that the density of the gas remains constant. Accordingly, \(u \) verifies the following incompressible Navier-Stokes equation

\[
\begin{cases}
\partial_t u + \text{Div}_x(u \otimes u) + \nabla_x p - \Delta_x u = \mathfrak{F}, \\
\text{div}_x(u) = 0.
\end{cases} \tag{1.2}
\]

Here and below, for \(u = (u_1, \ldots, u_N) \in \mathbb{R}^N \), we use the notation \(u \otimes u \) to denote the matrix with components \(u_i u_j \) whereas, \(A \) being a matrix valued function, \(\text{Div}_x(A) = \sum_{j=1}^N \partial_{x_j} A_{ij} \in \mathbb{R}^N \). In view of the incompressibility condition, we have of course (at least if \(u \) is regular) \(\text{Div}_x(u \otimes u) = (u \cdot \nabla_x)u \). The function \(\mathfrak{F} \) represents the density of forces exerted on the fluid. Equations (1.1) and (1.2) are coupled through the force terms. The forces acting on the particles reduce to the friction force exerted by the fluid, supposed to be proportional to the relative velocity

\[
F = F_0(u - v), \quad F_0 > 0.
\]
The force exerted on the fluid is given by the sum

\[\mathbf{F} = - \int_{\mathbb{R}^N} F f \, dv = F_0 \int_{\mathbb{R}^N} f (v - u) \, dv. \]

This paper is devoted to the study of the asymptotic behavior of this coupled system when both the force terms and the brownian effects are very strong, namely:

\[r = F_0 = 1/\varepsilon \gg 0. \]

Actually, we are dealing here with dimensionless equations; the scaling corresponds to suppose that:
- the size of the particles is small compared to the length unit,
- the densities of the fluid phase and of the particles have the same order,
- a certain relaxation time, which depends on the physical characteristics of the fluid and the particles, is small compared to the observation time scale.

We refer for dimensionless form of the equations to [13] where the parabolic scaling is dealt with. More details on the model can be found in Caffisch-Papanicolaou [4] (see also Hamdache [15]), and Williams [25] for application to combustion theory. Slightly different models describing fluid-particles interactions are presented in Jabin-Perthame [19], Herrero-Lucquin-Perthame [16], Russo-Smerecka [23], Clouet-Domelevo [5]. Readers interested in mathematical studies of the system (1.1, 1.2) should consult Hamdache [14].

Asymptotic results concerning some simplified situations can be found in Berthonnaud [1], Domelevo-Roquejoffre [7], Domelevo-Vignal [8], Goudon [12]...

Hence, we aim at describing the behavior of \((f^\varepsilon, u^\varepsilon)\) solution of the following system

\[
\begin{aligned}
\partial_t f^\varepsilon + v \cdot \nabla_x f^\varepsilon &= -\frac{1}{\varepsilon} \nabla_v \cdot \left((u^\varepsilon - v) f^\varepsilon - \nabla_v f^\varepsilon \right), \\
\partial_t u^\varepsilon + \text{Div}_x (u^\varepsilon \otimes u^\varepsilon) + \nabla_x p^\varepsilon - \Delta_x u^\varepsilon &= \frac{1}{\varepsilon} \left(\int_{\mathbb{R}^N} v f^\varepsilon \, dv - u^\varepsilon \int_{\mathbb{R}^N} f^\varepsilon \, dv \right), \\
\text{div}_x (u^\varepsilon) &= 0, \\
f^\varepsilon_{t=0} = f_0^\varepsilon, \quad u^\varepsilon_{t=0} = u_0^\varepsilon
\end{aligned}
\]

(1.4)
as the small parameter ε goes to 0. The paper is organized as follows. First, we present heuristically the limit problem which can be expected. It consists of the Navier Stokes system with non constant density. The density which is involved in this system is the sum of the (constant) density of the fluid with the macroscopic density of the particles. To justify the asymptotic we use the relative entropy method (see [26],[9]). Section 3 introduces a relative entropy which is intended to compare $(f^\varepsilon, u^\varepsilon)$ to the solution of the limit problem. Then, we will state precisely the result of convergence, whose proof can be found in Section 4. We work on weak solutions $f^\varepsilon \in C^0([0, T]; L^1(\mathbb{R}^N \times \mathbb{R}^N))$, $u^\varepsilon \in C^0([0, T]; L^2(\mathbb{R}^N)) \cap L^2(0, T; H^1(\mathbb{R}^2))$ of (1.4) verifying certain energy estimate (see section 4). We refer on existence of such solutions to [14].

2 Formal Derivation of the Limit Problem

It is worth rewritting the right hand side in the kinetic equation in (1.4) as

$$-rac{1}{\varepsilon} \nabla_v \cdot ((u^\varepsilon - v)f^\varepsilon - \nabla_v f^\varepsilon) = \frac{1}{\varepsilon} \nabla_v \cdot \left(M^\varepsilon \nabla_v \left(\frac{f^\varepsilon}{M^\varepsilon} \right) \right)$$

where M^ε is the (normalized) Maxwellian with velocity u^ε:

$$M^\varepsilon(t, x, v) = (2\pi)^{-N/2} \exp(-|v - u^\varepsilon|^2/2).$$

Let us introduce the quantity

$$d^\varepsilon = (v - u^\varepsilon)\sqrt{f^\varepsilon} + 2\nabla_v \sqrt{f^\varepsilon} = 2\sqrt{M^\varepsilon}\nabla_v \left(\sqrt{\frac{f^\varepsilon}{M^\varepsilon}} \right). \quad (2.1)$$

The cornerstone of the analysis relies on the fact that d^ε is $O(\sqrt{\varepsilon})$ in L^2:

$$\int_0^T \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |d^\varepsilon|^2 \, dv \, dx \, dt \leq C\varepsilon. \quad (2.2)$$

It will appear as the dissipation of some free energy associated to the system (1.4). Formally, this estimate illustrates the tendancy of the kinetic equation to relax to the Maxwellian with the velocity of the fluid. If we assume that $u^\varepsilon \to u$, then, we can expect that

$$f^\varepsilon \to M_{\rho u}(t, x, v) = \frac{\rho(t, x)}{(2\pi)^{N/2}} \exp(-|v - u(t, x)|^2/2),$$

where
with \(\rho \) the limit (which is supposed to exist) of \(\int_{\mathbb{R}^N} f^\varepsilon \, dv \). Now, we aim at describing the limit equations satisfied by \((\rho, u)\).

Let us introduce the macroscopic density, velocity and kinetic pressure associated to the particles

\[
\rho^\varepsilon (t, x) = \int_{\mathbb{R}^N} f^\varepsilon \, dv, \quad J^\varepsilon = \int_{\mathbb{R}^N} v f^\varepsilon \, dv, \quad \mathbb{P}^\varepsilon (t, x) = \int_{\mathbb{R}^N} v \otimes v f^\varepsilon \, dv.
\]

Integration of the kinetic equation with respect to \(v \) yields the following moment equations

\[
\begin{cases}
\partial_t \rho^\varepsilon + \text{div}_x (J^\varepsilon) = 0, \\
\partial_t J^\varepsilon + \text{Div}_x (\mathbb{P}^\varepsilon) = \frac{1}{\varepsilon} \left(\rho^\varepsilon u^\varepsilon - J^\varepsilon \right).
\end{cases}
\quad (2.3)
\]

By using the fluid equation, the current equation can be rewritten as

\[
\partial_t (u^\varepsilon + J^\varepsilon) + \text{Div}_x (u^\varepsilon \otimes u^\varepsilon + \mathbb{P}^\varepsilon) + \nabla_x p^\varepsilon - \Delta u^\varepsilon = 0.
\]

Then, we remark that the kinetic pressure can be split as follows

\[
\mathbb{P}^\varepsilon = \int_{\mathbb{R}^N} d^\varepsilon \otimes v \sqrt{f^\varepsilon} \, dv + \int_{\mathbb{R}^N} u^\varepsilon \otimes v \, f^\varepsilon \, dv - 2 \int_{\mathbb{R}^N} \nabla_v \sqrt{f^\varepsilon} \otimes v \sqrt{f^\varepsilon} \, dv.
\quad (2.4)
\]

By combining the Cauchy-Schwarz inequality to (2.2), we see that the first term is \(O(\sqrt{\varepsilon}) \) (integration of the kinetic equation implies that the total mass is conserved \(\int \int f^\varepsilon \, dv \, dx = \int \int f^\varepsilon_0 \, dv \, dx \leq C \)). Besides, the last one is nothing but \(\rho^\varepsilon \mathbb{I} \) and the second one is \(u^\varepsilon \otimes J^\varepsilon \). Hence, we have

\[
\partial_t (u^\varepsilon + J^\varepsilon) + \text{Div}_x (u^\varepsilon \otimes (u^\varepsilon + J^\varepsilon)) + \nabla_x (p^\varepsilon + \rho^\varepsilon) - \Delta u^\varepsilon = O(\sqrt{\varepsilon}).
\quad (2.5)
\]

On the other hand, we remark that

\[
J^\varepsilon - \rho^\varepsilon u^\varepsilon = \int_{\mathbb{R}^N} f^\varepsilon (v - u^\varepsilon) \, dv = \int_{\mathbb{R}^N} \sqrt{f^\varepsilon} \, d^\varepsilon \, dv.
\]

Hence, (2.2) implies that \(J^\varepsilon - \rho^\varepsilon u^\varepsilon \) tends to 0, as \(\varepsilon \to 0 \). Consequently, if we assume that \(\rho^\varepsilon \) and \(u^\varepsilon \) admit limits \(\rho, u \), and the product also passes to the limit

\[
\rho^\varepsilon u^\varepsilon \to \rho u.
\]
then, we deduce that $J^\varepsilon \to \rho u$ too. Passing also to the limit formally in the product $u^\varepsilon \otimes (u^\varepsilon + J^\varepsilon)$ we are finally led to the following incompressible Navier-Stokes system, with $\tilde{\rho} = 1 + \rho$,
\[
\begin{cases}
\partial_t \tilde{\rho} + \text{div}_x(\tilde{\rho}u) = 0, \\
\partial_t(\tilde{\rho}u) + \text{Div}_x(\tilde{\rho}u \otimes u) - \Delta u + \nabla_x P = 0, \\
\nabla_x \cdot u = 0.
\end{cases}
\]

We shall prove, under an assumption of preparation of the data, that:
\[
\begin{align*}
\|\rho^\varepsilon - (\tilde{\rho} - 1)\|_{L^\infty(0,T;L^1(\mathbb{R}^N))} & \xrightarrow{\varepsilon \to 0} 0, \\
\|u^\varepsilon - u\|_{L^\infty(0,T;L^2(\mathbb{R}^N))} & \xrightarrow{\varepsilon \to 0} 0,
\end{align*}
\]
where $(\tilde{\rho}, u)$ is solution to (2.6). The precise statement can be found in the following section.

3 Entropy Method

Let $h : \mathbb{R} \to \mathbb{R}$ be a strictly convex function. The quantity
\[
H(x|y) = h(x) - h(y) - h'(y)(x - y)
\]
can be used as a way to evaluate how far x is from y. Indeed, by convexity, we have
\[
H(x|y) = \int_y^x \left(h'(z) - h'(y) \right) \, dz = \int_y^x \int_y^z h''(r) \, dr \, dz \geq 0
\]
and it vanishes iff $x = y$.

Here, it seems far from obvious to justify by a compactness argument the convergence of $(\rho^\varepsilon, u^\varepsilon)$ to $(\tilde{\rho} - 1, u)$, with $(\tilde{\rho}, u)$ solution of (2.6): the difficulty relies on the non linear passage to the limit in the products $\rho^\varepsilon u^\varepsilon$ and, much more difficult, $\rho^\varepsilon u^\varepsilon \otimes u^\varepsilon$. The estimates we are able to derive from (1.4) are not sufficient to obtain the needed strong convergences. Instead we shall use a relative entropy method. Let us denote by $(\tilde{\rho}, u)$ the solution of the limit problem (2.6). Starting from a smooth initial data $(\tilde{\rho}_0, u_0)$, such a solution exists at least on a small interval of time $[0, T]$ and it is a smooth function. We set $\rho = \tilde{\rho} - 1 > 0$ on this time interval. We aim at comparing in some sense the sequence $(\rho^\varepsilon, u^\varepsilon)$ to $(\tilde{\rho} - 1, u)$. This method has been introduced by
Yau [26]. It is reminiscent to weak-strong uniqueness principle (see Dafermos [2] and Lions [22]). It has been successfully used to derive the incompressible Euler equation from the Vlasov-Poisson system by Brenier [3], to investigate hydrodynamic limits of the Boltzmann equation by Golse-Levermore-Saint-Raymond [10], Saint-Raymond [24] or to study gyrokinetic limits by Brenier [3] and Golse-Saint-Raymond [11].

Let $M_{\rho,u}$ stand for the Maxwellian with density $\rho = \tilde{\rho} - 1$ and velocity u

$$M_{\rho,u}(t, x, v) = (2\pi)^{-N/2} \rho(t,x) \exp(-|v-u(t,x)|^2/2).$$

Let us introduce the relative entropy

$$\mathcal{H}(f^\varepsilon, u^\varepsilon) = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} H(f^\varepsilon|M_{\rho,u}) \, dv \, dx + \frac{1}{2} \int_{\mathbb{R}^N} |u^\varepsilon - u|^2 \, dx.$$

The first integral evaluates how far f^ε is from the Maxwellian $M_{\rho,u}$, while the latter is nothing but the (squared) L^2 norm between u^ε and u. We have in mind to obtain a relation looking like

$$\mathcal{H}(f^\varepsilon, u^\varepsilon)(t) \leq \mathcal{H}(f^\varepsilon, u^\varepsilon)(0) + K \int_0^t \mathcal{H}(f^\varepsilon, u^\varepsilon)(s) \, ds + r^\varepsilon(t), \quad (3.1)$$

with a constant K which does not depend on ε. Then, the conclusion follows by means of an application of the Gronwall lemma provided:

- the initial data is well prepared in the sense that $\mathcal{H}(f^\varepsilon, u^\varepsilon)(0) \to 0$ as ε goes to 0,
- the remainder r^ε tends to 0 as $\varepsilon \to 0$.

The former is an assumption on the preparation of the data; the latter will appear as a consequence of the dissipation estimation (2.2).

Obviously, $h(s) = s^2$ can be used to define the relative entropy. Here, it is well adapted to use instead $s = s \ln(s)$. Accordingly, we have

$$H(f^\varepsilon|M_{\rho,u}) = f^\varepsilon \ln \left(\frac{f^\varepsilon}{M_{\rho,u}} \right) + M_{\rho,u} - f^\varepsilon.$$

First, we remark that the relative entropy between macroscopic quantities is dominated by the relative entropy of microscopic quantities. Second, we are interested with estimations of $|x - y|$ in terms of $H(x|y)$.

7
Lemma 1 For \(i \in \{1, 2\} \), let \(f_i : \mathbb{R}^N \to \mathbb{R}^+ \). We set \(\rho_i = \int_{\mathbb{R}^N} f_i \, dv \). Then, we have

\[
H(\rho_1 | \rho_2) \leq \int_{\mathbb{R}^N} H(f_1 | f_2) \, dv.
\]

Proof. Here, we have

\[
H(\rho_1 | \rho_2) = \rho_2 \bar{h}(\rho_1 / \rho_2) = \rho_2 \bar{h} \left(\int_{\mathbb{R}^N} \frac{f_1}{f_2} \frac{f_2}{\rho_2} \, dv \right)
\]

with \(\bar{h}(s) = h(s) - s + 1 \) convex. Since \(\frac{f_2}{\rho_2} \, dv \) is a probability measure, the Jensen inequality applies and we get

\[
H(\rho_1 | \rho_2) \leq \rho_2 \int_{\mathbb{R}^N} \bar{h} \left(\frac{f_1}{f_2} \right) \frac{f_2}{\rho_2} \, dv = \int_{\mathbb{R}^N} H(f_1 | f_2) \, dv.
\]

Lemma 2 Let \(x, y \geq 0 \). There exists a constant \(C \) such that

\[
\begin{aligned}
&\text{If } |x - y| \leq y, \text{ then } |x - y|^2 \leq C \, y \, H(x | y), \\
&\text{If } |x - y| \geq y, \text{ then } |x - y| \leq C \, H(x | y).
\end{aligned}
\]

Proof. Here, we have

\[
H(x | y) = \int_y^x \ln(z/y) \, dz = \int_y^x \int_y^z \frac{1}{r} \, dr \, dz.
\]

Suppose that \(|x - y| \leq y \). Hence \(\sup(x, y) \leq 2y \) and we obtain

\[
H(x | y) \geq \int_y^x \int_y^z \inf_{u \in [x, y]} \frac{1}{u} \, dr \, dz \geq \frac{|x - y|^2}{4y}.
\]

Next, suppose that \(x - y \geq y > 0 \). We obtain

\[
H(x | y) \geq \int_0^{(x-y)/y} \ln(1 + u) \, y \, du \geq \int_{(x-y)/(2y)}^{(x-y)/y} \ln(1 + u) \, y \, du
\]

\[
\geq \ln(3/2) \frac{x - y}{2}.
\]
since \(u \geq 1/2 \) in the domain of integration. Similarly, for \(y - x \geq y > 0 \), we get
\[
H(x|y) \geq \int_{(y-x)/(2y)}^{(y-x)/y} \left(-\ln(1 - u) \right) y \, du \geq \ln(2) \frac{y - x}{2}.
\]

We can now state precisely the main result of the paper.

Theorem 1 Let \((f_0^\varepsilon, u_0^\varepsilon)\) be initial data for (1.4) such that \(f_0^\varepsilon \geq 0\) and
\[
\sup_{\varepsilon > 0} \left(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f_0(x) (1 + x^2 + v^2 + |\ln(f_0^\varepsilon)|) \, dv \, dx + \int_{\mathbb{R}^N} |u_0^\varepsilon|^2 \, dx \right) \leq C < \infty.
\]

(3.2)

Let \((\tilde{\rho}_0, u_0)\) be \(C^\infty(\mathbb{R}^N)\) initial data for the limit problem (2.6) such that \(\tilde{\rho}_0 > 1\) and
\[
\int_{\mathbb{R}^N} (\tilde{\rho}_0 - 1) \, dx = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f_0^\varepsilon \, dv \, dx = C_0.
\]

Let \((\tilde{\rho}, u)\) be the corresponding smooth solution on \([0, T]\). Finally, we suppose that
\[
\mathcal{H}(f_0^\varepsilon, u_0^\varepsilon) = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} H(f_0^\varepsilon | M_{\tilde{\rho}_0-1,u_0}) \, dv \, dx + \frac{1}{2} \int_{\mathbb{R}^N} |u_0^\varepsilon - u_0|^2 \, dx \xrightarrow{\varepsilon \to 0} 0.
\]

Then, we have
\[
\sup_{0 \leq t \leq T} \mathcal{H}(f_0^\varepsilon, u_0^\varepsilon) \xrightarrow{\varepsilon \to 0} 0.
\]

Remark 1 In view of the Csiszar-Kullback-Pinsker inequality [6],[20], the integral \(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} H(f_0^\varepsilon | M_{\tilde{\rho},u}) \, dv \, dx\) dominates the square of the \(L^1\) norm of \(f_0^\varepsilon - M_{\tilde{\rho},u}\). Hence, we have the convergences \(f_0^\varepsilon \to M_{\tilde{\rho},u}\) and \(u_0^\varepsilon \to u\) in \(L^\infty(0, T; L^1(\mathbb{R}^N \times \mathbb{R}^N))\) and \(L^\infty(0, T; L^2(\mathbb{R}^N))\) norms respectively. Combining Lemma 1 and the Csiszar-Kullback-Pinsker inequality with the convergence in Theorem 1, we have also \(\rho^\varepsilon \to \rho = \tilde{\rho} - 1\) strongly in \(L^\infty(0, T; L^1(\mathbb{R}^N))\).

Remark 2 As explained above, see (3.1), the result will be obtained by means of the Gronwall lemma. We will see that the remainder \(r^\varepsilon\) is \(O(\sqrt{\varepsilon})\), which gives the rate of convergence, up to the initial data term.
4 Proof of Theorem 1

We divide the proof into two parts. First, we discuss the a priori estimates on solutions of (1.4). Second, we establish relation (3.1) for the relative entropy, the remainder \(r^\varepsilon \) being \(\mathcal{O}(\sqrt{\varepsilon}) \).

4.1 A priori Estimates

The proof starts with the following estimates on the microscopic quantity \(f^\varepsilon \) and the velocity field. The crucial estimate (2.2) is also contained in this statement. Throughout the paper, we use the convention that \(C \) denotes a constant depending on (3.2), \(\tilde{\rho}_0 \), \(u_0 \) and \(T \) but not on \(\varepsilon \), even if the value of the constant may vary from a line to another.

Proposition 1 Let \((f^\varepsilon, u^\varepsilon)\) be the solution of (1.4) associated to initial data verifying (3.2). Let \(0 < T < \infty \). Then, the following assertions hold

i) \(f^\varepsilon(1 + x^2 + v^2 + |\ln(f^\varepsilon)|) \) is bounded in \(L^\infty(0, T; L^1(\mathbb{R}^N \times \mathbb{R}^N)) \),

ii) \(u^\varepsilon \) is bounded in \(L^\infty(0, T; L^2(\mathbb{R}^N)) \) and in \(L^2(0, T; H^1(\mathbb{R}^N)) \),

iii) The quantity \(\frac{1}{\sqrt{\varepsilon}}(\nabla u^\varepsilon)^T f^\varepsilon \) is bounded in \(L^2((0, T) \times \mathbb{R}^N \times \mathbb{R}^N) \).

Proof. Let us derive formally these estimates; the rigorous proof can be obtained with an appropriate approximate argument, or in the construction of the solution, see [14]. Of course, the total mass is conserved

\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f^\varepsilon \, dv \, dx = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f_0^\varepsilon \, dv \, dx,
\]

which gives immediately the \(L^1 \) bound on \(f^\varepsilon \). (Note that it is assumed to be equal to \(\int_{\mathbb{R}^N} (\tilde{\rho}_0 - 1) \, dx \).

Next, we consider the evolution of the following free energy associated to the system (1.4):

\[
\mathcal{E}(f^\varepsilon, u^\varepsilon) = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f^\varepsilon \left(\frac{v^2}{2} + \ln(f^\varepsilon) \right) \, dv \, dx + \int_{\mathbb{R}^N} \frac{|u^\varepsilon|^2}{2} \, dx.
\]

It is the sum of the entropy of the particles with the kinetic energy of the particles and the fluid. We shall show that this quantity is dissipated, due to nice combinations between the fluid and the kinetic equation in (1.4); the
The dissipation rate is precisely given by the L^2 norm of $d^x/\sqrt{\varepsilon}$ plus those of $\nabla_x u^\varepsilon$. We have
\[
\frac{d}{dt} \mathcal{E}(f^\varepsilon, u^\varepsilon) + \int_{\mathbb{R}^N} |\nabla_x u^\varepsilon|^2 \, dx \\
= \frac{1}{\varepsilon} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} (u^\varepsilon - v)^2 \left(\frac{f^\varepsilon}{\sqrt{\varepsilon}} + v \frac{f^\varepsilon}{\sqrt{\varepsilon}} \right) \, dv \, dx \\
+ \frac{1}{\varepsilon} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} (v - u^\varepsilon) f^\varepsilon \cdot u^\varepsilon \, dv \, dx.
\]

The right-hand side can be rewritten as
\[
- \frac{1}{\varepsilon} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \left((u^\varepsilon - v)^2 f^\varepsilon + 4|\nabla_v \sqrt{f^\varepsilon}|^2 - 2(u^\varepsilon - v) \cdot \nabla_v f^\varepsilon \right) \, dv \, dx \\
= - \frac{1}{\varepsilon} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \left((u^\varepsilon - v) \sqrt{f^\varepsilon} - 2\nabla_v \sqrt{f^\varepsilon} \right)^2 \, dv \, dx = - \frac{1}{\varepsilon} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |d^\varepsilon|^2 \, dv \, dx.
\]

Therefore, integration with respect to time gives the following fundamental relation
\[
\mathcal{E}(f^\varepsilon, u^\varepsilon)(t) + \int_0^T \int_{\mathbb{R}^N} |\nabla_x u^\varepsilon|^2 \, dx \, ds + \frac{1}{\varepsilon} \int_0^T \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |d^\varepsilon|^2 \, dv \, dx \, ds = \mathcal{E}(f_0^\varepsilon, u_0^\varepsilon).
\]

(4.1)

Besides, we have
\[
\frac{d}{dt} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} x^2 f^\varepsilon \, dv \, dx = 2 \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} x \cdot v \, f^\varepsilon \, dv \, dx \\
\leq \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} x^2 f^\varepsilon \, dv \, dx + \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} v^2 f^\varepsilon \, dv \, dx.
\]

Therefore, Gronwall’s lemma yields
\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} x^2 f^\varepsilon \, dv \, dx \leq e^T \left(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} x^2 f_0^\varepsilon \, dv \, dx + \int_0^T \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} v^2 f^\varepsilon \, dv \, dx \, ds \right)
\]

(4.2)

Then, we use classical tricks of kinetic theory (see e.g. [21]). We write $s \ln(s) = s \ln(s) - 2s \ln(s) \chi_{0 \leq s \leq 1}$. Let $\omega \geq 0$. We split
\[
-s \ln(s) \chi_{0 \leq s \leq 1} = -s \ln(s) \chi_{\omega \leq s \leq 1} - s \ln(s) \chi_{s \geq \omega} \\
\leq s \omega + C \sqrt{s \chi_{s \geq \omega}} \leq s \omega + C e^{-\omega/2}.
\]
We use these relations with \(s = f^\varepsilon \), \(\omega = (x^2 + v^2)/8 \). We are led to
\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f^\varepsilon |\ln(f^\varepsilon)| \, dv \, dx
= \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f^\varepsilon \ln(f^\varepsilon) \, dv \, dx - 2 \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f^\varepsilon \ln(f^\varepsilon) \chi_{0 < f^\varepsilon \leq 1} \, dv \, dx
\leq \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f^\varepsilon \ln(f^\varepsilon) \, dv \, dx
+ \frac{1}{4} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} (x^2 + v^2) \, f^\varepsilon \, dv \, dx + 2C \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} e^{-(x^2 + v^2)/16} \, dv \, dx.
\]
Then, combining this to (4.1) and (4.2) yields
\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f^\varepsilon(1 + |\ln(f^\varepsilon)|) \, dv \, dx + \frac{1}{4} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} (x^2 + v^2) \, f^\varepsilon \, dv \, dx
+ \frac{1}{2} \int_{\mathbb{R}^N} |u^\varepsilon|^2 \, dx + \frac{1}{\varepsilon} \int_0^T \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |d^\varepsilon|^2 \, dv \, dx \, ds + \int_0^T \int_{\mathbb{R}^N} |\nabla x u^\varepsilon|^2 \, dx \, ds
\leq \mathcal{E}(f^\varepsilon, u^\varepsilon)(t) + \frac{1}{2} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} x^2 f^\varepsilon \, dv \, dx
+ C + \frac{1}{\varepsilon} \int_0^T \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |d^\varepsilon|^2 \, dv \, dx \, ds + \int_0^T \int_{\mathbb{R}^N} |\nabla x u^\varepsilon|^2 \, dx \, ds
\leq \mathcal{E}(f^\varepsilon, u^\varepsilon)(0) + C + C \int_0^T \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} v^2 \, f^\varepsilon \, dv \, dx \, ds,
\]
where \(C \) depends on (3.2) and \(T \). We conclude by using the Gronwall lemma: the quantities
\[
\left\{
\begin{array}{l}
\sup_{0 \leq t \leq T} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f^\varepsilon(1 + v^2 + x^2 + |\ln(f^\varepsilon)|) \, dv \, dx, \\
\sup_{0 \leq t \leq T} \int_{\mathbb{R}^N} |u^\varepsilon|^2 \, dx, \\
\int_0^T \int_{\mathbb{R}^N} |\nabla x u^\varepsilon|^2 \, dx \, ds, \\
\frac{1}{\varepsilon} \int_0^T \int_{\mathbb{R}^N} |d^\varepsilon|^2 \, dv \, dx \, ds,
\end{array}
\right.
\]
are bounded uniformly with respect to \(\varepsilon \) by a constant depending on (3.2) and \(T \).

Next, we wish to discuss some estimates on the macroscopic quantities associated to \(f^\varepsilon \). To this end, it is convenient to establish the following claim.

12
Corollary 1 The quantity \(|u^\varepsilon - v|^2 f^\varepsilon \) is bounded in \(L^1((0, T) \times \mathbb{R}^N \times \mathbb{R}^N) \).

Proof. We rewrite

\[
\int_{\mathbb{R}^N} |v - u^\varepsilon|^2 f^\varepsilon \, dv = \int_{\mathbb{R}^N} \left(|\partial^\varepsilon|^2 - 4|\nabla_v \sqrt{f^\varepsilon}|^2 - 4\nabla_v \sqrt{f^\varepsilon} \cdot (v - u^\varepsilon) \sqrt{f^\varepsilon} \right) \, dv \\
\leq \int_{\mathbb{R}^N} |\partial^\varepsilon|^2 \, dv + 2N \int_{\mathbb{R}^N} f^\varepsilon \, dv,
\]

where we used an integration by parts for the last term. Hence the result follows from Proposition 1.

Corollary 2 Let the assumptions of Proposition 1 be fulfilled. We set

\[
\rho^\varepsilon = \int_{\mathbb{R}^N} f^\varepsilon \, dv, \quad J^\varepsilon = \int_{\mathbb{R}^N} v f^\varepsilon \, dv, \quad \mathbb{P}^\varepsilon = \int_{\mathbb{R}^N} v \otimes v f^\varepsilon \, dv.
\]

Then, the following assertions hold
i) \(\rho^\varepsilon \) is bounded in \(L^\infty(0, T; L^1(\mathbb{R}^N)) \),
ii) \(\rho^\varepsilon u^\varepsilon \) (and \(\rho^\varepsilon u^\varepsilon \)) is bounded in \(L^1((0, T) \times \mathbb{R}^N) \),
iii) \(J^\varepsilon - \rho^\varepsilon u^\varepsilon, \mathbb{P}^\varepsilon - \rho^\varepsilon (1 + u^\varepsilon \otimes u^\varepsilon) \) and \((J^\varepsilon - \rho^\varepsilon u^\varepsilon) \otimes u^\varepsilon \) are \(O(\sqrt{\varepsilon}) \) in \(L^1((0, T) \times \mathbb{R}^N) \) norm.

Proof. The bound on \(\rho^\varepsilon \) is an immediate consequence of Proposition 1-i). Actually, it can be shown, see e.g. [21], that \(\rho^\varepsilon (1 + x^2 + |\ln(\rho^\varepsilon)|) \) is bounded in \(L^\infty(0, T; L^1(\mathbb{R}^N)) \). This is well known to imply weak compactness in \(L^1 \), but we shall not use such kind of information.

Next, we remark that

\[
\rho^\varepsilon |u^\varepsilon|^2 = \int_{\mathbb{R}^N} f^\varepsilon |u^\varepsilon|^2 \, dv \leq 2\int_{\mathbb{R}^N} f^\varepsilon \left(|v - u^\varepsilon|^2 + v^2 \right) \, dv
\]

and ii) follows from Proposition 1 and Corollary 1.

As mentioned in Section 2, we have

\[
J^\varepsilon - \rho^\varepsilon u^\varepsilon = \int_{\mathbb{R}^N} \sqrt{f^\varepsilon} \, dv,
\]

13
so that we conclude by applying the Cauchy-Schwarz inequality. Similarly, we rewrite
\[P = \rho(1 + u \otimes u) = \int_{\mathbb{R}^N} (v \otimes v - 1 - u \otimes u) f^\varepsilon \, dv \]
\[= \int_{\mathbb{R}^N} \left(d^\varepsilon \otimes v \sqrt{f^\varepsilon} + u^\varepsilon \sqrt{f^\varepsilon} \otimes d^\varepsilon - \sqrt{f^\varepsilon} \right) \, dv \]
\[= \int_{\mathbb{R}^N} (d^\varepsilon \otimes v \sqrt{f^\varepsilon} + u^\varepsilon \sqrt{f^\varepsilon} \otimes d^\varepsilon) \, dv. \]
After integration with respect to \(t, x \) it can be estimated by
\[\left(\int_0^T \int_{\mathbb{R}^N} |d^\varepsilon|^2 \, dv \, dx \, dt \right)^{1/2} \left(\int_0^T \int_{\mathbb{R}^N} (v^2 + |u^\varepsilon|^2) f^\varepsilon \, dv \, dx \, dt \right)^{1/2}. \]
We conclude by combining Proposition 1 and and ii).

Finally, we treat similarly the expression
\[(J^\varepsilon - \rho^\varepsilon u^\varepsilon) \otimes u^\varepsilon = \int_{\mathbb{R}^N} (v - u^\varepsilon) \otimes u^\varepsilon f^\varepsilon = \int_{\mathbb{R}^N} d^\varepsilon \otimes u^\varepsilon \sqrt{f^\varepsilon} \, dv. \]

This statement makes rigorous the argument presented in Section 2. Coming back to the momentum equation (2.5), we are led to
\[\partial_t (u^\varepsilon + \rho^\varepsilon u^\varepsilon) + D i v_x (u^\varepsilon \otimes (u^\varepsilon + \rho^\varepsilon u^\varepsilon)) + \nabla_x (p^\varepsilon + \rho^\varepsilon) - \Delta u^\varepsilon \xrightarrow{\varepsilon \to 0} 0 \]
at least in the distributions sense. Furthermore, we know that each term involved in this relation admits a limit (at least for a subsequence) but the obtained estimates are not enough to identify the limits by passing to the limit in the non linear terms.

4.2 Evolution of the Relative Entropy
We recall that \((\tilde{\rho}, u)\) is the solution of (2.6), smooth on the time interval \([0, T], \tilde{\rho} > 1\), which corresponds to the initial data \((\tilde{\rho}_0, u_0)\). We set \(\rho = \tilde{\rho} - 1 \) and we aim at comparing \(u^\varepsilon \) to \(u \) and \(f^\varepsilon \) to the Maxwellian
\[M_u(t, x) = (2\pi)^{-N/2} \rho(t, x) \exp(-|v - u(t, x)|^2/2), \]
in the sense of the relative entropy
\[
\mathcal{H}(f^\varepsilon, u^\varepsilon) = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} H(f^\varepsilon | M_{\rho,\varepsilon}) \, dv \, dx + \frac{1}{2} \int_{\mathbb{R}^N} |u^\varepsilon - u|^2 \, dx,
\]
with \(H(x|y) = h(x) - h(y) - h'(y)(x - y), \ h(x) = x \ln(x) \).

Lemma 3 The relative entropy satisfies
\[
\mathcal{H}(f^\varepsilon, u^\varepsilon)(t) + \frac{1}{\varepsilon} \int_0^t \int_{\mathbb{R}^N} |\varepsilon^2| \, dv \, dx \, ds + \int_0^t \int_{\mathbb{R}^N} |\nabla_x (u^\varepsilon - u)|^2 \, dx \, ds
\leq \mathcal{H}(f^\varepsilon, u^\varepsilon)(0) + \int_0^t \left| A^\varepsilon + B^\varepsilon + C^\varepsilon + D^\varepsilon \right| \, ds
\]
(4.3)

with
\[
\begin{align*}
A^\varepsilon &= -\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f^\varepsilon (v - u) \otimes (v - u) : \nabla_x u \, dv \, dx \\
B^\varepsilon &= \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} (u^\varepsilon - u) \otimes (u^\varepsilon - u) : \nabla_x u \, dx \\
C^\varepsilon &= \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f^\varepsilon (v - u^\varepsilon) \cdot (F - \nabla_x \ln(\rho)) \, dv \, dx \\
D^\varepsilon &= \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} (\rho^\varepsilon - \rho)(u^\varepsilon - u) \cdot (F - \nabla_x \ln(\rho)) \, dx
\end{align*}
\]

where we used the notation \(F(t, x) = (\nabla_x P - \Delta u)/(1 + \rho) = (\nabla_x P - \Delta u)/\tilde{\rho} \).

Proof. Let us compute the time derivative of \(\mathcal{H}(f^\varepsilon, u^\varepsilon) \). By using the mass conservation
\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f^\varepsilon \, dv \, dx = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f_0^\varepsilon \, dv \, dx = \int_{\mathbb{R}^N} \rho \, dx = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} M_{\rho,\varepsilon} \, dv \, dx
\]
we remark that
\[
\frac{d}{dt} \left(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} H(f^\varepsilon | M_{\rho,\varepsilon}) \, dv \, dx \right) = \frac{d}{dt} \left(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f^\varepsilon \left(\ln(f^\varepsilon) + \frac{|v - u|^2}{2} \right) \, dv \, dx - \int_{\mathbb{R}^N} \rho^\varepsilon \ln(\rho) \, dx. \right)
\]
Then, by using the equations satisfied by f^ε and u and integration by parts, we are led to
\[
\frac{d}{d\varepsilon} \left(\int_{\mathbb{R}^N} f^\varepsilon \left(\ln(f^\varepsilon) + \frac{|v - u|^2}{2} \right) dv \right) \nabla_x \ln \rho^\varepsilon dx
\]
\[
= \frac{1}{\varepsilon} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \left((u^\varepsilon - v) f^\varepsilon - \nabla_v f^\varepsilon \right) \cdot \nabla_x \ln \rho^\varepsilon (v - u) dv \nabla_x \ln \rho^\varepsilon dx
\]
\[
+ \int_{\mathbb{R}^N} f^\varepsilon(v - u) \cdot F dv \nabla_x \ln \rho^\varepsilon dx - \int_{\mathbb{R}^N} (v - u) \nabla_v f^\varepsilon : \nabla u dv dx.
\]
(4.4)

The first term in the right hand side recasts as
\[
-\frac{1}{\varepsilon} \int_{\mathbb{R}^N} |f^\varepsilon| dv \nabla_x \ln \rho^\varepsilon dv + \frac{1}{\varepsilon} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \left((u^\varepsilon - v) f^\varepsilon - \nabla_v f^\varepsilon \right) \cdot (u^\varepsilon - u) dv \nabla_x \ln \rho^\varepsilon dx
\]
\[
= -\frac{1}{\varepsilon} \int_{\mathbb{R}^N} |f^\varepsilon| dv \nabla_x \ln \rho^\varepsilon dv + \frac{1}{\varepsilon} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} (u^\varepsilon - v) \cdot (u^\varepsilon - u) f^\varepsilon dv \nabla_x \ln \rho^\varepsilon dx.
\]
(4.5)

Next, we have
\[
\frac{d}{dt} \left(\int_{\mathbb{R}^N} \rho^\varepsilon \ln \rho(x) dx \right) = \int_{\mathbb{R}^N} (J^\varepsilon - \rho^\varepsilon u) \cdot \nabla_x \ln \rho(x) dx
\]
\[
= \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f^\varepsilon(v - u^\varepsilon) \cdot \nabla_x \ln \rho(x) dv \nabla_x \ln \rho dx + \int_{\mathbb{R}^N} \rho^\varepsilon(u^\varepsilon - u) \cdot \nabla_x \ln \rho dx
\]
\[
= \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f^\varepsilon(v - u^\varepsilon) \cdot \nabla_x \ln \rho(x) dv \nabla_x \ln \rho dx + \int_{\mathbb{R}^N} (\rho^\varepsilon - \rho)(u^\varepsilon - u) \cdot \nabla_x \ln \rho dx,
\]
(4.6)

where the incompressibility condition $\text{div} \, u = 0 = \text{div} \, u^\varepsilon$ has been used to obtain the last equality.

Finally, for the fluid part, we get
\[
\frac{d}{dt} \left(\frac{1}{2} \int_{\mathbb{R}^N} |u^\varepsilon - u|^2 dx \right)
\]
\[
= \frac{1}{\varepsilon} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f^\varepsilon(v - u^\varepsilon) \cdot (u^\varepsilon - u) dv dx
\]
\[
+ \int_{\mathbb{R}^N} (u^\varepsilon - u) \cdot F dx + \int_{\mathbb{R}^N} (u^\varepsilon - u) \cdot (u \cdot \nabla_x u - u^\varepsilon \cdot \nabla_x u^\varepsilon) dx
\]
\[
+ \int_{\mathbb{R}^N} (u^\varepsilon - u) \cdot \Delta u^\varepsilon dx.
\]
(4.7)
The first term in (4.7) will compensate the last one in (4.5). In the last term of (4.7), we expand \(\Delta u^\varepsilon = \Delta u + \Delta(u^\varepsilon - u) \). Then, by incompressibility we have

\[
\int_{\mathbb{R}^N} (u^\varepsilon - u) \cdot \Delta u \, dx = - \int_{\mathbb{R}^N} (u^\varepsilon - u) \cdot F(1 + \rho) \, dx.
\]

Therefore, we can rewrite

\[
\frac{d}{dt} \left(\frac{1}{2} \int_{\mathbb{R}^N} |u^\varepsilon - u|^2 \, dx \right) = \frac{1}{\varepsilon} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f^\varepsilon(v - u^\varepsilon) \cdot (u^\varepsilon - u) \, dv \, dx - \int_{\mathbb{R}^N} |\nabla_x (u^\varepsilon - u)|^2 \, dx - \frac{1}{\varepsilon} \int_{\mathbb{R}^N} (u^\varepsilon - u) \cdot F \rho \, dx - \int_{\mathbb{R}^N} (u^\varepsilon - u) \otimes (u^\varepsilon - u) : \nabla_x u \, dx.
\]

Putting all the pieces (4.4), (4.5), (4.6), (4.8) together yields the announced equality.

We are left with the task of evaluating \(A^\varepsilon, B^\varepsilon, C^\varepsilon, D^\varepsilon \). We expect they are dominated by \(C\sqrt{\varepsilon} + \int_0^t \mathcal{H}(f^\varepsilon, u^\varepsilon) \, ds \). The third and the forth terms can be readily treated.

Lemma 4 We have

\[
\begin{cases}
|B^\varepsilon| \leq \|\nabla_x u\|_{\infty} \int_0^t \int_{\mathbb{R}^N} |u^\varepsilon - u|^2 \, dx \, ds \leq C \int_0^t \mathcal{H}(f^\varepsilon, u^\varepsilon) \, ds, \\
\int_0^t |C^\varepsilon| \, ds \leq C \sqrt{\varepsilon}.
\end{cases}
\]

Proof. The estimate on \(B^\varepsilon \) is immediate. Let \(G(t, x) = F - \nabla_x \ln(\rho) \). We rewrite \(C^\varepsilon \) by remarking that

\[
C^\varepsilon = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \left((v - u^\varepsilon) \sqrt{f^\varepsilon} + 2 \nabla_v \sqrt{f^\varepsilon} \right) \cdot G \sqrt{f^\varepsilon} \, dv \, dx = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} d^\varepsilon \cdot G \sqrt{f^\varepsilon} \, dv \, dx.
\]

The Cauchy-Schwarz inequality yields

\[
\int_0^T |C^\varepsilon| \, ds \leq \|G\|_{\infty} \left(\int_0^T \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |d^\varepsilon|^2 \, dv \, dx \, ds \right)^{1/2} \left(\int_0^T \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f^\varepsilon \, dv \, dx \, ds \right)^{1/2}
\]

And we conclude by using Proposition 1.

We proceed in three steps to estimate the other terms in Lemma 3.
Lemma 5 We have
\[
\int_0^T |A^\varepsilon|^2 \, \text{d}s \leq C \left(\sqrt{\varepsilon} + \int_0^T \int_{\mathbb{R}^N} \rho^\varepsilon |u - u^\varepsilon|^2 \, \text{d}x \, \text{d}s \right).
\]

Proof. We split \(A^\varepsilon \) into four pieces by expanding
\[
(v - u) \otimes (v - u) = (v - u^\varepsilon) \otimes (v - u^\varepsilon) + (v - u^\varepsilon) \otimes (u^\varepsilon - u) + (u^\varepsilon - u) \otimes (v - u^\varepsilon) + (u^\varepsilon - u) \otimes (u^\varepsilon - u).
\]

Let us denote by \(I_1^\varepsilon, ..., I_4^\varepsilon \) the corresponding integrals. The last term \(I_4^\varepsilon \) is dominated by

\[
\| \nabla_x u \|_\infty \int_0^T \int_{\mathbb{R}^N} \rho^\varepsilon |u - u^\varepsilon|^2 \, \text{d}x \, \text{d}s.
\]

Therefore, it remains to show that the other terms are of order \(\sqrt{\varepsilon} \). To this end, we use the entropy dissipation \(d^\varepsilon \). For the crossed terms, we have

\[
I_2^\varepsilon = \int_0^T \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} d^\varepsilon \otimes (u^\varepsilon - u) \sqrt{f^\varepsilon} : \nabla_x u \, \text{d}v \, \text{d}x \, \text{d}s
\]

\[
-2 \int_0^T \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \nabla_v \sqrt{f^\varepsilon} \otimes \sqrt{f^\varepsilon} (u^\varepsilon - u) : \nabla_x u \, \text{d}v \, \text{d}x \, \text{d}s.
\]

Remarking that the last integral vanishes, we can estimate as follows

\[
|I_2^\varepsilon| \leq \| \nabla_x u \|_\infty \left(\int_0^T \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |d^\varepsilon|^2 \, \text{d}v \, \text{d}x \, \text{d}s \right)^{1/2}
\]

\[
\times \left(\int_0^T \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |u - u^\varepsilon|^2 f^\varepsilon \, \text{d}v \, \text{d}x \, \text{d}s \right)^{1/2}
\]

\[
\leq C \sqrt{\varepsilon} \left(\int_0^T \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} (|u|^2 + |u^\varepsilon|^2) \rho^\varepsilon \, \text{d}v \, \text{d}x \, \text{d}s \right)^{1/2} \leq C \sqrt{\varepsilon}
\]

where we used the estimates in Proposition 1 and Corollary 2-i), ii). Integrals \(I_3^\varepsilon \), as well as \(I_1^\varepsilon \) (by using the incompressibility of \(u \)), can be treated similarly.

We shall combine Lemma 5 with the following claim.
Lemma 6 The following estimate
\[
\int_0^T \int_{\mathbb{R}^N} \rho^\varepsilon |u^\varepsilon - u|^2 \, dx \, ds \leq C \sqrt{\varepsilon} + \int_0^T \int_{\mathbb{R}^N} H(f^\varepsilon | M_{\rho, u^\varepsilon}) \, dv \, dx \, ds.
\]
holds.

Proof. The proof relies on the following expansion
\[
\int_0^T \int_{\mathbb{R}^N} \rho^\varepsilon |u^\varepsilon - u|^2 \, dx \, ds
= \int_0^T \int_{\mathbb{R}^N} (|u^\varepsilon - u|^2 - |v - u|^2 + |v - u^\varepsilon|^2) f^\varepsilon \, dv \, dx \, ds
+ \int_0^T \int_{\mathbb{R}^N} (\ln(f^\varepsilon) + |v - u|^2) f^\varepsilon \, dv \, dx \, ds
- \int_0^T \int_{\mathbb{R}^N} (\ln(f^\varepsilon) + |v - u^\varepsilon|^2) f^\varepsilon \, dv \, dx \, ds
= -2 \int_0^T \int_{\mathbb{R}^N} (u^\varepsilon - u) \cdot (v - u^\varepsilon) f^\varepsilon \, dv \, dx \, ds
+ \int_0^T \int_{\mathbb{R}^N} \left(H(f^\varepsilon | M_{\rho, u^\varepsilon}) - H(f^\varepsilon | M_{\rho, u^\varepsilon}) \right) \, dv \, dx \, ds.
\]
The first integral can be shown to be of order $\sqrt{\varepsilon}$ by using the entropy dissipation as in the proof of Lemma 5. Remark that $H(f^\varepsilon | M_{\rho, u^\varepsilon}) \geq 0$ ends the proof.

It remains to treat the last term in (4.3).

Lemma 7 We have
\[
\int_0^T |D^\varepsilon| \, ds \leq C \left(\sqrt{\varepsilon} + \int_0^T \mathcal{H}(f^\varepsilon, u^\varepsilon) \, ds \right).
\]

Proof. The proof uses the fundamental properties of the relative entropy discussed in Lemma 1 and 2. Let us split the integral as follows
\[
\int_0^t |D^\varepsilon| \, ds \leq \|G\|_\infty \int_0^t \int_{\mathbb{R}^N} |\rho^\varepsilon - \rho| |u^\varepsilon - u| \, dx \, ds
\leq \|G\|_\infty \left(\int_{|\rho - \rho^\varepsilon| \leq \rho} \ldots \, dx \, ds + \int_{|\rho - \rho^\varepsilon| \geq \rho} \ldots \, dx \, ds \right).
\]
Cauchy-Schwarz and Young inequalities yield
\[
\int_{|\rho^\varepsilon - \rho| \leq \rho} \ldots \, dx \, ds \leq \frac{1}{2} \left(\int_0^t \int_{|\rho^\varepsilon - \rho| \leq \rho} |\rho^\varepsilon - \rho|^2 \, dx \, ds + \int_0^t \int_{\mathbb{R}^N} |u^\varepsilon - u|^2 \, dx \, ds \right)
\]
\[
\leq C \int_0^t \int_{\mathbb{R}^N} \rho \, H(\rho^\varepsilon \rho) \, dx \, ds + \int_0^t \int_{\mathbb{R}^N} \frac{1}{2} |u^\varepsilon - u|^2 \, dx \, ds,
\]
by using Lemma 2. On the other hand, we get
\[
\int_{|\rho^\varepsilon | \geq \rho} \ldots \, dx \, ds \leq \int_{|\rho^\varepsilon | \geq \rho} \ldots \, dx \, ds + \int_{|\rho^\varepsilon - u| \leq 1} \ldots \, dx \, ds
\]
\[
\leq \int_{|\rho^\varepsilon | \geq \rho} |\rho^\varepsilon - \rho| \, dx \, ds + \int_0^t \int_{\mathbb{R}^N} (\rho^\varepsilon + \rho)|u^\varepsilon - u|^2 \, dx \, ds
\]
\[
\leq C \int_0^t \int_{\mathbb{R}^N} H(\rho^\varepsilon \rho) \, dx \, ds + \|\rho\|_{\infty} \int_0^t \int_{\mathbb{R}^N} |u^\varepsilon - u|^2 \, dx \, ds
\]
\[
+ \int_0^t \int_{\mathbb{R}^N} \rho^\varepsilon |u^\varepsilon - u|^2 \, dx \, ds.
\]
We note that the last integral in the right hand side can be evaluated by using Lemma 6. Moreover, Lemma 1 applies and leads to the announced estimate.

Now, we combine Lemma 4, 5, 6 and 7 with Lemma 3. We are led to
\[
\mathcal{H}(f^\varepsilon, u^\varepsilon)(t) \leq \mathcal{H}(f^\varepsilon, u^\varepsilon)(0) + C \int_0^t \mathcal{H}(f^\varepsilon, u^\varepsilon)(s) \, ds + C \sqrt{\varepsilon}.
\]
Applying the Gronwall lemma yields the following statement and ends the proof of Theorem 1.

Proposition 2 There exists a constant \(C\), depending on (3.2), \(\bar{\rho}_0\), \(u_0\) and \(T\) such that
\[
\mathcal{H}(f^\varepsilon, u^\varepsilon)(t) \leq C \left(\mathcal{H}(f^\varepsilon, u^\varepsilon)(0) + \sqrt{\varepsilon} \right).
\]

Remark 3 Coming back to Lemma 3 and keeping in mind the term
\[
\int_0^t \int_{\mathbb{R}^N} |\nabla (u^\varepsilon - u)|^2 \, dx \, ds
\]
in (4.3), we also proved that
\[
u^\varepsilon \xrightarrow{\varepsilon \to 0} u \quad \text{strongly in } L^2(0, T; H^1(\mathbb{R}^N)).
\]
References

22

