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Abstract. — Recently, Baker and Norine (Advances in Mathematics, 215(2): 766-788, 2007)
found new analogies between graphs and Riemann surfaces by developing a Riemann-Roch ma-
chinery on a finite graph G. In this paper, we develop a general Riemann-Roch Theory for
sub-lattices of the root lattice An by following the work of Baker and Norine, and establish con-
nections between the Riemann-Roch theory and the Voronoi diagrams of lattices under certain
simplicial distance functions. In this way, we rediscover the work of Baker and Norine from a
geometric point of view and generalise their results to other sub-lattices of An. In particular,
we provide a geometric approach for the study of the Laplacian of graphs. We also discuss
some problems on classification of lattices with a Riemann-Roch formula as well as some related
algorithmic issues.

Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3. Proofs of Theorem 2.6 and Theorem 2.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4. Voronoi Diagrams of Lattices under Simplicial Distance Functions. . . . . . . . 12
5. Riemann-Roch Theorem for Uniform Reflection Invariant Sub-Lattices . . . 20
6. Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7. Algorithmic Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8. Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1. Introduction

Recently, Baker and Norine [2] proved a graph theoretic analogue of the classical Riemann-
Roch theorem for curves in algebraic geometry. The proof is combinatorial and makes use
of chip-firing games [5] and parking functions on graphs. Several papers later extended the
results of Baker and Norine to tropical curves [15, 18, 21]. The question treated in this paper
is to characterize those lattices which admit a Riemann-Roch theorem for the corresponding
analogue of the rank-function defined by Baker and Norine.
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1.1. Chip-Firing Game. — Let G = (V,E) be a finite connected (multi-)graph with the
set of vertices V and the set of edges E. We suppose that G does not have loops. The chip-
firing game is the following game played on the set of vertices of G: At the initial configuration
of the game, each vertex of the graph is assigned an integer number of chips. A vertex can have
a positive number of chips in its possession or can be assigned a negative number meaning
that the vertex is in debt with the amount described by the absolute value of that number.
At each step of the chip-firing game, a vertex in the graph can decide to fire: firing means
the vertex gives one chip along each edge incident with it, to its neighbours. Thus, after
the firing made by a vertex v of degree dv, the integer assigned to v decreases by dv, while
the integer associated to each vertex u connected by ku (parallel) edges to v increases by ku.
The objective of the vertices of the graph is to come up with a configuration in which no
vertex is in debt, i.e., a configuration in which all the integers associated to vertices become
non-negative.

Problem. Given an intial configuration, is there a finite sequence of chip-firings such that
eventually each vertex has a non-negative number of chips?

Let deg(C), degree of C, be the total number of chips present in the game, i.e., the sum of
the integers associated to the vertices of the graph. It is clear that degree remains unchanged
through each step of the game, thus, a necessary condition for a positive answer to the above
question is to have a non-negative degree.

1.2. Riemann-Roch Theorem For Graphs. — To each given chip-firing configuration
C, Baker and Norine associate a rank r(C) as follows. The rank of C is −1 if there is no way
to obtain a configuration in which all the vertices have non-negative weights. And otherwise,
r(C) is the maximum non-negative integer r such that removing any set of r chips from the
game (in an arbitrary way), the obtained configuration can be still transformed via a sequence
of chip-firings to a configuration where no vertex is in debt. In particular, note that r(C) ≥ 0
iff there is a sequence of chip-firings which results in a configuration with non-negative number
of chips at each vertex.

The main theorem of [2] is a duality theorem for the rank function r(.). Let K be the
canonical configuration defined as follows: K is the configuration of chips in which every vertex
v of degree dv is assigned dv − 2 chips. Given a chip-firing configuration C, the configuration
K \ C is defined as follows: a vertex v of degree dv is assigned dv − 2− cv chips in K \ C if v
is assigned cv chips in C.
Recall that the genus g of a connected graph G with n+1 vertices and m edges is g := m−n.

Theorem 1.1 (Riemann-Roch theorem for graphs; Baker-Norine [2])
For every configuration C, we have

r(C)− r(K \ C) = deg(C)− g + 1 .

The existing proof of the Riemann-Roch theorem for graphs (and its extension to metric
graphs and tropical curves [15, 18, 21]) is based on a family of specific configurations which
are called reduced. We refer to [2] for more details, explaining the origin of the name given
to this theorem in its connections with the Riemann-roch theorem for algebraic curves.
Here we just cite some direct consequences of the above theorem for the chip-firing game.
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– If a configuration C contains more than g chips, there is a sequence of chip-firings
which produces a configuration where no vertex is in debt (more generally, one has
r(C) ≥ deg(C)− g).

– r(K) = g − 1 (note that deg(K) = 2g − 2).

1.3. Reformulation in Terms of the Laplacian Lattice. — Recall that a lattice is a
discrete subgroup of the abelian group (Rn,+) for some integer n (e.g., the lattice Zn ⊂ Rn),
and the rank of a lattice is its rank considered as a free abelian group. A sub-lattice of Zn is
called integral in this paper.

Let G = (V,E) be a given undirected connected (multi-)graph and V = {v0, . . . , vn}. The
Laplacian of G is the matrix Q = D−A, where D is the diagonal matrix whose (i, i)−th entry
is the degree of vi, and A is the adjacency matrix of G whose (i, j)−th entry is the number of
edges between vi and vj . It is well-known and easy to verify that Q is symmetric, has rank
n, and that the kernel of Q is spanned by the vector whose entries are all equal to 1, c.f. [4].
The Laplacian lattice LG of G is defined as the image of Zn+1 under the linear map defined
by Q, i.e., LG := Q(Zn+1), c.f., [1]. Since G is a connected graph, LG is a sub-lattice of the
root lattice An of full-rank equal to n, where An ⊂ Rn+1 is the lattice defined as follows(1):

An :=
{
x = (x0, . . . , xn) ∈ Zn+1 |

∑
xi = 0

}
.

Note that An is a discrete sub-group of the hyperplane

H0 =
{
x = (x0, . . . , xn) ∈ Rn+1|

∑
xi = 0

}
of Rn+1 and has rank n .

To each configuration C, it is straightforward to associate a point DC in Zn+1: DC is the
vector with coordinates equal to the number of chips given to the vertices of G. For a sequence
of chip-firings on C resulting in another configuration C′, it is easy to see that there exists a
vector v ∈ LG such that DC′ = DC + v. Conversely, if DC′ = DC + v for a vector v ∈ LG,
then there is a sequence of chip-firings transforming C to C′. Using this equivalence, it is
possible to transform the chip-firing game and the statement of the Riemann-Roch theorem
to a statement about Zn+1 and the Laplacian lattice LG ⊂ An.

Remark 1.2. — Laplacian of graphs and their spectral theory have been well studied. The
Laplacian captures information about the geometry and combinatorics of the graph G, for
example, it provides bounds on the expansion of G (we refer to the survey [19]) or on the
quasi-randomness properties of the graph, see [8]. The famous Matrix Tree Theorem states
that the cardinality of the (finite) Picard group Pic(G) := An/LG is the number of spanning
trees of G.

1.4. Linear Systems of Integral Points and the Rank Function. — Let L be a sub-
lattice of An of full-rank (e.g., L = LG). Define an equivalence relation ∼ on the set of points
of Zn+1 as follows: D ∼ D′ if and only if D −D′ ∈ L. This equivalence relation is referred
to as linear equivalence and the equivalence classes are denoted by Zn+1/LG. We say that
a point E in Zn+1 is effective or non-negative, if all the coordinates are non-negative. For a

(1)Root refers here to root systems in the classification theory of simple Lie algebras [6]
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point D ∈ Zn+1, the linear system associated to D is the set |D| of all effective points linearly
equivalent to D:

|D| =
{
E ∈ Zn+1 : E ≥ 0, E ∼ D

}
.

The rank of an integral point D ∈ Zn+1, denoted by r(D), is defined by setting r(D) = −1,
if |D| = ∅, and then declaring that for each integer s ≥ 0, r(D) ≥ s if and only if |D−E| 6= ∅
for all effective integral points E of degree s. Observe that r(D) is well-defined and only
depends on the linear equivalence class of D. Note that r(D) can be defined as follows:

r(D) = min
{

deg(E) | |D − E| = ∅, E ≥ 0
}
− 1.

Obviously, deg(D) is a trivial upper bound for r(D).

1.5. Extension of the Riemann-Roch Theorem to Sub-lattices of An. — The main
aim of this paper is to provide a characterization of the sub-lattices of An which admit a
Riemann-Roch theorem with respect to the rank-function defined above. In the mean-while,
our approach provides a geometric proof of the theorem of Baker and Norine, Theorem 1.1.

We show that Riemann-Roch theory associated to a full rank sub-lattice L of An is related
to the study of the Voronoi diagram of the lattice L in the hyperplane H0 under a certain
simplicial distance function. The whole theory is then captured by the corresponding critical
points of this simplicial distance function.
We associate two geometric invariants to each such sub-lattice of An, the min- and the max-
genus, denoted respectively by gmin and gmax. Two main characteristic properties for a given
sub-lattice of An are then defined. The first one is what we call Reflection Invariance, and
one of our results here is a weak Riemann-Roch theorem for reflection-invariant sub-lattices
of An of full-rank n.

Theorem 1.3 (Weak Riemann-Roch). — Let L be a reflection invariant sub-lattice of
An of rank n. There exists a point K ∈ Zn+1, called canonical, such that for every point
D ∈ Zn+1, we have

3gmin − 2gmax − 1 ≤ r(K −D)− r(D) + deg(D) ≤ gmax − 1 .

The second characteristic property is called Uniformity and simply means gmin = gmax.
It is straightforward to derive a Riemann-Roch theorem for uniform reflection-invariant sub-
lattices of An of rank n from Theorem 1.3 above.

Theorem 1.4 (Riemann-Roch). — Let L be a uniform reflection invariant sub-lattice of
An. Then there exists a point K ∈ Zn+1, called canonical, such that for every point D ∈ Zn+1,
we have

r(K −D)− r(D) + deg(D) = g − 1,
where g = gmin = gmax.

We then show that Laplacian lattices of undirected connected graphs are uniform and
reflection invariant, obtaining a geometric proof of the Riemann-Roch theorem for graphs.
As a consequence of our results, we provide an explicit description of the Voronoi diagram of
lattices generated by Laplacian of connected graphs and discuss some duality concerning the
arrangement of simplices defined by the points of the Laplacian lattice.



RIEMANN-ROCH FOR SUB-LATTICES OF THE ROOT LATTICE An 5

In the case of the Laplacian lattices of connected regular digraphs, we also provide a slightly
stronger statement than Theorem 1.3 above.

The above results also provide a characterization of full-rank sub-lattices of An for which
a Riemann-Roch formula holds, indeed, these are exactly those lattices which have the uni-
formity and the reflection-invariance properties. We conjecture that any such lattice is the
Laplacian lattice of an oriented multi-graph (as we will see, there are examples of such lattices
which are not the Laplacian lattice of any unoriented multi-graph).

1.6. Organisation of the paper.— The paper is structured as follows. Sections 2 and 3
provide the preliminaries. This includes the definition of a geometric region in Rn+1 associated
to a given lattice, called the Sigma-region, some results on the shape of this region in terms of
the extremal points, and the definition of the min- and max-genus. In Section 4, we provide
the geometric terminology we need in the following sections for the proof of our main results.
This is done in terms of a certain kind of Voronoi diagram, and in particular, some main
properties of the Voronoi diagram of sub-lattices of An under a certain simplicial distance
function are provided in this section. The proof of our Riemann-Roch theorem is provided in
Section 5. Most of the geometric terminology introduced in the first sections will be needed
to define an involution on the set of extremal points of the Sigma-Region, the proof of the
Riemann-Roch theorem is then a direct consequence of this and the definition of the min-
and max-genus. It is helpful to note that the main ingredients used directly in the proof of
Theorems 1.3 and 1.4 are the results of Section 2 and Lemma 4.11 (and its Corollary 4.12).
The results of the first sections are then used in treating the examples in Section 6, specially
for the Laplacian lattices. We derive in this section a new proof of the main theorem of [2],
the Riemann-Roch theorem for graphs.
Our work raises questions on the classification of sub-lattices of An with reflection invariance
and/or uniformity properties. In Section 6, we present a complete answer for sub-lattices of
A2. Finally, some algorithmic questions are discussed in Section 7, e.g., we show that it is
computationally hard to decide if the rank function is non-negative at a given point for a
general sub-lattice of An. This is interesting since in the case of Laplacian lattices of graphs,
the problem of deciding if the rank function is non-negative can be solved in polynomial time.

As we said, in what follows we will assume that L is an integral sub-lattice in H0 of full-
rank, i.e., a sub-lattice of An. But indeed, what we are going to present also works in the
more general setting of full rank sub-lattices of H0, though the invariants and rank function
defined for these lattices are not integer. We will say a few words on this and some other
results in the concluding section.

Basic Notations. — A point of Rn+1 with integer coordinates is called an integral point.
By a lattice L, we mean a discrete subgroup of H0 of maximum rank. Recall that H0 is the
set of all points of Rn+1 such that the sum of their coordinates is zero. The elements of L are
called lattice points. The positive cone in Rn+1 consists of all the points with non-negative
coordinates. We can define a partial order in Rn+1 as follows: a ≤ b if and only if b − a is
in the positive cone, i.e., if each coordinate of b − a is non-negative. In this case we say b

dominates a. Also we write a < b if all the coordinates of b− a are strictly positive.
For a point v = (v0, . . . , vn) ∈ Rn+1, we denote by v− and v+ the negative and positive

parts of v respectively. For a point p = (p0, . . . , pn) ∈ Rn+1, we define the degree of p as
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deg(p) =
∑n

i=0 pi. For each k, by Hk we denote the hyperplane consisting of points of degree
k, i.e., Hk = {x ∈ Rn+1 | deg(x) = k}. By πk, we denote the projection from Rn+1 onto Hk

along ~1 = (1, . . . , 1). In particular, π0 is the projection onto H0. Finally for an integral point
D ∈ Zn+1, by N(D) we denote the set of all neighbours of D in Zn+1, which consists of all
the points of Zn+1 which have distance at most one to D in `∞ norm.

In the following, to simplify the presentation, we will use the convention of tropical arith-
metic, briefly recalled below. (This is so only a matter of notation). The tropical semiring
(R,⊕,⊗) is defined as follows: As a set this is just the real numbers R. However, one rede-
fines the basic arithmetic operations of addition and multiplication of real numbers as follows:
x ⊕ y := min (x, y) and x ⊗ y := x+ y. In words, the tropical sum of two numbers is their
minimum, and the tropical product of two numbers is their sum. We can extend the tropical
sum and the tropical product to vectors by doing the operations coordinate-wise.

2. Preliminaries

All through this section L will denote a full rank (integral) sub-lattice of H0.

2.1. Sigma-Region of a Given Sub-lattice L of An. — Every point D in Zn+1 defines
two “orthogonal” cones in Rn+1, denoted by H−D and H+

D , as follows: H−D is the set of all
points in Rn+1 which are dominated by D. In other words

H−D = {D′ | D′ ∈ Rn+1, D −D′ ≥ 0 }.
Similarly H+

D is the set of points in Rn+1 that dominate D. In other words,

H+
D = {D′ | D′ ∈ Rn+1, D′ −D ≥ 0 }.

For a cone C in Rn+1, we denote by C(Z) and C(Q), the set of integral and rational points of
the cone respectively. When there is no risk of confusion, we sometimes drop (Z) (resp. (Q))
and only refer to C as the set of integral points (resp. rational points) of the cone C. The
Sigma-Region of the lattice L is, roughly speaking, the set of integral points of Zn+1 that are
not contained in the cone H−p for any point p ∈ L. More precisely:

Definition 2.1. — The Sigma-Region of L, denoted by Σ(L), is defined as follows:

Σ(L) = {D | D ∈ Zn+1 & ∀ p ∈ L, D � p }

= Zn+1 \
⋃
p∈L

H−p .

The following lemma shows the relation between the Sigma-Region and the rank of an
integral point as defined in the previous section.

Lemma 2.2. —

(i) For a point D in Zn+1, r(D) = −1 if and only if −D is a point in Σ(L).
(ii) More generally, r(D) + 1 is the distance of −D to Σ(L) in the `1 norm, i.e.,

r(D) = dist`1(−D,Σ(L))− 1 := inf{||p+D||`1 | p ∈ Σ(L)} − 1,

where ||x||`1 =
∑n

i=0 |xi| for every point x = (x0, x1, . . . , xn) ∈ Rn+1.
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Figure 1. A finite portion of the Sigma-Region of a sub-lattice of A1. All the black
points belong to the Sigma-Region. The integral points in the grey part are out of
the Sigma-Region.

Before presenting the proof of Lemma 2.2, we need the following simple observation.

Observation 1. — ∀D1, D2 ∈ Zn+1, we have D1 ∈ Σ(L)−D2 if and only if D2 ∈ Σ(L)−D1.

We shall usually use this observation without sometimes mentioning it explicitly.

Proof of Lemma 2.2. —

(i) Recall that r(D) = −1 means that |D| = ∅. This in turn means that D � p for any p in
L, or equivalently −D � q for any point q in L (because L = −L). We infer that −D is
a point of Σ(L). Conversely, if −D belongs to Σ(L), then −D � q for any point q in L,
or equivalently D � p for any p in L (because L = −L). This implies that |D| = ∅ and
hence r(D) = −1.

(ii) Let p∗ be a point in Σ(L) which has minimum `1 distance from −D, and define v∗ =
p∗+D. Write v∗ = v∗,+ +v∗,−, where v∗,+ and v∗,− are respectively the positive and the
negative parts of v∗. We first claim that v∗ is an effective integral point, i.e., v∗,− = 0.
For the sake of a contradiction, let us assume the contrary, i.e., assume that ||v∗,−||`1 > 0.
Since −D+ v∗,+ + v∗,− = −D+ v∗ = p∗ is contained in Σ(L), and because v∗,− ≤ 0, the
point p∗,+ = −D + v∗,+ has to be in Σ(L). Also ||v∗,+||`1 < ||v∗||`1 (because ||v∗||`1 =
||v∗,+||`1 +||v∗,−||`1 and ||v∗,−||`1 > 0). We obtain ||D+p∗,+||`1 = ||v∗,+||`1 < ||D+p∗||`1 ,
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which is a contradiction by the choice of p∗. Therefore, we have

r(D) = min{ deg(v) | |D − v| = ∅, v ≥ 0 } − 1

= min{ deg(v) | v −D ∈ Σ(L), v ≥ 0 } − 1 (By the first part of Lemma 2.2)

= min{ ||v||`1 | v −D ∈ Σ(L), v ≥ 0 } − 1

= min{ ||D + p||`1 − 1 | p ∈ Σ(L) and D + p ≥ 0 }
= dist`1(−D,Σ(L))− 1 (By the above arguments).

Lemma 2.2 shows the importance of understanding the geometry of the Sigma-Region for
the study of the rank function. This will be our aim in the rest of this section and in Section 4.
But we need to introduce another definition before we proceed. Apparently, it is easier to
work with a “continuous” and “closed” version of the Sigma-Region.

Definition 2.3. — ΣR(L) is the set of points in Rn that are not dominated by any point in
L.

ΣR(L) =
{
p | p ∈ Rn+1 and p � q, ∀q ∈ L

}
= Rn+1 \

⋃
p∈L

H−p .

By Σc(L) we denote the topological closure of ΣR(L) in Rn+1.

Remark 2.4. — One advantage of this definition is that it can be used to define the same
Riemann-Roch machinery for any full dimensional sub-lattice of H0. Indeed for such a sub-
lattice L, it is quite straightforward to associate a real-valued rank function to any point of
Rn+1 (c.f. Lemma 2.2). The main theorems of the paper can be proved in this more general
setting. As all the examples of interest for us are integral lattices, we have restricted the
presentation to sub-lattices of An.

2.2. Extremal Points of the Sigma-Region. — We say that a point p ∈ Σ(L) is an
extremal point if it is a local minimum of the degree function. In other words

Definition 2.5. — The set of extremal points of L denoted by Ext(L) is defined as follows:
Ext(L) := {ν ∈ Σ(L) | deg(ν) ≤ deg(q) ∀ q ∈ N(ν) ∩ Σ(L)}).

Recall that for every point D ∈ Zn+1, N(D) is the set of neighbours of D in Zn+1, which
consists of all the points of Zn+1 which have distance at most one to D in `∞ norm.

We also define extremal points of Σc(L) as the set of points that are local minima of the
degree function and denote it by Extc(L). Local minima here is understood with respect to
the topology of Rn+1: x is a local minima if and only if there exists an open ball B containing
x such that x is the point of minimum degree in B ∩Σc(L). The following theorem describes
the Sigma-Region of L in terms of its extremal points.

Theorem 2.6. — Every point of the Sigma-Region dominates an extremal point. In other
words, Σ(L) = ∪ν∈Ext(L)H

+
ν (Z). Recall that H+

ν (Z) is the set of integral points of the cone
H+
v .
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Indeed, we first prove the following continuous version of Theorem 2.6.

Theorem 2.7. — For any (integral) sub-lattice L of H0, we have Σc(L) = ∪ν∈Extc(L)H
+
ν .

And Theorem 2.6 is derived as a consequence of Theorem 2.7. The proof of these two
theorems are presented in Section 3. The proof shows that every extremal point of Σc(L)
is an integral point and Σ(L) = Σc

Z(L) + (1, . . . , 1), where Σc
Z(L) denotes the set of integral

points of Σc(L). We refer to Section 3 for more details.

Proposition 2.8. — We have Σ(L) = Σc
Z(L)+(1, . . . , 1) and Ext(L) = Extc(L)+(1, . . . , 1).

In particular, π0(Extc(L)) = π0(Ext(L)).

The important point about Theorem 2.6 is that one can use it to express r(D) in terms
of the extremal points of Σ(L). For an integral point D = (d0, . . . , dn) ∈ Zn+1, let us define
deg+(D) := deg(D+) =

∑
i : di≥0 di and deg−(D) := deg(D−) =

∑
i : di≤0 di. We have:

Lemma 2.9. — For every integral point D ∈ Zn+1,

r(D) = min { deg+(v +D) | v ∈ Ext(L) } − 1 .

Proof. — First recall that

r(D) = min{ deg(E) | |D − E| = ∅ and E ≥ 0 } − 1

= min{ deg(E) | E −D ∈ Σ(L) and E ≥ 0 } − 1 (By Lemma 2.2).

Let E ≥ 0 and p = E −D be a point in Σ(L). By Theorem 2.6, we know that p is a point
in Σ(L) if and only if p = v + E′ for some point ν in Ext(L) and E′ ≥ 0. So we can write
E = p+D = ν + E′ +D where ν ∈ Ext(L) and E′ ≥ 0. Hence we have

r(D) = min{ deg(ν + E′ +D) | ν ∈ Ext(L), E′ ≥ 0 and ν + E′ +D ≥ 0 } − 1.

We now observe that for every ν ∈ Zn+1, the integral point E′ ≥ 0 of minimum degree such
that E′ + ν +D ≥ 0 has degree exactly deg+(−ν −D). We infer that

deg(ν + E′ +D) = deg(E′) + deg(ν +D) = deg+(−ν −D) + deg(ν +D)

= deg−(ν +D) + deg(ν +D) = deg+(ν +D).

We conclude that r(D) = min{ deg+(v +D) | ν ∈ Ext(L) } − 1, and the lemma follows.

2.3. Min- and Max-Genus of Sub-Lattices of An and Uniform Lattices. — We
define two notions of genus for full-rank sub-lattices of An , min- and max-genus, in terms
of the extremal points of the Sigma-Region of L. (The same definition works for full-rank
sub-lattices of H0.)

Definition 2.10 (Min- and Max-Genus). — The min- and max-genus of a given sub-
lattice L of An of dimension n, denoted respectively by gmin and gmax, are defined as follows:

gmin(L) = inf { − deg(ν) | ν ∈ Ext(L) }+ 1 .

gmax(L) = sup{ − deg(ν) | ν ∈ Ext(L) }+ 1 .
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Remark 2.11. — There are some other notions of genus associated to a given lattice, e.g.,
the notion spinor genus for lattices developed by Eichler (see [14] and [10]) in the context of
integral quadratic forms. Every sub-lattice of An provides a quadratic form in a natural way.
But a priori there is no relation between these notions.

It is clear by definition that gmin ≤ gmax. But generally these two numbers could be different.

Definition 2.12. — A sub-lattice L ⊆ An of dimension n is called uniform if gmin = gmax.
The genus of a uniform sub-lattice is g = gmin = gmax.

As we will show later in Section 6, sub-lattices generated by Laplacian of graphs are uniform.

3. Proofs of Theorem 2.6 and Theorem 2.7

In this section, we present the proofs of Theorem 2.6 and Theorem 2.7. This section is
quite independent of the rest of this paper and can be skipped in the first reading.

Recall that ΣR(L) is the set of points in Rn+1 that are not dominated by any point in L and
Σc(L) is the topological closure of ΣR(L) in Rn+1. Also, recall that Extc(L) denotes the set
of extremal points of Σc(L). These are the set of points which are local minima of the degree
function. As we said before, instead of working with the Sigma-Region directly, we initially
work with Σc(L). We first prove Theorem 2.7. Namely, we prove Σc(L) = ∪ν∈Extc(L)H

+
ν . To

prepare for the proof of this theorem, we need a series of lemmas.
The following lemma provides a description of Σc(L) in terms of the domination order in
Rn+1. Recall that for two points x = (x0, . . . , xn) and y = (y0, . . . , yn), x ≤ y (resp. x < y)
if xi ≤ yi (resp. xi < yi) for all 0 ≤ i ≤ n.

Lemma 3.1. — Σc(L) = { p | p ∈ Rn+1 and ∀ q ∈ L : p ≮ q }.

Proof. — Easy and omitted.

Lemma 3.2. — Extremal points of Σc(L) are contained in ∂(Σc(L)).

Proof. — Easy and omitted.

Let p be a point in Σc(L) and let d be a vector in Rn+1. We say that d is feasible for p, if
it satisfies the following properties:
1. deg(d) < 0.
2. There exists a δ0(p, d) > 0 such that for every 0 ≤ δ ≤ δ0(p, d), p + δd ∈ Σc(L). By
Lemma 3.1, this means that p+ δd ≮ p′ for all lattice points p′ ∈ L.

Furthermore, we define the function εp,d : L→ R ∪ {∞} as follows:

εp,d(q) = inf { ε | ε > 0 and p+ εd < q }.

Let I = { i | 0 ≤ i ≤ n and pi ≥ qi }. We have the following explicit description of εp,d.

(1) εp,d(q) =


0 if I = ∅.
maxi∈I

(qi−pi)
di

if I 6= ∅, ∀ i ∈ I, di < 0, and ∃ ε > 0 such that p+ εd < q,
∞ otherwise.
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One can easily verify that

Lemma 3.3. — For a point p in Σc(L), εd,p(q) ≥ εd−,p(q) for all q ∈ L . In the only cases
when the inequality is strict, we must have εd,p(q) =∞ and εd−,p(q) > 0.

We now prove the following lemma which links the function εd,p to the feasibility of d at p.

Lemma 3.4. — For a point p in Σc(L) and d in Rn+1 with deg(d) < 0, d is not feasible for
p if and only if εp,d(q) = 0 for some q ∈ L.

Proof. — Let p be a point of Σc(L).
(⇒). Assume the contrary, then we should have the following properties:

1. deg(d) < 0 ,
2. εp,d(q) > 0 for all q ∈ L ,

We claim that infq∈L { εp,d(q)} > δ0 , for some δ0 > 0 . By the definition of εp,d, if εp,d(q) 6= 0,
then εp,d(q) is at least min{i: di<0}

{pi}
|di| , where 0 < {pi} = pi − dpi − 1e ≤ 1 is the rational

part of pi if pi is not integral, and is 1 if pi is integral. As the number of indices is finite, we
conclude that δ0 = min{i: di<0} |

{pi}
di
| and the claim holds. It follows that p+ εd ≮ q for all q

in L and for all 0 ≤ ε ≤ δ0. This implies that d is feasible for p.

(⇐). If εp,d(q) = 0 for some q ∈ L, then there exists a δ0 > 0 such that p+ δd < p′ for every
0 < δ ≤ δ0. This shows that d is not feasible for p.

Corollary 3.5. — For a point p in Σc(L), p is an extremal point if and only if for every
vector d ∈ Rn+1 with deg(d) < 0, we have εp,d(q) = 0 for some q in L.

Combining Lemma 3.3 and Corollary 3.5, we obtain the following result:

Lemma 3.6. — If p is not an extremal point of Σc(L), then there exists a vector d in H−O
which is feasible for p.

Proof. — If p is not an extremal point of Σc(L), then there exists a vector d0 in Rn+1 that is
feasible for p. By Corollary 3.5, d0 has the following properties:

1. deg(d0) < 0 ,
2. εd0,p(q) > 0 for all q ∈ L ,

Let d := d−0 . We have deg(d) < 0, since deg(d0) < 0 and d = d−0 . By Lemma 3.3, we have
εd0,p(q) ≥ εd,p(q) for all q ∈ L, and in the only cases for q when the inequality is strict we
have εd,p(q) > 0. We infer that d also satisfies Properties 1 and 2. By Corollary 3.5, d is also
feasible for p and by construction, d belongs to H−O ; the lemma follows.

Consider the set deg(Σc(L)) = { deg(p) | p ∈ Σc(L) }. The next lemma shows that the
degree function is bounded below on the elements of Σc(L) (by some negative real number).

Lemma 3.7. — For an n−dimensional sub-lattice L of An, inf(deg(Σc(L)) is finite.

Proof. — It is possible to give a direct proof of this lemma. But using our results in Section 4
allows us to shorten the proof. So we postpone the proof to Section 4.

We are now in a position to present the proofs of Theorem 2.7 and Theorem 2.6.
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Proof of Theorem 2.7. — Consider a point p in Σc(L). We should prove the existence of an
extremal point ν ∈ Extc(L) such that ν ≤ p.
Consider the cone H−p . As a consequence of Lemma 3.7, we infer that the region Σc(L)∩H−p is
a bounded closed subspace of Rn+1, and so it is compact. The degree function deg restricted
to this compact set, achieves its minimum on some point ν ∈ Σc(L) ∩ H−p . We claim that
ν ∈ Extc(L). Suppose that this is not the case. By Lemma 3.6, there exists a feasible vector
d ∈ H−O for ν, i.e., such that ν + δd ∈ Σc(L) for all sufficiently small δ > 0. Now it is easy to
check that

– ν + δ d ∈ H−p and hence ν + δd ≤ p ,
– deg(ν + δ d) < deg(ν).

This contradicts the choice of ν.

Proof of Theorem 2.6. — In order to establish Theorem 2.6, we first prove that every point
in Extc(L) is an integral point. For the sake of a contradiction, suppose that there exists a
non integral point in Extc(L). Let p = (p0, . . . , pn) be such a point and suppose without loss
of generality that p0 is not integer. We claim that the vector d = −e0 = (−1, 0, 0, . . . , 0) is
feasible. Indeed it is easy to check that εp,d(q) > 0 for all q ∈ L, and so by Corollary 3.5 we
conclude that p could not be an extremal point of Σc(L).
Let Σc

Z(L) be the set of integral points of Σc(L). We show that Σc
Z(L) + (1, . . . , 1) = Σ(L).

Note that as soon as this is proved, Theorem 2.7 and the fact that extremal points of Σc(L)
are all integral points implies Theorem 2.6.

We prove Σc
Z(L) + (1, . . . , 1) ⊆ Σ(L).— Let u = v + (1, . . . , 1) ∈ Σc

Z(L) + (1, . . . , 1), for a
point v ∈ Σc

Z(L). To show u ∈ Σ(L) we should prove that ∀q ∈ L : u � q. Suppose that this
is not the case and let q ∈ L be such that u ≤ q. It follows that u− (1, . . . , 1) < q and hence,
v /∈ Σc(L), which is a contradiction.

We prove Σ(L) ⊆ Σc
Z(L) + (1, . . . , 1).— A point u in ∂Σc(L) is contained in H−(q) for some

q in L and hence u ≤ q. We infer that Σ(L) is contained in the interior of Σc(L), and so for
each point p of Σ(L), every vector in Rn+1 of negative degree will be feasible. By Lemma 3.7,
there exists a point pc ∈ ∂ΣC(L) such that p = pc + t(1, . . . , 1) for some t > 0. It follows
that p > pc. By Theorem 2.7, pc ∈ H+

ν for some ν in Extc(L). This implies that p > ν

for some ν ∈ Extc(L). By definition, p is an integral point and we just showed that ν is
also an integral point. Hence we can further deduce that p ≥ ν + (1, . . . , 1). We infer that
p− (1, . . . , 1) ≥ ν and therefore, p− (1, . . . , 1) ∈ Σc(L) (because H+

ν ⊂ Σc(L)). It follows that
p ∈ Σc

Z(L) + (1, . . . , 1).
The proof of Theorem 2.6 is now complete.

4. Voronoi Diagrams of Lattices under Simplicial Distance Functions

In this section, we provide some basic properties of the Voronoi diagram of a sub-lattice
L of An under a simplicial distance function d4(. , .) which we define below. The distance
function d4(. , .) has the following explicit form, and as we will see in this section, is the
distance function having the homotheties of the standard simplex in H0 as its balls (which
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explains the name simplicial distance function). For two points p and q in H0, the simplicial
distance between p and q is defined as follows

d4(p, q) := inf
{
λ | q − p+ λ(1, . . . , 1) ≥ 0

}
.

The basic properties of d4 are better explained in the more general context of polyhedral
distance functions that we now explain.

4.1. Polyhedral Distance Functions and their Voronoi Diagrams. — Let Q be a
convex polytope in Rn with the reference point O = (0, . . . , 0) in its interior. The polyhedral
distance function dQ(. , .) between the points of Rn is defined as follows:

∀ p, q ∈ Rn, dQ(p, q) := inf{λ ≥ 0 | q ∈ p+ λ.Q}, where λ.Q = { λ.x | x ∈ Q }.

dQ is not generally symmetric, indeed it is easy to check that dQ(. , .) is symmetric if and only
if the polyhedron Q is centrally symmetric i.e., Q = −Q. Nevertheless dQ(. , .) satisfies the
triangle inequality.

Lemma 4.1. — For every three points p, q, r ∈ Rn, we have dQ(p, q) + dQ(q, r) ≥ dQ(p, r).
In addition, if q is a convex combination of p and r, then dQ(p, q) + dQ(q, r) = dQ(p, r).

Proof. — To prove the triangle inequality, it will be sufficient to show that if q ∈ p + λ.Q

and r ∈ q + µ.Q, then r ∈ p + (λ + µ).Q. We write q = p + λ.q′ and r = q + µ.r′ for two
points q′ and r′ in Q. We can then write r = p+ λ.q′ + µ.r′ = p+ (λ+ µ)( λ

λ+µ .q
′ + µ

λ+µ .r
′).

Q being convex and λ, µ ≥ 0, we infer that λ
λ+µ .q

′ + µ
λ+µ .r

′ ∈ Q, and so r ∈ p + (λ + µ).Q.
The triangle inequality follows.
To prove the second part of the lemma, let t ∈ [0, 1] be such that q = t.p + (1 − t).r .
By the triangle inequality, it will be enough to prove that dQ(p, q) + dQ(q, r) ≤ dQ(p, r). Let
dQ(p, r) = λ so that r = p+λ.r′ for some point r′ in Q. We infer first that q = t.p+(1−t).r =
t.p+ (1− t)(p+ λ.r′) = p+ (1− t)λ.r′, which implies that dQ(p, q) ≤ (1− t)λ. Similarly we
have t.r = t.p+ tλ.r′ = q − (1− t)r+ tλ.r′. It follows that r = q + tλr′ and so dQ(q, r) ≤ tλ .
We conclude that dQ(p, q) + dQ(q, r) ≤ dQ(p, r), and the lemma follows.

We also observe that the polyhedral metric dQ(. , .) is translation invariant, i.e.,

Lemma 4.2. — For any two points p, q in Rn, and for any vector v ∈ Rn, we have dQ(p, q) =
dQ(p− v, q − v). In particular, dQ(p, q) = dQ(p− q,O) = dQ(O, q − p).

Proof. — The proof is easy: if q ∈ p+ λ.Q, then q − v ∈ p− v + λ.Q, and vice versa.

Remark 4.3. — The notion of a polyhedral distance function is essentially the concept of a
gauge function of a convex body that has been studied in [25]. Lemmas 4.1 and 4.2 can be
derived in a straight forward way from the results in [25]. For the sake of easy reference, we
included them here.

Consider a discrete subset S in Rn. For a point s in S, we define the Voronoi cell of s with
respect to dQ as VQ(s) = { p ∈ Rn | dQ(p, s) ≤ dQ(p, s′) for any other point s′ ∈ S } .
The Voronoi diagram VorQ(S) is the decomposition of Rn induced by the cells VQ(s), for
s ∈ S . We note however that this need not be a cell decomposition in the usual sense.

We state the following lemma on the shape of cells VQ(s).
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Lemma 4.4. — [7] Let S be a discrete subset of Rn and VorQ(S) be the Voronoi cell decom-
position of Rn. For any point s in S, the Voronoi cell VQ(s) is a star-shaped polyhedron with
s as a kernel.

Proof. — It is easy to see that VQ(s) is a polyhedron. We show that it is star-shaped. Assume
the contrary. Then there is a line segment [s, r] and a point q between s and r such that
r ∈ VQ(s) and q /∈ VQ(s). Suppose that q is contained in V (s′) for some s′ 6= s. We should
then have dQ(q, s) > dQ(q, s′). By Lemma 4.1, dQ(r, s) = dQ(r, q) + dQ(q, s). We infer that

dQ(r, s) = dQ(r, q) + dQ(q, s) > dQ(r, q) + dQ(q, s′) ≥ dQ(r, s′), contradicting r ∈ VQ(s).

4.2. Voronoi Diagram of Sub-Lattices of An. — Voronoi diagrams of root lattices under
the Euclidean metric have been studied previously in literature. Conway and Sloane [11, 10],
describe the Voronoi cell structure of root lattices and their duals under the Euclidean metric.
Here we study Voronoi diagrams of sub-lattices of An under polyhedral distance functions
(and later under the simplicial distance functions d4(. , .)). We will see the importance of
this study in the proof of Riemann-Roch Theorem in Section 5, and in the geometric study
of the Laplacian of graphs in Section 6.
Let L be a sub-lattice of An of full rank. Note that L is a discrete subset of the hyperplane H0

and H0 ' Rn. Let Q ⊂ H0 be a convex polytope of dimension n in H0. We will be interested
in the Voronoi cell decomposition of the hyperplane H0 under the distance function dQ(. , .)
induced by the points of L. The following lemma, which essentially uses the translation-
invariance of dQ(. , .), shows that these cells are all simply translations of each other.

Lemma 4.5. — For a point p in L, VQ(p) = VQ(O) + p . As a consequence, VorQ(L) =
VQ(O) + L.

Proof. — Easy and omitted.

By Lemma 4.5, to understand the Voronoi cell decomposition of H0, it will be enough to
understand the cell VQ(O). We already know that VQ(O) is a star-shaped polyhedron. The
following lemma shows that VQ(O) is compact, and so it is a (non-necessarily convex) star-
shaped polytope.

Lemma 4.6. — The Voronoi cell VQ(O) is compact.

Proof. — The proof is standard. It will be sufficient to prove that VQ(O) does not contain
any infinite ray. Indeed, VQ(O) being star-shaped and closed, this will imply that VQ(O) is
bounded and so we have the compactness.

Assume, for the sake of a contradiction, that there exists a vector v 6= O in H0 such that
the ray t.v for t ≥ 0 is contained in VQ(O). This means that

For every t ≥ 0 and for every p ∈ L, we have dQ(t.v, O) ≤ dQ(t.v, p).(2)

Choose a real number λ such that 0 < λ < dQ(v,O). By Lemma 4.1, dQ(t.v, O) = tdQ(v,O) >
λt for t > 0. By the definition of dQ, the choice of λ and Property (2), the polytope t.v+tλ.Q =
t.(v+ λQ) does not contain any point p ∈ L for t > 0. Let C =

⋃
t≥0 t.(v+ λ.Q). It is easy to

check that C is the cone generated by v + λ.Q. It follows that C does not contain any lattice
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point apart from O (for t = 0). In addition, Q being a polytope of dimension n, C should be
a cone of full dimension in H0. But this will provide a contradiction, because as we will show
below for any vector v̄ with rational coordinates in H0, the open ray t.v̄ for t > 0 contains a
lattice point in L. (And it is clear that any cone C of full dimension in H0 contains a rational
vector.) To see this, observe that a basis for L is also a basis for the n-dimensional Q-vector
space H0(Q). Here H0(Q) denotes the rational points of the hyperplane H0. This means that
v̄ can be written as a rational combination of some points in L. Multiplying by a sufficiently
large integer number N , N.v̄ can be written as an integral combination of the same points in
L, i.e., N.v̄ ∈ L, and this finishes the proof of the lemma.

From now on, we will restrict ourselves to two special polytopes 4 and 4̄ in H0. They are
both standard simplices of H0 under an appropriate isometry H0 ' Rn. The n-dimensional
regular simplex 4(O) centred at the origin O has vertices at the points b0, b1, . . . , bn. For all
0 ≤ i, j ≤ n, the coordinates of bi are given by:

(bi)j =

{
n if i=j,
−1 otherwise.

The simplex 4̄(O) is the opposite simplex to 4(O), i.e., 4̄(O) := −4(O). The simplicial
distance functions d4(. , .) and d4̄(. , .) are the distance functions in Rn+1 defined by 4 and 4̄
respectively. It is easy to check the following anti-symmetric property for the above distance
functions: For any pair of points p, q ∈ Rn+1, we have d4(p, q) = d4̄(q, p). (This is indeed
true for any convex polytope Q: dQ(p, q) = dQ̄(q, p), where Q̄ = −Q.)

Notation.— In the following we will use the following terminology: For a point v ∈ H0, we
let 4(v) = v +4(O) and 4̄(v) = v + 4̄(O). More generally given a real λ ≥ 0 and v ∈ H0,
we define 4λ(v) = v + λ4(O), and similarly, 4̄λ(v) = v + λ4̄(O). We can think of these as
balls of radius λ around v for d4 and d4̄ respectively.

The following lemma shows that the definition given in the beginning of this section coincides
with the definition of d4 given above. We can explicitly write a formula for d4(. , .) and
d4̄(. , .) in the hyperplane H0:

Lemma 4.7. — For two points p = (p0, p1, . . . , pn) and q = (q0, q1, . . . , qn) in H0, the 4-
simplicial distance from p to q is given by d4(p, q) = |

⊕n
i=0(qi− pi) |. And the 4̄-simplicial

distance from p to q is given by d4̄(p, q) = |
⊕n

i=0(pi − qi) |. Here the sum
⊕

i(xi − yi)
denotes the tropical sum of the numbers xi − yi.

Proof. — By the anti-symmetry property of the distance function d4(. , .) (namely d4(p, q) =
d4̄(q, p), ∀p, q), we only need to prove the lemma for d4(. , .). By definition, d4(p, q) is the
smallest positive real λ such that q ∈ p + λ.4. The simplex 4 being the convex hull of
the vectors bi defined above, it follows that for an element x ∈ λ.4, there should exist non-
negative reals µi ≥ 0 such that

∑n
i=0 µi = λ and x = µ0b0 + µ1b1 + · · · + µnbn. From the

definition of the vector bi’s, we obtain x = (n+1)(µ0, µ1, . . . , µn)−λ(1, . . . , 1). It follows that
d4(p, q) is the smallest λ such that q−p+λ.(1, . . . , 1) becomes equal to (n+1)(µ0, µ1, . . . , µn)
for some µi ≥ 0 such that

∑
i µi = λ. Let λ0 be the smallest positive real number such that

the vector µ := 1
n+1(q−p+λ0.(1, . . . , 1)) has non-negative coordinates. As p, q ∈ H0, a simple

calculation shows that the other condition
∑

i µi = λ0 holds automatically, and hence such
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x

y

Figure 2. The shape of a Voronoi-cell in the Laplacian lattice of a graph with three
vertices. The multi-graph G has three vertices and 7 edges. The lattice A2 is generated
by the two vectors x = (1,−1, 0) and y = (−1, 0, 1). The corresponding Laplacian sub-
lattice of A2, whose elements are denoted by •, is generated by the vectors (−5, 3, 2) =
−3x+ 2y and (3,−5, 2) = 5x+ 2y (and (2, 2,−4) = −2x− 4y), which correspond to
the vertices of G.

λ0 is equal to d4(p, q). It is now easy to see that λ0 = maxi (pi − qi) = −mini (qi − pi). It
follows that d4(p, q) = |

⊕n
i=0(qi − pi)|.

4.3. Vertices of Vor4(L) that are Critical Points of a Distance Function.— For
a discrete subset S of H0 (e.g., S = L), the simplicial distance function h4,S : H0 → R is
defined as follows:

h4,S(x) =
⊕
p∈S

d4(x, p) = min
p∈S

d4(x, p).

By definition, it is straightforward to verify that h4,S(x) = sup{ λ | (x+ λ.4) ∩ S = ∅ }.
Note that our definition above exactly imitates the classical definition of a distance func-
tion [16]. In what follows, we restrict ourselves to S = L.

Let L be a full-rank sub-lattice of An and h4,L be the distance function defined by L. We
first give a description of ∂Σc(L) (see Section 2.2) in terms of h4,L. The lower-graph of h4,L
is the graph of the function h4,L in the negative half-space of Rn+1, i.e., in the half-space of
Rn+1 consisting of points of negative degree. More precisely, the lower-graph of h4,L, denoted
by Gr(h4,L), consists of all the points y−h4,L(y)(1, . . . , 1) for y ∈ H0. (In the example given
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in Figure 2, these are all the vertices of the polygon drawn in the plane H2 (the right figure)
having one concave and one convex neighbours on the polygon. There are six of them.)

We have

Lemma 4.8. — The lower-graph of h4,L and ∂Σc(L) coincide, i.e., Gr(h4,L) = ∂Σc(L).

In order to present the proof of Lemma 4.8, we need to make some remarks. Let p be a
point of L. The function fp : H0 → Rn+1 is defined as follows:

∀ y ∈ H0, fp(y) := sup {yt | yt = y − t.(1, . . . , 1), t ≥ 0, and yt ≤ p }.

Note that sup is defined with respect to the ordering of Rn+1, and is well-defined because
yt ≥ yt′ if and only if t ≤ t′. Remark also that fp(y) is finite.

Remark 4.9. — The above notion has the following tropical meaning: Let λp = min {t ∈
R | t�p⊕y = y}. Then yp = (−λp)�y. The numbers λp are used in [12] to define the tropical
closest point projection into some tropical polytopes. For a finite set of points p1, . . . , pl with
the tropical convex-hull polytope Q, the tropical projection map πQ at the point y is defined
as πQ(y) = λp1 �p1⊕· · ·⊕λpl �pl. It would be interesting to explore the connection between
the work presented here and the theory of tropical polytopes.

A simple calculation shows that fp(y) = y − |
⊕

i(pi − yi)|.(1, . . . , 1), and hence by
Lemma 4.7, we obtain fp(y) = y−d4(y, p).(1, . . . , 1). In other words, fp(y) is the lower-graph
of the function d4(. , p). We claim that for all y ∈ H0, y− h4,L(y)(1, . . . , 1) = supp∈L fp(y).
Here, sup is understood as before with respect to the ordering of Rn+1. In other words, the
lower-graph Gr(h4,L) is the lower envelope of the graphs Gr(fp) for p ∈ L. To see this, re-
mark that supp∈L fp(y) = supp∈L(y−d4(y, p).(1, . . . , 1)) = y− (minp∈L d4(y, p)).(1, . . . , 1) =
y − h4,L(y).(1, . . . , 1).

Proof of Lemma 4.8. — It is easy to see that for every point y ∈ H0, the intersection of the
half-ray { y − t(1, . . . , 1) | t ≥ 0 } with ∂Σc(L) is the point y − h4,L(L).(1, . . . , 1) ∈ Gr(h4,L).
This gives the lemma. More precisely, by the definition of Σc(L) (see Section 2.2), we have

∂Σc(L) = { z | z ≤ p for some p ∈ L and z ≮ p, ∀p ∈ L}
= { sup

p∈L
fp(y) | y ∈ H0 } = Gr(h4,L) (By the discussion above).

It is possible to strengthen Lemma 4.8 and to obtain a description of the Voronoi diagram
Vor4(L) in terms of the boundary of the Sigma-Region. The following lemma can be seen
as the simplicial Voronoi diagram analogue of the classical result that the Voronoi diagram
under the Euclidean metric is the projection of a lower envelope of paraboloids [13].

Lemma 4.10. — The Voronoi diagram of L under the simplicial distance function d4(. , .)
is the projection of ∂Σc(L) along (1, . . . , 1) onto the hyperplane H0. More precisely, for any
p ∈ L, the Voronoi cell V4(p) is obtained as the image of H−p ∩ ∂Σc(L) under the projection
map π0.
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Proof of Lemma 4.10. — By definition, H−p consists of the points which are dominated by p.
It follows that the intersection H−p ∩ ∂Σc(L) consists of all the points of ∂Σc(L) which are
dominated by p. By Lemma 4.8, the boundary of Σc(L), ∂Σc(L) coincides with the graph of
the simplicial distance function h4,L. It follows that the intersection H−p ∩ ∂Σc(L) consists
of all the points of the lower-graph of h4,L that are dominated by p. By definition, any
point of the lower-graph of h4,L is of the form y − h4,L(y).(1, . . . , 1) for some y ∈ H0. By
definition of the function fp, such a point is dominated by p if and only if h4,L(y) ≥ fp(y).
By definition, we know that h4,L(y) ≤ fp(y) for all y ∈ H0. We infer that for y ∈ H0,
y − h4,L(y).(1, . . . , 1) ∈ H−p ∩ ∂Σc(L) if and only if h4,L(y) = fp(y), or equivalently, if and
only if y ∈ V4(p). We conclude that V4(p) = π0(H−p ∩ ∂Σc(L)) and the lemma follows.

As we show in the next two lemmas, it is possible to describe Voronoi vertices that are
local maxima of h4,L as the projection of the extremal points of the Sigma-Region onto the
hyperplane H0 (see below, Lemma 4.13, for a precise statement).
Let us denote by Crit(L) the set of all local maxima of h4,P . We have

Lemma 4.11. — The critical points of L are the projection of the extremal points of Σc(L)
along the vector (1, . . . , 1). In other words, Crit(L) = π0(Extc(L)).

Proof. — Let c be a point in Crit(L), and let x = c−h4,L(c).(1, . . . , 1), be the corresponding
point of the lower-graph of h4,L, Gr(h4,L) (= ∂Σc(L) by Lemma 4.8). Note that π0(x) = c.
We claim that x ∈ Extc(L). Assume the contrary. Then there should exist an infinite sequence
{ xi }∞i=1 such that (i) xi ∈ ∂Σc(L), (ii) deg(xi) < deg(x), and (iii) limi→∞ xi = x. By
(i) and Lemma 4.8, we can write xi = pi − h4,L(pi).(1, . . . , 1) for some pi ∈ H0. By (ii),
we should have −(n + 1)h4,L(pi) = deg(xi) < deg(x) = −(n + 1)h4,L(c) for every i, and
so h4,L(pi) > h4,L(pi). By (iii), we have limi→∞ pi = c. All together, we have obtained
an infinite sequence of points {pi} in H0 such that h4,L(pi) > h4,L(c) and limi→∞ pi = c.
This is a contradiction to our assumption that c ∈ Crit(L) is a local maximum of h4,L. A
similar argument shows that for every point x ∈ Extc(L), π0(x) is in Crit(L), and the lemma
follows.

By Proposition 2.8, we have π0(Extc(L)) = π0(Ext(L)), and so

Corollary 4.12. — We have Crit(L) = π0(Ext(L)).

The following lemma gives a precise meaning to our claim that the critical points are
the Voronoi vertices of the Voronoi diagram, and will be used in Section 6 in the proof of
Theorem 6.9 (also used to drive Theorem 8.1).

Lemma 4.13. — Each v ∈ Crit(L) is a vertex of the Voronoi diagram Vor4(L): there exist
n+ 1 different points p0, . . . , pn in L such that v ∈

⋂
i V (pi). More precisely, a point v ∈ H0

is critical, i.e., v ∈ Crit(L), if and only if it satisfies the following property: for each of the
n + 1 facets Fi of 4̄h4,L(v)(v), there exists a point pi ∈ L such that pi ∈ Fi and pi is not in
any of Fj for j 6= i.

Remark that this shows that every point in Crit(L) is a vertex of the Voronoi diagram
Vor4(L).
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Proof. — We first prove that for every v ∈ Crit(L), there exist (n + 1) different points
pi ∈ L, i = 0, . . . , n, such that the corresponding Voronoi cells V4(pi) shares v, i.e., such
that v ∈ V4(pi) for i ∈ { 0, . . . , n }. By Lemma 4.11, we know that there exists a point
x ∈ Extc(L) such that π0(x) = v. We will prove the following: there exist (n + 1) different
points pi ∈ L, i = 0, . . . , n such that x ∈ H−pi for all i ∈ { 0, . . . , n }. Once this has been
proved, we will be done. Indeed by Lemma 4.10, we know that that every Voronoi cell V4(p),
for p ∈ L, is of the form π0(H−p ) ∩ ∂Σc(L). So v ∈ π0(H−pi ∩ ∂Σc(L)) = V4(pi) for each point
pi, and this is exactly what we wanted to prove.

To prove the second part, it will be enough to show that the points pi have the desired
property. Remark that we have d4̄(pi, v) = d4(v, pi) = h4,L(v), so pi ∈ ∂4̄h4,L(v)(v) for all
i. By the choice of pi, we have (pi)j > xj for all j 6= i and (pi)i = xi. Since v = π0(x), it is
now easy to see that pi is in the facet Fi of 4̄h4,L(v)(v) defined by

Fi = { u ∈ 4̄h4,L(v)(v) | ui = vi − h4,L(v) and uj ≥ vj − h4,L(v) }.

(Remark that d4̄(x, v) = | ⊕j (xj − vj)| so this is a facet of 4̄h4,L(v)(v).) And pi is not
in any of the other facets Fj (since (pi)j > vj − h4,L(v) for j 6= i). So the proof of one
direction is now complete. To prove the other direction, let v be a point such that each
of the n + 1 facets Fi of 4̄h4,L(v)(v) has a point pi ∈ L and pi is not in any of the other
facets Fj for j 6= i. We show that v is critical, i.e., v is a local maxima of h4,L. It will
be enough to show that for any non-zero vector d ∈ H0 of sufficiently small norm, there
exists one of the points pi such that d4(v + d, pi) < h4,L(v) = d4(v, pi). For all j, by
the characterisation of the facet Fj (see above) and by pj /∈ Fk for all k 6= i, we have
d4(v + d, pj) = d4̄(pj , v + d) = |

⊕
k(pj)k − vk − dk| = dj + vj − (pj)j = h4,L(v) + dj if

all dk’s are sufficiently small (namely if for all k, |dk| ≤ ε where ε > 0 is chosen so that
2ε < minj,k:k 6=j

[
(pj)k − vk + h4,L(v)

]
). As d ∈ H0 and d 6= 0, there exists i such that di < 0.

It follows that h4,L(d + v) ≤ d4(v + d, pi) < h4,L(v). And this shows that v is a local
maximum of h4,L. The proof of the lemma is now complete.

4.4. Proof of Lemma 3.7. — We end this section by providing the promised short proof
of Lemma 3.7, which claims that the degree function is bounded below in the region Σc(L).

Proof of Lemma 3.7. — In Section 4.3 we obtained the following explicit formula for fp(y):

∀y ∈ H0, fp(y) = y − d4(y, p)(1, . . . , 1).

We infer that

(3) ∀ y ∈ V4(p) : fp(y) = y − h4,L(y).(1, . . . , 1).

By Lemma 4.8, we have ∂Σc(L) = Gr(h4,L). It follows from Equation 3 that

∂Σc(L) = { fp(y) | y ∈ V4(p) and p ∈ L}.

We now observe that:

∀ y ∈ H0 : deg(fp(y)) = deg(y)− (n+ 1)d4(y, p) = − (n+ 1)d4(y, p).

This shows that deg(fp(y)) depends only on the simplicial distance d4 between y and p. By
translation invariance of the simplicial distance function (Lemma 4.2), translation invariance
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of the Voronoi cells (Lemma 4.5), and the above observations, we obtain

inf(deg(Σc(L))) = inf
y∈V4(p)

{ −(n+ 1)d4(y, p) }

= inf
y∈V4(O)

{ −(n+ 1)d4(y,O) }

= −(n+ 1) sup
y∈V4(O)

{ d4(y,O) }.

By Lemma 4.6, we know that V4(O) is compact. Also the function d4(O, y) is continuous
on y. Hence supy∈V4(O){d4(y,O)}} is finite and the lemma follows.

5. Riemann-Roch Theorem for Uniform Reflection Invariant Sub-Lattices

Consider a full dimensional sub-lattice L of An and its Voronoi diagram Vor4(L) under the
simplicial distance function. From the previous sections, we know that the points of Crit(L)
are vertices of Vor4(L). We know that V4(O) is a compact star-shaped polyhedron with O

as a kernel, and that the other cells are all translations of V4(0) by points in L. Consider
now the subset CritV4(O) of vertices of V4(O) which are in Crit(L). The sub-lattices of An
of interest for us should have the following symmetry property:

Definition 5.1 (Reflection Invariance). — A sub-lattice L ⊆ An is called reflection in-
variant if −Crit(L) is a translate of Crit(L), i.e., if there exists t ∈ Rn+1 such that −Crit(L) =
Crit(L)+ t. L is called strongly reflection invariant if the same property holds for CritV4(O),
i.e., if there exists t ∈ Rn+1 such that −CritV4(O) = CritV4(O) + t.

By translation invariance, it is easy to show that every strongly reflection invariant sub-
lattice of An is indeed reflection invariant.
Also, note that the vector t in the definition of reflection invariance lattices above is not
uniquely defined: by translation invariance, if t′ is linearly equivalent to t, t′ also satisfies the
property given in the definition.

Reflection Invariance and Involution of Ext(L).— Let L be reflection invariant and t ∈ Rn+1

be a point such that −Crit(L) = Crit(L)+ t. This means that for any c ∈ Crit(L) there exists
a unique c̄ ∈ Crit(L) such that c + c̄ = −t. By Lemma 4.11 and Corollary 4.12, for every
point c in Crit(L), there exists a point ν in Ext(L) such that c = π0(ν). Thus, for every point
ν in Ext(L), there exists a point ν̄ in Ext(L) such that π0(ν + ν̄) = −t. This allows to define
an involution φ(= φt) : Ext(L)→ Ext(L):

For any point ν ∈ Ext(L), φ(ν) := ν̄.
Note that φ is well defined. Indeed, if there exist two different points ν̄1 and ν̄2 such that
π0(ν + ν̄i) = −t for i = 1, 2, then π0(ν̄1) = π0(ν̄2) and this would imply that ν̄1 > ν̄2 or
ν̄2 > ν̄1 which contradicts the hypothesis that ν̄1, ν̄2 ∈ Ext(L). A similar argument shows
that φ is a bijection on Ext(L) and is an involution.

5.1. A Riemann-Roch Inequality for Reflection Invariant Sub-Lattices: Proof of
Theorem 1.3. — In this subsection, we provide the proof of the Riemann-Roch inequality
stated in Theorem 1.3 for reflection invariant sub-lattices of An. We refer to Section 2.3 for
the definition of gmin and gmax.
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Let L be a reflection invariant sub-lattice of An. We have to show the existence of a
canonical point K ∈ Zn+1 such that for every point D ∈ Zn+1, we have

(4) 3gmin − 2gmax − 1 ≤ r(K −D)− r(D) + deg(D) ≤ gmax − 1 .

K is defined up to linear equivalence (which is manifested in the choice of t in the definition
of reflection invariance).

Construction of a Canonical Point K.
We define the canonical point K as follows: Let ν0 ∈ Ext(L) be an extremal point such that
ν0 + φ(ν0) has the maximum degree, i.e., ν0 = argmax { deg(ν + φ(ν)) | ν ∈ Ext(L) }. The
map φ is the involution defined above. Define K := −ν0 − φ(ν0).

Proof of the Riemann-Roch Inequality. We first observe that K is well-defined and for
any point ν in Ext(L), ν + ν̄ ≤ −K. This is true because all the points ν + ν̄ are on the line
−t+α(1, . . . , 1)), α ∈ R, and K is chosen in such a way to ensure that −K has the maximum
degree among the points of that line. We infer that for any point ν ∈ Ext(L), there exists an
effective point Eν such that ν + ν̄ = −K −Eν . Using this, we first derive an upper bound on
the quantity deg+(K −D + ν̄)− deg+(ν +D) as follows:

deg+(K −D + ν̄)− deg+(ν +D) = deg+(−ν − ν̄ − Eν −D + ν̄)− deg+(ν +D)(5)

= deg+(−ν − Eν −D)− deg+(ν +D)(6)

≤ deg+(−ν −D)− deg+(ν +D)(7)

= deg(−ν −D) = −deg(ν)− deg(D)(8)

≤ gmax − deg(D)− 1.(9)

To obtain Inequality (6), we use the fact that if E ≥ 0 then deg+(D − E) ≤ deg+(D). Also
remark that Inequality (9) is a simple consequence of the definition of gmax.
Now, we obtain a lower bound on the quantity deg+(K − D + ν̄) − deg+(ν + D). In order
to do so, we first obtain an upper bound on the degree of Eν , for the effective point Eν such
that ν+ ν̄ = −K−Eν . To do so, we note that by the definition of K and by the definition of
gmin, we have deg(K) = min(deg(−ν − ν̄)) ≥ 2gmin − 2. Also observe that by the definition
of gmax, we have deg(−ν − ν̄) ≤ 2gmax − 2. It follows that

deg(Ev) = −deg(K) + deg(−ν − ν̄) ≤ 2(gmax − gmin).

We proceed as follows

deg+(K −D + ν̄)− deg+(ν +D) = deg+(−ν − Eν −D)− deg+(ν +D)

≥ deg+(−ν −D)− deg(Eν)− deg+(ν +D)

≥ 2(gmin − gmax) + deg+(−ν −D)− deg+(ν +D)

≥ 2(gmin − gmax)− deg(ν +D)

= 2(gmin − gmax)− deg(ν)− deg(D)

≥ 3gmin − 2gmax − deg(D)− 1.
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The last inequality follows from the definition of gmin. Now since the map φ(ν) = ν̄ is a
bijection from Ext(L) onto itself, we can easily see that

3gmin − 2gmax − deg(D)− 1 ≤ min
ν∈Ext(L)

deg+(K + ν̄ −D)− min
ν∈Ext(L)

deg+(ν +D)

≤ gmax − deg(D)− 1.

By Lemma 2.9 and the fact φ is a bijection, we know that:

r(D) = minν∈Ext(L) deg+(ν +D)− 1,
r(K −D) = minν̄∈Ext(L) deg+(K −D + ν̄)− 1.

Finally we infer that 3gmin− 2gmax− deg(D)− 1 ≤ r(K −D)− r(D) ≤ gmax− deg(D)− 1 ,
and the Riemann-Roch Inequality (1.3) follows.

Remark 5.2. — As the above proof shows, we indeed obtain a slightly stronger inequality

gmin − deg(D)− 1− max
ν∈Ext(L)

deg(Eν) ≤ r(K −D)− r(D).

In particular if Eν = 0 for all ν ∈ Ext(L) (see Section 6.2 for examples, e.g., regular digraphs),
we have:

gmin − deg(D)− 1 ≤ r(K −D)− r(D) ≤ gmax − deg(D)− 1.

We remark that the proof technique used above is quite similar to the one used by Baker
and Norine [2].

Remark 5.3. — From Lemma 2.9, it is easy to obtain the inequality deg(D)−r(D) ≤ gmax,
for all sub-lattices L of An and all D ∈ Zn+1. This inequality is usually referred to as
Riemann’s inequality. Note that the Riemann-Roch inequality (4) is more sensitive on (and
contains more information about) the extent of “un-evenness” of the extremal points, while
the above trivial inequality does not provide any such information.

5.2. Riemann-Roch Theorem for Uniform Reflection Invariant Lattices. — Recall
that a lattice L is called uniform if gmax = gmin, i.e., every point in Ext(L) has the same
degree. By Corollary 4.12 and the definition of h4, this is equivalent to saying that the set
of critical values of h4,L is a singleton. We call g = gmax = gmin the genus of the lattice.

The following is a direct consequence of Theorem 1.3. However we give it as a separate
theorem.

Theorem 5.4. — Every uniform reflection invariant sub-lattice L ⊆ An of dimension n has
the Riemann-Roch property.

Proof. — Let D ∈ Zn+1. If L is a reflection invariant lattice, we can apply Theorem 1.3 to
obtain 3gmin− 2gmax− 1 ≤ r(K −D)− r(D) + deg(D) ≤ gmax− 1, where K is the canonical
point defined as in the proof of Theorem 1.3. Since L is uniform we have gmax = gmin = g

and we obtain r(K −D)− r(D) + deg(D) = g− 1. It remains to show that deg(K) = 2g− 2.
But, we know from the construction of K that K = −(ν + ν̄) for a point ν ∈ Ext(L). Since
L is uniform, we infer that deg(K) = −deg(ν)− deg(ν̄) = 2g− 2 (and also that K = −ν − ν̄,
∀ ν ∈ Ext(L)).
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We say that a sub-lattice L of An has a Riemann-Roch formula if there exists an integer
m and an integral point Km, or simply K, of degree 2m− 2 (a canonical point) such that for
every integral point D, we have:

r(D)− r(K −D) = deg(D)− (m− 1).

The following result shows the amount of geometric information one can obtain from the
Riemann-Roch Property.

Theorem 5.5. — A sub-lattice L has a Riemann-Roch formula if and only if it is uniform
and reflection invariant. Moreover, for a uniform and reflection invariant lattice m = g (the
genus of the lattice).

The rest of this section is devoted to the proof of this theorem. One direction is already
shown, we prove the other direction.

We first prove that

Claim 1. — If L has a Riemann-Roch formula, then m = gmax.

Proof. — The Riemann-Roch formula for a point D with deg(D) > 2m − 2 implies that
deg(D) − r(D) = m. We know that if deg(D) > 2gmax − 2 then deg(D) − r(D) ≤ gmax.
This for D with deg(D) ≥ 2 max{m, gmax} − 2 shows that m ≤ gmax. By the Riemann-Roch
formula, we have r(D) ≥ 0 for any D with deg(D) ≥ m. Let D = −νmax, where νmax is
an extremal point of minimal degree. Remark that we have r(D) = −1. This shows that
m ≥ gmax. And we infer that m = gmax.

We now prove that

Claim 2. — If L has a Riemann-Roch formula, then L is uniform and m = g.

Proof. — Let N be the set of points of Σ(L) of degree −gmax+1. We note that every point in
N is extremal, i.e., N ⊂ Ext(L). To prove the uniformity, we should prove that N = Ext(L).
We claim that Σ(L) = ∪ν∈NH+

ν , and this in turn implies that N = Ext(L). Indeed, if the
claim holds, then every extremal point ν ∈ Ext(L) should dominate a point u in N , and so
u = ν, meaning that N = Ext(L).

To prove the claim, we proceed as follows. Let −D be a point in Σ(L). We know that
r(D) = −1. We should prove the existence of a point ν in N such that ν ≤ −D. By the
Riemann-Roch formula there exists E ≥ 0 with deg(E) = gmax− 1−deg(D) and r(D+E) =
−1. The point −D − E has degree −gmax + 1 and so is in N . In addition −D − E ≤ −D.
And this is what we wanted to prove. The proof of the uniformity is now complete.

To finish the proof of the theorem, it remains to show that

Claim 3. — If a uniform sub-lattice L of An of full dimension has a Riemann-Roch formula,
then it is reflection invariant.

Proof. — Consider a uniform lattice satisfying the Riemann-Roch property. By Lemma 2.2,
we know that for a point ν in Ext(L), r(−ν) = −1. Now, if we evaluate the Riemann-Roch
formula for D = −ν, we get r(−ν) = r(K + ν). Hence, we have r(−ν) = r(K + ν) = −1.
Again by Lemma 2.2, this implies that −K − ν is a point in Σ(L). By the Riemann-Roch
property and Claim 2 above, deg(K) = 2g − 2. Since L is uniform and ν ∈ Ext(L), we have
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deg(ν) = g− 1. We infer that deg(K + ν) = g− 1, and it follows that −K − ν is an extremal
point of Σ(L). We now define ν̄ = −K−ν. Clearly, the map ν → ν̄ is a bijection from Ext(L)
onto itself. Let t = π0(−K). We obtain t = π0(−ν − ν̄) = −π0(ν)− π0(ν̄) for all ν ∈ Ext(L).
By Corollary 4.12, we have Crit(L) = π0(Ext(L)) and hence t = −c− c̄ for every c in Crit(L).
This implies that −c̄ = t + c. To finish the proof, observe that c̄ → c is a bijection from
Crit(L) onto itself, and so we have −Crit(L) = Crit(L) + t.

The proof of Theorem 5.5 is now complete.

6. Examples

In this section we study the machinery we presented in the previous sections through a few
classes of examples.

6.1. Lattices Generated by Laplacian of Connected Graphs. — Probably the most
interesting examples of the sub-lattices of An are generated by Laplacian of connected multi-
graphs (and more generally directed multi-graphs) on n + 1 vertices. In this subsection, we
provide a geometric study of these sub-lattices. We prove the following result:

Theorem 6.1. — For any connected graph G, the sub-lattice LG of An generated by the
Laplacian of G is strongly reflection invariant and uniform.

Theorem 6.1 will be a direct consequence of Theorem 6.9 below. Combining this theorem
with Theorem 1.4 gives the main result of [2].

Corollary 6.2 (Theorem 1.12 in [2]). — For any connected graph G on n + 1 vertices
and with m edges, the Laplacian lattice LG has the Riemann-Roch property. In addition, we
have gmax = gmin = m − n and the canonical point K is given by (δ0 − 2, δ1 − 2, . . . , δn − 2)
of Zn+1 where δi’s are the degrees of the vertices of G.

Remark 6.3. — Using reduced devisors, and the results of [2], it is probably quite straight-
forward to obtain a proof of Theorem 6.1. (This is not surprising since, as we pointed out in
the previous section, a lattice with a Riemann-Roch formula has to be uniform and reflection
invariant.) The proof we will present for Theorem 6.1 gives indeed more than what is the
content of this theorem. We give a complete description of the Voronoi-diagram and its dual
Delaunay triangulation. And we do not use reduced divisors, which is the main tool used in
the previous proofs of the Riemann-Roch theorem. As we will see, the form of the canonical
divisor for a given graph (and the genus) as defined in [2] comes naturally out of this explicit
description.

Let G be a connected graph on n+1 vertices v0, v1, . . . , vn and m edges. Let LG, or simply
L if there is no risk of confusion, be the Laplacian sub-lattice of An. We summarise the main
properties of the lattice LG and the matrix Q, defined in Section 1. LG is an n-dimensional
sub-lattice of An with {b0, . . . , bn−1} as a basis such that the (n+ 1)× (n+ 1) matrix Q has
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{b0, . . . , bn−1} as the first n rows and bn = −
∑n−1

i=0 bi as the last row. In addition, the matrix

(10) Q =


δ0 −b01 −b02 . . . −b0n
−b10 δ1 −b12 . . . −b1n

...
...

. . .
−bn0 bn1 −bn2 . . . δn


has the following properties:
(C1) bij ’s are integers, bij ≥ 0 for all 0 ≤ i 6= j ≤ n and bij = bji, ∀i 6= j.
(C2) δi =

∑n
j=1,j 6=i bij =

∑n
j=1,j 6=i bji (and is the degree of the i− vertex).

We denote by B the basis {b0, . . . , bn−1} of LG.

Voronoi Diagram Vor4(LG) and the Riemann-Roch Theorem for Graphs. — We
first provide a decomposition of H0 into simplices with vertices in L such that the vertices of
each simplex forms an affine basis of LG. Recall that a subset of lattice points X ⊂ L of size
n + 1 is called an affine basis of L, if for v ∈ X, the set of vectors u − v, u ∈ X and u 6= v,
forms a basis of L. In other words, if the simplex defined by X is minimal (which means it is
full-dimensional and has minimum volume among all the (full-dimensional) simplices whose
vertices lie in L). The whole decomposition is derived from the symmetries of the affine basis
B, and describes in a very nice way the Voronoi decomposition Vor4(LG). What follows could
be considered as an explicit construction of the “Delaunay dual”, Del4(LG), of Vor4(LG).

We consider the family of total orders on the set { 0, 1, . . . , n }. A total order <π on
{ 0, 1, . . . , n } gives rise to an element π of the symmetric group Sn+1, defined in such a way
that π(0) <π π(1) <π · · · <π π(n − 1) <π π(n). It is clear that the set of all total orders
on {0, . . . , n} is in bijection with the elements of Sn+1. In addition the total orders which
have n as the maximum element are in bijection with the subgroup Sn ⊂ Sn+1 consisting
of all the permutation which fix n, i.e., π(n) = n. In the following when we talk about a
permutation in Sn, we mean a permutation of Sn+1 which fixes n. For π ∈ Sn, we denote by
π̄ the opposite permutation to π defined as follows: we set π̄(n) = n and π̄(i) = π(n− 1− i)
for all i = 0, . . . , n − 1. In other words, for all i = 0, . . . , n − 1, i <π j if and only if j <π̄ i,
and j ≤π̄ n for all j. Let Cn+1 denotes the group of cyclic permutations of {0, . . . , n}, i.e.,
Cn+1 =< σ > where σ is the element of Sn+1 defined by σ(i) = i + 1 for 0 ≤ i ≤ n − 1 and
σ(n) = 0. It is easy to check that Sn+1 = SnCn+1.

Let <π be a total order such that π ∈ Sn, i.e., π ∈ Sn+1 and π(n) = n. We first define a
set of vectors Bπ = { bπ0 , . . . , bπn } as follows:

∀ i ∈ { 0, . . . , n }, bπi :=
∑
j≤πi

bj .

In particular, note that bπn = bππ(n) :=
∑

j≤ππ(n) bj =
∑n

j=0 bj = 0.

Lemma 6.4. — For any total order <π with n as maximum, or equivalently for any π in
Sn, the set Bπ = { bπ0 , . . . , bπn } forms an affine basis of LG.

Proof. — It is easy to see that the matrix of {bππ(0), . . . , b
π
π(n−1)} in the base B is upper

triangular with diagonals equal to 1. It follows that the set {bππ(0), . . . , b
π
π(n−1)} is a basis of

L. As bππ(n) = 0, it follows that Bπ is an affine basis.
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We denote by 4π the simplex defined by Bπ. In other words, 4π := Conv(Bπ), the
convex-hull of Bπ. Consider the fundamental parallelotope F (B) defined by the basis B of
LG. Note that F (B) is the convex-hull of all the vectors bπi for π ∈ Sn and i ∈ {0, . . . , n}.
We next show that the set of simplices {4π}π∈Sn provides a simplicial decomposition (i.e., a
triangulation) of F (B). But before we need the following simple lemma:

Lemma 6.5. — Let �n = { (x0 . . . , xn−1) | 0 ≤ xi ≤ 1} be the unit hypercube in Rn. For
a permutation π ∈ Sn, let 4̄π

n = { x = (x0, . . . , xn−1) ∈ Rn | 0 ≤ xπ(n−1) ≤ xπ(n−2) ≤ · · · ≤
xπ(0) ≤ 1}. The set of simplices { 4̄π

n }π∈Sn is a simplicial decomposition of �n.

We have

Lemma 6.6. — Let G be a connected graph and L ⊂ An be the corresponding Laplacian
lattice. The set of simplices {4π}π∈Sn is a simplicial decomposition of F (B).

Proof. — Since B is a basis of the n dimensional lattice LG, which is contained in H0, it is
also a basis of H0. By definition, F (B) is the unit cube with respect to the basis B. By
Lemma 6.5, the family of simplices {4̄π}π∈Sn is a simplicial decomposition of F (B), where
4̄π = { x = x0b0 + · · · + xn−1bn−1) ∈ H0 | 0 ≤ xπ(n−1) ≤ xπ(n−2) ≤ · · · ≤ xπ(0) ≤ 1} and
the vectors are written in the B-basis. Now recall that the vertices of 4π are given by the
points bπj . Recall also that ∀ i ∈ { 0, . . . , n }, bπi :=

∑
j≤πi bj , and that bπn = 0. A simple

calculation shows that 4π coincides with the simplex 4̄π above, and the proof follows.

A combination of this lemma with the simple fact that F (B) + LG is a tiling of H0 gives us:

Corollary 6.7. — The set of simplices {4π + p | π ∈ Sn, p ∈ LG } forms a triangulation of
H0.

In the simplicial decomposition {4π + p | π ∈ Sn & p ∈ L} of H0, consider the set SimO

consisting of all the simplices that contain the origin O as a vertex. We have

Lemma 6.8. — A simplex is in SimO if and only if it is spanned by Bπ for some π in Sn+1.
(Remark that we do not assume that π(n) = n.)

Proof. — By Corollary 6.7, we know that every simplex in SimO is of the form: 4π0 + q for
some π0 in Sn and q in L. Recall that the element π of Sn is regarded as an element of Sn+1,
with the property that π(n) = n. Since, the vertex set of 4π0 is V (4π0) = {bπ0

0 , . . . , bπ0
n−1, O},

we should have q = −bπ0
i for some 0 ≤ i ≤ n − 1. Let 0 ≤ j ≤ n be such that π0(j) = i. A

straightforward calculation shows that V (4π0)− bπ0
i = V (4π), where π = π0σ

j and σ is the
cyclic permutation (0, 1, 2, .., n) → (1, . . . , n, 0). The lemma follows because every element
π ∈ Sn+1 can be written uniquely in the form σiπ0 for some π0 ∈ Sn (Sn+1 = SnCn+1).

Remark also that |SimO| = |Sn+1| = (n+ 1)!.
Our aim now will be to provide a complete description of the set Extc(LG) of extremal

points of Σc(L) (and equivalently the set Ext(LG) = Extc(LG) − (1, . . . , 1)) in terms of this
triangulation. Actually we obtain an explicit description of the set CritV4(O). Before we
proceed, let us introduce an extra notation. Let π be an element of the permutation group
Sn+1. We do not suppose anymore that π(n) = n. We define the point νπ ∈ Zn+1 as the
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tropical sum of the points of Bπ, i.e., νπ :=
⊕n

i=0 b
π
i . (And recall that bπi =

∑
j≤πi bj .) We

have the following theorem.

Theorem 6.9. — Let G be a connected graph and LG be the Laplacian lattice of G.
(i) The set of extremal points of Σc(LG) consists of all the points νπ + p for π ∈ Sn+1 and

p ∈ LG, i.e., Extc(LG) = { νπ + p | π ∈ Sn+1 and p ∈ LG }. As a consequence, we have
Ext(LG) = { νπ + p+ (1, . . . , 1) | π ∈ Sn+1 and p ∈ LG }.

(ii) We have CritV4(O) = π0({ νπ | π ∈ Sn+1 }).

It is quite easy to see that the set {νπ} has the following properties (c.f. Theorem 6.1
below.)

(P1)- Reflection Invariance. For all π ∈ Sn+1, νπ + νπ̄ = (−δ0,−δ1, . . . ,−δn) where π̄

is the opposite permutation to π, and δi denotes the degree of the vertex vi. Since
CritV4(O) = π0({ νπ | π ∈ Sn+1 }), it follows that LG is strongly reflection invariant.
More precisely we have CritV4(O) = −CritV4(O) +π0((−δ0, . . . ,−δn)). (Recall that π0

is the projection function.)
(P2)- Uniformity. For all π ∈ Sn+1, deg(νπ) = −m. In other words, the Laplacian lattice

LG is uniform.
The proof of the results of this section will be given in the next subsection. However, let

us quickly show how to calculate g and K in the above corollary. The vertices νπ all belong
to Extc and have degree −m. It follows that the vertices of Ext(L) = Extc + (1, . . . , 1) have
all degree −m+ n+ 1, and so by the definition of genus, we obtain gmin = gmax = m− n. In
particular g coincides with the graphical genus of G (which is the number of vertices minus
the number of edges plus one). Since the points of Ext(LG) are of the form νπ+(1 . . . , 1), and
as we saw in the proofs of Theorem 1.3 and Theorem 5.4, we have K = −(νπ + (1, . . . , 1))−
(νπ̄ + (1, . . . , 1)) = (δ0 − 2, δ1 − 2, . . . , δn − 2).

Proofs of Theorem 6.9 and Theorem 6.1. — It is easy to see that the point νπ =⊕n
i=0 b

π
i has the following explicit form:

νπ = (−
∑
j<π0

bj0,−
∑
j<π1

bj1, . . . ,−
∑
j<πn

bnj).(11)

It follows that

νπ = (−δ0 +
∑
j>π0

bj0,−δ1 +
∑
j>π1

bj1, . . . ,−δn +
∑
j>πn

bnj)

= (−δ0, . . . ,−δn)− (−
∑
j<π̄0

bj0,−
∑
j<π̄1

bj1, . . . ,−
∑
j<π̄n

bnj)

= (−δ0, . . . ,−δn)− νπ̄.

And we infer that

Lemma 6.10. — For every π ∈ Sn+1, we have νπ + νπ̄ = (−δ0, . . . ,−δn).

Second, we calculate the degree of the point νπ. It is easy to see that

deg(νπ) = −
∑

i,j : j<πi

bij = −m,
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where m denotes the number of edges of G, or equivalently in terms of the matrix Q, m =
1
2

∑
i δi = trace(Q)/2. It follows that

Lemma 6.11. — All the points νπ have the same degree.

We now show that νπ ∈ Σc(L) for every π ∈ Sn+1. Assume for the sake of contradiction
that there exists a point p ∈ L such that p > νπ. By the definition of the Laplacian lattice
L, we know that there are integers α0, . . . , αn such that p = α0b0 + . . . , αnbn, and so we can
write

p = (
n∑
j=0

(α0 − αj)bj0, . . . ,
n∑
j=0

(αn − αj)bjn).

for some αi ∈ Z. Among the integer numbers αi, consider the set of indices Sp consisting of
the indices i for which αi is minimum. Remark that as p is certainly non zero (since there is
a coordinate of νπ which is zero, we cannot have 0 > νπ), we cannot have Sp = {0, . . . , n}.
Now in the set Sp consider the index k which is the minimum in the total order <π. By
construction of k, we have αk − αj ≤ −1 for all j <π k and αk − αj ≤ 0 for all j ≥π k. It
follows that pk, the k−th coordinate of p, is bounded above by

pk =
n∑
j=0

(αk − αj)bjk ≤
∑
j<πk

−bjk = νπk .

And this contradicts our assumption p > νπ.
Next, we need to show that νπ is a local minimum of the degree function. We already now

that deg(νπ) = −m. We will prove that for every point x ∈ Σc(L), we have deg(x) ≥ −m.
By Lemma 4.8, it will be enough to prove that h4,L(x) ≤ m

n+1 for every point x ∈ L. By
the definition of the simplicial distance function h4,L, this is equivalent to proving that the
simplex x+ m

n+14 contains a lattice point p ∈ L, i.e.,

(12) ∀x ∈ H0, (x+
m

n+ 1
4) ∩ L 6= ∅.

Here we use the following trick to reduce the problem to the case when all the entries of Q
are non-zero. We add a rational number ε = s

t , s, t ∈ N, to each bij , i 6= j, to obtain bεij . We

also define δεi in such a way that
∑

i b
ε
ij = δεi . Remark that

∑
j δ

ε
j = tr(Qε)

2 . The new matrix
Qε is not integral anymore (but if we want to work with integral lattices, we can multiply
every coordinate by a large integer t to obtain an integral matrix tQε). If we know that our
claim is true for all Laplacians with non-zero coordinates, then the function h associated to
tQε satisfies the property

(13) h4,Lt,ε ≤
tr(tQε)
2(n+ 1)

.

Where Lt,ε denotes the lattice generated by the matrix tQε. Let Lε be the (non neces-
sarily integral ) lattice generated by the matrix Qε. It is easy to see that t.h4,Lε = h4,Lt,ε .
Equation 13 implies then

(14) h4,Lε ≤
tr(Qε)

2(n+ 1)
=

m

n+ 1
+

nε

2(n+ 1)
.
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Using characterisation of Equation 12, one can see that, varying ε, the above property for all
sufficiently small rational ε > 0 will imply that h4,L ≤ m

n+1 , and that is what we wanted to
prove. Indeed one can easily show that the distance function h4,Lε(p) is a continuous function
in ε and p.

So at present, we have shown that we can assume that all the bij ’s are strictly positive.
This is the assumption we will make for a while. In this case, using the explicit calculation
of νπ, we can quite easily show that

Lemma 6.12. — The point νπ has the following properties:
1. νπi = bπii for 0 ≤ i ≤ n.
2. νπj < bπij for i 6= j and 0 ≤ i, j ≤ n.

As a corollary we obtain:

Corollary 6.13. — Let {e0, . . . , en} be the standard orthonormal basis of Rn, i.e., e0 = (1, 0,
. . . , 0) , . . . , en = (0, . . . , 0, 1). Let ej be a fixed vector. For every δ > 0, νπ − δej < bπj .

Lemma 6.14. — For every non-zero vector w in H−O and for every δ > 0, there exists a
point p in L such that νπ − δw < p.

Proof. — Follows easily from the above discussion.

It follows now easily that

Corollary 6.15. — The point νπ is an extremal point of Σc(L).

Proof. — Follows by combining Lemmas 6.14 and 3.6.

We will now prove the following: every extremal point of Σc(L) can be written as the
tropical sum of the vertices of a simplex of the form 4π + q, for some π ∈ Sn and some q
in L. Again we will first assume a stronger condition that bij > 0 for all i, j such that i 6= j

and 1 ≤ i, j ≤ n− 1. And then we do a limiting argument similar to the one we did above to
obtain the general statement. Let π ∈ Sn a fixed permutation. Using the assumption bij > 0
for i 6= j, it is easy to show that

Lemma 6.16. — For any total ordering <π, π ∈ Sn+1, we have bπij 6= 0 for all 0 ≤ i, j ≤ n

and i 6= π(n). (Remark that bππ(n) = 0.) Here bπij is the j−th coordinate of the vector bπi . In
addition, if bπij > 0 (resp. bπij < 0 ), then j ≤π i (resp. i <π j <π π(n)).

As we saw in Lemma 6.8, the set of simplices ∆π, π ∈ Sn+1, coincides with SimO, the set
of all simplices of the triangulation which are adjacent to O. The simplices of SimO naturally
define a fan F , the maximal elements of which are the set of all cones Cπ generated by ∆π

for π ∈ Sn+1. In other words if Bπ denoted the affine basis {bπi }ni=0, the cone Cπ is the cone
generated by Bπ. In particular every element of H0 is in some Cπ for some π ∈ Sn+1. We
have

Lemma 6.17. — Let q be a point in L, and q 6= bπi for all π ∈ Sn+1 and 0 ≤ i ≤ n. Let Cπ
be a cone in F which contains q. There exists a vector bπi in Bπ such that p < bπi for every
point p in H−O ∩H−q . In particular, no point in H−O ∩H−q is contained in Σc(L).
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Proof. — Since q is a point in L∩Cπ, there exists non-negative integers αi ≥ 0, 0 ≤ k ≤ n−1,
such that we can write q =

∑n−1
k=0 αkb

π
π(k). In addition, since q /∈ Bπ, we have

∑
l αl ≥ 2. Let

j = min{ k | αk 6= 0 }, i.e., the minimum index such that αk 6= 0, and let i = π(j). We show
that the point bπi satisfies the condition of the lemma. For this, it will be enough to prove
that bπi > O ⊕ q. Indeed p ∈ H−O ∩H−q implies that p ≤ O ⊕ q, and so if bπi > O ⊕ q, then we
have p < bπi , which is the required claim.

We should prove that bπik > (O⊕q)k for all k. As i = π(j) 6= π(n), by Lemma 6.16 we know
that bπik 6= 0 for all k. There are two cases: if bπik > 0, then easily we have bπik > 0 ≥ (O⊕ q)k.
If bπik < 0, then by Lemma 6.16, we have bπlk < 0 for all l ≥π i. By the choice of i, we have
αl = 0 for all l <π i. We infer that bπjk >

∑
l αlb

π
lk = (O ⊕ q)k, and the lemma follows.

We obtain the following corollary: the simplices of our simplicial decomposition form the
dual of the Voronoi diagram. More precisely

Corollary 6.18. — Let q be a point in L that is not a vertex of a simplex in SimO, i.e.,
q 6= bπi for all π ∈ Sn+1 and 0 ≤ i ≤ n. Then V (O) ∩ V (q) = ∅. Hence, for every two points
p and q in L, we have V (p) ∩ V (q) 6= ∅ if and only if p and q are adjacent in the simplicial
decomposition of H0 defined by {4π + p | π ∈ Sn & p ∈ L} i.e., V (p)∩ V (q) 6= ∅ if and only if
there exists π ∈ Sn+1 such that q is a vertex of ∆π + p.

Proof. — We prove the first statement by contradiction. So for the sake of a contradiction,
assume the contrary and let p ∈ V (O) ∩ V (q). By definition, we have h4,L(p) = d4(p,O) =
d4(p, q) ≤ d4(p, q′) for all points q′ ∈ L. By Lemma 4.10 this implies that the point y =
fO(p) = fq(p) is a point in ∂Σc(L) (c.f. Section 4 for the definition of fp). By the definition
of fp, the point y is in H−O ∩H−q . On the other hand, Lemma 6.17 implies that no point in
H−(O) ∩ H−(q) can be contained in Σc(L). We obtain a contradiction. To see the second
part, by translation invariance we can assume p = O. And in this case, the results follows by
observing that for q ∈ ∆π, π0(νπ) ∈ V (O) ∩ V (q).

We can now present the proof of Theorem 6.9 in the case where all the bij ’s are strictly
positive. It will be enough to prove that CritV (O) = π0({νπ | π ∈ Sn+1}). As vπ ∈ H−O
and we showed that vπ is in Extc(L), we have π0({νπ | π ∈ Sn+1}) ⊆ CritV (O). We show
now CritV (O) ⊆ π0({νπ | π ∈ Sn+1}). Let v ∈ CritV (O) and x be the point in Extc(L) with
π0(x) = v. By Lemma 4.13, there exist points p0, . . . , pn ∈ L such that v ∈ V (p0)∩· · ·∩V (pn).
By Corollary 6.18, points p0, . . . , pn should be adjacent in the simplicial decomposition of H0

defined by {4π + p | π ∈ Sn & p ∈ L}. As v is also in Vor(O), it follows that one of the pi
is O, and so there exists π ∈ Sn+1 such that v ∈ ∩p∈BπVor(p). By the proof of Lemma 4.13,
we also have x =

⊕
i pi. But

⊕
p∈Bπ p = νπ. It follows that x = νπ. We infer that

v ∈ π0({νπ | π ∈ Sn+1}) and the theorem follows.

The proof of Theorem 6.1 is a simple consequence of Lemma 6.10, and what we just proved,
namely, Extc(L) = {νπ + q | π ∈ Sn & q ∈ L } and CritV (O) = π0({νπ | π ∈ Sn+1}).

To prove the general case, it will be enough to show that CritV (O) = π0({νπ | π ∈ Sn+1})
still holds. Indeed the rest of the arguments remain unchanged.

We consider again the ε-perturbed Laplacian Qε and do a limiting argument similar to the
one we did before. Let Lε to be the lattice generated by Qε. By Vor(Lε) and CritVε(p), we
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denote the Voronoi diagram of Lε under the distance function d4 and the Voronoi cell of a
point p ∈ Lε. We also define Bπ

ε , ∆π
ε , and νπε similarly.

Theorem 6.9 in the case where all the coordinates are strictly positive implies that
CritVε(O) = π0({vπε | π ∈ Sn+1}). We can naturally define limits of the sets CritVε(O) as ε
tends to zero as limits of the points π0(vπε ). Indeed this limit exists and coincides with the
set π0({νπ | π ∈ Sn+1}), as can be easily verified. We show now

Lemma 6.19. — We have limε→0 CritVε(O) = CritV (O).

Remark 6.20. — Unfortunately this is not true in general for non graphical lattices. How-
ever, we always have CritV (O) ⊆ limε→0 CritVε(O).

Proof of Lemma 6.19. — By Corollary 6.15, we already know that every point of π0({νπ |π ∈
Sn+1}) is critical. So we should only prove that these are the only critical points, namely
CritV (O) ⊆ limε→0 CritVε(O) = π0({νπ | π ∈ Sn+1}). Let c be a critical point of L. By
Lemma 4.13, we know that there exists a set of points p0, . . . , pn such for each i, the facet Fi
of 4̄h4,L(c)(c) contains pi and none of the other points pj 6= pi. We will show the following:
for all sufficiently small ε, there exists a point cε ∈ Lε and hε = h4,Lε(cε) ∈ R+ such that
4̄hε(cε) has the same property for the lattice Lε, namely, for each i, the facet Fε,i of 4̄hε(cε)
contains a point pε,i ∈ Lε which is not in any other facet Fε,j of 4̄hε(cε), for j 6= i. In addition
4̄hε(cε) → 4̄h4,L(c)(c), and so hε → h4,L(c) and cε → c (hε and cε being the radius and the
centre of these balls 4̄hε(cε)). As each of the point cε will be critical for Lε, we conclude
that c ∈ limε→0 Crit(Lε) which is easily seen to be enough for the proof of the lemma. To
show this last statement, we argue as follows: for small enough ε, there exist points qε,0 and
pε,1, . . . , pε,n ∈ Lε such that qε,0 → p0 and for all n ≥ i ≥ 1, pε,i → pi when ε goes to zero.
These points naturally define a ball for the metric d4̄, i.e., a simplex of the form 4̄rε(c̄ε). This
is the bounded simplex defined by the set of hyperplanes Ei,ε, where Ei,ε is the hyperplane
parallel to the facet Fi of 4̄h4,L(c)(c) which contains pε,i (qε,0 for i = 0). We define the ball
4̄hε(cε) as follows. For each ε, if the interior of 4̄rε(c̄ε) does not contain any other lattice
point (a point of Lε), we let 4̄hε(cε) := 4̄rε(c̄ε). If the interior of 4̄rε(c̄ε) contains another
point of Lε, let pε,0 be the furthest point from the hyperplane E0,ε and E′0,ε the hyperplane
parallel to E0,ε which contains this point. The simplex (ball) 4̄hε(cε) is the simplex defined
by the hyperplanes E0,ε and E1,ε, . . . , En,ε. These simplices have the following properties:

– For all small ε, 4̄hε(cε) does not contain any point of Lε in its interior. In consequence
hε = h4,Lε(cε).

– When ε → 0, the simplices 4̄hε(cε) converge to 4̄h4,L(c)(c) (in Gromov-Haussdorf dis-
tance for example).

– The point pε,0 is in the interior of the facet Fε,0 of the simplex 4hε(cε). In addition
for sufficiently small ε, each point pε,i is in the interior of the facet Fε,i of the simplex
4hε(cε). This is true because 4̄hε(cε) → 4̄h4,L(c)(c), pε,i → pi, and each point pi is in
the interior of the facet Fi of 4̄h4,L(c)(c).

These properties show that the point cε is critical for Lε and limε→0 cε = c, which completes
the proof.

The proofs of Theorem 6.9 and Theorem 6.1 are now complete.
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We note that this representation of c as a limit of cε is not in general unique. Indeed it is
quite straightforward to check the following two theorems which show together that: Different
non-equivalent classes of critical points, up to linear equivalence, can converge in the limit to
the same class.

Theorem 6.21. — In the case where all bij > 0, none of the points νπ for π ∈ Sn is linearly
equivalent to another one, i.e., they define different classes in Rn+1/L. In particular, the
number of different critical points up to linear equivalence is exactly n!.

However for general graphs this number is usually strictly smaller than n!. We state here
without proof the following result about the number of non-equivalent classes of critical points.
Two permutations π and σ ∈ Sn ⊂ Sn+1 are elementary equivalent if π is obtained from σ

by switching two consecutive vertices in the order defined by σ which are not adjacent in
G (π(n) = σ(n) = n). Two elements π and σ ∈ Sn are equivalent if there is a sequence
of elementary equivalences which relate π to σ. Each equivalent class for this equivalence
relation is called a cyclic order of G.

Theorem 6.22. — Let G be a given connected graph on n + 1 vertices. The number of
different critical points up to linear equivalence for the Laplacian lattice L is exactly the
number of different cyclic orders of G.

Remark 6.23. — The number in the above theorem is exactly the number of acyclic orien-
tations of G with a unique fixed source v0, which is also the evaluation of the Tutte polynomial
at the point (1, 0) [26].

6.2. Lattices Generated by Laplacian of Connected Regular Digraphs. — In this
section, we briefly describe how to extend partially the results of the previous section to
connected regular digraphs. A digraph D is regular if the in-degree and out-degree of each
vertex are the same. This allows to define a Laplacian matrix for D, almost similar as in the
graphic case: if the vertices of D are enumerated by {v0, . . . , vn}, the matrix representation of
the Laplacian D is of the form Equation 10 but we do not have symmetry any more. Namely

(15) Q =


δ0 −b01 −b02 . . . −b0n
−b10 δ1 −b12 . . . −b1n

...
...

. . .
−bn0 bn1 −bn2 . . . δn


has the following properties:

(C1) bij ’s are integers and bij ≥ 0 for all 0 ≤ i 6= j ≤ n.
(C2) δi =

∑n
j=1,j 6=i bij =

∑n
j=1,j 6=i bji (and is the in-degree (= out-degree) of the vertex vi).

We obtain the simplicial decomposition of H0 defined by {4π + p | π ∈ Sn and p ∈ L},
similar to the case of unoriented graphs. In the case where all the coordinates bij are strictly
positive, we can similarly prove the following results (the proofs remain unchanged):

– For all π ∈ Sn and p ∈ L, the point νπ + p is extremal (c.f. Corollary 6.15).
– For every two points p and q in L, we have V (p) ∩ V (q) 6= ∅ if and only if p and q are

adjacent in the simplicial decomposition of H0 defined by {4π + p | π ∈ Sn & p ∈ L}. In
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other words, V (p)∩V (q) 6= ∅ if and only if there exists π ∈ Sn+1 such that q is a vertex
of ∆π + p (c.f. Corollary 6.18).

– The set of extremal points of Σc(LG) consists of all the points νπ + p for π ∈ Sn+1

and p ∈ LG, i.e., Extc(LG) = { νπ + p | π ∈ Sn+1 and p ∈ LG }. As a consequence, we
have Ext(LG) = { νπ + p + (1, . . . , 1) | π ∈ Sn+1 and p ∈ LG }. More precisely, we have
CritV4(O) = π0({ νπ | π ∈ Sn+1 }). (c.f. Theorem 6.9).

– We have gmin = −maxπ∈Sn deg(νπ)− n and gmax = −minπ∈Sn deg(νπ)− n.
– Riemann-Roch Inequality. Remark 5.2 can be applied: for K = (δ0 − 2, . . . , δn − 2), we

have for all D,

gmin − deg(D)− 1 ≤ r(K −D)− r(D) ≤ gmax − deg(D)− 1.

In the general case, where some of the bij ’s could be zero, unfortunately the limiting
argument does not behave quite well. Indeed, there are examples of regular digraphs for
which a point νπ is not a critical point for L for some π ∈ Sn. However as the proof of
Lemma 6.19 shows, we always have Crit(L) ⊆ limε→0 Crit(Lε). So it could happen that we
lose (strong) reflection invariance. Although we do not know in general if such lattices have
any sort of reflection invariance, it is still possible to prove a Riemann-Roch inequality for
these lattices by taking the limit of the Riemann-Roch inequalities for the lattices Lε. One
point in doing this limiting argument is to extend the definition of the rank function to all the
points of Rn+1 (and not only for integral points), which we briefly defined in the beginning
of this paper. This new rank-function will have image in {−1}∪R+ and is continuous on the
points where it is strictly positive.

In the general case we have the following results:

– Every point of degree −minπ∈Sn deg(νπ) among the points νπ is extremal (by a similar
limiting argument as in the graphic case). So we have gmax = −minπ∈Sn deg(νπ) − n.
In addition, gmin ≥ −maxπ∈Sn deg(νπ)− n. Let ḡmin = −maxπ∈Sn deg(νπ)− n.

– (Riemann-Roch Inequality.) Taking the limit of the family of inequalities gεmin−deg(D)−
1 ≤ rε(Kε −D)− rε(D) ≤ gεmax − deg(D)− 1, where ε goes to zero, we get

ḡmin − deg(D)− 3 ≤ r(K −D)− r(D) ≤ gmax − deg(D) + 1.

Here rε is the rank function for the lattice Lε. This is because limε→0 g
ε
min = ḡmin;

limε→0 g
ε
max = gmax; and r(E) + 1 ≥ limε→0 rε(E) ≥ r(E)− 1 for all E ∈ Rn+1.

6.3. Two Dimensional Sub-lattices of A2. — In this section, we consider full-rank sub-
lattices of A2. First, we show that all these sub-lattices are reflection invariant. This is indeed
an easy consequence of Theorem 8.1 by which a sub-lattice of A2 of rank two has at most two
different classes of critical points. It follows that:

Theorem 6.24. — Every sub-lattice L of A2 of dimension two is reflection invariant.

Indeed something quite strong holds in dimension two: every two dimensional sub-lattice
L of A2 is a Laplacian lattice of some regular digraph on three vertices.

Lemma 6.25. — Every full dimensional sub-lattice of A2 is the Laplacian lattice of a regular
digraph on three vertices.
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Let {e0, e1, e2} be the standard basis of H0 where e0 = (2,−1,−1), e1 = (−1, 2,−1) and
e2 = (−1,−1, 2). Let the linear functional g0, g1 and g2 be defined by taking the scaler
product with e0, e1, e2 respectively. So for example for u = (u0, u1, u2), g0(u) = 2u0−u1−u2.
Let b0, b1 be a basis of L and b2 = −b0 − b1. Let Q be the matrix having b0, b1 and b2 as its
first, second and third row, respectively. For i = 0, 1, 2, define the cone Ci to be the set of
vectors v such that gi(v) ≥ 0 and gj(v) ≤ 0 for j 6= i. We have

Lemma 6.26. — The basis b0, b1, b2 is the basis defined by a regular digraph if and only if
the following holds: for each i, bi is in the cone Ci.

Proof. — Let bij denote the j-th coordinate of bi. It will be enough to show that bij ≤ 0
for i 6= j. Let j′ ∈ {0, 1, 2} be different from i and j. We have gj(bi) ≤ 0. But gj(bi) =
2bij − bii − bij′ = 3bij . It follows that bij ≤ 0.

Proof. — of Lemma 6.25 We should show the existence of lattice points {b0, b1, b2} such
that:

(i) {b0, b1} is a basis of L;
(ii) b0 + b1 + b2 = O;
(iii) bi is contained in the cone Ci.
First consider a shortest vector b0 of the lattice and a shortest vector of the lattice b1 that
is linearly independent of b0. Using for example Pick’s formula, one can show that {b0, b1}
forms a basis of the lattice L. We may now assume that b0 is contained in one of the cones
C0, C1 or C2, and without loss of generality C0. Indeed if b0 does not belong to any of these
cones then −b0 will belong to one of these cones, and we may replace b0 by −b0. So we assume
that b0 belongs to C0. It is well known that b1 can be chosen such that the angle between b0
and b1 is in the interval [π3 ,

2π
3 ]. Since the maximum angle between any two points in Ci is

π
3 , b1 is contained in a cone different from C0 and −C0. Now, if b1 is not contained in C1 or
C2 then −b2 will be in C1 or C2, and we can replace b1 by −b1. Remark that {b0,−b1} will
remain a basis. Hence, we may assume without loss of generality that B = {b0, b1} is a basis
of the lattice such that b0 is contained in cone C0 and b1 is contained in cone C1.
This means that b0 = (b00, b01, b02) and b1 = (b10, b11, b12), where b01, b02, b10, b12 ≤ 0 and
b00 = −b01 − b02 > 0 and b11 = −b10 − b12 > 0. First, we observe that −b3 = b0 + b1
is contained in C0 ∪ C1 ∪ −C2, and if it is in −C2, then we have our set of lattice points
{b0, b1, b2}. We now define a procedure which, by updating the set of vectors b0, b1, provides
at the end the set of lattice points {b0, b1, b2} with properties (i), (ii) and (iii) above. The
procedure is defined as follows:

(a) If b0 + b1 ∈ −C2 then stop.
(b) Otherwise, if b0 + b1 ∈ C0 replace b0 by b0 + b1 and iterate.
(c) Otherwise, if b0 + b1 ∈ C1 replace b1 by b0 + b1 and iterate.
(d) Output {b0, b1, b2}, where b2 = −b0 − b1.

We will show that the number of iterations is finite. And this shows that the final output
has the desired properties. Indeed, at each iteration {b0, b1} form a basis of L (if {b0, b1} is a
basis of L then {b0 +b1, b1} and {b0, b0 +b1} will also be a basis of L), and so by the definition
of the procedure, the finiteness of the number of steps shows that at the end we should have
b0 + b1 ∈ −C3. To show that the procedure terminates after a finite number of iterations,
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consider a step of the algorithm: if the step (b) in the procedure happens, then b0+b1 should be
in C0 and not in −C2. This means that 0 > b01+b11, which implies that |g1(b0+b1)| < |g1(b0)|.
Indeed g1(b0 + b1) = 3b01 + 3b11 < 0 and so |g1(b0 + b1)| = −3b01 − 3b11 < −3b01 = |g1(b0)|.
Furthermore, we have, 0 ≤ g0(b0 + b1) ≤ g0(b0), since g0(b1) ≤ 0.

Similarly, if the step (c) in the above procedure happens, then b0+b1 should be in C1 and not
in −C2. Hence, we should have |g0(b0 + b1)| < |g0(b1)| and 0 ≤ g1(b0 + b1) ≤ g1(b1). We infer
that, starting form b0 and b1, at each iteration one of the two inequalities |g1(p)| < |g1(b0)| or
|g0(p)| < |g0(b1)| for p = b0 + b1 should be satisfied. Furthermore, at every iteration we have
|g0(p)| ≤ |g0(b0)| and |g0(p)| ≤ |g0(b1)|. Hence, an upper bound on the number of iterations
is the number of lattice points p in C0 with |g0(p)| ≤ |g0(b0)| plus the number of lattice points
q in C1 with |g1(q)| ≤ |g1(b1)| and this is indeed finite.

Remark 6.27. — In higher dimensions, the analogue of Lemma 6.25 is unlikely to be true
since a simple calculation shows that the minimum angle between cones Ci and Cj is at
least π/3 (here, as in dimension two e0, . . . , en is the corresponding basis of H0 where
e0 = (n,−1, . . . ,−1), . . . , en = (−1, . . . ,−1, n), and gi is the linear form defined by tak-
ing the scaler product with ei). Indeed, let p = (

∑
i 6=0 pi,−p1, . . . ,−pn) ∈ C0 − {O} and

q = (−q0,
∑

i 6=1 qi,−q2, . . . ,−qn) ∈ C1 − {O}. We have

p · q
|p|`2 |q|`2

=
−
∑

i 6=0 piq0 −
∑

i 6=1 qip1 + p2q2 + · · ·+ pnqn

|p|`2 |q|`2
≤ p2q2 + · · ·+ pnqn

|p|`2 |q|`2

≤ p2q2 + · · ·+ pnqn

2
√
p2

2 + · · ·+ p2
n

√
q2

2 + · · ·+ q2
n

≤ 1
2
.

The two inequalities of the last line follow from the set of inequalities

|p|`2 =
√

(p1 + · · ·+ pn)2 + p2
1 + · · ·+ p2

n ≥
√

2(p2
1 + · · ·+ p2

n) ≥
√

2(p2
2 + · · ·+ p2

n)

|q|`2 ≥
√
q2

2 + · · ·+ q2
n (similarly as above),

and the Cauchy-Schwartz inequality. Hence, if the lattice L is generated by a regular digraph,
then there exists a basis such that the pairwise angles between the elements of the basis is at
least π

3 . But, it is known that there exist lattices that are not weakly orthogonal, see [22].
However, note that the notion of a weakly-orthogonal lattice seems to be slightly different
from the notion of a digraphical lattice.

We now characterise all the sub-lattices of A2 which are strongly reflection invariant.

Theorem 6.28. — A sub-lattice L of A2 is strongly reflection invariant if and only if there
are two different classes of critical points up to linear equivalence or L is defined by a multi-
tree on three vertices (i.e., a graph obtained from a tree by replacing each edge by multiple
parallel edges).

Proof. — Let {b0, b1} be the regular digraph basis of L and b2 = −b0 − b1. We consider the
triangulation {4π + p} of H0 defined by this basis. Let T be the triangle defined by the
convex hull of {0, b0, b0 + b1} (= 4π) and let T̄ be the opposite of T , the triangle defined by



36 OMID AMINI & MADHUSUDAN MANJUNATH

the convex hull of {0, b2, b1 + b2} (= 4π̄), and let cT and cT̄ be π0(νπ) and π0(νπ̄). At least
one of the points cT or cT̄ is critical. And in addition the set of critical points of CritV (O) is
a subset of {cT , cT − b0, cT + b2, cT̄ , cT̄ + b0, cT̄ − b2}.

(⇒) If cT and cT̄ are both critical points and they are different, we have CritV (O) =
{cT , cT−b0, cT +b2, cT̄ , cT̄ +b0, cT̄−b2} and we can directly see that −CritV (O) = CritV (O)+t
where t = cT +cT̄ . It is easy to check directly than the only case when cT and cT̄ are equivalent
is when b0 = (a, 0,−a) and b1 = (0, b,−b) for a, b > 0 (in which case cT = π0((0, 0,−a − b)
and cT̄ = π0((−a,−b, 0)), and so cT̄ − cT = b2 and the lattice is also uniform). In this case,
we also have CritV (O) = {cT , cT − b0, cT + b2, cT̄ , cT̄ + b0, cT̄ − b2} and so again −CritV (O) =
CritV (O) + t where t = cT + cT̄ .

(⇐) If there is just one critical point up to linear equivalence, let us assume without loss
of generality that the critical point is cT . In this case, CritV (O) = {cT , cT − b0, c + b2}. It
is now easy to check that for any bijection φ of CritV (O) onto itself, x+ φ(x) cannot be the
same over all x in CritV (O).

We end this section by providing an example of a sub-lattice L of A2 which is not strongly
reflection invariant. By the previous theorem, L should contain only one critical point up to
linear equivalence and should not be a multi-tree. (In particular, since we only have one class
of critical points, L is uniform and satisfies the Riemann-Roch theorem.)

Consider the two dimensional sub-lattice of A2 defined by the vectors b0 = (7,−7, 0) and
b1 = (−3, 11,−8), and let b2 = −b0 − b1 = (−4,−4, 8). These vectors form the rows of the
3× 3 matrix Q (which is the Laplacian matrix of a regular digraph).

(16) Q =

 7 −7 0
−3 11 −8
−4 −4 8


Let π and π̄ be the permutation corresponding to the order 0 <π 1 <π 2 and its opposite
1 <π̄ 0 <π̄ 2 as in the proof of Theorem 6.28. We have νπ =

⊕
{b0, b0 +b+1, O} = (0,−7,−8)

and νπ̄ =
⊕
{b1, b1 +b0, O} = (−3, 0,−8). We claim that νπ̄ is not an extremal point of Σc(L)

and so π0(νπ̄) is not critical. This is true because νπ̄ + (7,−7, 0) = (4, 0,−8) ≥ νπ, and so νπ̄

cannot be extremal.
Indeed the above example can be turned into a generic class of examples, that we now

explain. Consider a lattice defined by generators of the form b0 = (α,−α, 0) and b1 =
(−γ, γ + η,−η):

(17) Q =

 α −α 0
−γ γ + η −η
γ − α −γ + α− η η


Here we suppose in addition that α, γ, η > 0 and γ < α ≤ η + γ such that the above matrix
is the Laplacian of a regular digraph. The two permutations π and π̄ are defined as above,
so for these permutations we have νπ = (0,−α,−η) and νπ̄ = (−γ, 0,−η). It is clear that
deg(νπ) < deg(νπ̄). We infer that νπ is extremal. But νπ̄ is not extremal since νπ̄ ≥ νπ − b0.
It is also easy to see that L cannot have a multi-tree basis.

6.4. Examples of sub-lattices with Riemann-Roch property which are not graphi-
cal. — In this subsection, we show that there exist an infinite family of sub-lattices {Ln}∞n=2,
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where Ln is a full rank sub-lattice of An, each Ln satisfies the Riemann-Roch theorem (we say
that it has the Riemann-Roch property), and such that none of Ln is graphical. By not being
graphical, we mean that there does not exist any basis of L which comes from a connected
unoriented multi-graph, i.e. Ln 6= LG for any connected multi-graph G on n+ 1 vertices. In-
deed, we have already provided in the previous section such an example (and even an infinite
number of them) in dimension two: the family of sub-lattices of A2 defined by b0 = (α,−α, 0)
and b1 = (−γ, γ+ η,−η) (we will prove this shortly below). The construction of Ln for larger
values of n is then recursive. Suppose we have already constructed an infinite family of full
rank sub-lattices of An which are not graphical and have the Riemann-Roch property, and let
Ln be an element of this family. Then we construct a full rank sub-lattice of An+1 as follows.
By taking the natural embedding An ⊂ An+1, (x0, . . . , xn) → (x0, . . . , xn, 0), we embed Ln
in An+1. The lattice Ln+1 is obtained by adding bn = (0, 0, . . . , 0,−1, 1) to the image of Ln.
Remark that if Ln comes from a regular digraph G with vertices v0, . . . , vn, then Ln+1 is the
lattice of the digraph G′ consisting of G and a new vertex vn+1 which is connected to vn by
two arcs, one in each direction. We will see that Ln+1 will not be graphical, and in addition
it will have the Riemann-Roch property. Here we provide the details of the construction.

The Lattices L2. — Let L2 be a sub-lattice of A2 defined by b0 = (α,−α, 0) and b1 =
(−γ, γ + η,−η), where α, γ, η > 0 and γ < α ≤ η + γ.

Proposition 6.29. — The sub-lattice L2 has Riemann-Roch property and L2 is not graphi-
cal.

Proof. — We saw in the previous section that L2 has only one class of critical points, up to
linear equivalence, is not strongly reflection invariant, and in addition |CritV (O)| = 3. This
shows that L2 cannot be graphical. However, L2 is uniform and reflection invariant, and so
it has the Riemann-Roch property.

The Lattices Ln. — Let Ln be a full rank sub-lattice of An that we regard as an n-
dimensional sub-lattice of An+1 by taking the embedding An ⊂ An+1 described above. Define
Ln+1 to be the lattice generated by Ln and bn+1 = (0, . . . , 0,−1, 1). We first provide two
correspondences: one between the rank function rn of Ln and the rank function rn+1 of Ln+1,
and the other one, between the extremal points of Ln and the extremal points of Ln+1.
Let D be an element of Zn+2. By D|n we denote the projection of D to Zn+1 obtained by
eliminating the last coordinate. So if D = (D0, . . . , Dn+1), then D|n = (D0, . . . , Dn).

Lemma 6.30. — Let D = (D0, . . . , Dn+1) be a point in Zn+2 and let D′ = (D −
Dn+1bn+1)|n+1. We have rn+1(D) = rn(D′).

Proof. — We first prove that rn(D′) ≥ rn+1(D). Let E′ ∈ Zn+1 be effective. We should
prove that if deg(E′) ≤ rn+1(D), then D′ −E′ ≥ q′ for at least one q′ ∈ Ln. Let E = (E′, 0).
As deg(E) ≤ rn+1(D), there exists a q ∈ Ln+1 such that D − E ≥ q. By the definition of
Ln+1, there exists q′ ∈ L and α ∈ Z such that q = (q′, 0) + αbn+1. It follows that Dn+1 ≥ α,
and so D′ −E′ = (D −Dn+1bn+1 −E)|n ≥ (D − αbn+1 −E)|n ≥ q′. So D′ −E′ ≥ q′ and we
are done.

We now show that rn+1(D) ≥ rn(D′). Let E = (E0, . . . , En+1) ∈ Zn+2 be effective of
degree at most rn(D′). We have to prove the existence of a point q ∈ Ln+1 such that
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D − E ≥ q. Let O ≤ E′ ∈ Zn+1 be defined by E − En+1bn+1 = (E′, 0). In other words
E′ = (E0, . . . , En−1, En + En+1). It is clear that E′ ≥ O and deg(E′) ≤ rn(D′). So there
exists a point q′ ∈ Ln such thatD′−E′ ≥ q′. We infer thatD−E ≥ (q′, 0)+(Dn+1+En+1)bn+1.
So for q = (q′, 0) + (Dn+1 + En+1)bn+1 ∈ Ln+1, we have D − E ≥ q, and we are done.

Lemma 6.31. — The extremal points of Σ(Ln+1) are of the form (v, 0) + q where v is an
extremal point Σ(Ln) and q is a point in Ln+1. Similarly, the elements of Extc(Ln+1) are of
the form (u,−1) + q where u is a point of Extc(Ln) and q ∈ Ln+1.

Proof. — The proof is similar to the proof of the previous lemma and we only prove one
direction, namely Ext(Ln+1) ⊆ Ext(Ln)×{0}+Ln+1. The other inclusions Ext(Ln)×{0}+
Ln+1 ⊆ Ext(Ln+1), Extc(Ln+1) ⊆ Extc(Ln)× {−1}+ Ln+1, and Extc(Ln)× {−1}+ Ln+1 ⊆
Extc(Ln+1) follows similarly.

Let v̄ = (v̄0, . . . , v̄n+1) be an extremal point of Ln+1, i.e., v̄ ∈ Ext(Ln+1). Let v ∈ Zn+1

be defined as follows: (v, 0) = v̄ − v̄n+1bn+1. The claim follows once we have shown that
v is an extremal point of Ln. To prove that v is an extremal point, we need to show that
for all q ∈ Ln, v � q and that v is a local minimum for the degree function. Suppose that
this is not the case and let q ∈ Ln be such that v ≤ q. We have v̄ ≤ (q, 0) + v̄n+1bn+1 and
(q, 0) + v̄n+1bn+1 ∈ Ln+1, which is a contradiction to the assumption that v̄ ∈ Ext(Ln+1).
The proof that v is a local minimum follows similarly.

As a corollary to the above lemmas, we obtain

Corollary 6.32. — If Ln has the Riemann-Roch property (resp. is uniform and reflection-
invariant), then Ln+1 also has the Riemann-Roch property (resp. is uniform and reflection-
invariant). Furthermore, we have Kn+1 = (Kn, 0), where Ki is canonical for Li, i = n, n+ 1.

We now show that if L2 is the family of lattices that we described above, then Ln is not
graphical. Indeed, by applying Lemma 6.31 and by induction on n, it is easy to show that
Ln is not strongly reflection invariant, provided that L2 is not strongly reflection invariant,
and we know that this is the case.

Remark that the family of all Ln constructed above is infinite (for each fixed n). Indeed,
by using the fact that Pic(Ln) = Pic(Ln+1), and by observing that the set |Pic(L2)| contains
an infinite number of values, we conclude that |Pic(Ln)| takes an infinite number of values
and so the family of all Ln is infinite.

7. Algorithmic Issues

Let L be a full-rank sub-lattice of An. While it is not well known whether calculating the
rank of a given point for a Laplacian lattice can be done in polynomial time or not, calculating
the rank function for general L becomes more complicated. In this section, we show that this
problem is NP-hard. Actually we prove that deciding if r(D) ≥ 0 is already NP-hard for
general D and L. Remark that for the case of graphs, deciding if r(D) ≥ 0 can be done in
polynomial time [17, 24].

By the results of Section 2, deciding if r(D) = −1 is equivalent to deciding whether
−D ∈ Σ(D) or not. So we will instead consider this membership problem. We will show
below that this problem is equivalent to the problem of deciding whether a rational simplex
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contains an integral point. We then use this to show that it is generally NP-hard to decide
if a given integral point D is contained in Σ(L). As every point of positive degree is in Σ(L),
we may only consider the points of negative degree.

We first state the following simple lemma.

Lemma 7.1. — Let D be a point in Zn+1 of negative degree. We have D ∈ Σ(L) if and only
if the simplex 4̄− deg(D)

n+1

(π0(D)) contains no lattice point (a point in L) in its interior.

Proof. — We saw in Section 4 that ∂Σc(L) is the lower graph of the function h4,L. It follows
that D ∈ Σ(L) if and only if −deg(D)

n+1 < h4,L(π0(D)). By the definition of h4,L, this means

that D ∈ Σ(L) is equivalent to d4̄(p, π0(D)) = d4(π0(D), p) > −deg(D)
n+1 for all p ∈ L, which

is to say, 4̄− deg(D)
n+1

(π0(D)) contains no lattice point.

Hence, the question of deciding whether if D ∈ Σ(L) is equivalent to the following question:
Given a simplex of the form 4̄r(x) with centre at x and radius r ≥ 0, can we decide if there

is a lattice point in the simplex?
A simple calculation shows that the vertices of 4̄−deg(D)

n+1

(π0(D)) are all integral. This shows

that with respect to the lattice L, the simplex 4̄−deg(D)
n+1

(π0(D)) is rational, i.e., there exists

a large integer N such that N4̄−deg(D)
n+1

(π0(D)) is a polytope with vertices all in L. (This is

because L is full dimensional and itself integral.)
We now recall that the complexity of deciding if an arbitrary rational n-dimensional simplex

in Rn contains a point of Zn is NP-hard when the dimension n is not fixed, and it is polynomial
time solvable when the dimension is fixed [3]. In our case, we are fixing the rational simplex,
and L is an arbitrary sub-lattice of An. However, it is quite easy to reduce the original
problem to our case and to obtain the same complexity results in our setting. A polynomial-
time reduction is described below:
Given the vertices V (S) = {v1, . . . , vn} of a rational simplex S in Rn, we do the following.

1. Compute the centroid c(S) =
P
i vi

n+1 of S and let S′ = S − c(S).
2. Define the linear map f from Rn to H0 by sending V (S′) bijectively to V (4̄) =
{e0, . . . , en}. Let 4̄(x) be the image of S, where x = f(c(S)).

3. Let L0 = f(Zn) and N be a large integer such that NL ⊂ An (such N exists since f
and S are rational, and so L is rational). Remark that we have NL∩N4̄(x) 6= ∅ if and
only if S ∩ Zn 6= ∅. Remark also that N4̄(x) = 4̄N (Nx).

4. Let D be the integral point in Zn+1 defined by D = Nx − N(n + 1)(1, . . . , 1). Then
π0(D) = Nx, deg(D) = −N(n+ 1), and N4̄(x) = 4̄−deg(D)

n+1

(π0(D)).)

For L defined as above, we infer that 4̄−deg(D)
n+1

(π0(D))∩L 6= ∅ if and only S ∩Zd 6= ∅. So we

have

Theorem 7.2. — For an arbitrary full rank sub-lattice L of An, the problem of deciding if
r(D) = −1 given a point D ∈ Zn+1 and a basis of L is NP-hard.

As a consequence, we also note that the decision version of the problem of computing the
rank is NP-hard.
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Theorem 7.3. — Given an integer k ≥ −1, a point D ∈ Zn+1 and a basis of L of a sub-
lattice of An. The problem of deciding if r(D) ≥ k is NP-hard.

It is interesting to note that for the case of Laplacian lattices of graphs on n+ 1 vertices,
with a given basis formed by the n rows of the Laplacian matrix, the problem of deciding if
an integral point belongs to the Sigma-Region can be done in polynomial time [17]. So we
are naturally led to the following questions:

Question 1. — Given a full rank sub-lattice L of An, does there exist a special basis B of L
such that if L is given with B, then the membership problem for the Sigma-Region of L can
be solved in polynomial time ?

Question 2. — Given a Laplacian sub-lattice of An, is it possible to find the special basis of
L in time polynomial in n? Given a sub-lattice of An, is it possible to decide if L is Laplacian
in time polynomial in n ?

8. Concluding Remarks

In this section, we provide some concluding remarks on the results of the previous sections.

8.1. Extension to Non-Integral Sub-Lattices. — It is possible to extend the results of
the previous sections to an arbitrary sub-lattice L of H0 of dimension n. However, since Σ(L)
does not make sense in the general case, one needs to work directly with ΣR(L) and its closure
Σc(L). Thus, in this setting and for integral sub-lattices, min- and max-genus, rank-function,
canonical point, etc change but the new theory is easily related to what we considered in the
previous sections (through the relation between Σc(L) and Σ(L)).

In the general setting, the definition of the rank-function is inspired by the characterization
given in Lemma 2.2. Namely, for a point D in Rn+1, r̄(D) = −1 if and only if −D is a point
in Σc(L). More generally, r̄(D) + 1 is the distance of −D to Σc(L) in the `1 norm, i.e.,

r̄(D) = dist`1(−D,Σc(L))− 1 := inf{||p+D||`1 | p ∈ Σc(L)} − 1.

In the case of integral sub-lattices of An, the previous rank-function r(.) is related to the new
rank function by r(D) = r̄(D+ (1, . . . , 1)). The structural theorem of Sigma-Region remains
valid, and the definitions of the max- and min-genus and the distance function extend without
change to this case. A Riemann-Roch theorem can be proved for uniform and reflection
invariant real sub-lattices of H0. Note that for integral sub-lattices of An, the ∗−genus
with respect to Σc is ḡ∗ = g∗ + n + 1 where ∗ ∈ {min,max}, and the new canonical point
K̄ associated to r̄, if exists, is nothing but K + (2, . . . , 2), where K is the canonical point
described in the previous sections.

8.2. On the Number of Different Classes of Critical Points.— Given a full rank
sub-lattice L of An, we bound here the number of different critical points modulo L.

Theorem 8.1. — For a given sub-lattice L of An, there are at most n! different critical
points modulo L.
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Proof. — (Sketch of the proof.) Let us consider the gradient flow of the function h and its
corresponding flow complex. i.e., for each critical point v ∈ Crit(L), we have a maximal open
subset Uv ⊂ H0 such that for each point u ∈ Uv, the gradient flow of h starting at u ends
at v. Moreover, H0 \ ∪vUv has measure zero. By translation invariance, the tiling obtained
by Uv is also translation invariant, i.e., Uv+p = Uv + p for all points p ∈ L and v ∈ Crit(L).
Lemma 4.13 implies that for each critical point v, there exist points p0, . . . , pn ∈ L, such that
pi’s are in different facets of 4̄h4,L(v)(v). By the definition of the distance function h4,L, it
is easy to see the simplex 4̄h4,L(v)(v) containing these points is in the topological closure of
the open set Uv. It follows that Uv has volume at least the volume of the simplex obtained
by taking the convex hull of the points p0, . . . , pn. This volume is at least the volume of the
minimal simplex defined by L, i.e., vol(L)

n! . We infer that each open set Uv has volume at least
vol(L)
n! . By taking the quotient modulo L, we conclude that |Crit(L)/L| ≤ n!, i.e., the number

of different classes of critical points modulo L is at most n!.

8.3. A Duality Theorem for Arrangements of Simplices. — Let L be a sub-lattice
of An of dimension n. For a real number t ≥ 0, define the arrangement At as the union of all
the simplices 4t(c) for c ∈ Crit(L), i.e.,

At :=
⋃

c∈Crit(LG)

4t(c).

A second arrangement Bt is defined as the union of all the simplices 4̄t(p) for p ∈ L, i.e.,

Bt :=
⋃
p∈LG

4̄t(p).

(Recall that 4̄ = −4.)

Definition 8.2. — The covering number of a lattice L denoted by Cov(L) is the smallest
real k such that Bk = H0.

It is not difficult to show that for a sub-lattice L of An, the Covering Number is given by
Cov(L) = gmax+n

n+1 . (Thus, for a uniform lattice, Cov(L) = g+n
n+1 .)

Let G be an undirected graph on n + 1 and with m edges (thus, g = m − n). Let LG be
the Laplacian lattice of G. (In this case, by the results of Section 6.1 (c.f., Equation 12), the
covering number of Cov(LG) is the density of the graph.)

The two arrangements A and B are dual in the following sense.

Theorem 8.3 (Duality between A and B). — For any 0 ≤ t ≤ Cov(LG), the arrange-
ment Bt is the closure of the complement of the arrangement ACov(LG)−t in H0, i.e.,

Bt =
(
H0 \ ACov(LG)−t

)c
.

In particular, for any 0 ≤ t ≤ Cov(LG), ∂Bt = ∂ACov(LG)−t.

Proof. — (Sketch of the proof) Let x ∈ Bt ∩ ACov(LG)−t. By the definition of the two ar-
rangements B and A, there exists a point p ∈ LG and a point c ∈ Crit(LG) such that
x ∈ 4̄t(p) ∩ 4Cov(LG)−t(c). By the triangle inequality for d4 and the results of Section 6.1,
it follows that d4(c, p) = Cov(LG), d4(x, p) = t, and d4(c, x) = Cov(LG) − t. Thus, we
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have x ∈ ∂Bt ∩ ∂ACov(LG)−t. It follows that Bt and ACov(LG)−t have disjoint interiors,

and so Bt ⊆
(
H0 \ ACov(LG)−t

)c
. The other inclusion H0 \ ACov(LG)−t ⊂ Bt follows from

the structural theorem of the Sigma-Region, Theorem 2.6 (and Theorem 2.7). Namely, we
claim that for every point x ∈ H0, there exists a point p ∈ LG and a point c ∈ Crit(LG),
such that d4(c, x) + d4(x, p) = d4(c, p) = Cov(LG), and this clearly implies the inclusion
H0 \ ACov(LG)−t ⊂ Bt. Let p be a point of LG such that h4(x) = d4(x, p). By Proposi-
tion 4.8, the point x − h4(x)(1, . . . , 1) lies on the boundary of Σc. By Theorem 2.7, there
exists an extremal point ν of Extc(LG) such that ν ≤ x − h4(x)(1, . . . , 1). Let c be the
critical point π0(ν) ∈ Crit(LG). Note that h4(c) = Cov(LG). By Proposition 4.8, we have
ν = c − Cov(LG)(1, . . . , 1). Thus, we have c − h4(c)(1, . . . , 1) ≤ x − h4(x)(1, . . . , 1), or
equivalently c − (Cov(LG) − h4(x))(1, . . . , 1) ≤ x. By the explicit definition of d4, we have
d4(c, x) ≤ Cov(LG)−h4(x) = Cov(LG)−d4(x, p). Since d(c, p) ≥ Cov(LG), this shows that
d4(c, x) = Cov(LG)− d4(x, p) and the claim follows.
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