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ABSTRACT. In this paper we prove several lifting theorems for morphisms of tropical curves. We inter-
pret the obstruction to lifting a finite harmonic morphism of augmented metric graphs to a morphism of
algebraic curves as the non-vanishing of certain Hurwitz numbers, and we give various conditions under
which this obstruction does vanish. In particular we show that any finite harmonic morphism of (non-
augmented) metric graphs lifts. We also give various applications of these results. For example, we show
that linear equivalence of divisors on a tropical curve C coincides with the equivalence relation generated
by declaring that the fibers of every finite harmonic morphism from C to the tropical projective line are
equivalent. We study liftability of metrized complexes equipped with a finite group action, and use this to
classify all augmented metric graphs arising as the tropicalization of a hyperelliptic curve. We prove that
there exists a d-gonal tropical curve that does not lift to a d-gonal algebraic curve.

This article is the second in a series of two.

Throughout this paper, unless explicitly stated otherwise, K denotes a complete algebraically closed non-
Archimedean field with nontrivial valuation val : K → R ∪ {∞}. Its valuation ring is denoted R, its maximal
ideal is mR, and the residue field is k = R/mR. We denote the value group of K by Λ = val(K×) ⊂ R.

1. INTRODUCTION

This article is the second in a series of two. The first, entitled Lifting harmonic morphisms I: metrized
complexes and Berkovich skeleta, will be cited as [ABBR13]; references of the form “Theorem I.1.1”
will refer to Theorem 1.1 in [ABBR13].

1.1. The basic motivation behind the investigations in this paper is to understand the relationship
between tropical and algebraic curves. A fundamental problem along these lines is to understand
which morphisms between tropical curves arise as tropicalizations1 of morphisms of algebraic curves.
More precisely, we are interested in the following question:

(Q) Given a curve X with tropicalization C, can we classify the branched covers of X in terms of
(a suitable notion of) branched covers of C?

In addition to this lifting problem for morphisms of tropical curves, we also study questions such
as “Which tropical curves arise as tropicalizations of hyperelliptic curves?”. This naturally leads us to
study group actions on tropical curves and how notions such as gonality change under tropicalization.

In this paper we will consider three different kinds of “tropical” objects which one can associate to
a smooth, proper, connected algebraic curve X/K, each depending on the choice of a triangulation
of X. Roughly speaking, a triangulation (X,V ∪ D) of X (with respect to a finite set of punctures
D ⊂ X(K)) is a finite set V of points in the Berkovich analytification Xan of X whose removal
partitions Xan into open balls and finitely many open annuli (with the punctures belonging to distinct
open balls). Triangulations of (X,D) are naturally in one-to-one correspondence with semistable
models X of (X,D); see Section I.5. The skeleton of a triangulated curve is the dual graph of the

We are grateful to Andrew Obus for a number of useful comments based on a careful reading of the first arXiv version
of this manuscript. We thank Ye Luo for allowing us to include Example 5.13. M.B. was partially supported by NSF grant
DMS-1201473. E.B. was partially supported by the ANR-09-BLAN-0039-01.

1In the present paper tropicalization is defined via Berkovich’s theory of analytic spaces (see also [Pay09],
[BPR11], [CLD12]). Another framework for tropicalization has been proposed by Kontsevich-Soibelman [KS01] and
Mikhalkin (see for example [Mik06]), where the link between tropical geometry and complex algebraic geometry is provided by
real one-parameter families of complex varieties. For some conjectural relations between the two approaches see [KS01, KS06].
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special fiber Xk of the corresponding semistable model, with infinite rays for the punctures, equipped
with its canonical metric.

To any triangulated curve, one may associate the three following “tropical” objects, at each step
adding some additional structure:

(1) a metric graph Γ: this is the skeleton of the triangulated curve (X,V ∪D);
(2) an augmented metric graph (Γ, g), i.e., a metric graph Γ enhanced with a genus function

g : Γ → Z≥0 which is non-zero only at finitely many points: this is the above metric graph
together with the function g satisfying g(p) = 0 for p 6∈ V and g(p) = genus(Cp) for p ∈ V ,
where Cp is the (normalization of the) irreducible component of Xk corresponding to p;

(3) a metrized complex of curves C, i.e., an augmented metric graph Γ equipped with a vertex
set V and a punctured algebraic curve over k of genus g(p) for each point p ∈ V , with the
punctures in bijection with the tangent directions to p in Γ: this is the above metric graph,
together with the curves Cp for p ∈ V and punctures given by the singular points of Xk.

An (augmented) metric graph or metrized complex of curves arising from a triangulated curve
by the above procedure is said to be liftable. If (X,V ∪ D) and (X,V ′ ∪ D′) are triangulations of
the same curve X, with D′ ⊂ D and V ′ ⊂ V , then the corresponding metric graphs are related by
a so-called tropical modification. Tropical modifications generate an equivalence relation on the set
of (augmented) metric graphs, and an equivalence class for this relation is called an (augmented)
tropical curve. The (augmented) tropicalization of a K-curve X is by definition the (augmented)
tropical curve C corresponding to any triangulation of X. Tropical curves and augmented tropical
curves can be thought of as “purely combinatorial” objects, whereas metrized complexes are a mixture
of combinatorial objects (which one thinks of as living over the value group Λ of K) and algebro-
geometric objects over the residue field k of K.

There is a natural notion of finite harmonic morphism between metric graphs which induces a
natural notion of tropical morphism between tropical curves. There is a corresponding notion of
tropical morphism for augmented tropical curves, where in addition to the harmonicity condition one
imposes a “Riemann–Hurwitz condition” that the ramification divisor is effective. There is also a
natural notion of finite harmonic morphism for metrized complexes of curves. Each kind of object
(metric graphs, tropical curves, augmented tropical curves, metrized complexes) forms a category
with respect to the corresponding notion of morphism. The construction of an (augmented) tropical
curve C (resp. metrized complex C) out of a K-curve X (resp. triangulated K-curve (X,V ∪ D)) is
functorial, in the sense that a finite morphism of curves induces in a natural way a tropical morphism
C ′ → C (resp. a finite harmonic morphism C′ → C).

1.2. Our original question (Q) now breaks up into the following two separate questions.

(Q1) Which finite harmonic morphisms C′ → C of metrized complexes can be lifted to finite mor-
phisms of triangulated curves (with a pre-specified lift X of C)?

(Q2) Which tropical morphisms between augmented tropical curves can be lifted to finite harmonic
morphisms of metrized complexes?

One can also forget the augmentation function g : Γ→ Z≥0 and ask the following variant of (Q2):

(Q2′) Which tropical morphisms between tropical curves can be lifted to finite harmonic morphisms
of metrized complexes?

A consequence of the results of [ABBR13] is that the answer to question (Q1) is essentially “all”,
so the situation here is rather satisfactory; there is no obstruction to lifting a finite harmonic mor-
phism C′ → C to a branched cover of X, at least assuming everywhere tame ramification when k has
characteristic p > 0. In particular, if char(k) = 0 then there are no tameness issues, and we have the
following result:

Theorem. Assume char(k) = 0 and let ϕ : Σ′ → Σ be a finite harmonic morphism of Λ-metrized
complexes of k-curves. Then there exists a finite morphism of triangulated punctured curves lifting ϕ.
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This follows immediately from Proposition I.7.15 and Theorem I.3.24. We stress that the genus
and degree are automatically preserved by such lifts.

Essentially by definition, (Q2) reduces to an existence problem for ramified coverings ϕp′ : C ′p′ →
Cp of a given degree with some prescribed ramification profiles. Hence the answer to (Q2) is inti-
mately linked with the question of non-vanishing of Hurwitz numbers. See Proposition 3.3. In par-
ticular one can easily construct tropical morphisms between augmented tropical curves which cannot
be promoted to a finite harmonic morphism of metrized complexes (and hence cannot be lifted to a
finite morphism of smooth proper curves over K). The simplest example of such a tropical morphism
is depicted in Figure 1, and corresponds to the classical fact that although it would not violate the
Riemann–Hurwitz formula, there is no degree 4 map of smooth proper connected curves over C hav-
ing ramification profile {(2, 2), (2, 2), (3, 1)}; this is a consequence of the (easy part of the) Riemann
Existence Theorem (see Example 3.4 below for more details).
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FIGURE 1. A tropical morphism of degree four which cannot be promoted to a de-
gree 4 morphism of metrized complexes of curves. The labels on the edges are the
“expansion factors” of the harmonic morphism. See Definition I.2.4.

Understanding when Hurwitz numbers vanish remains mysterious in general, so at present there
is no satisfying “combinatorial” answer to question (Q2), in which we require that the genus of the
objects in question be preserved by our lifts. However, if we drop the latter condition, i.e., if we
consider instead question (Q2′), we will see that the answer to (Q2′) is also “all” (see Theorem 3.11):

Theorem. Any finite harmonic morphism ϕ : Γ′ → Γ of Λ-metric graphs is liftable if char(k) = 0.

1.3. Applications. We prove a number of additional results which supplement and provide applica-
tions of the above results. Some of these results are as follows.

1.3.1. Tame group actions. Let C be a metrized complex and let H be a finite subgroup of Aut(C).
We say the action of H on C is tame if for any vertex p of Γ, the stabilizer group Hp acts freely on a
dense open subset of Cp, and for any point x of Cp, the stabilizer subgroupHx ofH is cyclic of the form
Z/dZ for some integer d, with (d, p) = 1 if char(k) = p > 0 (see Remark 4.6 for further explanation
of this condition). It follows from Theorem I.7.4 (in its strong form, i.e. using the calculation of the
automorphism group of a lift) that we can lift C together with a tame action of H if and only if the
quotient C/H exists in the category of metrized complexes. We characterize when such a quotient
exists in Theorem 4.9, of which the following result is a special case:

Theorem. Suppose that the action of H is tame and has no isolated fixed points on the underlying metric
graph of C. Then there exists a smooth, proper, and geometrically connected algebraic K-curve X lifting
C which is equipped with an action of H commuting with the tropicalization map.

In presence of isolated fixed points, there are additional hypothesis on the action of H to be liftable
to a K-curve. As a concrete example, we prove the following characterization of all augmented
tropical curves arising as the tropicalization of a hyperelliptic K-curve (see Corollary 4.15):
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Theorem. Let Γ be an augmented metric graph of genus g ≥ 2 having no infinite vertices or degree one
vertices of genus 0. Then there is a smooth proper hyperelliptic curve X over K of genus g having Γ as its
minimal skeleton if and only if (a) there exists an involution s on Γ such that s fixes all the points p ∈ Γ
with g(p) > 0 and the quotient Γ/s is a metric tree, and (b) for every p ∈ Γ the number of bridge edges
adjacent to p is at most 2g(p) + 2.

1.3.2. Gonality of tropical curves. The tropical projective line is the augmented tropical curve TP1

represented by any tree with genus function identically zero. See Example 2.15. An augmented
tropical curve C is called d-gonal if there exists a tropical morphism of degree d from C to TP1. By
Corollary I.4.28, the gonality of an augmented tropical curve is always a lower bound for the gonality
of any lift to a smooth proper curve over K. (See Remark 5.3 for a discussion of the various notions
of gonality of tropical curves existing in the literature.) We prove in Section 5 that none of the lower
bounds provided by tropical ranks and gonality are sharp. For example:

Theorem.

(1) There exists an augmented tropical curve C of gonality 4 such that the gonality of any lifting of
C is at least 5.

(2) There exists an effective divisor D on a tropical curve C such that D has tropical rank equal to
1, but any effective lifting of D has rank 0.

The construction in (1) uses the vanishing of the degree 4 Hurwitz numberH4
0,0((2, 2), (2, 2), (3, 1)).

In fact we prove in Theorem 5.4 a much stronger statement: we exhibit an augmented (non-metric)
graph G such that none of the augmented tropical curves with G as underlying augmented graph can
be lifted to a 4-gonal K-curve. This means that there is a finite graph with stable gonality 4 (in the
sense of [CKK]) which is not the (augmented) dual graph of any 4-gonal curve X/K.

The proof of (2) is based on our lifting results and an explicit example, due to Luo (see Exam-
ple 5.13), of a degree 3 and rank 1 base-point free divisor D on a tropical curve C which does not
appear as the fiber of any degree 3 tropical morphism from C to TP1.

1.3.3. Linear equivalence of divisors. When the target curve has genus zero, we investigate in (3.16)
a variant of question (Q2′) in which the genus of the source curve may be prescribed, at the cost of
losing control over the degree of the morphism. As an application, we show in Theorem 4.3 that
linear equivalence of divisors on a tropical curve C coincides with the equivalence relation generated
by declaring that the fibers of every tropical morphism from C to the tropical projective line TP1 are
equivalent:

Theorem. Let Γ be a metric graph. Linear equivalence of divisors on Γ is the additive equivalence relation
generated by (the retraction to Γ of) fibers of finite harmonic morphisms from a tropical modification of
Γ to a metric graph of genus zero.

1.4. Organization of the paper. The paper is organized as follows. Precise definitions of tropical
modifications and tropical curves are given in Section 2, along with various kinds of morphisms be-
tween these objects. In that section we also use results from [ABBR13] to define tropicalizations
of morphisms of curves, and provide a number of examples. Lifting results for (augmented) metric
graphs and tropical curves are proved in Section 3. Section 4 contains applications of our lifting
results. For example, lifting results for metrized complexes equipped with a finite group action are
discussed in (4.5). In (4.5) we also give a complete classification of all hyperelliptic augmented trop-
ical curves which can be realized as the minimal skeleton of a hyperelliptic curve. Finally, in Section
5 we study tropical rank and gonality and related lifting questions.

1.5. Related work. The definition of effective harmonic morphisms of augmented metric graphs that
we use is the same as in [BBM11]. The closely related, but slightly different, notion of an “indexed har-
monic morphism” between weighted graphs was considered in [Cap]. The indexed pseudo-harmonic
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(resp. harmonic) morphisms in [Cap] are closely related to harmonic (resp. effective harmonic) mor-
phisms in our sense when the vertex sets are fixed (see Definition I.2.4), and non-degenerate mor-
phisms in the sense of [Cap] correspond to finite morphisms in our sense. One notable difference is
that in [Cap], only the combinatorial type of the metric graphs are fixed; the choice of positive indices
in an indexed pseudo-harmonic morphism determines the length of the edges in the source graph
once the edge lengths in the target are fixed.

Tropical modifications and the “up-to-tropical-modification” point of view were introduced by
Mikhalkin [Mik06].

In (5.1) we propose a definition for the stable gonality of a graph which coincides with the one used
by Cornelissen et. al. in their recent preprint [CKK]. A slightly different notion of gonality for graphs
was introduced by Caporaso in [Cap]. We also define the gonality of an augmented tropical curve,
which strikes us as a more natural and perhaps more useful notion than the stable gonality of a graph
(where the lengths of the edges in the source and target metric graphs are not pre-specified). We
emphasize the importance of considering the dual graph of the special fiber of a semistable model of
a smooth proper K-curve as an (augmented) metric graph and not just as a (vertex-weighted) graph.
Keeping track of the natural edge lengths allows us to avoid pathological examples like Example 2.18
in [Cap] of a 3-gonal graph which is not divisorally 3-gonal.

The question of lifting effective harmonic morphisms of metric graphs also occurs naturally (in a
related but different Archimedean framework) when one considers degenerating families of complex
algebraic dynamical systems; see for example [DM08, Theorems 1.2 and 7.1] where DeMarco and
McMullen prove a lifting theorem for polynomial-like endomorphisms of (locally finite) simplicial
trees which has applications to studying dynamical compactifications of the moduli space of degree d
polynomial maps. Our Theorem 3.15 was inspired by the results of DeMarco–McMullen.

2. ALGEBRAIC AND TROPICAL CURVES

In this section we introduce tropical curves and morphisms between them. We use the results
of [ABBR13] to define functorial “intrinsic tropicalizations” of algebraic curves. We will freely use the
definitions and notations in Section I.2. We reproduce some of them here for the convenience of the
reader.

2.1. Metric graphs. A Λ-metric graph is a metric graph whose edge lengths belong to Λ. The length
of an embedded segment e in a metric graph Γ is denoted `(e). The set of tangent directions at a point
p of Γ is denoted Tp(Γ). To a harmonic morphism ϕ : Γ′ → Γ of metric graphs are associated its degree
deg(ϕ), its degree at a point dp′(ϕ), the degree of ϕ along an edge (also called the expansion factor)
de′(ϕ), the directional derivative of ϕ along a tangent direction at a vertex dv′(ϕ), and the induced
map on tangent spaces dϕ(p′) when dp′(ϕ) 6= 0.

The group of divisors on a metric graph Γ is denoted Div(Γ). A harmonic morphism of metric
graphs ϕ : Γ′ → Γ gives rise to push-forward and pull-back homomorphisms ϕ∗ : Div(Γ′) → Div(Γ)
and ϕ∗ : Div(Γ)→ Div(Γ′) defined by

ϕ∗(p) =
∑
p′ 7→p

dp′(ϕ) (p′) and ϕ∗(p
′) = (ϕ(p′))

and extending linearly. It is clear that for D ∈ Div(Γ) we have deg(ϕ∗(D)) = deg(ϕ) · deg(D) and
deg(ϕ∗(D)) = deg(D).

2.2. Augmented metric graphs. An augmented metric graph Γ has a genus function g : Γ → Z≥0.
We say that Γ is totally degenerate provided that g is identically zero. The genus of Γ is

g(Γ) = h1(Γ) +
∑
p∈Γ

g(p),
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where h1(Γ) is the first Betti number of Γ. If g(Γ) = 0 then we say that Γ is rational. The canonical
divisor of an augmented metric graph Γ is

KΓ =
∑
p∈Γ

(val(p) + 2g(p)− 2) (p).

The degree of KΓ is deg(KΓ) = 2g(Γ)− 2.
Let ϕ : Γ′ → Γ be a harmonic morphism of augmented metric graphs. The ramification divisor of ϕ

is the divisor R =
∑
Rp′(p

′), where for p′ ∈ Γ′,

Rp′ = dp′(ϕ) ·
(
2− 2g(ϕ(p′))

)
−
(
2− 2g(p′)

)
−

∑
v′∈Tp′ (Γ

′)

(
dv′(ϕ)− 1

)
.

We have the Riemann–Hurwitz formula

KΓ′ = ϕ∗(KΓ) +R.

We say that ϕ is generically étale if R is supported on the set of infinite vertices of Γ and is étale if
R = 0.

2.3. Effective harmonic morphisms. We will use the following Riemann–Hurwitz condition in for-
mulating lifting problems for harmonic morphisms of augmented metric graphs. Given a vertex
p′ ∈ V (Γ′) with dp′(ϕ) 6= 0, we define the ramification degree of ϕ at p′ to be

rp′ = Rp′ −#{v′ ∈ Tp′(Γ′) : dv′(ϕ) = 0}.

Clearly rp′ ≤ Rp′ , with rp′ = Rp′ if and only if dv′(ϕ) > 0 for any v′ ∈ Tp′(Γ
′), i.e. the distinc-

tion between ramification divisors and ramification degrees only makes sense for non-finite harmonic
morphisms. Our motivation not to restrict ourselves to finite harmonic morphisms is that non-finite
harmonic morphisms show up naturally in many practical situations.

Definition 2.4. A harmonic morphism of augmented Λ-metric graphs ϕ : Γ′ → Γ is said to be effective
if rp′ ≥ 0 for every finite vertex p′ of Γ′ with dp′(ϕ) 6= 0.

The significance of the number rp′ is given in Remark 2.7. In particular, only effective harmonic
morphisms of augmented metric graphs have a chance to be liftable to a harmonic morphism of
metrized complexes of curves, and possibly to a morphism of triangulated punctured K-curves. See
Remark 2.10.

Note that a generically étale morphism of augmented metric graphs is effective.

Example 2.5. Consider the harmonic morphisms of graphs ϕ : Γ′ → Γ represented in Figure 2. We
use the following conventions in our pictures: black dots represent vertices of Γ′ and Γ; we label an
edge with its degree if and only if the degree is different from 0 and 1; we do not specify the lengths
of edges of Γ′ and Γ.

The morphisms in Figure 2(a,b,c) are effective provided that all the target graphs are totally de-
generate. Suppose that all 1-valent vertices are infinite vertices in Figure 2 (d,e), and that g(p) = 0 in
Figure 2(e) and g(p) = 1 in Figure 2(e). Then rp′ = 2g(p′)− 1 and rp′i = 2g(p′i)− 2, so the morphism
depicted in 2(d) is effective if and only if g(p′) ≥ 1, and the morphism depicted in 2(e) is effective if
and only if both vertices p′1 and p′2 have genus at least 1.

The morphism in Figure 1 is effective when both graphs are totally degenerate.

2.6. Metrized complexes of curves. Metrized complexes of curves and harmonic morphisms be-
tween them are defined in (I.2.16). We recall part of the definitions here. A Λ-metrized complex of
k-curves C is the data of an underlying augmented Λ-metric graph Γ with a distinguished vertex set,
and for each finite vertex p ∈ Γ a smooth proper connected k-curve Cp of genus g(p), called the residue
curve, and an injective reduction map redp : Tp(Γ) ↪→ Cp(k). A harmonic morphism ϕ : C′ → C is a
harmonic morphism of underlying augmented metric graphs ϕ : Γ′ → Γ, taking finite vertices of Γ′ to
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FIGURE 2

finite vertices of Γ, along with a finite morphism ϕ : Cp′ → Cϕ(p′) for every finite vertex p′ of Γ′ such
that dp′(ϕ) 6= 0, satisfying the following compatibility conditions:

(1) For every finite vertex p′ ∈ V (Γ′) and every tangent direction v′ ∈ Tp′(Γ′) with dv′(ϕ) > 0,
we have ϕp′(redp′(v

′)) = redϕ(p′)(dϕ(p′)(v′)), and the ramification degree of ϕp′ at redp′(v
′)

is equal to dv′(ϕ).
(2) For every finite vertex p′ ∈ V (Γ′) with dp′(ϕ) > 0, every tangent direction v ∈ Tϕ(p′)(Γ), and

every point x′ ∈ ϕ−1
p′ (redϕ(p′)(v)) ⊂ C ′p′(k), there exists v′ ∈ Tp′(Γ′) such that redp′(v

′) = x′.
(3) For every finite vertex p′ ∈ V (Γ′) with dp′(ϕ) > 0 we have dp′(ϕ) = deg(ϕp′).

Let ϕ : C′ → C be a finite harmonic morphism of metrized complexes of curves. We say that ϕ is
a tame harmonic morphism if ϕp′ is tamely ramified for all finite vertices p′ ∈ Γ′. We call ϕ a tame
covering if in addition it is a generically étale finite morphism of augmented metric graphs.

Remark 2.7. It follows from the Riemann–Hurwitz formula applied to the maps ϕp′ : C ′p′ → Cϕ(p′)

that a harmonic morphism of metrized complexes of curves gives rise to an effective harmonic mor-
phism of augmented metric graphs when each ϕp′ is a separable morphism of curves; the integer rp′ is
then the sum of ramification indices over all ramification points of ϕp′ not contained in redp′(Tp′(Γ

′)).
In particular, tame harmonic morphisms of metrized complexes of curves give rise to effective har-
monic morphisms of augmented metric graphs.

2.8. Triangulated punctured curves and skeleta. Let X be a smooth, connected, proper algebraic
K-curve and let D ⊂ X(K) be a finite set of punctures. Recall from Definitions I.3.8 and I.3.9 that a
semistable vertex set of (X,D) is a finite set V of type-2 points ofXan such thatXan\(V ∪D) is a disjoint
union of open balls and finitely many once-punctured open balls and open annuli. If V is a semistable
vertex set of (X,D), then (X,V ∪ D) is called a triangulated punctured curve. The semistable vertex
sets of (X,D) are in bijective correspondence with the semistable R-models of (X,D).

To a triangulated punctured curve (X,V ∪ D) one associates a canonical Λ-metrized complex of
curves Σ(X,V ∪ D) called its skeleton. The genus of the underlying augmented metric graph Γ is
equal to genus g(X) of X. There is a canonical closed embedding Γ ↪→ Xan and a retraction map
τ : Xan → Γ.
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A finite morphism of triangulated punctured K-curves ϕ : (X ′, V ′ ∪D′) → (X,V ∪D) consists of
a finite morphsim ϕ : X ′ → X such that ϕ−1(V ) = V ′, ϕ−1(D) = D′, and ϕ−1(Σ(X,V ∪ D)) =
Σ(X ′, V ′ ∪D′) as sets. Here we restate Corollary I.4.28:

Proposition. Let ϕ : (X ′, V ′ ∪D′)→ (X,V ∪D) be a finite morphism of triangulated punctured curves.
Then ϕ naturally induces a finite harmonic morphism of Λ-metrized complexes of curves

Σ(X ′, V ′ ∪D′) −→ Σ(X, V ∪D).

Definition 2.9. A finite harmonic morphism ϕ : Γ′ → Γ of metrized complexes of curves (resp.
augmented metric graphs, resp. metric graphs) is said to be liftable provided that there exists a finite
morphism of triangulated punctured K-curves ϕ : (X ′, V ′ ∪ D′) → (X,V ∪ D) and an isomorphism
of ϕ with the induced finite harmonic morphism of skeleta Σ(X ′, V ′ ∪ D′) → Σ(X,V ∪ D) (resp. of
augmented metric graphs underlying the skeleta, resp. of metric graphs underlying the skeleta).

Remark 2.10. Among all finite harmonic morphisms of augmented metric graphs, only the effective
ones have a chance to be liftable to a tame finite morphism of triangulated punctured K-curves. Since
the induced morphism of skeleta is a finite harmonic morphism of metrized complexes of curves, this
follows from Remark 2.7.

2.11. Tropical modifications and tropical curves. Here we introduce an equivalence relation
among metric graphs; an equivalence class for this relation will be called a tropical curve.

Definition 2.12. An elementary tropical modification of a Λ-metric graph Γ0 is a Λ-metric graph Γ =
[0,+∞] ∪ Γ0 obtained from Γ0 by attaching the segment [0,+∞] to Γ0 in such a way that 0 ∈ [0,+∞]
gets identified with a finite Λ-point p ∈ Γ0. If Γ0 is augmented, then Γ naturally inherits a genus
function from Γ0 by declaring that every point of (0,+∞] has genus 0.

An (augmented) Λ-metric graph Γ obtained from an (augmented) Λ-metric graph Γ0 by a finite
sequence of elementary tropical modifications is called a tropical modification of Γ0.

If Γ is a tropical modification of Γ0, then there is a natural retraction map τ : Γ → Γ0 which is
the identity on Γ0 and contracts each connected component of Γ \ Γ0 to the unique point in Γ0 lying
in the topological closure of that component. The map τ is a (non-finite) harmonic morphism of
(augmented) metric graphs.

Example 2.13. We depict an elementary tropical modification in Figure 3(a), and a tropical modifi-
cation which is the sequence of two elementary tropical modifications in Figure 3(b).

τ

τ

a) b)

FIGURE 3. Two tropical modifications

Tropical modifications generate an equivalence relation ∼ on the set of (augmented) Λ-metric
graphs.
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Definition 2.14. A Λ-tropical curve (resp. an augmented Λ-tropical curve) is an equivalence class of
Λ-metric graphs (resp. augmented Λ-metric graphs) with respect to ∼.

In other words, a Λ-tropical curve is a Λ-metric graph considered up to tropical modifications and
their inverses (and similarly for augmented tropical curves). By abuse of terminology, we will often
refer to a tropical curve in terms of one of its metric graph representatives.

Example 2.15. There exists a unique rational (augmented) tropical curve, which we denote by
TP1. Any rational (augmented) metric graph whose 1-valent vertices are all infinite is obtained by a
sequence of tropical modifications from the metric graph consisting of a unique finite vertex (of genus
0).

Example 2.16. Let Γ0 be a Λ-metric graph, p ∈ Γ0 a finite Λ-point, and l ∈ Λ \ {0}. We can construct
a new Λ-metric graph Γ by attaching the segment [0, l] to Γ0 via the identification of 0 ∈ [0, l] with p.
Then Γ0 and Γ represent the same tropical curve, since the elementary tropical modification of Γ0 at p
and the elementary tropical modification of Γ at the right-hand endpoint of [0, l] are the same metric
graph.

Definition 2.17. Let Γ (resp. Γ′) be a representative of a Λ-tropical curve C (resp. C ′), and assume
we are given a harmonic morphism of Λ-metric graphs ϕ : Γ′ → Γ.

An elementary tropical modification of ϕ is a harmonic morphism ϕ1 : Γ′1 → Γ1 of Λ-metric graphs,
where τ : Γ1 → Γ is an elementary tropical modification, τ ′ : Γ′1 → Γ′ is a tropical modification, and
such that ϕ ◦ τ ′ = τ ◦ ϕ1.

A tropical modification of ϕ is a finite sequence of elementary tropical modifications of ϕ.
Two harmonic morphisms ϕ1 and ϕ2 of Λ-metric graphs are said to be tropically equivalent if there

exists a harmonic morphism which is a tropical modification of both ϕ1 and ϕ2.
A tropical morphism of tropical curves ϕ : C ′ → C is a harmonic morphism of Λ-metric graphs

between some representatives of C ′ and C, considered up to (the equivalence relation generated by)
tropical equivalence, and which has a finite representative.

One makes similar definitions for morphisms of augmented tropical curves, with the additional
condition that all harmonic morphisms should be effective.

Note that it might happen that two non-equivalent morphisms of augmented metric graphs repre-
sent the same tropical morphisms of non-augmented tropical curves.

Remark 2.18. The collection of Λ-metric graphs (resp. augmented Λ-metric graphs), together with
harmonic morphisms (resp. effective harmonic morphisms) between them, forms a category. Except
for the condition of having a finite representative, one could try to think of tropical curves, together
with tropical morphisms between them, as the localization of this category with respect to tropical
modifications. However, there are some technical problems which arise when one tries to make this
rigorous (at least if we demand that the localized category admit a calculus of fractions): as we will
see in Example 2.19, tropical equivalence is not a transitive relation between morphisms of Λ-metric
graphs. On the other hand, the restriction of tropical equivalence of morphisms (resp. of augmented
morphisms) to the collection of finite morphisms (resp. of generically étale morphisms) is transitive
(and hence an equivalence relation). This is one reason why we include the condition that ϕ has
a finite representative in our definition of a morphism of tropical curves; another reason is that all
morphisms of tropical curves which arise from algebraic geometry automatically satisfy this condition.
See (2.21).

Example 2.19. The morphism of (totally degenerate augmented) metric graphs depicted in Figure
2(b) (resp. 4(b)) is an elementary tropical modification of the one depicted in 4(a) (resp. 2(b)).

The tropical morphisms ϕ1 and ϕ2 of totally degenerate augmented tropical curves depicted in
Figure 4(c) and (d) are both elementary tropical modifications of the morphism ϕ depicted in Figure
4(e).
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FIGURE 4

The tropical morphisms ϕ1 and ϕ2 depicted in Figure 5(a) and (b) are both elementary tropical
modifications of the morphism ϕ depicted in Figure 5(c).
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FIGURE 5

On the other hand, the harmonic morphism ϕ : Γ′ → Γ depicted in Figure 2(c) with d = 1 is not
tropically equivalent to any finite morphism: since ϕ has degree 1, the cycle of the source graph will
be contracted to a point by any harmonic morphism of metric graphs tropically equivalent to ϕ. In
particular, ϕ does not give rise to a tropical morphism.

As mentioned above, tropical equivalence is not transitive among morphisms of metric graphs
(resp. of augmented metric graphs). For example, the two morphisms ϕ1 and ϕ2 depicted in Figure
4(c) and (d) are not tropically equivalent as augmented morphisms: since Rp′ = 0 in Figure 4(c), any
edge appearing in a tropical modification of ϕ1 will have degree 1.

Note that the preceding harmonic morphisms ϕ1 and ϕ2 are tropically equivalent as morphisms
of metric graphs (i.e. forgetting the genus function). However, tropical equivalence is not transitive
for tropical morphisms either, for essentially the same reason: the two tropical morphisms ϕ1 and ϕ2

depicted in Figure 5(a) and (b) are not tropically equivalent.
Nevertheless, the restriction of tropical equivalence of morphisms to the set of finite morphisms

(resp. generically étale morphisms) is an equivalence relation. Hence a tropical morphism (resp. an
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augmented tropical morphism) can also be thought as an equivalence class of finite harmonic mor-
phisms (resp. generically étale morphisms). In particular there exists a natural composition rule for
tropical morhisms (resp. augmented tropical morphisms), turning tropical curves (resp. augmented
tropical curves) equipped with tropical morphisms into a category.

Remark 2.20. In the definition of a tropical morphism of augmented tropical curves, in addition to
the condition of being a harmonic morphism and the “up to tropical modifications” considerations, we
imposed two rather strong conditions, namely being effective and having a finite representative. We
already saw in Example 2.19 that the finiteness condition is non-trivial. The effectiveness condition
is also non-trivial: for example, the harmonic morphism ϕ : Γ′ → Γ of totally degenerate augmented
metric graphs depicted in Figure 2(c) with d = 2 is not tropically equivalent to any finite effective
morphism of totally degenerate augmented metric graphs. Indeed, for any tropical modification of ϕ
which is effective, at most two edges adjacent to p′ can have degree 2; since Γ′ already has two such
edges for ϕ, any tropical modification of ϕ which is finite and effective will contract the cycle of Γ′ to
a point.

We refer to [BM] for a general definition of a tropical morphism ϕ : C → X from an augmented
tropical curve to a non-singular tropical variety, including Definition 2.17 as a particular case.

2.21. Algebraic and tropical curves. Restating Lemma I.3.15 and Remark I.3.16, we have:

Proposition. Let (X,V ∪ D) be a triangulated punctured K-curve. Let D′ ⊂ X(K) be a finite set and
let V ′ be a semistable vertex set of (X,D′), so (X,V ′ ∪ D′) is another triangulated punctured K-curve
with underlying curve X. Then the augmented metric graphs underlying Σ(X,V ′ ∪D′) and Σ(X,V ∪D)
represent the same tropical curve.

The above Proposition implies that one can associate a canonical (augmented) tropical curve to
any smooth proper connected K-curve X. This association is functorial by Corollary I.4.26:

Proposition. Let ϕ : X ′ → X be a finite morphism of smooth proper connected K-curves, let D ⊂ X(K)
be a finite set, and let D′ = ϕ−1(D). Then there exist semistable vertex sets V, V ′ of (X,D) and (X ′, D′),
respectively, such that ϕ induces a finite morphism of triangulated punctured curves ϕ : (X ′, V ′ ∪D′)→
(X,V ∪D). In particular, ϕ induces a finite harmonic morphism on suitable choices of skeleta.

Again we emphasize that a tropical morphism of tropical curves functorially induced by a finite
morphism of algebraic curves is effective and has a finite representative.

Definition 2.22. We say that a tropical morphism of tropical curves ϕ : C ′ → C is liftable provided
that there exists a finite morphism of smooth proper connected K-curves ϕ : X ′ → X functorially
inducing ϕ on skeleta in the above sense.

We will also make use in the text of the notion of tropical modifications of metrized complexes of
curves.

Definition 2.23. Let C0 be a Λ-metrized complex of k-curves.

• A refinement of C0 is any Λ-metrized complex of k-curves C obtained from C0 by adding a
finite set of Λ-points S of C0 \ V (C0) to the set V (C0) of vertices of C0 (see Definition I.2.17),
setting Cp = P1

k for all p ∈ S, and defining the map redp by choosing any two distinct closed
points of Cp.
• An elementary tropical modification of C0 is a Λ-metrized complex of k-curves C obtained from
C0 by an elementary tropical modification of the underlying metric graph at a vertex p of C,
with the map redp extended to e by choosing any closed point of Cp not in the image of the
reduction map for C0.
• Any metrized complex of curves C obtained from a metrized complex of curves C0 by a finite

sequence of refinements and elementary tropical modifications is called a tropical modification
of C0.
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3. LIFTING HARMONIC MORPHISMS OF METRIC GRAPHS TO MORPHISMS OF METRIZED COMPLEXES

There is an obvious forgetful functor which sends metrized complexes of curves to (augmented)
metric graphs, and harmonic morphisms of metrized complexes to harmonic morphisms of (aug-
mented) metric graphs. A harmonic morphism of (augmented) metric graphs is said to be liftable to a
harmonic morphism of metrized complexes of k-curves if it lies in the image of the forgetful functor.

We proved in Theorem I.7.7 that every tame covering of metrized complexes of curves can be
lifted to a tame covering of algebraic curves. In this section we study the problem of lifting harmonic
morphisms of (augmented) metric graphs to finite morphisms of metrized complexes (and thus to
tame coverings of proper smooth curves, thanks to Proposition I.7.15).

3.1. Lifting finite augmented morphisms. Recall that k is an algebraically closed field of character-
istic p ≥ 0. A finite harmonic morphism ϕ of (augmented) metric graphs is called a tame harmonic
morphism if either p = 0 or all the local degrees of ϕ along edges are prime to p. Lifting of tame har-
monic morphisms of augmented metric graphs to tame harmonic morphisms of metrized complexes
of k-curves is equivalent to the existence of tamely ramified covers of k-curves of given genus with
some given prescribed ramification profile.

3.1.1. A partition µ of an integer d is a multiset of natural numbers d1, . . . , dl ≥ 1 with
∑
i di = d.

The integer l, called the length of µ, will be denoted by l(µ).
Let g′, g ≥ 0 and d > 0 be integers, and let M = {µ1, . . . , µs} be a collection of s partitions of d.

Assume that the integer R defined by

(3.1.2) R := d(2− 2g) + 2g′ − 2− sd+

s∑
i=1

l(µi)

is non-negative. Denote by Adg′,g(µ1, . . . , µs) the set of all tame coverings ϕ : C ′ → C of smooth
proper curves over k, with the following properties:

(i) The curves C and C ′ are irreducible of genus g and g′, respectively;
(ii) The degree of ϕ is equal to d;

(iii) The branch locus of ϕ contains (at least) s distinct points x1, . . . , xs ∈ C, and the ramification
profile of ϕ at the points ϕ−1(xi) is given by µi, for 1 ≤ i ≤ s.

As we will explain now, the lifting problem for morphisms of augmented metric graphs to mor-
phisms of metrized complexes over a field k reduces to the emptiness or non-emptiness of certain sets
Adg′,g(µ1, . . . , µs). This latter problem is quite subtle, and no complete satisfactory answer is yet known
(see also (3.3.1)). In some simple cases, however, one can ensure that Adg′,g(µ1, . . . , µs) is non-empty.
For example, if all the partitions µi are trivial (i.e., they each consist of d 1’s), then Adg′,g(µ1, . . . , µs)

is non-empty. Here is another simple example.

Example 3.2. For an integer d prime to characteristic p of k, the set Ad0,0((d), (d)) is non-empty since
it contains the map z 7→ zd. This is in fact the only map in Ad0,0((d), (d)) up to the action of the group
PGL(2, k) on the target curve and P1-isomorphisms of coverings.

3.2.1. Let ϕ : Γ′ → Γ be a finite harmonic morphism of augmented metric graphs. Using the definition
of a harmonic morphism, one can associate to any point p′ of Γ′ a collection µ1(p′), . . . , µs(p

′) of s
partitions of the integer dp′(ϕ), where s = val(ϕ(p′)), as follows: if Tϕ(p)(Γ) = {v1, . . . , vs} denotes all
the tangent directions to Γ at ϕ(p′), then µi(p′) is the partition of dp′(ϕ) which consists of the various
local degrees of ϕ in all tangent directions v′ ∈ Tp′(Γ′) mapping to vi.

The next proposition is an immediate consequence of the various definitions involved once we note
that, by Example 3.2, there are only finitely points p′ ∈ Γ′ for which the question of non-emptiness
of the sets Adp′ (ϕ)

g(p′),g(ϕ(p′)) arises. It provides a “numerical criterion” for a tame harmonic morphism
of augmented metric graphs to be liftable to a tame harmonic morphism of metrized complexes of
curves.
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Proposition 3.3. Let ϕ : Γ′ → Γ be a tame harmonic morphism of augmented metric graphs. Then ϕ
can be lifted to a tame harmonic morphism of metrized complexes over k if and only if for every point p′

in Γ′, the set Adp′ (ϕ)

g(p′),g(ϕ(p′))(µ1(p′), . . . , µval(ϕ(p′))(p
′)) is non-empty.

3.3.1. In characteristic 0, the lifting problem for finite augmented morphisms of metric graphs can
be further reduced to a vanishing question for certain Hurwitz numbers.

Fix an irreducible smooth proper curve C of genus g over k, and let x1, . . . , xs, y1, . . . , yR be a set
of distinct points on C. The Hurwitz set Hdg′,g(µ1, . . . , µs) is the set of C-isomorphism classes of all
coverings in Adg′,g(µ1, . . . , µs) satisfying (i), (ii), and (iii) in (3.1.1) for the curve C and the points
x1, . . . , xs that we have fixed, and which in addition satisfy:

(iv) The integer R is given by (3.1.2), and for each 1 ≤ i ≤ R, ϕ has a unique simple ramification
point y′i lying above yi.

Note that by the above condition, the branch locus of ϕ consists precisely of the points xi, yj . The
Hurwitz number Hd

g′,g(µ1, . . . , µs) is defined as

Hd
g′,g(µ1, . . . , µs) :=

∑
ϕ∈Hd

g′,g(µ1,...,µs)

1

|AutC(ϕ)|
,

and does not depend on the choice of C and the closed points x1, . . . , xs, y1, . . . , yR in C.

Example 3.4. It is known, see for example [EKS84], that

H2
g,0 =

1

2
, H3

g,0((3), . . . (3)) > 0, H4
0,0((2, 2), (2, 2), (3, 1)) = 0.

For the reader’s convenience, and since we will use it several times in the sequel, we sketch a proof
of the fact that H4

0,0((2, 2), (2, 2), (3, 1)) = 0. By the Riemann–Hurwitz formula and the Riemann
Existence Theorem, H4

0,0((2, 2), (2, 2), (3, 1)) 6= 0 if and only if there exist elements σ1, σ2, σ3 in the
symmetric group S4 having cycle decompositions of type (2, 2), (2, 2), (3, 1), respectively, such that
σ1σ2σ3 = 1 and such that the σi generate a transitive subgroup of S4. However, elementary group
theory shows that the product σ1σ2 cannot be of type (3, 1) (the transitivity condition does not inter-
vene here). For a proof which works in any characteristic, see Lemma 5.10 below.

All Hurwitz numbers can be theoretically computed, for example using Frobenius Formula (see
[LZ04, Theorem A.1.9]). Nevertheless, the problem of understanding their vanishing is wide open.
The above example shows that Hurwitz numbers in degree at most three are all positive, which is
not the case in degree four. Some families of (non-)vanishing Hurwitz numbers are known (see
Example 3.5). However, in general one has to explicitly compute a given Hurwitz number to decide
if this latter vanishes or not. We refer the reader to [EKS84], [PP06], and [PP08], along with the
references therein, for an account of what is known about this subject. We will use the vanishing of
H4

0,0((2, 2), (2, 2), (3, 1)) in Section 5 to construct a 4-gonal augmented graph (see Section 5 for the
definition) which cannot be lifted to any 4-gonal proper smooth algebraic curve over K.

Example 3.5. Some partial results are known concerning the (non-)vanishing of Hurwitz numbers.
For example, it is known that double Hurwitz numbers (i.e., when s = 2) are all positive (this can be
seen for example from the presentation of the cut-join equation given in [CJM10]), as well as all the
Hurwitz numbers Hd

g′,g(µ1, . . . , µs) when g ≥ 1 and R ≥ 0 ([Hus62, EKS84]). On the other hand, it is
proved in [PP08] that

Hd
0,0

(
(d− 2, 2), (2, . . . , 2), (

d

2
+ 1, 1, . . . , 1)

)
= 0 for all d ≥ 4 even.

Example 3.6. As another example of non-vanishing Hurwitz numbers, one hasHd′

0,0(µ1, . . . , µs, (d
′)) >

0 for all integers d′ ≥ 1 when the integer R defined in (3.1.2) is zero (i.e., if the combinatorial
Riemann–Hurwitz formula holds); see [EKS84, Proposition 5.2] or [DM08, Proposition 7.2].
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The non-emptiness of Adg′,g(µ1, . . . , µs) can be reduced to the non-emptiness of the Hurwitz set
Hdg′,g(µ1, . . . , µs).

Lemma 3.7. Suppose that k has characteristic 0. Then Adg′,g(µ1, . . . , µs) is non-empty if and only if
Hd
g′,g(µ1, . . . , µs) 6= 0.
Proof. Since Hdg′,g(µ1, . . . , µs) is a subset of Adg′,g(µ1, . . . , µs), obviously we only need to prove

that if Adg′,g(µ1, . . . , µs) 6= ∅, then the Hurwitz set is also non-empty. Let ϕ : C ′ → C be an ele-
ment of Adg′,g(µ1, . . . , µs), branched over xi ∈ C with ramification profile µi for i = 1, . . . , s, and let
z1, . . . , zt be all the other points in the branch locus of ϕ. Denote by νi the ramification profile of ϕ
above the point zi. Fix a closed point ? of C \ {x1, . . . , xs, z1, . . . , zt}. The étale fundamental group
π1(C \ {x1, . . . , xs, z1, . . . , zt}, ?) is the profinite completion of the group generated by a system of
generators a1, b1, . . . , ag, bg, c1, . . . , cs+t satisying the relation [a1, b1] . . . [ag, bg]c1 . . . cs+t = 1, where
[a, b] = aba−1b−1 (see [SGA1]). In addition, the data of ϕ is equivalent to the data of a surjective
morphism ρ from π1(C \{x1, . . . , xs, z1, . . . , zt}, ?) to a transitive subgroup of the symmetric group Sd

of degree d such that the partition µi (resp. νi) of d corresponds to the lengths of the cyclic permuta-
tions in the decomposition of ρ(ci) (resp. ρ(cs+i)) in Sd into products of cycles, for 1 ≤ i ≤ s (resp.
1 ≤ i ≤ t). By Riemann–Hurwitz formula, we have R =

∑t
i=1(d− l(νi)).

Now note that each ρ(cs+i) can be written as a product of d− l(νi) transpositions τ1
i , . . . , τ

d−l(νi)
i in

Sd, i.e., ρ(cs+i) = τ1
i . . . τ

d−l(νi)
i . Rename the set of R distinct points y1, . . . , yR of C \ {x1, . . . , xs, ?}

as z1
i , . . . , z

d−l(νi)
i for 1 ≤ i ≤ t.

The étale fundamental group π1(C \ {x1, . . . , xs, z
1
1 , . . . , z

d−l(ν1)
1 , . . . , z

d−l(νt)
t }, ?) has, as a profinite

group, a system of generators a1, b1, . . . , ag, bg, c1, . . . , cs, c
1
s+1, . . . , c

d−l(ν1)
s+1 , . . . , c

d−l(νt)
s+t verifying the

relation
[a1, b1] . . . [ag, bg]c1 . . . csc

1
s+1 . . . c

d−l(ν1)
s+1 . . . c1s+t . . . c

d−l(νt)
s+t = 1,

and admits a surjective morphism to Sd which coincides with ρ on a1, b1, . . . , ag, bg, and which sends
cjs+i to τ ji for each 1 ≤ i ≤ t and 1 ≤ j ≤ d − l(νi). The corresponding cover C ′′ → C obviously
belongs to Adg′,g(µ1, . . . , µs) and in addition has simple ramification profile (2) above each yi, i.e., it
verifies condition (iv) above. This shows that Hdg′,g(µ1, . . . , µs) is non-empty. n

Corollary 3.8. Suppose that k has characteristic 0. Let ϕ : Γ′ → Γ be a finite morphism of augmented
metric graphs, and let C be a metrized complex over k lifting Γ. There exists a lifting of ϕ to a finite
harmonic morphism of metrized complexes C′ → C over k (and thus to a morphism of smooth proper
curves over K) if and only if ∏

p′∈V (Γ′)

H
dp′ (ϕ)

g(p′),g(ϕ(p′))

(
µ1(p′), . . . , µval(ϕ(p′))

)
6= 0.

In particular, if ϕ is effective and g(p) ≥ 1 for all the points of valency at least three in Γ, then ϕ lifts to a
finite harmonic morphism of metrized complexes over k.

Remark 3.9. If k has positive characteristic p > d, then Adg′,g(µ1, . . . , µs) has the same cardinality as
in characteristic zero. (This follows from [SGA1], which provides an isomorphism between the tame
fundamental group in positive characteristic p and the prime-to-p part of the étale fundamental group
in characteristic zero.) In particular, Lemma 3.7 also holds under the assumption that p > d.

3.10. Lifting finite harmonic morphisms. Now we turn to the lifting problem for finite morphisms
of non-augmented metric graphs to morphisms of metrized complexes of k-curves. In this case there
are no obstructions to the existence of such a lift.

Theorem 3.11. Let ϕ : Γ′ → Γ be a tame harmonic morphism of metric graphs, and suppose that
Γ is augmented. There exists an enrichment of Γ′ to an augmented metric graph (Γ′, g′) such that ϕ :
(Γ′, g′) → (Γ, g) lifts to a tame harmonic morphism of metrized complexes of curves over k (and thus to
a morphism of smooth proper curves over K).
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Theorem 3.11 is an immediate consequence of Proposition 3.3 and the following theorem. (For the
statement, we say that a partition µ of d is tame if either char(k) = 0 or all the integers appearing in
µ are prime to p.)

Theorem 3.12. Let g ≥ 0, d ≥ 2, s ≥ 1 be integers. Let µ1, . . . , µs be a collection of s tame partitions of
d. Then there exists a sufficiently large non-negative integer g′ such that Adg′,g(µ1, . . . , µs) is non-empty.

Proof. We first give a simple proof which works in characteristic zero, and more generally, in the
case of a tame monodromy group. The proof in characteristic p > 0 is based on our lifting theorem
and a deformation argument.

Suppose first that the characteristic of k is zero. By Lemma 3.7, we need to show that for large
enough g′ the set Hdg′,g(µ1, . . . , µs) is non-empty.

If g ≥ 1, for any large enough g′ giving R ≥ 0, we have Hdg′,g(µ1, . . . , µs) 6= ∅ [Hus62]. So
suppose g = 0. Consider s+R+ 1 distinct points x1, . . . , xs, z1, . . . , zR, ? in C. The étale fundamental
group π1(R) := π1(C \ {x1, . . . , xs, z1, . . . , zR}, ?) has, as a profinite group, a system of generators
c1, . . . , cs, cs+1, . . . , cs+R verifying the relation

c1 . . . crcs+1 . . . cs+R = 1.

It will be enough to show that for a large enough R, there exists a surjective morphism ρ from π1(R)
to Sd so that ρ(cs+i) is a transposition for any i = 1, . . . , R, and that for any i = 1, . . . , s, the partition
of d given by the lengths of the cyclic permutations in the decomposition of ρ(ci) is equal to µi. In this
case, the genus g′ of the corresponding cover C ′ of C in Hdg′,0(µ1, . . . , µs) will be given by

g′ = 1− d+
1

2

[
sd+R−

s∑
i=1

l(µi)
]
.

Consider an arbitrary map ρ from {c1, . . . , cs} to Sd verifying the ramification profile condition for
ρ(c1), . . . , ρ(cr). Choose a system of d transpositions τ1, . . . , τd generating Sd, and consider a set of
transpositions τd+1, . . . , τR such that

ρ(c1) . . . ρ(cs) τ1 . . . τd = τR . . . τd+1 .

This proves Theorem 3.12 when k has characteristic 0.

Consider now the case of a base field k of positive characteristic p > 0. Note that since the prime
to p part of the tame fundamental group has the same representation as in the case of characteristic
zero, the group theoretic method we used in the previous case can be applied if the monodromy group
is tame, i.e., has size prime to p. However, in general it is impossible to impose such a condition on
the monodromy group. For example in the case when p divides d, the size of the monodromy group is
always divisible by p.

We first describe how to reduce the proof of Theorem 3.12 to the case s = 1 and g = 0. Suppose
that for each µi, 1 ≤ i ≤ s, there exists a large enough gi such that Adgi,0(µi) is non-empty, and
consider a tame cover ϕi : Ci → P1

k in Agi,0(µi) such that the ramification profile over 0 ∈ P1 is given
by µi, and choose two regular points xi, yi ∈ P1 (i.e. xi, yi are outside the branch locus of ϕi). Choose
also a smooth proper curve C0 of genus g which admits a tame cover ϕ0 : C ′0 → C0 of degree d from a
smooth proper curve C ′0 of large enough genus g′0. (The existence of such a cover can be deduced by
a similar trick as that discussed at the end of the proof below and depicted in Figure 7.) Let y0 ∈ C0

be a regular point of ϕ0.
Let C0 be the metrized complex over k whose underlying metric graph is [0,+∞], with one finite

vertex v0 and one infinite vertex v∞, equipped with the metric induced by R, and with Cv0 = C0

and redv0({v0, v∞}) = y0. Denote by C the modification of C0 obtained by taking a refinement at
r distinct points 0 < v1 < · · · < vs < ∞, as depicted in Figure 6, and by setting Cvi = P1 and
redvi({vi, vi−1}) = xi and redvi({vi, vi+1}) = yi (here vs+1 = v∞), and by adding an infinite edge
ei to each vi, and defining redvi(ei) = 0 ∈ P1. Denote by Γ the underlying metric graph of C. See
Figure 6.



16 OMID AMINI, MATTHEW BAKER, ERWAN BRUGALLÉ, AND JOSEPH RABINOFF

��������������������������������������������������������������������������

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
��
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

������������������

v0

u0 u1 u2 u3

v1 v2 v3

B̃s,d

Γ

us

vs v∞

u′1

u′d

FIGURE 6

Define now the metric graph Bs,d as the chain of s banana graphs of size d: Bs,d has s + 1 finite
vertices u0, . . . , us and u′1, . . . , u

′
d infinite vertices adjacent to us such that ui is connected to ui+1 with

d edges of length `Γ({vi+1 − vi}). We denote by B̃s,d the tropical modification of Br,d at u1, . . . , us,
obtained by adding l(µi) infinite edges to ui. Eventually we turn B̃s,d into a metrized complex Cs,d
over k by setting Cui

= Ci, and defining redui
on the d edges between ui and ui+1 by a bijection to the

d points in ϕ−1
i (yi), redui

on the edges between ui and ui−1 by a bijection to the d points in ϕ−1
i (xi),

and redui
on the l(µi) infinite edges adjacent to ui by a bijection to the l(µi) points in ϕ−1

i (0).
Obviously, there exists a degree d tame morphism ϕ : Cs,d → C of curve complexes over k which

sends ui to vi, and has degrees given by integers in µi above the infinite edge of Γ adjacent to vi, for
i = 1, . . . , s, and ϕui

= ϕi (see Figure 6). According to Proposition I.7.15, the map ϕ lifts to a tame
morphism of smooth proper curves ϕK : X → X ′ over K the completion of the algebraic closure of
k[[t]]. The map ϕK has partial ramification profile µ1, . . . , µs. To deduce now the non-emptiness of
Adg′,g(µ1, . . . , µs), we note that there exists a subring R of K finitely presented over k such that the
map ϕK descends to a finite morphism ϕR : X → X′ between smooth proper curves over Spec(R).
In addition, over a non-empty open subset U of Spec(R), ϕR specializes to a tame cover with the
same ramification profile as ϕK . Since U contains a k-rational point, we infer the existence of a large
enough g′ such that Adg′,g(µ1, . . . , µs) 6= ∅.

We are thus led to consider the case where s = 1, g = 0, µ = (d1, d2, . . . , dl) with
∑
i di = d,

d1, . . . , dt > 1, and dt+1 = · · · = dl = 1. Figure 7 shows that, just as in the previous reduction, one
can reduce to the case where s = 1 and µ1 = {d} with (d, p) = 1. (Note that in Figure 7(a) the degree
of the morphism at some of the middle vertices is two; Figure 7(b) is arranged so that the degrees are
all odd.) But this is just non-emptiness of A0,0((d)) (see Example 3.2). n

Remark 3.13. As the above proof shows, when k has characteristic zero one can get an explicit
upper bound on the smallest positive integer g′ with Hdg′,0(µ1, . . . , µs) 6= ∅. Indeed, the permutation
ρ(c1) . . . ρ(cs)τ1 . . . τd can be written as the product of d+

∑s
i=1(d− l(µi)) transpositions. So without

loss of generality we have R − d = d +
∑s
i=1(d − l(µi)), which means that one can take g′ to be

1 +
∑r
i=1(d− l(µi)). For g ≥ 1, Hg′,g is non-empty as soon as R is non-negative, which means in this

case that one can take g′ to be 1 + (g − 1)d+ 1
2

∑
i(d− l(µi)).

3.14. Lifting polynomial-like harmonic morphisms of trees. There is a special case of Theo-
rem 3.12 in which one does not need to increase the genus of the source curve. To state the result,
we say (following [DM08]) that a degree d finite harmonic morphism ϕ : T ′ → T of metric trees is
polynomial-like if there exists an infinite vertex of T ′ with local degree equal to d.
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d1 > 1

d2 > 1

d3 > 1

dt > 1

�
�
�
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�

1

1

d1 > 2

d2 > 2

d3 > 2

dt > 2

a) Reduction in the case p 6= 2 (in this example, b) Reduction in the case p = 2.
d1 = 4, d2 = 4, d3 = 3, and dt = 2).

FIGURE 7

Theorem 3.15. Assume that the residue characteristic of K is zero or bigger than d. Let ϕ : T ′ → T
be a generically étale polynomial-like harmonic morphism of metric trees. Then there exists a degree d
polynomial map ϕ : P1 → P1 over K lifting ϕ.

Proof. It suffices to prove that ϕ can be extended to a degree d harmonic morphism of genus zero
metrized complexes of curves. By Theorem I.7.7, Proposition 3.3, and Remark 3.9, this reduces to
showing that the Hurwitz numbers given by the ramification profiles around each finite vertex of T ′

are all non-zero. Fix an infinite vertex∞ of T ′ with local degree d. Then it is easy to see that for any
such vertex v′, the local degree of ϕ at v′ is equal to the local degree of ϕ in the tangent direction
corresponding to the unique path from v′ to ∞. (This is analogous to [DM08, Lemma 2.3].) The
result now follows from Example 3.6. n

3.16. Lifting of harmonic morphisms in the case the base has genus zero. We now consider
the special case where Γ has genus zero and present more refined lifting results in this case. As
explained in (2.11), a given harmonic morphism of (augmented) metric graphs does not necessarily
have a tropical modification which is finite. We present below a weakened notion of finiteness of a
harmonic morphism, and prove that any harmonic morphism from an (augmented) metric graph to
an (augmented) rational metric graph satisfies this weak finiteness property. We discuss in Section 4
some consequences concerning linear equivalence of divisors on metric graphs.

Definition 3.17. A harmonic morphism ϕ : Γ → T from an augmented metric graph Γ to a metric
tree T is said to admit a weak resolution if there exists a tropical modification τ : Γ̃ → Γ and an
augmented harmonic morphism ϕ̃ : Γ̃ → T such that the restriction ϕ̃|Γ is equal to ϕ, and some
tropical modification of ϕ̃ is finite.

In other words, the morphism ϕ has a weak resolution if it can be extended, up to increasing the
degree of ϕ using the modification τ , to a tropical morphism ϕ̃ : Γ̃→ T .
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Example 3.18. The harmonic morphism depicted in Figure 2(c) with d = 1 can be weakly resolved
by the harmonic morphisms depicted in Figures 4(b) and 2(b). Another example of a weak resolution
is depicted in Figure 8.

2

2

2

a) A harmonic morphism not tropically b) A weak resolution of
equivalent to any finite harmonic morphism the morphism in Figure 8(a)

FIGURE 8

Definition 3.19. Let ϕ : Γ→ T be a harmonic morphism from a metric graph Γ to a metric tree T . A
point p ∈ Γ is regular if ϕ is non-constant on all neighborhoods of p.

The contracted set of ϕ, denoted by E(ϕ), is the set of all non-regular points of ϕ. A contracted
component of ϕ is a connected component of E(ϕ).

The next proposition, together with Proposition I.7.15, allows us to conclude that any harmonic
morphism from an augmented metric graph to a metric tree can be realized, up to weak resolutions,
as the induced morphism on skeleta of a finite morphism of triangulated punctured curves. Recall
that Λ = val(K×) is divisible since K is algebraically closed.

Proposition 3.20. (Weak resolution of contractions) Let ϕ : Γ→ T be a harmonic morphism of degree
d from a metric graph Γ to a metric tree T .

(1) There exist tropical modifications τ : Γ̃ → Γ and τ ′ : T̃ → T , and a harmonic morphism of
metric graphs (of degree d̃ ≥ d) ϕ̃ : Γ̃→ T̃ , such that ϕ̃|Γ\E(ϕ) = ϕ, where E(ϕ) is the contracted
part of Γ.

(2) Suppose in addition that Γ is augmented, and if p > 0 that all the non-zero degrees of ϕ along
tangent directions at Γ are prime to p. Then there exist tropical modifications of Γ, T , and ϕ as
above such that ϕ̃ is tame and, in addition, there exists a tame harmonic morphism of metrized
complexes of k-curves with ϕ̃ as the underlying finite harmonic morphism of augmented metric
graphs.

Proof. Up to tropical modifications, we may assume that all 1-valent vertices of T are infinite
vertices.

The proof of (1) goes by giving an algorithm to exhibit a weak resolution of ϕ. Note that this
algorithm does not produce the weak resolutions presented in Example 3.18, since in these cases we
could find simpler ones.

Let V (Γ) be any vertex set of Γ with no loop edge. We denote by d the degree of ϕ, and by α the
number of non-regular vertices of ϕ. Given v a finite non-regular vertex of Γ, we consider the tropical
modification τv : Γ̃v → Γ such that

(
Γ̃v \ Γ

)
∪ {v} is isomorphic to T as a metric graph. Considering

all those modifications for all non-regular vertices of ϕ, we obtain a modification τ : Γ̃ → Γ. We can
naturally extend ϕ to a harmonic morphism ϕ̃ : Γ̃ → T of degree d + α such that ϕ̃|Γ = ϕ and all
degrees of ϕ̃ on edges not in Γ are equal to 1 (see Figure 9(a) in the case of the harmonic morphism
depicted in Figure 2(c) with d = 1).
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a) The morphism ϕ̃ b) The morphism ψe

FIGURE 9. The harmonic morphisms ϕ̃ and ψe in the case of Figure 2(c) with d = 1

By construction, any contracted component of ϕ̃ is an open edge of Γ, and this can be easily
resolved. Indeed, if e is a finite contracted edge of ϕ̃, we do the following (see Figure 9(b)):

• consider the tropical modification τT : T̃ → T of T at ϕ̃(e); denote by e1 the new end of T̃ ;
• consider τe : Γ̃e → Γ̃ the composition of two elementary tropical modifications of Γ̃ at the

middle of the edge e; denote by e2 and e3 the two new infinite edges of Γ̃e, and by e4 and e5

the two new finite edges of Γ̃e;
• subdivide e1 into a finite edge e0

1 of length equal to the lengths of e4 and e5, and an infinite
edge e∞1 ;

• consider the morphism of metric graphs ϕ̃e : Γ̃e → T̃ defined by
– ϕ̃e|Γ̃\{e2,e3,e4,e5} = ϕ̃,
– ϕ̃e(e2) = ϕ̃e(e3) = e∞1 , and ϕ̃e(e4) = ϕ̃e(e5) = e0

1,
– dei(ϕ̃e) = 1 for i = 2, 3, 4, 5.

• extend ϕ̃e to a harmonic morphism of metric graphs ψe : Γ′ → T̃ , where Γ′ is a modification
of Γ̃e at regular vertices in ϕ̃−1

e (ϕ̃(e)), with all degrees of ϕ̃ on edges not in Γ̃e equal to 1.

We resolve in the same way a contracted infinite end of Γ̃. By applying this process to all contracted
edges of ϕ̃, we end up with a finite harmonic morphism of metric graphs which is a tropical modifica-
tion of ϕ̃.

Note that in the proof of (1) we increased some of the local degrees by one, but we could have
increased these local degrees by any amount by inserting an arbitrary number of copies of T in the
construction of Γ̃. Based on this remark, the proof of (2) now follows the same steps as the proof of
(1), using in addition the following claim:

Claim. Let g′ ≥ 0 and d, s > 0 be integers. Let µ1, . . . , µs be a collection of s tame partitions of d.
Then there exist arbitrarily large non-negative integers d′ such that Ad′g′,0(µ′1, . . . , µ

′
s) is non-empty,

where µ′i is the partition of d′ obtained by adding a sequence of d′ − d numbers 1 to each partition µi.

Figure 10, Figure 7(a), our resolution procedure, and the argument used for the positive charac-
teristic case of the proof of Theorem 3.12 reduce the proof of the claim to the case s = 1 and µ1 = {d}
with (d, p) = 1. But in this case, for any g′ ≥ 0, by the group theoretic method we used in the proof of
Theorem 3.12, there exists a (tame) covering of P1 by a curve of genus g′ having (tame) monodromy
group the cyclic group Z/dZ, and with the property that the ramification profile above the point 1 of
P1 is given by µ = {d}. This finishes the proof of the claim, and the proposition follows. n

4. APPLICATIONS

4.1. Linear equivalence of divisors. A (tropical) rational function on a metric graph Γ is a continu-
ous piecewise affine function F : Γ → R with integer slopes. If F is a rational function on Γ, div(F )
is the divisor on Γ whose coefficient at a point x of Γ is given by

∑
v∈Tx

dvF , where the sum is over
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FIGURE 10. Reduction to the case s = 1 in the proof of (2) in Proposition 3.20.
Degrees on (infinite) edges related to µi are exactly the integers appearing in µi.
All the other degrees are one. Degrees over each infinite edge consist of a µi and
precisely (s− 1)d numbers 1.

all tangent directions to Γ at x and dvF is the outgoing slope of F at x in the direction v. Two divisors
D and D′ on a metric graph Γ are called linearly equivalent if there exists a rational function F on Γ
such that D −D′ = div(F ), in which case we write D ∼ D′. For a divisor D on Γ, the complete linear
system of D, denoted |D|, is the set of all effective divisors E linearly equivalent to D. The rank of a
divisor D ∈ Div(Γ) is defined to be

rΓ(D) := min
E : E≥0
|D−E|=∅

deg(E)− 1.

Let ϕ : Γ→ T be a finite harmonic morphism from Γ to a metric tree T of degree d. For any point
x ∈ T , the (local degree of ϕ at the points of the) fiber ϕ−1(x) defines a divisor of degree d in Div(Γ)
that we denote by Dx(ϕ). We have

Dx(ϕ) :=
∑

y∈ϕ−1(x)

dy(ϕ)(y),

where dy(ϕ) denotes the local degree of ϕ at y.

Proposition 4.2. Let ϕ : Γ → T be a finite harmonic morphism of degree d from Γ to a metric tree.
Then for any two points x1 and x2 in T , we have Dx1

(ϕ) ∼ Dx2
(ϕ) in Γ. Moreover, for every x ∈ T the

rank of the divisor Dx(ϕ) is at least one.
Proof. Since T is connected, we may assume that x1 and x2 are sufficiently close; more precisely,

we can suppose that x2 lies on the same edge as x1 with respect to some model G for Γ. Removing
the open segment (x1, x2) from T leaves two connected components Tx1

and Tx2
which contain x1
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and x2, respectively. Identifying the segment [x1, x2] with the interval [0, `] by a linear map (where
` = `([x1, x2]) denotes the length in T of the segment [x1, x2]) gives a rational function F : Γ→ [0, `]
by sending ϕ−1(Tx1) and ϕ−1(Tx2) to 0 and `, respectively. It is easy to verify that Dx1(ϕ)−Dx2(ϕ) =
div(F ), which establishes the first part.

The second part follows from the first, since y belongs to the support of the divisor Dϕ(y)(ϕ) ∼
Dx(ϕ) for all y ∈ Γ, which shows that rΓ(Dx(ϕ)) ≥ 1. n

By Theorem 3.11, any finite morphism ϕ : Γ → T can be lifted to a morphism ϕ : X → P1 of
smooth proper curves, possibly with g(X) > g(Γ). This shows that any effective divisor on Γ which
appears as a fiber of a finite morphism to a metric tree can be lifted to a divisor of rank at least one
on a smooth proper curve of possibly higher genus.

We are now going to show that the (additive) equivalence relation generated by fibers of “trop-
icalization” of finite morphisms X → P1 coincides with tropical linear equivalence of divisors. To
give a more precise statement, let Γ be a metric graph with first Betti number h1(Γ), and consider
the family of all smooth proper curves of genus h1(Γ) over K which admit a semistable vertex set
V and a finite set of K-points D such that the metric graph Σ(X,V ∪ D) is a modification of Γ.
Given such a curve X and a finite morphism ϕ : X → P1, there is a corresponding finite harmonic
morphism ϕ : Σ(X,V ∪ D) → T from a modification of Γ to a metric tree T . Two effective di-
visors D0 and D1 on Γ are called strongly effectively linearly equivalent if there exists a morphism
ϕ : Σ(X,V ∪ D) → T as above such that D0 = τ∗(Dx0

(ϕ)) and D1 = τ∗(Dx1
(ϕ)) for two points x0

and x1 in T . Here τ∗ : Div(Σ(X,V ∪ D)) → Div(Γ) is the extension by linearity of the retraction
map τ : Σ(X,V ∪ D) → Γ. The equivalence relation on the abelian group Div(Γ) generated by this
relation is called effective linear equivalence of divisors. In other words, two divisors D0 and D1 on
Γ are effectively linearly equivalent if and only if there exists an effective divisor E on Γ such that
D0 + E and D1 + E are strongly effectively linearly equivalent. This can be summarized as follows:
D0 and D1 on Γ are effectively linearly equivalent if and only if there exists a lifting of Γ to a smooth
proper curve X/K of genus h1(Γ), and a finite morphism ϕ : X → P1 such that τ∗(ϕ−1(0)) = D0 +E
and τ∗(ϕ−1(∞)) = D1 + E for some effective divisor E, where τ∗ is the natural retraction map from
Div(X) to Div(Γ).

Theorem 4.3. The two notions of linear equivalence and effective linear equivalence of divisors on a
metric graph Γ coincide. As a consequence, linear equivalence of divisors is the additive equivalence rela-
tion generated by (the retraction to Γ of) fibers of finite harmonic morphisms from a tropical modification
of Γ to a metric graph of genus zero.

Proof. Consider two divisors D0 and D1 which are effectively linearly equivalent. There exists an
effective divisor E and a finite harmonic morphism ϕ : Γ̃ → T , from a tropical modification of Γ
to a metric tree, such that D0 + E = Dx0

(ϕ) and D1 + E = Dx1
(ϕ) for two points x0, x1 ∈ T . By

Proposition 4.2 we have D0 + E ∼ D1 + E, which implies that D0 and D1 are linearly equivalent in
in Γ̃, and hence in Γ.

To prove the other direction, it will be enough to show that if D is linearly equivalent to zero, then
there exists an effective divisor E such that D + E and E are fibers of a finite harmonic morphism ϕ
from a modification of Γ to a metric tree T , and such that ϕ can be lifted to a morphism X → P1.

By assumption, there exists a rational function f : Γ → R ∪ {±∞} such that D + div(f) = 0. We
claim that there is a tropical modification Γ̃ of Γ together with an extension of f to a (not necessarily
finite) harmonic morphism ϕ0 : Γ̃ → R ∪ {±∞}. The tropical modification Γ̃ is obtained from Γ by
choosing a vertex set which contains all the points in the support of D, adding an infinite edge to any
finite vertex in Γ with ordv(f) 6= 0, and extending f as an affine linear function of slope − ordv(f)
along this infinite edge. It is clear that the resulting map ϕ0 is harmonic.

Consider now the retraction map τ : Γ̃→ Γ, and note that for the two divisors D±∞(ϕ0), we have
τ∗
(
D±∞(ϕ0)

)
= D±, where D+ and D− denote the positive and negative part of D, respectively. By

Proposition 3.20, there exist tropical modifications Γ of Γ̃ and T of R∪{±∞} such that ϕ0 extends to
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a finite harmonic morphism ϕ : Γ→ T which can be lifted to a finite morphism X → P1. If we denote
(again) the retraction map Γ→ Γ by τ , then τ∗

(
D±∞(ϕ)

)
= D± +E0 for some effective divisor E0 in

Γ. Setting E = D− + E0, the divisors D + E and E are strongly effectively linearly equivalent, and
the theorem follows. n

Example 4.4. Here is an example which illustrates the distinction between the notions of (effective)
linear equivalence and strongly effective linear equivalence of divisors, as introduced above.

Let Γ be the metric graph depicted in Figure 11(a), with arbitrary lengths, and KΓ = (p) + (q) the
canonical divisor on Γ.

p q

2 2 2 t

2

2

q
p1

p2

t

p3

a) KΓ = (p) + (q) b) An effective lift of 2(t) c) A non-effective lift of KΓ

FIGURE 11

We claim that KΓ is not the specialization of any effective divisor of degree two representing the
canonical class of a smooth proper curve of genus two over K. More precisely, we claim that for any
triangulated punctured curve (X,V ∪D) over K such that Σ(X,V ∪D) is a tropical modification of
Γ, and for any effective divisor D in Div(X) with KΓ = τ∗(D), we must have rX(D) = 0. (Here
τ∗ denotes the specialization map from Div(X) to Div(Γ) and rX(D) = dimK(H0(X,O(D))) − 1.)
Indeed, otherwise there would exist a degree 2 finite harmonic morphism π : Γ̃ → T from some
tropical modification of Γ to a metric tree with the property that π(p) = π(q). Restricting such a
harmonic morphism to the preimage in Γ̃ of the loop containing p would imply, by Proposition 4.2,
that the divisor (p) has rank one in a genus-one metric graph, which is impossible. On the other hand,
Figure 11(b) shows that the divisor 2(t) ∼ (p) + (q) can be lifted to an effective representative of the
canonical class KX , where t is the middle point of the loop edge with vertex q. This shows that the
two linearly equivalent divisors D0 = (p) + (q) and D1 = 2(t) are not strongly effectively linearly
equivalent.

However, D0 and D1 are effectively linearly equivalent. Indeed, adding E = (p) to D0 and D1,
respectively, gives the two divisors 2(p) + (q) and 2(t) + (p) which are retractions of fibers of a degree
3 finite harmonic morphism from a tropical modification of Γ to a tree, as shown in Figure 11(c).
Consequently, D0 + (p) and D1 + (p) can be lifted to linearly equivalent effective divisors on a smooth
proper curve X.

Note also that Figure 11(c) shows that since (p1) + (p2) + (q)− (p3) can be lifted to a non-effective
representative of the canonical class KX , there exists a non-effective divisor D in the canonical class
KX of X such that τ∗(D) = (p) + (q).

4.5. Tame actions and quotients. Let C be a metrized complex of k-curves, and denote by Γ the
underlying metric graph of C. An automorphism of C is a (degree one) finite harmonic morphism of
metrized complexes h : C → C which has an inverse. The group of automorphisms of C is denoted by
Aut(C).

Let H be a finite subgroup of Aut(C). The action of H on C is generically free if for any vertex v
of Γ, the inertia (stabilizer) group Hv acts freely on an open subset of Cv. A finite subgroup H of
Aut(C) is called tame if the action of H on C is generically free and all the inertia subgroups Hx for x



LIFTING HARMONIC MORPHISMS II 23

belonging to some Cv are cyclic of the form Z/dZ for some positive integer d, with (d, p) = 1 if p > 0.
In this case we say that the action of H on C is tame.

Remark 4.6. The stabilizer condition in the definition of tame actions is equivalent to requiring the
cover Cv → Cv/Hv be tame, where Hv is the stablizer of the vertex v. To see that this latter condition
implies all the stablizers of points on Cv are cyclic, consider a uniformizer π at a point x, and consider
the map Hx → k× which sends an element h ∈ Hx to h(π)/π. This is independent of the choice of the
uniformizer, and embeds Hx in the subgroup of roots of unity in k×, from which the assertion follows.
The other direction is clear from the definition.
Note that, more generally, one has a filtration of Hv with higher ramification groups Hv ⊇ H0 = Hx ⊇
H1 ⊇ H2 ⊇ . . . , the quotient H0/H1 is a finite cyclic group of order prime to the characteristic p, and
Hi/Hi+1 are all p-groups. In the case of tame actions, H1 is trivial.

In this section, we characterize tame group actions H on C which lift to an action of H on some
smooth proper curveX/K lifting C. The main problem to consider is whether there exists a refinement
C̃ of C and an extension of the action of H to C̃ such that the quotient C̃/H can be defined, and such
that the projection map π : C̃ → C̃/H is a tame harmonic morphism. The lifting of the action of H to
a smooth proper curve X as above will then be a consequence of our lifting theorem.

4.7. Let H be a tame group of automorphisms of a metrized complex C. Let WH = WH(C) be the
set of all w ∈ Γ lying in in the middle of an edge e such that there is an element h ∈ H having w as
an isolated fixed point. Denote by Hw the stabilizer of w ∈ WH . It is easy to see that Hw consists
of all elements h of H which restrict on e either to the identity or to the symmetry with center w. In
particular, if h|e 6= id, then h permutes the two vertices p and q adjacent to e. For w ∈WH , the inertia
group Hredp(e) = Hredq(e)

∼= Z/deZ (for some integer de) is a normal subgroup of index two in Hw:

0 −→ Hredp(e) −→ Hw −→ Z/2Z −→ 0.

We make the following assumption on the groups Hw:

Definition 4.8. A tame group of automorphisms H of a metrized complex C satisfies the dihedral
condition provided that, for all w ∈ WH , the stabilizer group Hw is isomorphic to the dihedral group
generated by two elements σ and ζ with the relations

σ2 = 1, ζd = 1, and σζσ = ζ−1

for some integer d, such that Hredp(e) = 〈ζ〉.
The dihedral condition means that the above short exact sequence splits, and the action of Z/2Z ∼=

{±1} on Hredp(e) is given by h→ h±1 for h ∈ Hredp(e).

We can now formulate our main theorem on lifting tame group actions:

Theorem 4.9. Let H be a finite group with a tame action on a metrized complex C.
(1) If WH 6= ∅, then the dihedral condition and char(k) 6= 2 are the necessary and sufficient condi-

tions for the existence of a refinement C̃ of C such that the action of H on C extends to a tame
action on C̃ such that WH(C̃) = ∅.2

(2) If WH = ∅, then the quotient C/H exists in the category of metrized complexes. In addition, the
action of H on C can be lifted to an action of H on a triangulated punctured K-curve (X,V ∪D)
such that Σ(X,V ∪ D0) ∼= C with D0 ⊂ D, the action of H on X \ D is étale, and the inertia
groupHx for x ∈ D coincides with the inertia groupHτ(x) of the point τ(x) ∈ Σ(X,V ∪D0) = C.

Proof. Suppose that WH 6= ∅, that the dihedral condition holds, and that char(k) 6= 2. Fix an
orientation of the edges of Γ, and for an oriented edge e, denote by p0 and p∞ the two vertices of
Γ which form the tail and the head of e, respectively. Let w be a point lying in the middle of an
oriented edge e = (p0, p∞) of Γ which is an isolated fixed point of some elements of H. Take the
refinement C̃ of C obtained by adding all such points w to the vertex set of Γ and by setting Cw = P1

k,

2See [Ray99, §2.3] for a related discussion, including remarks on the situation in characteristic 2.
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rede({w, p0}) = 0, and red({w, p∞}) =∞. To see that the action of H on C extends to C̃, first note that
one can define a generically free action of Hw on P1

k (equivalently, one can embed Hw in Aut(P1
k)) in

a way compatible with the action of Hw on Γ, i.e., such that all the elements of Hredp0 (e) = Hredp∞ (e)

fix the two points 0 and ∞ of P1
k, and such that the other elements of Hw permutes the two points

0,∞ ∈ P1
k. Indeed, the dihedral condition is the necessary and sufficient condition for the existence

of such an action. Under this condition and upon a choice of a de = |Hredp0
(e)|-th root of unity ζde ∈ k,

and upon the choice of the point 1 ∈ P1
k as a fixed point of σ, the actions of the two generators σ and

ζ of Hw on P1 are given by σ(z) = 1/z and ζ(z) = ζdez, respectively.
Fix once for all a d-th root of unity ζd ∈ k for each positive integer d (with (d, p) = 1 in the case

p > 0). Given h ∈ H, we extend the action of h on C to an action on C̃ in the following way. Let
w ∈ WH(C) and let e be the edge containing w, with the orientation chosen above. If h(w) 6= w, we
define hw : Cw → Ch(w) by hw = idP1 if h is compatible with the orientations of e and h(e), and we set
hw(z) = z−1 otherwise. If h ∈ Hw, we define the action of h on Cw as above. This defines a generically
free action of H on C̃. The inertia groups of the points 0,∞, and ±1 in Cw are Z/deZ, Z/deZ, and
Z/2Z, respectively. Since p 6= 2, this shows that the action of H on C̃ is tame. By construction we have
WH(C̃) = ∅.

Working backward, one recovers the necessity of the dihedral condition and char(k) 6= 2. Indeed,
any C̃ satisfying the conditions of the theorem must contain each w ∈ WH(C) as a vertex. Since Hw

acts on P1
k in the manner described above, it must be a dihedral group; since its action on Cw has

stabilizers of order ±2, we must have char(k) 6= 2.
Now we assume that the action of H on C is tame and that no element of H has an isolated fixed

point in the middle of an edge. We will define the quotient metrized complex C/H. The metric graph
underlying C/H is the quotient graph Γ/H equipped with the following metric: given an edge e of Γ
of length ` and stabilizer He, we define the length of its projection in Γ/H to be ` · |He|. The projection
map Γ→ Γ/H is a tame finite harmonic morphism.

For any vertex p of Γ, the k-curve associated to its image in C/H is Cp/Hp. The marked points of
Cp/Hp are the different orbits of the marked points of Cp, and are naturally in bijection with the edges
of Γ/H adjacent to the projection of p. The projection map C → C/H is a tame harmonic morphism
of metrized complexes.

To see the second part, let C′ be the (tropical) modification of C obtained as follows: for any closed
point x ∈ Cp with a non-trivial inertia group and which is not the reduction redp(e) of any edge e
adjacent to p, consider the elementary tropical modification of C at x. Extend the action of H to a
tame action on C′ by defining hx : ex → eh(x) to be affine with slope one for any such point. Let
π : C′ → C′/H be the projection map. Let (X ′, V ′ ∪ D′) be a triangulated punctured K-curve such
that C(X ′, V ′ ∪D′) ∼= C′/H. By Theorem I.7.4, the tame harmonic morphism π lifts to a morphism of
triangulated punctured K-curves (X,V ∪D)→ (X ′, V ′ ∪D′). By Remark I.7.5, we have an injection
ι : AutX′(X) ↪→ AutC′/H(C′). By the construction given in the proof of Theorem I.7.4, it is easy to see
that every h ∈ H lies in the image of ι, and thus H ⊂ AutX′(X). The last part follows formally from
the definition of the modification C′ and the choice of X as the lifting of π : C′ → C′/H. n

Remark 4.10. (Compare with Remark 4.6) If the characteristic of k is positive, the lifting of the
action of a finite group on a metrized complexes cannot be guaranteed in general without further
assumptions. Indeed, even in the smooth case, i.e., where the metrized complex consists of a single
vertex v and a single curve Cv, there are obstructions to the lifting [Oor87, OSS89, GM98, BM00],
e.g., due to the fact that the automorphism group of a smooth proper curve in positive characteristic
does not respect the Hurwitz upper bound 84(g − 1). However, Pop’s recent proof of the Oort conjec-
ture [Pop14], based on the results of Obus and Wewer [OW14], shows that in the smooth case, the
action can be lifted under the assumption that the stablizers of points are all cyclic. A natural question
is then to see whether our theorem can be extended by only requiring all the stablizers of points to be
cyclic (without the tameness assumption).
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4.11. Characterization of liftable hyperelliptic augmented metric graphs. Let Γ be an aug-
mented metric graph and denote by r# the weighted rank function on divisors introduced in [AC13].
Recall that this is the rank function on the non-augmented metric graph Γ# obtained from Γ by at-
taching g(p) cycles, called virtual cycles, of (arbitrary) positive lengths to each p ∈ Γ with g(p) > 0.
We say that an augmented metric graph Γ is hyperelliptic if g(Γ) ≥ 2 and there exists a divisor D in Γ

of degree two such that r#
Γ (D) = 1. An augmented metric graph is said to be minimal if it contains

neither infinite vertices nor 1-valent vertices of genus 0. Every augmented metric graph Γ is tropi-
cally equivalent to a minimal augmented metric graph Γ′, which is furthermore unique if g(Γ) ≥ 2.
Since the tropical rank and weighted rank functions are invariant under tropical modifications, an
augmented metric graph Γ is hyperelliptic if and only if Γ′ is. Hence we restrict in this section to the
case of minimal augmented metric graphs.

The following proposition is a refinement of a result from [Cha12] on vertex-weighted metric
graphs (itself a strengthening of results from [BN09]):

Proposition 4.12. For a minimal augmented metric graph Γ of genus at least two, the following asser-
tions are equivalent:

(1) Γ is hyperelliptic;
(2) There exists an involution s on Γ such that:

(a) s fixes all the points p ∈ Γ with g(p) > 0;
(b) the quotient Γ/s is a metric tree;

(3) There exists an effective finite harmonic morphism of degree two ϕ : Γ → T from Γ to a metric
tree T such that the local degree at any point p ∈ Γ with g(p) > 0 is two.

Furthermore if the involution s exists, then it is unique.
Proof. The implication (2) ⇒ (3) is obtained by taking T = Γ/s and letting ϕ be the natural

quotient map.
To prove (3)⇒ (1), we observe that a finite harmonic morphism of degree two ϕ : Γ→ T with local

degree two at each vertex p with g(p) > 0 naturally extends to an effective finite harmonic morphism
of degree two from a tropical modification Γ′ of Γ# to a tropical modification T ′ of T as follows: Γ′

is obtained by modifying Γ# once at the midpoint of each of its virtual cycles, and T ′ is obtained by
modifying T precisely g(p) times at each point ϕ(p) with g(p) > 0. The map ϕ extends uniquely to
an effective finite degree two harmonic morphism ϕ′ : Γ′ → T ′, since ϕ has local degree two at p
whenever g(p) > 0. By Proposition 4.2, the linearly equivalent degree two divisors Dx(ϕ′) have rank
one in Γ′ as x varies over all points of T ′, which shows that Γ is hyperelliptic.

It remains to prove (1) ⇒ (2). A bridge edge of Γ is an edge e such that Γ \ e is not connected. Let
Γ′ be the augmented metric graph obtained by removing all bridge edges from Γ. Since Γ is minimal,
any connected component of Γ′ has positive genus. In particular the involution s, if exists, has to
restrict to an involution on each such connected component. This implies that s has to fix pointwise
any bridge edge. Hence we may now assume without loss of generality that Γ has no bridge edge.
In this case s has the following simple definition: for any point p ∈ Γ, since rΓ#(D) = 1 and Γ is
two-edge connected, there exists a unique point q = s(p) such that D ∼ (p) + (q). This also proves the
uniqueness of the involution. n

From now until the end of the section we assume that char(k) 6= 2. An involution on a metrized
complex C is a finite harmonic morphism s : C → C with s2 = idC . An involution is called tame if the
action of the group generated by 〈s〉 ∼= Z/2Z on C is tame.

If X/K is a (smooth proper) hyperelliptic curve, then the augmented metric graph Γ associated
to stable model of X is hyperelliptic. Indeed if sX is an involution on X, then the quotient map
X → X/s tropicalizes to an effective tropical morphism ϕ : Γ → T of degree 2. The condition
that ϕ has local degree 2 at each point p with g(p) > 0 comes from the fact that any non-constant
algebraic map from a positive genus curve to P1 has degree at least two. The next theorem, combined
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with Proposition 4.12, provides a complete characterization of hyperelliptic augmented metric graphs
which can be realized as the skeleton of a hyperelliptic curve over K.

Theorem 4.13. Let Γ be a minimal hyperelliptic augmented metric graph, and let s : Γ → Γ be the
involution given by Proposition 4.12 (2). Then the following assertions are equivalent:

(1) There exists a hyperelliptic smooth proper curve X over K and an involution sX : X → X such
that Γ is the minimal skelton of X, and s coincides with the reduction of sX to Γ.

(2) For every p ∈ Γ we have
2g(p) ≥ κ(p)− 2,

where κ(p) denotes the number of tangent directions at p which are fixed by s.

Proof. Consider the finite harmonic morphism π : Γ → Γ/s. We note that the tangent directions
at p which are fixed by s are exactly those along which π has local degree two. Thus the condition
2g(p) ≥ κ(p) − 2 is equivalent to the ramification index Rp being non-negative: see Section 2. This
proves (1)⇒ (2).

To prove (2) ⇒ (1), we use Proposition I.7.15 and Theorem 4.9. According to these results, it suf-
fices to prove that the involution s : Γ→ Γ lifts to an involution s : C → C for some metrized complex
C with underlying augmented metric graph Γ such that C/s has genus zero. The existence of such a lift
follows from the observation that Hurwitz numbers of degree two are all positive (see Example 3.4). n

p

κ petals

FIGURE 12

Example 4.14. Let Γ be the augmented metric graph of genus g depicted in Figure 12 with arbitrary
positive lengths. It is clearly hyperelliptic, and since the involution s restricts to the identity on each
bridge edge, it fixes all tangent directions at p. Then one can lift Γ as a hyperellitptic curve of genus
g if and only 2g(p) ≥ κ− 2. In particular, if g(p) = 0 then this metric graph cannot be realized as the
skeleton of a hyperelliptic curve as soon as κ ≥ 3.

Since the hyperelliptic involution is unique for both curves and minimal augmented metric graphs,
and since the tangent directions fixed by the hyperelliptic involution on an augmented metric graph
correspond to bridge edges, we can reformulate Theorem 4.13 as follows, obtaining a metric strength-
ening of [Cap, Theorem 4.8]:

Corollary 4.15. Let Γ be a minimal augmented metric graph of genus g ≥ 2. Then there is a smooth
proper hyperelliptic curve X over K of genus g having Γ as its minimal skeleton if and only if Γ is
hyperelliptic and for every p ∈ Γ the number of bridge edges adjacent to p is at most 2g(p) + 2.

5. GONALITY AND RANK

A fundamental (if vaguely formulated) question in tropical geometry is the following: If X is an
algebraic variety and TX is a tropicalization of X (whatever it means), which properties of X can
be read off from TX? In this section, we discuss more precisely (for curves) the relation between
the classical and tropical notions of gonality, and of the rank of a divisor. It is not difficult to prove
that the gonality of a tropical curve (resp. the rank of a tropical divisor) provides a lower bound for
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the gonality (resp. an upper bound for the rank) of any lift (this is a consequence, for example, of
Corollary I.4.28). Here we address the question of sharpness for these inequalities:

(1) Can a d-gonal (augmented or non-augmented) tropical curve C always be lifted to a d-gonal
algebraic curve?

(2) Can a divisor D on an (augmented or non-augmented) tropical curve C always be lifted to
divisor of the same rank on an algebraic curve lifting C?

It follows immediately from Theorem 3.11 that the answer to Question (1) is yes if C is not aug-
mented, i.e., if we are allowed to arbitrarily increase the genus of finitely many points in C. On the
other hand, we prove in this section that the answer to Question (1) in the case C is augmented, and
the answer to Question (2) in both cases, is no.

We refer to [BN07, MZ08, AC13, AB12] for the basic definitions concerning ranks of divisors on
metric graphs, augmented metric graphs, and metrized complexes of curves.

5.1. Gonality of augmented graphs versus gonality of algebraic curves. An augmented tropical
curve C is said to have an augmented (non-metric) graph G as its combinatorial type if C admits a
representative whose underlying augmented graph is G. Given an augmented graph G, we denote
byM(G) the set of all augmented metric graphs which define a tropical curve C with combinatorial
type G. In other words, M(G) consists of all augmented metric graphs which can be obtained by a
finite sequence of tropical modifications (and their inverses) from an augmented metric graph Γ with
underlying augmented graph G. When no confusion is possible, we identify an (augmented) tropical
curve with any of its representatives as an (augmented) metric graph: in what follows, we deliberately
write C ∈M(G) for a tropical curve C with combinatorial type G. Note that the spacesM(G) appear
naturally in the stratification of the moduli space of tropical curves of genus g(G), see for example
[Cap].

Definition 5.2. An augmented tropical curve C is called d-gonal if there exists a tropical morphism
C → TP1 of degree d.

An augmented graph G is called stably d-gonal if there exists a d-gonal augmented tropical curve
C whose combinatorial type is G.

In other words, an augmented graph G is stably d-gonal if and only if there is an augmented metric
graph Γ ∈M(G) which admits an effective finite harmonic morphism of degree d to a metric tree.

Remark 5.3. Our definition of the stable gonality of a graph is equivalent to the one given in [CKK].
See Appendix A of loc. cit. for a detailed discussion of the relationship between stable gonality and
other tropical or graph-theoretic notions of gonality in the literature, e.g. Caporaso’s definition in
[Cap].

In this section we prove the following theorem, which is an immediate consequence of Corollary
I.4.28 and Propositions 5.5 and 5.6 below.

Theorem 5.4. There exists an augmented stably d-gonal graph G such that for any augmented metric
graph Γ ∈ M(G) and any smooth proper connected K-curve X lifting Γ, the gonality of X is strictly
larger than d.

Let G27 be the graph depicted in Figure 13, which we promote to a totally degenerate augmented
graph by taking the genus function to be identically zero. Note that g(G27) = 27, and that G27 \ {p}
has three connected components, which we denote by A1, A2, and A3 according to Figure 13.

Given an element Γ ∈ M(G27) and a tropical morphism ϕ : C → TP1 from the tropical curve
represented by Γ to TP1, we denote by ϕi the restriction of ϕ to (the metric subgraph in Γ which
corresponds to) Ai, and by ϕp the restriction of ϕ to a small neighborhood of the point p.

Proposition 5.5. The graph G27 depicted in Figure 13 is stably 4-gonal.
Proof. We need to show the existence of a suitable tropical curve C with combinatorial type G27

which admits a tropical morphism of degree four to TP1. For a suitable choice of edge lengths on G27,
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FIGURE 13. The graph G27
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FIGURE 14. A tropical morphism of degree four.

we get an element Γ ∈ M(G27) such that there exists a harmonic morphism from Γ to a star-shaped
genus zero augmented metric graph with three infinite edges, which has restrictions ϕ1, ϕ2, ϕ3, ϕv to
A1, A2, A3, and a small neighborhood of p, respectively, given as in Figure 14. We claim that ϕ induces
a tropical morphism, i.e., that there exists a tropical modification of ϕ which is finite and effective.

Note that each of the morphisms ϕ1 and ϕ2 contains a fiber of genus five, while the morphism ϕ3

has two different fibers of genus one. All the other fibers of ϕ1, ϕ2, and ϕ3 are either finite or con-
nected of genus zero. We depict in Figure 15 a few patterns which show how to resolve contractions
of ϕ, turning ϕ into an augmented tropical morphism. Figure 15(a) shows how to resolve a contracted
segment (resolving contracted fibers of genus zero). Figure 15(b) shows how to resolve a contracted
cycle (resolving the contracted cycles in ϕ3 and the middle contracted cycle in ϕ1 and ϕ2): the idea is
to reduce to the case of a contracted segment, in which case one can use the resolution given in Fig-
ure 15(a) to finish. And finally, Figure 15(c) shows how to resolve the two contracted double-cycles in
ϕ1 and ϕ2 by reducing to the case already treated in Figure 15(b). Note that performing these tropical
modifications impose conditions on the length of the contracted edges in Γ, e.g., in Figure 15(b), the
two edges adjacent to the contracted cycle should have the same length. Nevertheless, by appropri-
ately choosing the edge lengths, we get the existence of a metric graph Γ ∈ M(G27) which admits a
finite morphism of degree four to a metric tree. It is easily seen that this morphism is effective; thus
we get a tropical curve C with combinatorial type G27 and a tropical morphism of degree four to TP1,
finishing the proof of the proposition. n
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2

2 2

a) Resolution in one step b) Resolution in two steps c) Resolution in three steps
(combined with case a) (combined with case b)

FIGURE 15. Patterns to resolve contractions in the harmonic morphisms ϕ1, ϕ2, and ϕ3.

To conclude the proof of Theorem 5.4, we now show the following:

Proposition 5.6. There is no metrized complex of k-curves with underlying augmented metric graph in
M(G27) and admitting a finite morphism of degree four to a metrized complex of k-curves of genus zero.

We emphasize that the statement holds for any (algebraically closed) field k. The proof of Propo-
sition 5.6 relies on some technical lemmas that we are now going to state.

We first recall a formula given in [AB12] for the rank of divisors on a metric graph Γ = Γ1 ∨ Γ2

which is obtained as a wedge sum of two metric graphs Γ1 and Γ2. Recall that given two metric
graphs Γ1 and Γ2 and distinguished points t1 ∈ Γ1 and t2 ∈ Γ2, the wedge sum or direct sum of (Γi, ti),
denoted Γ = Γ1 ∨ Γ2, is the metric graph obtained by identifying the points t1 and t2 in the disjoint
union of Γ1 and Γ2. Denoting by t ∈ Γ the image of t1 and t2 in Γ, one refers to t ∈ Γ as a cut-vertex
and to Γ = Γ1 ∨ Γ2 as the decomposition corresponding to the cut-vertex t. (By abuse of notation, we
will use t to denote both t1 in Γ1 and t2 in Γ2.) There is an addition map Div(Γ1)⊕Div(Γ2)→ Div(Γ)
which sends a pair of divisors D1 and D2 in Div(Γ1) and Div(Γ2) to the divisor D1 +D2 on Γ defined
by pointwise addition of the coefficients in D1 and D2.

Let D1 ∈ Div(Γ1) and D2 ∈ Div(Γ2). For any non-negative m, define ηΓ1,D1
(m) as minimum

integer h such that rΓ1(D1 + h(t1)) = m. Then

(5.6.1) rΓ(D) = min
m≥0

{
m+ rΓ2

(D2 − ηΓ1,D1
(m)(t2))

}
.

(see [AB12] for details).

In what follows, equation (5.6.1) will be applied to a metric graph Γ ∈M(A1) =M(A2) (see Fig-
ure 16(a) and Lemma 5.7), to a metric graph Γ ∈ M(A3) (see Figure 16(b) and Lemma 5.9), and to
Γ27 ∈M(G27) with cut-vertex p in the proof of Proposition 5.6.

Lemma 5.7. Let Γ be a metric graph in M(A1) = M(A2) as depicted in Figure 16(a). For any
non-negative integers a ≤ 3 and b ≤ 1, the divisors a(p) + b(q) and b(p) + a(q) have rank zero in Γ.

Proof. By symmetry it is enough to prove the lemma for the divisor D = 3(p) + (q). Consider the
decomposition Γ = Γp ∨ Γq associated to the cut-vertex t in Γ, where Γp and Γq denote the closure in
Γ of the the two connected components of Γ \ {t} which contain the points p and q, respectively.

We claim that ηΓq,(q)(1) = 3. Assume for the moment that this is true. Then by (5.6.1), we have

0 ≤ rΓ(3(p) + (q)) ≤ 1 + rΓp(3(p)− 3(t)).

By Lemma 5.8 below, in Γp we have rΓp
(3(p)− 3(t)) = −1. We thus infer that rΓ(3(p) + (q)) = 0.

It remains to prove that ηΓq,(q)(1) = 3. In other words, we need to show that in Γq we have
rΓq

(2(t) + (q)) = 0. For this, consider the decomposition Γq = Γtq ∨Γqq corresponding to the cut-vertex
s in Γq, where Γtq and Γqq denote the components which contain t and q, respectively. We claim that
ηΓt

q,2(t)(1) = 1. Assuming the claim, we have 0 ≤ rΓq
(2(t) + (q)) ≤ 1 + rΓq

q
((q)− (s)) = 0 (since q and
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s are not linearly equivalent in Γqq; see Lemma 5.8). So it remains to prove that ηΓt
q,2(t)(1) = 1. This is

equivalent to rΓt
q
(2(t)) = 0, which is obviously the case. n

p q

t s

p

t

q

s

a) A metric graph Γ inM(A1) =M(A2) b) A metric graph Γ inM(A3)

FIGURE 16

Lemma 5.8. Let Γ be any metric graph inM(G3), where G3 is the totally degenerate graph depicted in
Figure 17(a). Then the two divisors 3(p) and 3(t) are not linearly equivalent in Γ.

Proof. By symmetry we can assume that the length of the edge {u, p} is less than or equal to the
length of the edge {t, w}. Then there exists a point t′ in the segment [t, w] so that 3(p) − 3(t) ∼
3(u) − 3(t′) — see Figure 17(b) — and we are led to prove that D = 3(u) − 3(t′) is not linearly
equivalent to zero. Consider the unique t′-reduced divisor Dt′ linearly equivalent to D in Γ (see
e.g. [Ami13, BN07] for the definition and basic properties of reduced divisors). It will be enough to
show that Dt′ 6= 0. Three cases can occur, depending on the lengths `z, `w, and `t′ in Γ of the edges
{u, z}, {u,w}, and the segment {u, t′}, respectively:

• If `z = min
{
`z, `u, `t′

}
, then there are two points w′ and t′′ on the segments {u,w} and

{u, t′}, respectively, such that Dt′ = (z) + (w′) + (t′′)− 3(t′).

• If `u = min
{
`z, `u, `t′

}
, then there are two points z′ and t′′ on the segments {u, z} and {u, t′},

respectively, such that Dt′ = (z′) + (w) + (t′′)− 3(t′).

• If `t′ = min
{
`z, `u, `t′

}
, then there are two points z′ and w′ on the segments {u, z} and

{u,w}, respectively, such that Dt′ = (z′) + (w′)− 2(t′).

In all the three cases, we have Dt′ 6= 0, which shows that D cannot be equivalent to zero in Γ. n
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FIGURE 17

Lemma 5.9. Let Γ ∈M(A3) be a metric graph as depicted in Figure 16(b). For any a, b ≤ 2, the divisor
a(p) + b(q) has rank zero on Γ.

Proof. The arguments are similar to the ones used in the proof of Lemma 5.7. Consider the cut-
vertex t in Γ and denote by Γp and Γq the corresponding components containing p and q, respectively.
We claim that ηΓq,2(q)(1) = 2. This obviously implies the lemma. Indeed, rΓp

(2(p)−2(t)) = −1 (which
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can be verified by an analogue of Lemma 5.8 in Γp), and thus (5.6.1) implies that rΓ(2(p) + 2(q)) ≤
1 + rΓp(2(p)− 2(t)) = 0.

To show that ηΓq,2(q)(1) = 2, it will be enough to show that rΓq
(2(q) + (t)) = 0. This can be done

in exactly the same way by considering the other cut-vertex s adjacent to t in Γq. n

Lemma 5.10. Let x1, x2, and x3 be distinct points in P1(k). Then there does not exist a morphism
f : P1 → P1 of degree four branched over x1, x2 and x3 and having ramification profile (2, 2), (2, 2),
and (3, 1) at these three points.

Proof. Suppose that such a rational map f : P1 → P1 exists. The monodromy group of f is a
subgroup of S4, so its cardinality is of the form 2a3b. In particular, if the characteristic of k is neither
2 nor 3, then f has a tame monodromy group and the non-existence of f then comes from the fact
that H4

0,0 ((2, 2), (2, 2), (3, 1)) = 0 (see Example 3.4).

Hence it remains to check the lemma for char(k) = 2, 3. Note that the same technique we use in
this case works in any characteristic, but the computations are a bit more tedious in characteristic
different from 2 and 3.

Up to the action of GL(2, k) on P1 via automorphisms, we may assume that x1 = 0, x2 = ∞, and
x3 = 1, and that

f(X) = a
X2(X + 1)2

(X + b)2

with a 6= 0 and b 6= 0,−1. Hence the condition on the ramification profile of x3 translates as

aX2(X + 1)2 − (X + b)2 = c(X − d)3(X − e)

with c 6= 0, d 6= 0,−1, b, and e 6= 0,−1, b, d. Looking at the coefficients of the two polynomials, we
obtain the following five equations

(E1) : a = c, (E2) : ec = −2a− 3cd, (E3) : a− 1 = 3cd(d+ e),

(E4) : 2b = cd2(d+ 3e), (E5) : −b2 = cd3e.

If k has characteristic 2, then (E2) becomes ec = cd which contradicts the fact that e 6= d.
If k has characteristic 3, then these five equations become

(E1) : a = c, (E2) : ec = a, (E3) : a = 1, (E4) : −b = cd3, (E5) : −b2 = cd3e.

Equations (E1), (E2), (E3) imply a = c = e = 1. Then (E4) and (E5) become −b = d3 = −b2; hence
b = 1 = e, which contradicts our assumptions. n

We can now give the promised proof of Proposition 5.6.

Proof. (Proof of Proposition 5.6) Suppose that there exists a metrized complex of k-curves C27 of
genus 27 with underlying augmented metric graph Γ27 in M(G27), and admitting a finite harmonic
morphism of metrized complexes of degree four ϕ : C27 → T , for T of genus zero with underlying
metric tree denoted by T . Without loss of generality, we may assume that T has no infinite vertex
q ∈ V∞(T ) such that any infinite edge e′ adjacent to an infinite vertex q′ ∈ ϕ−1(q) has de′(ϕ) = 1.

We are going to prove below that the local degree at p is 4. Assuming that this is the case, we
show how the proposition follows. Denote by Γ1,Γ2, and Γ3 the three components of Γ27 \ {p} which
contain A1, A2, and A3, respectively. Since the degree of ϕ at p is four, we have ϕ−1(ϕ(p)) = {p}.
Therefore, by the connectivity of Γi, the images of Γi under ϕ are pairwise disjoint in T . This shows
that for x sufficiently close to ϕ(p) in T , the support of the divisor Dx(ϕ) lives entirely in one of the
Γi for i ∈ {1, 2, 3}. Choose xi sufficiently close to ϕ(p) such that the support of Dxi(ϕ) is contained
in Γi. Applying Proposition 4.2, we see that each divisor Dxi(ϕ) has rank one in Γi. Now, according
to Lemma 5.7, the degree-four divisor Dx1

(ϕ) (resp. Dx2
(ϕ)) must be of the form 2(a) + 2(b) for two

points a and b sufficiently close to p and lying on the two different branches of Γ1 (resp. Γ2) adjacent
to p. Similarly, by Lemma 5.9, the divisor Dx3

(ϕ) has to be of the form 3(a) + (b) for two points a and
b sufficiently close to p and lying on the two different branches of Γ3 adjacent to p. This shows that
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the map ϕp, the restriction of ϕ to a sufficiently small neighborhood of p in Γ27, coincides with the
map depicted in Figure14(a). The proposition now follows from Lemma 5.10.

It remains to prove that dp(ϕ) = 4. We first claim that ϕ maps one of the components Γi, for
i = 1, 2, 3, onto a connected component of T \ {ϕ(p)}. Otherwise, for the sake of contradiction,
suppose that ϕ−1(ϕ(p)) consists of p and one point pi in each of the components Γi for i = 1, 2, 3. Then
ϕ has local degree one at each of the points pi. By Proposition 4.2, Dϕ(p)(ϕ) = (p) + (p1) + (p2) + (p3)
has rank one in Γ. By equation (5.6.1) applied to the cut-vertex p in Γ27, we infer that the divisor
(p) + (pi) has rank one in the metric graph Γi, the closure of Γi in Γ27. In other words, the metric
graphs Γi are hyperelliptic, which is clearly not the case. This gives a contradiction and the claim
follows.

Summarizing, there must exist at least one Γi such that ϕ maps Γi onto one of the connected
components of T \ {ϕ(p)}. Reasoning again as in the first part of the proof, it follows from Proposi-
tion 4.2 and Lemmas 5.7 and 5.9 that the restriction of ϕ to Γi has degree four, which implies that
dp(ϕ) = 4. n

5.11. Lifting divisors of given rank. First, recall that to a smooth proper curve X over K together
with a semistable vertex set V and a subset D0 of X(K) compatible with V , we can naturally associate
a metrized complex of curves C = Σ(X,V ∪ D0) with underlying augmented metric graph Γ. As in
[AB12], there are natural specialization maps on divisors, which we denote for simplicity by the same
letter τ∗:

τ∗ : Div(X)→ Div(C), and τ∗ : Div(C)→ Div(Γ).

Since this discussion is pointless in the case of rational curves, we may assume thatX (equivalently,
C or the augmented metric graph Γ) has positive genus. We will also assume that Γ does not have any
infinite vertices, i.e., that D0 is empty, which does not lead to any real loss of generality and which
makes various statements easier to write down and understand. We may also assume without loss of
generality that V is a strongly semistable vertex set of X.

According to the Specialization Inequality [Bak08, AC13, AB12]), for any divisor D in Div(X) one
has

(5.11.1) rX(D) ≤ rC(τ∗(D)) ≤ r#
Γ (τ∗(D)) ≤ rΓ(τ∗(D)),

where rX , rC and rΓ denote rank of divisors on X, C and (unaugmented) Γ, respectively, and r#
Γ

denotes the weighted rank in the augmented metric graph (Γ, g) (see (4.11)).

We spend the rest of this section discussing the sharpness of the inequalities appearing in (5.11.1).

Definition 5.12. Let C be a metrized complex of curves whose underlying metric graph Γ has no
infinite leaves, and let D be a Λ-rational divisor in DivΛ(C). A lifting of the pair (C,D) consists of a
triple (X,V ;DX) where X is a smooth proper curve over K, V is a strongly semistable vertex set for
which C = Σ(X,V ), and DX is a divisor in Div(X) with D ∼ τ∗(DX). We say that the inequality
rX ≤ rC is sharp if for any metrized complex of curves C and any divisor D ∈ Div(C), there exists a
lifting (X,V ;DX) of (C,D) such that rX(DX) = rC(D).

We can define in a similar way what it means to lift a divisor on an (augmented) metric graph to a
divisor on a metrized complex of curves or to a smooth proper curve over K, and what it means for
the corresponding specialization inequalities to be sharp.

It is easy to see that the inequality r#
Γ ≤ rΓ is not sharp (see [AB12] for a precise formula relating

the two rank functions).
The following example is due to Ye Luo (unpublished); we thank him for his permission to include

it here. Together with Corollary I.4.28, it implies that the inequality rX ≤ rΓ is not sharp.

Example 5.13. (Luo) Let Γ be a metric graph in M(G7), where G7 is the graph of genus seven
depicted in Figure 18(a), such that all edge lengths in Γ are equal, and let D = (p) + (q) + (s) ∈
Div(Γ). Then rΓ(D) = 1, however there does not exist any finite harmonic morphism of metric
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graphs ϕ : Γ′ → T of degree three to a metric tree for any Γ′ ∈ M(G7). In particular, this shows that
the stable gonality of an augmented graph can be greater than its divisorial gonality.

p

s q

p

qs

a) Graph G7 b) Metric graph Γ′1 ⊂ Γ′

FIGURE 18

We briefly sketch a proof. Suppose that such a finite harmonic morphism ϕ : Γ′ → T exists. Since
Γ′ is not hyperelliptic, one easily verifies that Dϕ(p)(ϕ) = 3(p), Dϕ(q)(ϕ) = 3(q), and Dϕ(s)(ϕ) = 3(s).
This shows the existence of a finite morphism ϕ′ : Γ′1 → T ′ of degree 3 to a metric tree T ′ where Γ′1 is
depicted in Figure 18(b), so that Dϕ′(p)(ϕ

′) = 3(p), Dϕ′(q)(ϕ
′) = 3(q), and Dϕ(s)(ϕ

′) = 3(s). But it is
easy to verify by hand that such a morphism ϕ′ does not exist.

Proposition 5.14. Neither of the inequalties rX ≤ rC and rC ≤ r#
Γ is sharp.

Proof. To show the non-sharpness of the inequality rX ≤ rC , let C be a metrized complex of curves
whose underlying metric graph Γ belongs to the family depicted in Figure 12, with first Betti number
κ, and whose genus function is positive at each vertex. Consider the divisor Dd = d(p)⊕ d(x) in C for
a closed point x in Cp and d a positive integer. If d is sufficiently large compared to the genera of the
vertices, then rC(Dd) ≥ 1. If the pair (C,Dd) lifted to a triple (X,V ;DX) with τ∗(DX) ∼ Dd, then there
would exist a finite harmonic morphism ϕ : C̃ → T from a modification of C to a metrized complex of
curves of genus zero. But this would imply the existence of a degree d morphism ϕp : Cp → P1 such
that the image of redp (on edges adjacent to p in Γ) is contained in the set of critical values of ϕp. By
the Riemann–Hurwitz formula, this is impossible for κ large enough compared to d.

To show the non-sharpness of the inequality rC ≤ r#, let again (Γ, g) be an augmented metric graph
with underlying graph depicted in Figure 12 with κ ≥ 3 and 2 ≤ 2g(p) < κ − 2, and let D = 2(p).
One easily computes that r#

Γ (D) = 1. An algebraic curve of genus g(p) ≥ 1 contains at most 2g(p) + 2
distinct points p such that 2(p) is in a given linear system of degree two, which implies that (Γ, g)

cannot be lifted to a hyperelliptic metrized complex of curves. This shows that the inequality rC ≤ r#
Γ

is not sharp. n
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