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Abstract. — Adapting the method introduced in Graph Minors X, we propose a new proof of
the duality between the bramble-number of a graph and its tree-width. Our approach is based
on a new definition of submodularity on partition functions which naturally extends the usual
one on set functions. The proof does not rely on Menger’s theorem, and thus generalises the
original one. It thus provides a dual for matroid tree-width. One can also derive all known dual
notions of other classical width-parameters from it.

1. Introduction

In their seminal paper Graph Minors X [10], Robertson and Seymour introduced the notion
of branch-width of a graph and its dual notion of tangle. Their method is based on bias and
tree-labellings. Later, Seymour and Thomas [11] found a dual notion to tree-width, the
bramble number (named by Reed [8]). The proof of the bramble-number/tree-width duality
makes use of Menger’s theorem to reconnect partial tree-decompositions, see for instance the
textbook of Diestel [2]. Our aim in this paper is to show how the classical dual notions of
width-parameters can be deduced from the original method of Graph Minors X.

In this paper, E will always denote a finite set with at least two elements. A partitioning
tree on E is a tree T with at least three nodes in which the leaves are identified with the
elements of E in a one-to-one way. Therefore, every internal node v of T , if any, corresponds
to the partition Tv of E whose parts are the set of leaves of the subtrees obtained by deleting
v.

An obvious way of defining a partitioning tree is simply to add a node adjacent to every
element of E — a partitioning star. But what if we are not permitted to do so? Precisely,
assume that a restricted set of partitions of E called admissible partitions is given. Is it
possible to form an admissible partitioning tree? (i.e., such that every partition Tv for each
internal node v is admissible.) An obstruction to the existence of such a tree is the dual
notion of bramble.

An admissible bramble is a nonempty set of pairwise intersecting subsets of E which contains
a part of every admissible partition of E. It is routine to define an admissible bramble: just
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pick an element e of E, and collect, for every admissible partition, the part that contains
e. Such a bramble is called principal. The crucial fact is that if there is a non-principal
admissible bramble B, then there is no admissible partitioning tree. To see this, assume for
contradiction that T is an admissible partitioning tree. For every internal node u of T , there
is an element X of Tu that belongs to B. Let v be the neighbour of u that belongs to the
component of T \ u having set of labels X. Orient the edge uv of T from u to v. Note that
every internal node becomes the origin of an oriented edge. Observe also that an edge of T
incident to a leaf never gets an orientation since B is non-principal. The contradiction follows
from the fact that some edge of T receives two orientations, which is impossible since the
elements of B are pairwise intersecting.

Unfortunately, there can be no admissible partitioning tree and no non-principal admissible
bramble. Indeed, this is the case for E = {a, b, c, d, e} and with

{
{a, b}, {c}, {d}, {e}

}
and{

{a}, {b}, {c}, {d, e}
}

as admissible partitions.
In the first part of this paper, we prove that for some particular families of admissible

partitions (e.g. generated by a submodular partition function) there exists an admissible
partitioning tree if and only if no non-principal admissible bramble does. The second part
of the paper is devoted to the translation of this result into the different notions of width-
parameters.

2. Submodular Partition Functions

The complement of a subset X of E is the set Xc := E \ X. A partition of E is a set
X = {X1, . . . , Xn} (n ≥ 1) of subsets of E satisfying X1 ∪ · · · ∪Xn = E and Xi ∩Xj = ∅ for
all i 6= j. The order in which the parts appear is irrelevant. We allow degenerate partitions
(i.e. the sets Xi can be empty).

The partition obtained from X by pushing Xi to a subset F of E is

XXi→F := {X1 ∩ F c, . . . , Xi−1 ∩ F c, Xi ∪ F,Xi+1 ∩ F c, . . . , Xn ∩ F c}.

A partition function is a function Φ defined from the set of partitions of E into R∪{∞} with
R the set of reals. Let X be a partition of E. We call Φ(X ) the Φ-width, or simply the width,
of X . Let k ∈ R∪ {∞}. A k-partition is a partition of width at most k. A partition function
Φ is submodular if for every pair of partitions X = {X1, . . . , Xn} and Y = {Y1, . . . , Yl} and
for every 1 ≤ i ≤ n and 1 ≤ j ≤ l, we have:

Φ(X ) + Φ(Y) ≥ Φ(XXi→Y c
j

) + Φ(YYj→Xc
i
).

To justify a posteriori our terminology, observe that for bipartitions, partition submodu-
larity gives

Φ(A,Ac) + Φ(B,Bc) = Φ(A,Ac) + Φ(Bc, B)

≥ Φ(A ∪ (Bc)c, Ac ∩Bc) + Φ(Bc ∪Ac, B ∩A)

≥ Φ(A ∪B,Ac ∩Bc) + Φ(A ∩B,Ac ∪Bc).

This corresponds to the usual notion of submodularity when setting Φ(F ) := Φ(F, F c) for
every subset F of E.

Unfortunately, some natural partition functions lack submodularity, and so we have to
define a relaxed version of it. If Φ is partition submodular, then for any pair of partitions
X = {X1, . . . , Xn} and Y = {Y1, . . . , Yl}, Φ(XXi→Y c

j
) ≤ Φ(X ) or Φ(YYj→Xc

i
) ≤ Φ(Y) (1 ≤
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i ≤ n and 1 ≤ j ≤ l). To define weakly submodular partition function, we strengthen this
condition slightly. More precisely, a partition function Φ is weakly submodular if for every
pair of partitions X = {X1, . . . , Xn} and Y = {Y1, . . . , Yl} and every 1 ≤ i ≤ n, 1 ≤ j ≤ l, at
least one of the following holds:

1. There exists F such that Xi ⊆ F ⊆ (Yj \Xi)
c and Φ(X ) > Φ(XXi→F );

2. Φ(Y) ≥ Φ(YYj→Xc
i
).

It is straightforward to check that submodular partition functions are weakly submodular.
(To see this, it suffices to consider F = (Yj \Xi)c.) Let us illustrate these notions by some
examples. In what follows, X = {X1, . . . , Xn} is a partition of E.

– The key example of a submodular partition function is the function border size defined
on the set of partitions of the edge set E of a graph G = (V,E). The border of a partition
X of edges is the set ∆(X ) of vertices that are incident with edges in at least two parts
of X . The border size of X is then δ(X ) = |∆(X )|. For a subset F of E we will often
write ∆(F ) and δ(F ) instead of ∆(F, F c) and δ(F, F c). The proof of the submodularity
of border functions is postponed to Section 5.1. As we will see, the function δ leads to
the tree-width of G.

– Let f be a submodular function on 2E (the set of subsets of E). We define a submod-
ular partition function Σf by letting Σf (X ) =

∑
i∈I f(Xi). The submodularity of this

function is proved in Section 5.2. This corresponds to the tree-width of matroids.
– Let f be a symmetric submodular function on 2E , that is a submodular function sat-

isfying f(A) = f(Ac) for all A ⊆ E. The function maxi∈{1,...,n} f(Xi), which is a limit
of weakly submodular functions, gives the notion of branch-width and its relatives like
rank-width. It is treated in Section 5.3.

– Let Φ be a weakly submodular partition function and p ≥ 2 be an integer. We define
a weakly submodular partition function by letting Φp(X ) = Φ(X ) when the number of
parts of X is at most p, and +∞ otherwise (or any large integer constant). This kind
of functions allows us to describe the branch-width.

– Let Φ be a weakly submodular partition function and p ≥ 2 be an integer. By letting
Φ′p(X ) = Φ(X ) when the number of Xi with at least two elements is at most p, and +∞
otherwise (or any large constant integer), we obtain a partition function which gives, in
particular, the notion of path-width. This is a weakly submodular partition function if
we only push subsets that are non-singletons.

3. Search-Trees

A bidirected tree is a directed graph obtained from an undirected tree by replacing every
edge with an oriented circuit of length two.

A search-tree T on E is an arc-labelled bidirected tree on at least three nodes such that:
– The arcs of T are labelled by subsets of E, and we denote by l the labelling function;
– If u is an internal node of T , the sets l(uv), for all outneighbours v of u, define a partition

of E that we denote by Tu;
– The labels of a 2-circuit are disjoint, i.e., l(uv) ∩ l(vu)∅.
Let Φ be a partition function on E. The Φ-width of a search-tree T is the maximum of

Φ(Tu), taken over the internal nodes u. If there is no risk of confusion, we just speak of the
width of T . A k-search-tree is a search-tree of width at most k. A 2-circuit uv is exact if
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l(uv) ∪ l(vu) = E. A search-tree T is exact if all its 2-circuits are exact. The label of an arc
leaving a leaf of T is called a leaf-label.

Proposition 1. — In an exact search-tree T , the set of labels of the arcs entering the leaves
of T is a partition of E.

Proof. — Let T be an exact search-tree. We prove the proposition by induction on the
number of internal nodes of T . If T has one internal node, it satisfies the proposition.
Otherwise, let u and v be two adjacent internal nodes of T , and uv be the corresponding
2-circuit. Let T u (resp. T v) be the exact search-tree obtained by removing from T all the
components of T \ {v} (resp. of T \ {u}) not containing u (resp. v). By induction, the set
µuv = {l(uv), A1, . . . , Ap} of labels of the arcs entering the leaves of T u is a partition of E.
Similarly, the set µvu = {l(vu), B1, . . . , Bq} of labels of the arcs entering the leaves of T v is a
partition of E. Since T is exact, l(uv) = l(vu)c, hence the set of labels of the arcs entering
the leaves of T is the partition {A1, . . . , Ap, B1, . . . , Bq}.

Since the labels of the arcs entering the leaves are exactly the complements of the leaf-labels,
we obtain the following corollary.

Corollary 2. — No two leaves of an exact search-tree can have the identical leaf-labels other
than E.

When this partition consists of singletons and empty sets, T is a partitioning k-search-tree.
(In which case T provides naturally a partitioning tree on E.)

A search-tree T is compatible with a set F of subsets of E if every leaf-label of T contains
an element of F as a subset (recall that a leaf-label is the label of an arc leaving a leaf). Let
uv be a 2-circuit of T with u an internal node and let F be such that l(uv) ⊆ F ⊆ l(vu)c. A
key fact is that replacing the partition Tu in T by (Tu)l(uv)→F (in the obvious one-to-one way)
gives a new search-tree that is still compatible with F since its leaf-labels are unchanged.

Theorem 3. — Let F be a set of subsets of E. If Φ is a weakly submodular partition function
on E and T is a k-search-tree compatible with F , there is a relabelling of T that is an exact
k-search-tree compatible with F .

Proof. — Choose any internal node r as a root of T . Among all relabellings of T that are
k-search-trees compatible with F , we minimise the sum of Φ(Tu), taken over all internal nodes
u, and then we maximise the sum of the sizes of the labels of backward arcs of T . We claim
that T is exact. If not, then let uv be a non-exact 2-circuit, with u closer to r than v. If v is
an internal node, then the sum of Φ(Tu) being minimal, there is no F with l(uv) ⊆ F ⊆ l(vu)c

for which Φ(Tu) > Φ((Tu)l(uv)→F ). We can thus replace Tv by (Tv)l(vu)→l(uv)c . If v is a leaf,
then we replace l(vu) by l(uv)c. In any case, we get a new search-tree compatible with F ,
and both replacements strictly increase the size of the label l(vu), a contradiction.

4. Tree-Bramble Duality

Let Φ be a weakly submodular partition function on E. Let k ∈ R ∪ {∞}. Recall that
a k-partition is a partition whose Φ-width is at most k. A partitioning k-search-tree is an
exact search-tree of Φ-width at most k that is compatible with {E \ {e} | e ∈ E}. A bias is
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a nonempty family B of subsets of E such that
⋂
X∈BX = ∅. A k-bramble B is a nonempty

family of subsets of E such that:
– For all X,Y ∈ B, we have X ∩ Y 6= ∅.
– For every k-partition X = {X1, . . . , Xn}, there exists i such that Xi ∈ B.

A k-bramble is principal if it contains a singleton. In particular, if a k-bramble is principal,
then it is not a bias.

Theorem 4. — Let Φ be a weakly submodular partition function on a set E and k ∈ R∪{∞}.
There exists a non-principal k-bramble if and only if there does not exist a partitioning k-
search-tree.

Proof. — If there is a partitioning k-search-tree, then every k-bramble is principal. The proof
is given in the introduction in terms of admissible partitions.

Now let us show that if all k-brambles are principal, then there exists a partitioning k-
search-tree. Let us therefore assume that all k-brambles are principal. First note that there
exists at least one non-trivial k-partition (i.e. a partition that does not contain E) for
otherwise {E} is a non-principal k-bramble, a contradiction.

We claim that every bias has a compatible k-search-tree. If true, then the bias {E \ {e} |
e ∈ E} is compatible with a search tree T . By Theorem 3, we may assume that T is exact,
and thus that T corresponds to a k-partitioning tree. Our claim thus implies the theorem. To
prove it, assume for the sake of a contradiction that there exists a bias B which is compatible
with no k-search-tree. Choose such a bias B maximal with respect to inclusion. That is, for
any X 6∈ B, if any, there exists a search-tree compatible with B∪{X}. Two cases can happen:

– The set B contains a part of every k-partition.
We claim that B contains two disjoint sets B1 and B2, where B1 is a part of a k-

partition containing at least two parts. Indeed, remove from B all the elements that
belong to no k-partition and call the resulting set B′. Since there exists a non-trivial
k-partition, B and thus B′ are non-empty. If B′ is a k-bramble, then it is principal.
There thus exists B1 = {e} ∈ B′ that belongs to a k-partition with at least two parts;
since B is a bias, it contains a set B2 disjoint from {e}. If B′ is not a k-bramble, then it
contains two disjoint sets B1 and B2. Either B2 6= ∅ and B1 ∈ B′ or B2 = ∅ and B1 can
be any part of a non-trivial k-partition. In both cases, we can suppose that B1 belongs
to a k-partition with at least two parts. This finishes the proof of the claim.

Let {X1, . . . , Xn} be a k-partition containing B1 with n ≥ 2 (say B1 = Xj). Let T be
the bidirected star T with n leaves v1, . . . , vn and one internal node x. Set l(xvi) := Xi

and l(vix) := Xc
i for all i ≤ n. Since B1 ⊆ Xc

j and B2 ⊆ Xc
i for all i 6= j, T is a

k-search-tree compatible with B.
– The set B contains no part of a k-partition X = {X1, . . . , Xn}.

Suppose that X is trivial, say Xi = E. Any k-search-tree compatible with B ∪ {E} is
also compatible with B, contradictory to our choice of B. We can thus suppose that X
is non-trivial and that n ≥ 2.

We claim that for each non-empty Xi, there exists a k-search-tree Ti having a unique
leaf-label l(vixi) containing Xi.

Before we prove the claim, suppose we have found the k-search-trees Ti for the non-
empty Xi. If Xi = ∅, then let Ti be the two circuit xivi with l(xivi) = ∅ and l(vixi) = E.
We can “merge” the trees Ti to get a k-search-tree compatible with B. Indeed, let T
be the tree obtained from ∪ni=1Ti by identifying each xi in a new vertex z and setting
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l(zvi) := Xi and l(viz) := l(vixi). Since each l(viz) = l(vixi) is disjoint from l(xivi) and
l(xivi) contains Xi, l(zvi) ∩ l(viz) = ∅ and T is a k-search-tree which, by construction,
is compatible with B, a contradiction.

To obtain the tree Ti, it is tempting to consider the bias Bi = B ∪ {Xi}, since the
maximality of B implies that there is a k-search-tree Ti compatible with Bi. The problem
is that even if Corollary 2 ensures that they are different, Ti may have multiple leaf-
labels containing Xi. To overcome this difficulty, for every Xi we choose an inclusion-
wise maximal set X ′i that contains Xi and contains no element of B. We then set
B′i := B ∪ {X ′i}. Since B is maximal, Theorem 3 implies that there is an exact k-
search-tree Ti compatible with B′i. Since B is compatible with no k-search-tree, Ti has
a leaf-label containing X ′i and no element of B. Since X ′i is maximal with this property,
this leaf-label is exactly X ′i. Since X ′i 6= E, by Corollary 2, X ′i appears only once as a
leaf-label of Ti, as required.

5. Examples of Submodular Partition Functions

In this section we prove that the partition functions given in Section 2 to illustrate the
notions of (weak) partition submodularity are indeed (weakly) partition submodular.

5.1. The Submodular Border Partition Function δ. — Recall that for a partition X
of the edge set of a graph, ∆(X ) is the set of vertices incident with edges in at least two
distinct parts of X , and δ(X ) = |∆(X )|.

Proposition 5. — The border function δ is submodular.

Proof. — Let G = (V,E) be a graph. Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Yl} be some
partitions of E. We want to prove that:

δ(X ) + δ(Y) ≥ δ(XX1→Y c
1

) + δ(YY1→Xc
1
)

≥ δ(X1 ∪ Y c
1 , X2 ∩ Y1, . . . , Xn ∩ Y1)+

δ(Y1 ∪Xc
1, Y2 ∩X1, . . . , Yl ∩X1)

Let x be a vertex of G. Two cases can happen:

– The contribution of x in the right-hand term of the previous inequality is 1. The vertex
x belongs to, say, ∆(XX1→Y c

1
). There are edges ex and fx containing x with ex in some

Y1 ∩Xi and fx not in Y1 ∩Xi (i ≥ 2). If fx 6∈ Y1, then x belongs to ∆(Y1). Otherwise,
fx 6∈ Xi and x ∈ ∆(Xi). In both cases, the contribution of x to the left-hand term is at
least 1.

– Assume now that x belongs both ∆(XX1→Y c
1

) and ∆(YY1→Xc
1
). Since x belongs to

∆(XX1→Y c
1

), there is an edge ex containing x in some Xi ∩ Y1 (i ≥ 2). Similarly there is
an edge fx containing x in some Yj ∩X1 (j ≥ 2). Since ex ∈ Xi and fx ∈ X1, x belongs
to ∆(X ). Similarly x belongs to ∆(Y), and thus contributes also twice to the left-hand
term.
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5.2. The Submodular Partition Function Σf . — Let f be a submodular function on
2E . Recall that Σf (X ) =

∑
X∈X f(X).

Lemma 6. — 1. Let X and Y be two disjoint subsets of E. If X1 ⊆ X and Y1 ⊆ Y , we
have:

f(X) + f(Y )− f(X1)− f(Y1) ≥ f(X ∪ Y )− f(X1 ∪ Y1)

2. More generally, if X1, . . . , Xr are pairwise disjoint subsets of E, and X ′i ⊆ Xi for all
i = 1, . . . , r, then we have:

r∑
i=1

(
f(Xi)− f(X ′i)

)
≥ f

( r⋃
i=1

Xi

)
− f

( r⋃
i=1

X ′i

)
Proof. — 1. Apply first the submodularity of f to the subsets A = X ∪ Y1 and B = Y .

Since A ∩B = Y1 and A ∪B = X ∪ Y , we obtain:

(1) f(X ∪ Y1) + f(Y ) ≥ f(X ∪ Y ) + f(Y1)

Apply then the submodularity of f to the subsets A = X1 ∪ Y1 and B = X. Since
A ∩B = X1 and A ∪B = X ∪ Y1, we obtain:

(2) f(X1 ∪ Y1) + f(X) ≥ f(X ∪ Y1) + f(X1)

The conclusion follows from (1)+(2).
2. Follows by induction on r.

Proposition 7. — The function Σf is a submodular partition function.

Proof. — Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Yl} be two partitions of E. We want to
prove that Σf (X ) + Σf (Y) ≥ Σf (XX1→Y c

1
) + Σf (YY1→Xc

1
). We must then prove:

n∑
i=1

f(Xi) +
l∑

j=1

f(Yj) ≥ f(X1 ∪ Y c
1 ) +

n∑
i=2

f(Y1 ∩Xi)

+ f(Y1 ∪Xc
1) +

l∑
j=2

f(X1 ∩ Yj).

(3)

Since X2 ∪ · · · ∪Xn = Xc
1, by applying Lemma 6 to Xi’s and X ′i’s with X ′i = Y1 ∩Xi for

i = 2, . . . , n, we have:

(4)
n∑
i=2

f(Xi)−
n∑
i=2

f(Y1 ∩Xi) ≥ f(Xc
1)− f(Y1 ∩Xc

1)

Similarly we obtain:

(5)
l∑

j=2

f(Yj)−
l∑

j=2

f(X1 ∩ Yj) ≥ f(Y c
1 )− f(X1 ∩ Y c

1 )

By adding (4) and (5), we obtain
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l∑
j=2

f(Yj) +
n∑
i=2

f(Xi) + f(X1 ∩ Y c
1 ) + f(Y1 ∩Xc

1) ≥

f(Y c
1 ) + f(Xc

1) +
l∑

j=2

f(X1 ∩ Yj) +
n∑
i=2

f(Y1 ∩Xi)

(6)

By applying submodularity to Xc
1 and Y1 first and then to X1 and Y c

1 , and adding the two
inequalities, we obtain:

f(X1) + f(Y1)− f(X1 ∩ Y c
1 )− f(Y1 ∩Xc

1) ≥ f(X1 ∪ Y c
1 ) + f(Y1 ∪Xc

1)

− f(Y c
1 )− f(Xc

1)
(7)

Adding (6) and (7), we obtain (3). Thus Σf is submodular.

5.3. The Weakly Submodular Partition Function Maxεf . — Let f be a symmetric
submodular function on 2E . The partition function maxf (X ) = maxX∈X f(X) may not be
weakly submodular. Indeed, the partition function maxδ is not weakly submodular. Let us
consider the graph with vertex set {a, b, c, d, e, f} and edge set {ab, bc, cd, de, ef, fa}. Set
X1 := {af, bc}, X2 := {ab, de}, X3 := {cd, ef}, Y2 := {af, ab, bc}, Y1 := Y c

2 and consider the
partitions X = {X1, X2, X3} and Y = {Y1, Y2} (see Fig 1).

c

ba

f

e d

Y1

Y2

X1

X2

X3

Figure 1. An example of two partitions for which maxδ is not weakly submodular.

1. On one hand, there exists no F with X1 ⊆ F ⊆ Y c
1 and maxδ(X ) > maxδ(XX1→F ).

Indeed, F = X1 is clearly not good, but F = X1 ∪ {ab} gives XX1→F =
{
Y2, {ed}, X3

}
and we still have maxδ(XX1→F ) = δ(X3) = 4 = maxδ(X ).

2. On the other hand, maxδ(Y) < maxδ(YY1→Xc
1
). Indeed, since YY1→Xc

1
= {X1, X

c
1}, we

have maxδ(Y) = 2 < 4 = YY1→Xc
1

as claimed.
To overcome this subtlety when dealing with the function maxf , we have to shift it a little

to break ties. For any ε > 0 (which will be chosen arbitrarily small) , we consider instead the
function:

Maxεf (X )maxf (X ) + εΣf (X )

Lemma 8. — For every ε > 0, the function Maxεf is a weakly submodular partition function.
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Proof. — Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Yl} be two partitions of E and let 1 ≤ i ≤
n and 1 ≤ j ≤ l. Let F be a set such that

(8) Xi \ Yj ⊆ F ⊆ (Yj \Xi)c

so that f(F ) is minimum. We claim that maxf (X ) ≥ maxf (XXi→F ). To do so, we must
prove that f(Xi) ≥ f(Xi ∪ F ) and that f(Xk) ≥ f(Xk ∩ F c) for every k 6= i.

– By submodularity, we have:

(9) f(F ) + f(Xi) ≥ f(F ∩Xi) + f(F ∪Xi),

and since Xi ∩ F satisfies (8),

(10) f(F ∩Xi) ≥ f(F ).

Adding (9) and (10), we get f(Xi) ≥ f(F ∪Xi).
– For every k 6= i, we have by submodularity of f :

(11) f(Xk) + f(F c) ≥ f(Xk ∩ F c) + f(Xk ∪ F c)

Furthermore, f(F ) being minimum, f(F ) ≤ f(F \Xk), and since f is symmetric,

(12) f(Xk ∪ F c) ≥ f(F c).

Adding (11) and (12), we obtain f(Xk) ≥ f(Xk ∩ F c).
This proves that maxf (X ) ≥ maxf (XXi→F ).

By submodularity of
∑

f applied to X and {F c, F}, we obtain

(13)
∑

f (X ) +
∑

f (F c, F ) ≥
∑

f (XXi→F ) +
∑

f (Xc
i , Xi).

Since Xi satisfies (8), f(Xi) ≥ f(F ), and
∑

f (F c, F ) ≥
∑

f (Xc
i , Xi), hence

∑
f (X ) ≥∑

f (XXi→F ) and thus, Maxεf (X ) ≥ Maxεf (XXi→F ). Now two cases can happen:

– If f(Xi) > f(F ), from (13), then we get
∑

f (X ) >
∑

f (XXi→F ) and Maxεf (X ) >

Maxεf (XXi→F ). Now, since XXi→F = XXi→F∪Xi , F
′ := F ∪ Xi is such that Xi ⊆

F ′ ⊆ (Yj \Xi)c and Maxεf (X ) > Maxεf (XXi→F ′).
– If f(Xi) = f(F ), then we set F := Xi. By exchanging the roles of X and Y, and since
f(F ) = f(F c), we obtain Maxεf (Y) ≥ Maxεf (YYj→Xc

i
).

Thus Maxεf is a weakly submodular partition function.

6. Width Parameters

We assume in this section that the reader is somehow familiar with the usual definitions
of tree-decompositions (such as tree-width, branch-width, path-width, rank-width, . . . ). Our
aim is just to associate a weakly submodular partition function to each of these parameters
and show how to translate the exact partitioning k-search-tree into a decomposition, and
the non-principal k-bramble into the known dual notion (if any). To avoid technicalities, we
assume that k is at least two and that G = (V,E) is a simple loopless graph with minimum
degree at least two. In this section, if X is a set of vertices of G, then E(X) denote the set
of edges incident with at least one vertex in X.
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6.1. Tree-Width of Graphs. — The duality between tree-decompositions and brambles
was first proved in [11]. Brambles were renamed from their original name, screens, in [8].
The tree-width of G corresponds to the border function δ defined on partitions of E(G). More
precisely, the following property ([10], Theorem 5.1) links tree-decompositions and k-search-
trees.

Proposition 9. — Let G be a graph with minimum degree at least two. There exists a tree-
decomposition of G of width at most k−1 if and only if there exists a partitioning k-search-tree
for the partition submodular function δ.

Theorem 4 gives a duality theorem between tree-decompositions and non-principal k-
brambles. The next property links usual brambles with non-principal k-brambles. Recall
that a bramble in a graph G is a set B of subsets of vertices such that:

– for every X ∈ B, G[X] is a connected subgraph of G;
– for any X, Y ∈ B, X and Y touch, that is G[X ∪ Y ] is a connected subgraph of G.

The order of a bramble B is the minimum size of one of its transversal.

Proposition 10. — Let G be a graph with minimum degree at least two. There exists a
bramble in G of order at least k + 1 if and only if there exists a non-principal k-bramble for
the partition submodular function δ.

Proof. — The key idea behind this proof is that in a graph without isolated vertices, two sets
of vertices X and Y touch if and only if E(X) and E(Y ) intersect. Recall that E(X) is the
set of edges that are incident with at least one vertex in X.

Suppose that G has a bramble B of order k + 1. Let X = {X1, . . . , Xp} be a partition of
E with border of size at most k. Since B has order k+ 1, there is an element B of B disjoint
from ∆(X ). Let Xi be the part of X containing E(B). Note that Xi cannot be a singleton
(since G has minimum degree at least two). Let Bk be the set of all these sets Xi (over all
partitions X with δ(X ) ≤ k). We claim that Bk is a non-principal k-bramble. Indeed, let
X and Y be some elements of Bk. Assume that X and Y contain respectively E(BX) and
E(BY ) with BX and BY in B. Since BX and BY touch, ∅ 6= E(BX) ∩ E(BY ) ⊆ X ∩ Y .
This proves that Bk is a k-bramble. As already noted, no chosen Xi is a singleton; thus Bk is
non-principal.

Assume now that E has a non-principal k-bramble Bk. For any subset S ⊆ V of size
at most k, let {E1, . . . , En} be the partition of E in which the sets Ei are the (nonempty)
sets of edges minimal with respect to inclusion for the property ∆(Ei) ⊆ S. Since Bk is a
non-principal k-bramble, one of the Ei, with at least two edges, is in Bk. This means that
Xi = V (Ei)\S is a nonempty connected set of vertices. Note that Ei = E(Xi). Now let B be
the set of these Xi (over all subsets S ⊆ V of size at most k). We claim that B is a bramble
of order at least k + 1. Indeed let Xi, Xj be any two elements of B. Since E(Xi)(= Ei) and
E(Xj)(= Ej) both belong to the k-bramble Bk, Ei∩Ej 6= ∅ and thus Xi and Xj touch. Hence
B is a bramble. Since any covering set of B has at least k + 1 elements, the order of B is at
least k + 1.

6.2. Branch-Width of Connectivity Functions. — Branch-decompositions and tan-
gles were introduced in Graph Minors X [10] for hypergraphs. However, the general setting
for these decompositions is in terms of connectivity functions, i.e., symmetric submodular
functions. Indeed, Robertson and Seymour proved the duality between branch-width and
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tangle-number by explicitly using decompositions of connectivity functions [10]. Their theo-
rem thus also applies to matroid branch-width (see for example [4]) or rank-width (see [6]).

Let Ψ be a connectivity function on E. The branch-width of Ψ corresponds to the weakly
submodular partition function (maxΨ)3, where (maxΨ)3 denotes the maximum Ψ-width of an
element of a partition of E containing two or three parts. An exact partitioning k-search tree
of E is precisely a branch-decomposition of E of width at most k. As noted in Section 5.3,
the function maxΨ is not weakly partition submodular. But since maxΨ = limε→0+ MaxεΨ,
Theorem 4 also applies.

Let us now explain the correspondence between a non-principal k-bramble B and a tangle
of E. Recall that a tangle of order k for a connectivity function Ψ (see [7]) is a set T of
subsets of E such that:

– for every A ⊆ E with Ψ(A) ≤ k, either A ∈ T or Ac ∈ T ;
– if A, B, C ∈ T , then A ∪B ∪ C 6= E;
– for every e ∈ E, E \ {e} 6∈ T .

The difference between tangles and k-brambles is very simple. If Ψ(A) ≤ k, then the
tangle contains the “small” part of {A,Ac} while the bramble contains the “large” one. To
link tangles and k-brambles, we need the following lemma.

Lemma 11. — Let B be a k-bramble corresponding to the partition function (maxΨ)3. For
every A, B, C in B, the intersection A ∩B ∩ C is non-empty.

Proof. — Suppose for the sake of a contradiction that there exist A, B, C ∈ B with A∩B∩C =
∅. Choose A, B, C inclusion-wise maximal with this property. Since

Ψ(A \B) + Ψ(B \A) = Ψ(A ∩Bc) + Ψ(B ∩Ac)
= Ψ(A ∩Bc) + Ψ(Bc ∪A)

≤ Ψ(A) + Ψ(Bc) = Ψ(A) + Ψ(B)

we can assume that Ψ(A \B) ≤ k.
We now claim that Ψ(A ∩ C) ≤ k. Indeed, let C ′ = (A \B) ∪ C.

– Suppose that C = C ′, that is A \B ⊆ C. Since A∩B ∩C = ∅, A \B = A∩C, and the
claim follows.

– Suppose that C ( C ′. If Ψ(C ′) ≤ k, then C ′ ∈ B. But this is impossible for A∩B∩C ′ = ∅
and A, B, C are maximal with this property. Thus Ψ(C ′) > k. By submodularity of Ψ,
we have

2k ≥ Ψ(A \B) + Ψ(C) ≥ Ψ(C ′) + Ψ((A \B) ∩ C).

Therefore Ψ((A \B) ∩ C) ≤ k. Finally, since A ∩B ∩ C = ∅, A ∩ C = (A \B) ∩ C and
the claim follows.

By the same calculation as above, we can suppose that Ψ(A\C) ≤ k. The partition {Ac, A∩
C,A \ C} is then a k-partition. This is impossible, since these three sets are respectively
disjoint from A, B and C, which all belong to B.

We are now ready to prove the following:

Proposition 12. — A tangle of order k exists if and only if a non-principal k-bramble for
the partition function (maxΨ)3 does.
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Proof. — Let T be a tangle of order k. We claim that B = {Ac | A ∈ T } is a non-principal
k-bramble. Observe first that if A, B ∈ B, then Ac, Bc ∈ T . Therefore, Ac ∪ Bc 6=
E which proves that A ∩ B 6= ∅. Remark now that, for every partition (A,B,C) with
(maxΨ)3(A,B,C) ≤ k, exactly one set amongst A, B and C does not belong to T (since
A ∪ B ∪ C = E). Therefore B contains an element of every k-partition. Finally, the third
condition in the definition of tangle imposes that B is non-principal.

Now let B be a non-principal k-bramble. We claim that T = {Ac | A ∈ B} is a tangle of
order k. By construction, T satisfies the first tangle axiom. The second axiom follows directly
from Lemma 11. Finally, B being non-principal imposes the third tangle condition.

6.3. Path-Width of Graphs. — Path-decompositions were introduced in [9]. The duality
theorem between path-decompositions and blockages appears in [1] (see also [3]). Recall that
the partition function δ′2 corresponds to the size of the border of partitions {X1, . . . , Xn}
of E with at most two parts with more than one element. We show in this section that the
path-width of G = (V,E) is the minimum k such that there exists a partitioning k-search-tree
of δ′2. The following analogue of Theorem 3 holds for partition functions Φ′p, where Φ is a
weakly submodular partition function, and p ≥ 2 is some integer:

Theorem 13. — If T is a k-search-tree (with respect to Φ′p) compatible with F , then there
is a relabelling of a subtree of T which is an exact k-search-tree compatible with F .

Proof. — The proof is similar to the one of Theorem 3 except in one case: For u and v internal
nodes of T , one cannot always push the part l(uv) to l(vu) in the partition Tu. Indeed, when
|l(uv)| ≤ 1, this could increase the number of parts of Tu with more than one element. In
this case, we simply define a new tree T ′ by deleting the nodes of T which belong to the
components of T \ v not containing u. Now, v is a leaf of T ′, and we set l(vu) = l(uv)c.
Observe that T ′ is still compatible with F . The reason for this is that

⋂
X∈F X = ∅, hence

one of its element is included in l(uv)c.

It follows that Theorem 4 also holds for Φ′p, and consequently for δ′2. Using the same
technique as in Proposition 9, one can prove:

Proposition 14. — Let G be a graph with minimum degree at least two. There exists a path-
decomposition of G of width at most k if and only if there exists a partitioning k-search-tree
of E with respect to δ′2.

Let us now link blockages and non-principal k-brambles. A k-cut (V1, V2) is a pair of subsets
of vertices with |V1 ∩V2| ≤ k, V1 ∪V2 = V and such that no edge of G joins V1 \V2 to V2 \V1.
Let us recall that a blockage of order k in a graph G = (V,E) is a set B of subsets of V such
that:

i. for every A ∈ B, (A,Ac ∪N(Ac)) is a k-cut;
ii. for every k-cut (A,B), B contains exactly one of A and B;
iii. if (A,B) is a k-cut and C ∈ B is such that A ⊆ C, then A ∈ B.
We need the following lemma. Recall that for X ⊆ V (G), E(X) is the set of edges that

are incident with at least one vertex in X:

Lemma 15. — Let G be a graph with no isolated vertex and let B be a blockage of order k.
For every U1, V1 ∈ B, E(U c1) ∩ E(V c

1 ) 6= ∅.



SUBMODULAR PARTITION FUNCTIONS 13

Proof. — Let U2 = U c1 ∪ N(U c1). The pair (U1, U2) is a k-cut. If E(U c1) ∩ E(V c
1 ) = ∅, then

U2 ⊆ V1 which is impossible by the third blockage condition. The lemma follows.

Proposition 16. — Let G = (V,E) be a graph with minimum degree at least two. There
exists a blockage in G of order k if and only if there exists a non-principal k-bramble with
respect to δ′2.

Proof. — We first establish a correspondence between k-cuts and partitions X such that
δ′2(X ) ≤ k. If X = {X1, . . . , Xp} is a partition of E with δ′2(X ) ≤ k (where |X1|, |X2| ≥ 2),
then (V (Xc

2), V (Xc
1)) is a k-cut. Conversely, if (V1, V2) is a k-cut, then the partition X =

{X1, . . . , Xp} in which X1 = E(V c
2 ), X2 = E(V c

1 ), and {X3, . . . , Xp} = E(V1 ∩ V2) is such
that δ′2(X ) ≤ k.

Let B be a blockage of order k. Let X = {X1, . . . Xp} be such that δ′2(X ) ≤ k and let
(V (Xc

2), V (Xc
1)) be the corresponding k-cut. Since B is a blockage, it contains a part V (Xc

i )
(for i = 1 or 2). We then select X3−i to be in our bramble Bk. We claim that Bk is a
non-principal k-bramble. The fact that the elements of Bk are pairwise intersecting follows
from Lemma 15. To prove that Bk is non-principal, note that V1 6= V (G) for any V1 ∈ Bk.
Otherwise, for any k-cut (U1, U2), both U1 and U2 would be subsets of V1 and the second and
third blockage conditions would be incompatible. Thus, by construction Bk is non-principal
(since G has minimum degree at least two).

Let us assume that Bk is a non-principal k-bramble. Let (V1, V2) be a k-cut and let
{X1, . . . , Xp} be the corresponding partition. Since Bk is a non-principal k-bramble, Bk
contains a part Xi (for i = 1 or 2). We then select V3−i to be in B. We claim that B is a
blockage. It clearly satisfies the first and second conditions and the third one follows from
the fact that the elements of Bk are pairwise intersecting.

6.4. Tree-Width of Matroids. — Matroid tree-decompositions were introduced in [5]
but no duality theorem was known for them. Let M be a matroid on ground set E with
rank function r. We denote by rc the submodular function such that rc(F ) := r(F c) for
all subsets F of E. We also denote by Φ the partition function such that for any partition
X = {X1, . . . , Xl},

Φ(X ) = Σrc(X )− (l − 1)r(E)
Since Σrc is submodular by Proposition 7, and the number of parts in X and XX1→F are

the same, Φ is also submodular. Note that since Φ(X ∪ {∅})Φ(X ) + rc(∅) − r(E) = Φ(X ),
Σrc remains submodular if we remove from XX1→F its empty sets.

A tree-decomposition of M (see Hlilěný and Whittle [5]) is given by a tree T and a mapping
τ : E → V (T ). Every node u of T corresponds to the partition (F0, . . . , Fd) where F0 =
τ−1(u) and Fi = τ−1(Ti) where T1, . . . , Td are the components of T \ u. The weight of u is
Σd
i=1r

c(Fi)− (d− 1)r(E). The width of T is the maximum weight of one of its nodes and the
tree-width of M is the minimum width of one of its tree-decompositions.

Proposition 17. — There exists a partitioning k-search-tree with respect to Φ if and only if
there exists a tree-decomposition of width at most k.

Proof. — Partitioning k-search-trees on E are indeed tree-decompositions of width at most
k. This proves the forward implication.

For the backward implication, let T be any tree-decomposition of width k. We claim that
T can be turned into a partitioning k-search-tree. To do so, first note that we can prune
empty labelled leaves without changing the weight of the other nodes. Then, let u be either



14 OMID AMINI, FRÉDÉRIC MAZOIT, NICOLAS NISSE & STÉPHAN THOMASSÉ

an internal node with a non-empty label or a leaf whose label is not a singleton. Let F0 be its
label. Attach |F0| new leaves to u and move each element of F0 to one of these leaves. The
contribution of a new leaf labelled by e to the weight of u is rc(e) − r(E) ≤ 0 so the weight
of u does not increase.

Non-principal brambles provide a dual notion to matroid tree-width.

Acknowledgement. — The authors would like to thank the anonymous referees for their
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[5] P. Hliněný, G. Whittle, Matroid Tree-Width, European Journal of Combinatorics 27 (7) (2006)

1117–1128.
[6] S.-I. Oum, Graphs of Bounded Rank-Width, Ph.D. thesis, Princeton University (2005).
[7] S.-I. Oum, P. D. Seymour, Testing branch-width, Journal of Combinatorial Theory Series B 97 (3)

(2007) 385–393.
[8] B. A. Reed, Tree Width and Tangles: A New Connectivity Measure and Some Applications,

Surveys in Combinatorics 241 (1997) 87–162.
[9] N. Robertson, P. D. Seymour, Graph Minors. I. Excluding a Forest, Journal of Combinatorial

Theory Series B 35 (1) (1983) 39–61.
[10] N. Robertson, P. D. Seymour, Graph Minors. X. Obstructions to Tree-Decomposition, Journal of

Combinatorial Theory Series B 52 (2) (1991) 153–190.
[11] P. D. Seymour, R. Thomas, Graph Searching and a Min-Max Theorem for Tree-Width, Journal

of Combinatorial Theory Series B 58 (1) (1993) 22–33.
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Frédéric Mazoit, LaBRI Université Bordeaux, 351, cours de la Libration F-33405 Talence cedex, France
E-mail : frederic.mazoit@labri.fr

Nicolas Nisse, MASCOTTE, INRIA/CNRS-I3S/Univ. Nice Sophia, F-06902 Sophia-Antipolis, France
E-mail : nicolas.nisse@sophia.inria.fr
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