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Chapter 0

Introduction

Almost all the results presented in this habilitation address, or were
directly inspired by, questions coming from real algebraic geometry. The
aim of Section 0.1, which constitutes the first part of this introduction, is
to present in a condensed way some of the major topics of interest in this
field. For each topic, we put forward significant open questions and, when
relevant, examples of our contributions in this direction.

Another common theme unifying most of the works which we discuss in
this memoir is the influence of algebraic cycles. In Section 0.2, we explain
the reasons for their importance in our work. In addition, we discuss how
we were led to study these various questions, and how they relate to each
other. This section is also intended to serve as a roadmap for this text.

All the results mentioned in this introduction are discussed in more de-
tail, with more context, and often in greater generality, in the core of the
memoir. In an effort to simplify the presentation, we decided to only state
and discuss results over the field R of real numbers, and to disregard gener-
alizations and counterexamples over arbitrary real closed fields.

0.1 Real algebraic geometry
The field of real algebraic geometry is well illustrated by the following

two questions extracted from Hilbert’s celebrated 1900 list of problems.

Hilbert’s 17th problem. Let f ∈ R[x1, . . . , xn] be a nonnegative real
polynomial. Is f a sum of squares in R(x1, . . . , xn)?

Hilbert’s 16th problem (first part). Fix d ≥ 1. Which configurations
of ovals in P2(R) arise from real loci of smooth degree d real plane curves?

Both questions were not entirely new in 1900. The first question arises
from Hilbert’s works on sums of squares [Hil88, Hil93], which include a solu-
tion to Hilbert’s 17th problem in two variables. The second one is a natural
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extension of Harnack’s determination of the possible number of connected
components of the real locus of a smooth degree d real plane curve [Har76].

It can be argued that these two problems contained the seeds of most
later directions of research in real algebraic geometry. Indeed, the 17th
problem fostered the development of questions pertaining to

(i) real algebra, positivity and sums of squares;
(ii) arithmetic of real function fields;

whereas Hilbert’s 16th problem paved the way for the study of
(iii) classification of real algebraic varieties;
(iv) algebraic approximation of topological or differentiable objects.

We now review a few major open questions and present some of our
results in these directions.

0.1.1 Positivity and sums of squares

In 1927, a positive answer to Hilbert’s 17th problem was obtained by
Artin [Art27]. A beautiful quantitative refinement of Artin’s theorem, bound-
ing the number of squares required, was discovered by Pfister [Pfi67] in 1967:
a nonnegative real polynomial f ∈ R[x1, . . . , xn] is a sum of 2n squares in
R(x1, . . . , xn).

Pfister’s 2n bound is known to be optimal in two variables, thanks to
Cassels, Ellison and Pfister [CEP71]. The question whether it is also optimal
in more variables was asked explicitly by Pfister in [Pfi71, §4, Problem 1],
and has remained open ever since.

Question 0.1.1. For n ≥ 1, does there exist a nonnegative polynomial
f ∈ R[x1, . . . , xn] that is not a sum of 2n − 1 squares in R(x1, . . . , xn)?

In order to grasp this question, it is natural to try to understand better
in which situations Pfister’s bound may be improved. The following theo-
rems provide answers for polynomials in two variables, and for low degree
polynomials respectively.

Theorem 0.1.2 (Benoist [Ben18]). Fix d ≥ 2 even. Let Πd ⊂ R[x, y]d
be the set of nonnegative real polynomials of degree ≤ d. The set of those
polynomials that are sums of 3 squares in R(x, y) is analytically dense in Πd.

Theorem 0.1.3 (Benoist [Ben17]). Let f ∈ R[x1, . . . , xn] be nonnegative
of degree d. If d ≤ 2n − 2, or if d = 2n and n is even or equal to 3 or 5,
then f is a sum of 2n − 1 squares in R(x1, . . . , xn).

Hilbert’s 17th problem has many variants, where one considers algebraic
functions that may be defined over other fields than the reals, or real func-
tions that are not necessarily algebraic. In particular, the real-analytic ana-
logue of Hilbert’s 17th problem is a tantalizing open question, only known
to have a positive answer in ≤ 2 variables [BR75].
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Question 0.1.4. Let f : Rn → R be a nonnegative real-analytic function.
Is f a sum of squares of real-analytic meromorphic functions?

The following two theorems provide quantitative refinements à la Pfister
to questions of this kind, in the local case and in the compact case respec-
tively.

Theorem 0.1.5 (Benoist [Ben20b]). Let f ∈ R{{x1, . . . , xn}} be a conver-
gent real power series in n ≥ 1 variables, which is nonnegative near the
origin. Then f is a sum of 2n−1 squares in Frac(R{{x1, . . . , xn}}).

Theorem 0.1.6 (Benoist [Ben23]). Let M be a compact real-analytic man-
ifold of dimension n. Any nonnegative real-analytic function f : M → R is
a sum of 2n squares of real-analytic meromorphic functions.

In the local case, Pfister’s 2n bound was known to hold as a consequence
of the Milnor conjectures, and the 2n−1 bound that we obtain was conjec-
tured by Choi, Dai, Lam and Reznick [CDLR82, §9, Problem 6 and below]
(and due to Hu [Hu15] in dimension ≤ 3). In the compact case where we
obtain a 2n bound exactly as in Pfister’s theorem, no quantitative result was
previously known in dimension ≥ 3 (in dimension 2, see [Jaw82, ABFR05]).

0.1.2 Arithmetic of real function fields

The arithmetic study of the function field R(X) of a connected smooth
real algebraic variety X differs chiefly from the complex case because of the
influence of the field orderings of R(X), which are induced by the real points
of X. Surprisingly, even when X has no real points, questions about R(X)
may lead to arithmetic difficulties not present in the complex case.

To illustrate it, recall that a field K is said to be Cn if any homoge-
neous polynomial of degree d in > dn variables with coefficients in K has
a nontrivial zero. Function fields of connected smooth complex varieties of
dimension n (such as C(x1, . . . , xn)) are known to be Cn thanks to the Tsen–
Lang theorem [Lan52]. In [Lan53, p. 379], Lang conjectured that the same
should hold for real algebraic varieties of dimension n with no real points.

Question 0.1.7. Let X be a connected smooth real algebraic variety of
dimension n such that X(R) = ∅. Is R(X) a Cn field?

It is an old theorem of Witt [Wit37] that Question 0.1.7 has a positive
answer for degree d = 2 equations when n = 1, and Lang showed in [Lan53]
that it always has a positive answer for odd degree equations, as the proof
of the Tsen–Lang theorem may be adapted in this situation. The following
theorem, which deals with degree 2 equations when n = 2, settles the first
new case of Lang’s conjecture since its formulation.
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Theorem 0.1.8 (Benoist [Ben19]). Let S be a connected smooth real alge-
braic surface such that S(R) = ∅. Then any quadratic form of rank ≥ 5
over R(S) has a nontrivial zero.

One can also ask finer questions than existence of rational points. For
instance, if B is a connected smooth projective real algebraic curve, when
does a variety X over F = R(B) satisfy the weak approximation property,
in the sense that the diagonal map

X(F )→
∏
b∈B

X(Fb)

has dense image (where b runs over all closed points of B, and Fb is the
completion of F with respect to the discrete valuation associated with b)?
Wittenberg and I showed that this is the case for homogeneous spaces under
connected linear algebraic groups, thereby confirming a conjecture of Colliot-
Thélène [CT96, p. 151], and improving on results of him [CT96] (for trivial
stabilizers) and Scheiderer [Sch96] (for connected stabilizers).

Theorem 0.1.9 (Benoist–Wittenberg [BW21]). Let B be a connected smooth
real algebraic curve. Homogeneous spaces under connected linear algebraic
groups over R(B) satisfy the weak approximation property.

Another classical problem concerning the function field k(X) of an alge-
braic variety X over a field k is to decide when it is purely transcendental
over k (i.e., k-isomorphic to k(x1, . . . , xn)), or equivalently, when the vari-
ety X is k-rational. This question is arithmetically interesting for varieties
that are known to be rational over the algebraic closure k of k.

Such is the case for linear algebraic groups. Indeed, structure theorems
imply that they are always rational over algebraically closed fields, but even
tori over p-adic fields are not rational in general [Che54]. Over the reals, the
question, asked by Platonov in [Pla81, p. 169], is open.

Question 0.1.10. Let G be a connected linear algebraic group over R. Is G
an R-rational real algebraic variety?

In a collaboration with Wittenberg, we adapted to such arithmetic set-
tings the Clemens–Griffiths method exploiting intermediate Jacobians to
obstruct the rationality of complex algebraic varieties. Here is the simplest
new example that we obtained in this way over the reals.

Theorem 0.1.11 (Benoist–Wittenberg [BW20a]). The real algebraic vari-
ety with equation {s2 + t2 = x4 + y4 + 1} is C-rational but not R-rational.

Our strategy was subsequently refined by Hassett and Tschinkel [HT21b,
HT21a]. The next theorem, which is an application of this refinement, was
first discovered by them over the reals, and proven by us in general. It
answers positively a conjecture of Kuznetsov and Prokhorov.
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Theorem 0.1.12 (Benoist–Wittenberg [BW23]). Let k be a field and let
X ⊂ P5

k be a smooth complete intersection of two quadrics. Then X is
k-rational if and only if it contains a line defined over k.

0.1.3 Classification of real algebraic varieties

Hilbert’s 16th problem is still very much open to this day.
To illustrate its legacy, let us mention, among the works undertaking

the topological classification of significant classes of real algebraic varieties,
Kharlamov’s classification of real K3 surfaces [Kha76] and the classification
of real Enriques surfaces by Degtyarev, Itenberg and Kharlamov [DIK00].

I have not contributed to this line of research. To conclude this para-
graph, we state the following basic open question which illustrates how little
we know, even in the classical setting of smooth real plane curves considered
by Hilbert in his 16th problem.

Question 0.1.13. Fix d ≥ 1. Let Ωd be the set of smooth degree d real
plane curves with connected real locus. Is Ωd connected?

0.1.4 Algebraic approximation

Another line of investigation which we like to think of as an outgrowth
of Hilbert’s 16th problem aims at understanding how far apart differential
topology and real algebraic geometry really are. For instance, when can
topological or differentiable objects (manifolds, maps, vector bundles, sub-
manifolds...) be realized or approximated by real algebraic objects? The
archetypal theorem in this direction is the Nash–Tognoli theorem [Nas52,
Tog73] according to which any compact C∞ manifold is diffeomorphic to the
real locus of a smooth projective real algebraic variety.

In view of this theorem, it is natural to look for algebraizations (or
algebraic approximations) of C∞ maps between compact C∞ manifolds.

Question 0.1.14. Let f : N →M be a C∞ map of compact C∞ manifolds.
When can one approximate f in C∞(N,M) by maps of the form ϕ−1◦g(R)◦ψ,
where g : Y → X is a morphism of smooth projective varieties over R, and
ψ : N ∼−→ Y (R) and ϕ : M ∼−→ X(R) are diffeomorphisms?

This approximation property is known to hold if f is an embedding
[BT80, AK81b], but to fail in general [BD84]. As far as we know, it is open
whether it always holds when f is an immersion, or a submersion.

Such questions have many variants, depending on whether one fixes real
algebraic structures on the source and/or on the target manifold. In the
case of submanifolds of the real projective space, Kucharz and van Hamel
[KvH09, p. 269] ask the following.
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Question 0.1.15. Let M ⊂ Pn(R) be a compact C∞ submanifold, and let
U ⊂ C∞(M,Pn(R)) be a neighborhood of the inclusion. Do there exist j ∈ U
and an algebraic subvarietyX ⊂ Pn

R smooth alongX(R) withX(R) = j(M)?

We answer this question positively for submanifolds of less than half the
ambient dimension.

Theorem 0.1.16 (Benoist [Ben20a]). A compact C∞ manifold M ⊂ Pn(R)
with dim(M) < n/2 can be approximated in the sense of Question 0.1.14 by
real algebraic subvarieties that are smooth along their real loci.

We conclude this section with another algebraic approximation question,
asked by Wittenberg and myself in [BW21, Question 1.1]. Recall that a
smooth projective real algebraic variety X is said to be rationally connected
if any two complex points of X can be joined by a complex rational curve.

Question 0.1.17. Let X be a smooth projective real rationally connected
variety. Are algebraic maps dense in C∞(P1(R), X(R))?

This question is still open for del Pezzo surfaces in general. It was shown
to have a positive answer if X is R-rational by Bochnak and Kucharz [BK99].
We obtained the first positive answers beyond this case.

Theorem 0.1.18 (Benoist–Wittenberg [BW21]). Let X be a real cubic hy-
persurface or a real complete intersection of two quadrics, which is smooth
of dimension ≥ 2. Then algebraic maps are dense in C∞(P1(R), X(R)).

0.2 Influence of algebraic cycles
We now explain why algebraic cycles may be thought of as a thread con-

necting the seemingly disparate questions and results listed in Section 0.1.

0.2.1 Towards the real integral Hodge conjecture

My interest in real algebraic geometry was first raised by Lang’s conjec-
ture (Question 0.1.7). This conjecture in particular predicts that if C is a
connected smooth projective curve over R with no real points, then R(C) is a
C1 field. According to heuristics due to Kollár and Manin, one expects that
many more R(C)-varieties than low degree hypersurfaces should automati-
cally have R(C)-points, namely all rationally connected varieties. When C
is the conic with no real points and the rationally connected variety is de-
fined over R, one is left with the following question, first raised by Kollár
(see [AK03, Remarks 20] and [Kol13, §42]).

Question 0.2.1. Let C be the real conic with no real points, and let X be
a smooth projective rationally connected variety over R. Does there exist a
morphism C → X?
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If X has a real point, then the above question obviously has a positive
answer: there exists a constant morphism C → X. However, if X has no real
points, Question 0.2.1 is nontrivial, and predicts that X contains interest-
ing algebraic curves inside X (namely geometrically rational curves). This
suggests that one might try to give counterexamples to Question 0.2.1 by
utilizing methods from the theory of algebraic cycles. Maybe such an alge-
braic curve in X does not exist because its cohomology class does not exist?
Maybe there are Hodge-theoretic obstructions, or more subtle obstructions,
to the algebraicity of the possible cohomology classes?

With this kind of applications in mind, Wittenberg and I undertook a
systematic study of algebraic cycles on real algebraic varieties, in a series of
two articles [BW20b, BW20c]. One of the main features of this work is the
formulation and the study of the real integral Hodge conjecture (see §1.2.2),
a statement which we expect to play the same role and to hold in the same
generality, over the reals, as the usual integral Hodge conjecture over the
complex numbers. In particular, we expect the following real analogue of a
complex conjecture of Voisin to have a positive answer, which would dash
the hope of finding cohomological obstructions to Question 0.2.1.

Question 0.2.2. Do smooth projective real rationally connected varieties
satisfy the real integral Hodge conjecture for 1-cycles?

Divisors [Kra91, MvH98, vH00b] and zero-cycles [CTS96, vH00a] on real
algebraic varieties were already well understood, and most of our new results
concern curves on threefolds or higher-dimensional real algebraic varieties.
Let us only state here the following concrete statement as a sample.

Theorem 0.2.3 (Benoist–Wittenberg [BW20c]). Any smooth real quartic
threefold contains a smooth curve of even genus.

This falls short of solving Question 0.2.1 for smooth quartic threefolds,
as the curves of even genus that we construct might not be conics. We
believe that Theorem 0.2.3 is nontrivial for quartic threefolds with no real
points. Our proof makes essential use of the real integral Hodge conjecture
point of view, and relies on infinitesimal methods in Hodge theory.

Chapter 1 is devoted to this circle of ideas. After reviewing cycle class
maps in complex and real algebraic geometry in Section 1.1, we present the
statement of the real integral Hodge conjecture, some of its implications,
and the positive and negative results known about it in Section 1.2.

In Section 1.3, we give another application of infinitesimal methods in
Hodge theory to real algebraic geometry, more precisely to period-index
problems in this context. The next theorem is one of our main results in
this direction. It was known to imply Theorem 0.1.8, and thereby constitues
a step forward in the direction of Lang’s conjecture.
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Theorem 0.2.4 (Benoist [Ben19]). Let S be a connected smooth real alge-
braic surface with S(R) = ∅. The period and the index of any class in the
Brauer group of R(S) coincide.

0.2.2 Connections with algebraic approximation

We discovered during the preparation of [BW20b, BW20c] that the real
integral Hodge conjecture has applications to algebraic approximation prob-
lems. For instance, if Question 0.2.2 has a positive answer for a real ratio-
nally connected variety X, then H1(X(R),Z/2) is generated by fundamental
classes of real loci of algebraic curves in X, and it follows from known ap-
proximation theorems (see Theorem 2.3.1) that all loops in X(R) may be
approximated by real loci of algebraic curves in X. As X is assumed to be
rationally connected, it is natural to wonder whether these algebraic curves
may be required to be rational, and this led us to Question 0.1.17.

Conversely, we had to use that kind of algebraic approximation state-
ments when trying to answer Question 0.2.2 in situations where X has a
fibration structure, such as a conic bundle structure. This suggested us to
put algebraic approximation at the center of the study of Question 0.2.2, and
to formulate a geometric statement in this direction of which Question 0.2.2
would be a cohomological counterpart.

In view of the n = 1 case of Lang’s conjecture (Question 0.1.7), of com-
plex results such as the Graber–Harris–Starr theorem, and of our intended
applications to rationally connected varieties with a fibration structure, it
became clear that such a statement should be formulated for one-parameter
families of varieties, i.e., for varieties over function fields of real algebraic
curves. This line of thought led Wittenberg and I to define in [BW21] the
tight approximation property for such varieties (see §2.4.1), which incorpo-
rates both algebraic approximation and weak approximation conditions, and
to ask the following question.

Question 0.2.5. Let B be a connected smooth real curve. Do rationally
connected varieties over R(B) satisfy the tight approximation property?

Chapter 2 gathers several results related to algebraic approximation.
We first recall the Nash–Tognoli theorem and some of its extensions

in Section 2.1. In Section 2.2, we study the algebraizability of cohomology
classes of compact C∞ manifolds, a topic at the crossroads of algebraic cycles
and differential geometry. We then focus in Section 2.3 on the construction
of algebraic approximations of submanifolds of the real locus of a smooth
projective real algebraic variety, a problem which is strongly influenced by
the abundance (or the scarcity) of algebraic cycles on the ambient variety.
The proof of Theorem 0.1.15 is explained there.
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Finally, in Section 2.4, we give the definition of the tight approxima-
tion property, we describe remarkable features of this property (birational
invariance, compatibility with fibrations, descent à la Colliot-Thélène and
Sansuc), and we explain how Theorems 0.1.9 and 0.1.18 can be deduced
from them.

0.2.3 Connections with sums of squares problems

Each real algebraic variety carries canonical constant cohomology classes:
those that come by pull-back from the cohomology of the base field R, i.e.,
from the group cohomology of Gal(C/R) ≃ Z/2. These constant cohomology
classes yield interesting questions in the theory of real algebraic cycles (and
in the study of the real integral Hodge conjecture), which are absent from
the complex picture. When are they algebraic? What is their coniveau?

When these questions emerged during the writing of [BW20b, BW20c],
I realized that one way in which they had appeared in the literature was in
connection with Hilbert’s 17th problem. To the best of my knowledge, the
first work where this connection is made is [CT93], where Colliot-Thélène
gives an alternative proof of the Cassels–Ellison–Pfister theorem (that is, a
solution to Question 0.1.1 in two variables). Let f ∈ R[x, y] be a nonneg-
ative polynomial. Assume that its homogenization F ∈ R[X,Y, Z] defines
a smooth plane curve, and let S be the smooth projective real algebraic
surface with equation

W 2 + F (X,Y, Z) = 0.

Colliot-Thélène notices that f is a sum of three squares in R(x, y) if and
only if the constant cohomology classes in H2

ét(S,Z/2) are algebraic. This
allows him to reformulate the question as an algebraic cycles problem, and
to solve it by applying the classical Noether–Lefschetz theorem.

It turns out to be a general principle that sums of few squares questions
in the spirit of Pfister’s quantitative refinement of Hilbert’s 17th problem
may be translated into cycle-theoretic questions. In dimension ≥ 3, such
translations are often nontrivial, as they rely on the Milnor conjectures
proven by Voevodsky [Voe03]. I made a systematic use of this point of view
in my works on Hilbert’s 17th problem, which led me to use varied tools of
algebraic cycles theory.

The proof of Theorem 0.1.2 is parallel to Colliot-Thélène’s above-men-
tioned argument, and eventually reduces to density theorems for (real)
Noether–Lefschetz loci in the spirit of [CHM88]. The main tool on which
the proof of Theorem 0.1.3 relies is Bloch–Ogus theory [BO74]. The main
idea of the proof of Theorem 0.1.5 is a technique to show the vanishing of an
unramified cohomology class which I borrowed from [KS12]. Theorem 0.1.6
is further away from classical cycle-theoretic methods, for the reason that it
is rooted in Stein analytic geometry instead of algebraic geometry.
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Chapter 3 collects our contributions to sums of squares problems. We
first recall in §3.1.1 and §3.1.2 the results of Hilbert and Artin on sums of
squares of polynomials and rational functions. In §3.1.3, we present a few
results on bad points, which are local obstructions for a nonnegative real
polynomial to be a sum of squares of polynomials, and which we studied
in [Ben22b] with the hope that they could be used to produce a counterex-
ample to Question 0.1.4. Finally, Section 3.2 contains the results on sums
of few squares that were discussed above.

0.2.4 Connections with rationality problems

Algebraic approximation problems or real algebraic cycles questions are
much easier on those real algebraic varieties that are R-rational, i.e., bi-
rational to projective space. Indeed, these problems are often birational
invariants, and accessible in the case of projective spaces. This is the rea-
son why Question 0.1.17 is known to have a positive answer for R-rational
varieties [BK99].

In order to give positive answers (for instance, to Question 0.1.17) for
more rationally connected varieties, it is tempting to try to relate them to
R-rational varieties and to take advantage of this known case. In general,
this seems out of reach. However, there is some hope in the important case
of del Pezzo surfaces, as one can relate them geometrically to their universal
torsors in the sense of Colliot-Thélène and Sansuc [CTS87]. An application
of the descent method (see §2.4.5) would allow us to conclude if we knew
that these universal torsors are R-rational if they have a real point.

It is very possible that this strategy is doomed to failure. Still, this
line of thought led Wittenberg and I to investigate the R-rationality of real
algebraic varieties, with an emphasis on the arithmetically interesting case
where they are known to be C-rational. The results we obtained on this topic
are described in Chapter 4, where we explain in particular the strategy of
proof of Theorems 0.1.11 and 0.1.12.

0.2.5 Other topics

Several of our results that do not fit in the scope of real algebraic ge-
ometry, but that emerged from our real interests, are touched upon in the
text. Among them are new counterexamples to the integral Hodge conjec-
ture constructed in collaboration with Ottem ([BO20], see Theorem 1.2.2),
topological obstructions to the algebraicity of cohomology classes over non-
closed fields ([Ben22a], mentioned in §1.2.4), and new examples of algebraic
cohomology classes of smooth projective complex varieties that are not a lin-
ear combinations of classes of smooth subvarieties obtained in a joint work
with Debarre ([BD23], see Theorem 2.3.6).
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A last work on algebraic cycles that we will not develop later in this
memoir, but that we would like to briefly mention here is our construction
with Ottem [BO21] of cohomology classes for which coniveau and strong
coniveau differ. Let X be a smooth variety over C. A cohomology class
α ∈ Hk(X,A) is said to have coniveau ≥ c if it vanishes in the comple-
ment of a closed subset of codimension ≥ c in X. Define it to have strong
coniveau ≥ c if it comes by proper push-forward from a smooth complex
variety of dimension ≤ dim(X)−c. Clearly, if α has strong coniveau ≥ c, it
also has coniveau ≥ c. Deligne [Del74] showed that the converse holds if X
is proper and A = Q. The question whether this converse holds in general
goes back to Grothendieck [Gro69, p. 300], and is answered in the negative
by the next theorem.

Theorem 0.2.6 (Benoist–Ottem [BO21]). Fix c ≥ 1 and k ≥ 2c+ 1. Then
there exist a smooth variety X over C and a class α ∈ Hk(X,A) which has
coniveau ≥ c but strong coniveau < c, and where either

(i) X is projective and A = Z, or
(ii) X is quasi-projective and A = Q.
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Chapter 1

Real algebraic cycles

1.1 Cycle class maps

1.1.1 The complex cycle class map

Let X be a smooth projective variety over C. For each integer c ≥ 0,
the complex cycle class map

clC : CHc(X)→ H2c(X(C),Z(c))

associates with the class [Z] of a codimension c closed subvariety Z of X the
fundamental class of Z(C) in X(C). More precisely, let Z̃ → Z be any res-
olution of singularities, and let π : Z̃ → X be the induced morphism. Then
clC([Z]) = π∗(1), where π∗ : H0(Z̃(C),Z) → H2c(X(C),Z(c)) is the Gysin
morphism with respect to the canonical orientations of X(C) and Z̃(C).

Hodge theory constrains the image of the complex cycle class map: it is
included in the subgroup Hdg2c(X(C),Z(c)) ⊂ H2c(X(C),Z(c)) of integral
Hodge classes, defined to be the inverse image of the piece Hc,c(X) of the
Hodge decomposition by the natural morphism

H2c(X(C),Z(c))→ H2c(X(C),C) =
⊕

p+q=2c

Hp,q(X).

In this complex setting, the Tate twist Z(c) is mostly decorative and
could be omitted. It will become essential in §1.1.3.

1.1.2 The Borel–Haefliger real cycle class map

Let now X be a smooth projective variety over R. Borel and Haefliger
have defined in [BH61] an analogous real cycle class map

clR : CHc(X)→ Hc(X(R),Z/2),

associating with the class [Z] of a codimension c closed subvariety Z ⊂ X
the fundamental class of Z(R) in X(R). More precisely, with the notation
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of §1.1.1, one has clR([Z]) = π∗(1), where π∗ is now the Gysin morphism
H0(Z̃(R),Z/2)→ Hc(X(R),Z/2).

Here, one is compelled to use Z/2 coefficients instead of integral coeffi-
cients, because the real locus of a smooth projective variety over R is not
canonically oriented, and may indeed not be orientable.

The image of clR, which is the group of algebraic cohomology classes of
the real locus, will be denoted by Hc(X(R),Z/2)alg. Its study is a classical
topic in real algebraic geometry (see [Sil89, BCR98, BK98, Man20]).

1.1.3 Krasnov’s equivariant cycle class map

In order to bridge the gap between the Borel–Haefliger cycle class map
which is adapted to questions of interest in real algebraic geometry, and
the complex cycle class map which brings Hodge theory into the picture,
Krasnov [Kra91] introduced a third cycle class map: the equivariant cycle
class map.

To define it, we introduce the group G := Gal(C/R) ≃ Z/2 generated
by the complex conjugation. It acts on the set X(C) of complex points
of X through an antiholomorphic involution whose fixed locus is precisely
the set X(R) of real points of X. Any G-module M therefore gives rise
to a constant G-equivariant sheaf on X(C) of which we can consider the
G-equivariant cohomology groups Hk

G(X(C),M).
Let Z(c) be the G-module which is isomorphic to Z as an abelian group,

and on which G acts through multiplication by (−1)c. Then Krasnov’s
equivariant cycle class map reads:

cl : CHc(X)→ H2c
G (X(C),Z(c)).

Its definition is entirely similar to the ones given in §§1.1.1–1.1.2. Using
the notation introduced there, one has cl([Z]) = π∗(1), where π∗ is now the
Gysin morphism H0

G(Z̃(C),Z) → H2c
G (X(C),Z(c)). Here, the role of the

Tate twist is crucial: it takes into account whether the action of G on X(C)
and Z̃(C) preserve or reverse the canonical orientations.

1.1.4 Relations between cycle class maps

The relation between the complex and the equivariant cycle class maps
is clear: the composition

CHc(X) cl−→ H2c
G (X(C),Z(c)) ξ−→ H2c(X(C),Z(c))

of the equivariant cycle class map and of the natural morphism ξ between
equivariant and non-equivariant sheaf cohomology is induced by the complex
cycle class map clC. We deduce Hodge-theoretic restrictions on the image
of cl: it is included in the subgroup

Hdg2c
G (X(C),Z(c)) := ξ−1(Hdg2c(X(C),Z(c)))
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of equivariant integral Hodge classes.
The relation between the Borel–Haefliger and the equivariant cycle class

map is more subtle. Consider the composition

(1.1)
χ : H2c

G (X(C),Z(c))→ H2c
G (X(R),Z/2) = H2c(X(R)×BG,Z/2)

=
2c⊕

k=0
Hk(X(R),Z/2)

of the morphism restricting to X(R) and reducing coefficients modulo 2,
of the computation of the equivariant cohomology of a space with trivial
G-action (here, BG ≃ P∞(R) is the classifying space of G), and of the
identification given by the Künneth formula. Krasnov has shown that

(1.2) χ(cl(α)) = (0, . . . , 0, clR(α), Sq1(clR(α)), . . . ,Sqc(clR(α)))

for all α ∈ CHc(X), where the Sqi are the Steenrod squares (see [Kra94], or
[Kah87] for earlier results of Kahn when α is a Chern class). It follows at once
that cl(α) determines clR(α). In addition, as Sqc acts on Hc(X(R),Z/2) as
the squaring map, we see that

(1.3) the image of clC(α)|X(R) in H2c(X(R),Z/2) is clR(α)2.

We also deduce topological restrictions on the image of cl: it is included
in the subgroup

H2c
G (X(C),Z(c))0 ⊂ H2c

G (X(C),Z(c))

of classes whose images by χ have the form (0, . . . , 0, β, Sq1(β), . . . ,Sqc(β)).

1.2 The real integral Hodge conjecture

1.2.1 The complex case

Let X be a smooth projective variety over C and fix c ≥ 0. The integral
Hodge conjecture for codimension c cycles on X is the statement that

clC(CHc(X)) = Hdg2c(X(C),Z(c)).

Unlike the classical Hodge conjecture which is formulated with rational co-
efficients, the integral Hodge conjecture is known to fail in general. More
precisely, it holds when c ∈ {0, 1,dim(X)} (the c = 1 case being the Lef-
schetz (1, 1) theorem), but may fail whenever 2 ≤ c ≤ dim(X)− 1.

Varied strategies have been used to contradict the integral Hodge con-
jecture: topological methods going back to Atiyah and Hirzebruch [AH62,
Tot97], degeneration techniques pioneered by Kollár [BCC92, Tot13], or its
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relation with unramified cohomology first exploited by Colliot-Thélène and
Voisin [CTV12, Sch19].

It has been advocated by Voisin that one could get interesting positive
results in the direction of the integral Hodge conjecture by restricting the
geometry of the varieties that one considers. In particular she asked the
following question [Voi07, Question 16].

Question 1.2.1. Do rationally connected varieties over C satisfy the inte-
gral Hodge conjecture for 1-cycles?

In [Voi06], she answered positively this question in dimension three.
More generally, she proved the integral Hodge conjecture for uniruled three-
folds and, with additions by Totaro [Tot21], for threefolds with trivial canon-
ical bundle. The latter result is sharp and does not extend to threefolds with
torsion canonical bundle, as we showed in a joint work with Ottem.

Theorem 1.2.2 (Benoist–Ottem [BO20]). For any complex Enriques sur-
face S, there exists a complex elliptic curve E such that the integral Hodge
conjecture for 1-cycles on S × E fails.

1.2.2 Statement of the real integral Hodge conjecture

Let now X be a smooth projective variety over R, and fix c ≥ 0. In order
to formulate in this context a statement that could possibly hold in the same
generality as the integral Hodge conjecture over the complex numbers, it is
necessary to take into account not only the Hodge-theoretic restrictions on
the image of the equivariant cycle class map, but also the Kahn–Krasnov
topological restrictions described in §1.1.4. To this effect, we consider the
subgroup

Hdg2c
G (X(C),Z(c))0 := Hdg2c

G (X(C),Z(c)) ∩H2c
G (X(C),Z(c))0

of H2c
G (X(C),Z(c)). The real integral Hodge conjecture for codimension c

cycles on X, introduced by Wittenberg and myself in [BW20b, BW20c], is
the statement that

cl(CHc(X)) = Hdg2c
G (X(C),Z(c))0.

1.2.3 General properties

The following basic results, which extend known facts in the complex
case, are established in [BW20b] and indicate that our definition of the real
integral Hodge conjecture is reasonable.

Theorem 1.2.3 (Krasnov, Benoist–Wittenberg). The real integral Hodge
conjecture holds for c ∈ {0, 1, dim(X)}. Its validity for c ∈ {2,dim(X)− 1}
is a birational invariant.
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The c = 0 case is obvious. The c = 1 case, a real analogue of the Lefschetz
(1, 1) theorem, was known to Krasnov [Kra91] (see also [MvH98, vH00b]).
The case c = dim(X) of zero-cycles is more delicate than in the complex
situation because the Kahn–Krasnov topological restrictions really come into
play. Finally, the birational invariance results follow from the fact that the
action of correspondences preserves the subgroups Hdg2c

G (X(C),Z(c))0 of
H2c

G (X(C),Z(c)). That pull-backs and cup products preserve this group is
easy; in contrast, their compatibility with push-forwards is more delicate
and relies on the Atiyah–Hirzebruch relative Wu formula [AH61].

These good formal properties encourage us to investigate the real integral
Hodge conjecture in cases where it is known or expected to hold in the
complex setting. For instance, in view of the results and conjectures of
Voisin recalled in §1.2.1, we are led to ask:

Question 1.2.4. Let X be a smooth projective variety over R. Does X
satisfy the real integral Hodge conjecture for 1-cycles if:

(i) X is rationally connected;
(ii) X is a geometrically uniruled threefold;
(iii) X is a threefold with trivial canonical bundle?

1.2.4 Counterexamples

Exactly as the integral Hodge conjecture, the real integral Hodge con-
jecture fails in general, and all the methods alluded to in §1.2.1 can be
employed to construct counterexamples to it. However, degeneration tech-
niques, which may be the most efficient tool over the complex numbers, can
only produce counterexamples that already fail the usual complex integral
Hodge conjecture.

To produce arithmetically more interesting examples, one can rely on the
topological obstructions discovered by Atiyah and Hirzebruch [AH62]. Over
the complex numbers, Kawai recovered and generalized these obstructions
by proving that algebraic cohomology classes are preserved by Steenrod
operations. In particular, they are killed by odd degree Steenrod operations.

This fact turns out to fail over nonclosed fields such as the real numbers.
A substitute is provided by our next theorem. In its statement, we make
use of Brosnan’s Steenrod operations on mod 2 Chow groups [Bro03] and
we denote by cl2 the reduction mod 2 of the equivariant cycle class map cl.
We also let ω ∈ H1(G,Z/2) be the nontrivial class and still write ω for its
image in H1

G(X(C),Z/2) when X is a real algebraic variety.

Theorem 1.2.5 (Benoist [Ben22a]). Let X be a smooth projective variety
over R. For all c ≥ 0 and α ∈ CHc(X)/2, one has∑

i≥0
Sqi(cl2(α)) =

∑
i≥0

(1 + ω)c−icl2(Sq2i(α)).

24



We actually prove a more general version of Theorem 1.2.5, for mod ℓ
Steenrod operations over any field in which ℓ is invertible. This gives rise
to an extension of Kawai’s obstructions to the algebraicity of cohomology
classes over such fields. Over the reals, exploiting the obstructions stemming
from Theorem 1.2.5 yields the following counterexample to the real integral
Hodge conjecture.

Theorem 1.2.6 (Benoist [Ben22a]). There exists a smooth projective four-
fold over R failing the real integral Hodge conjecture for codimension 2 cycles,
but such that XC satisfies the integral Hodge conjecture.

We are however unable to answer the following question, first raised in
[BW20b, Question 4.9].

Question 1.2.7. Does there exist a smooth projective variety X over R
such that XC satisfies the integral Hodge conjecture but X fails the integral
Hodge conjecture for 1-cycles?

1.2.5 Geometric consequences

Let us now explain the impact of the real integral Hodge conjecture on
more classical problems in real algebraic geometry.

Nonalgebraic cohomology classes of the real locus

First, it follows from the results described in §1.1.4 that if the real inte-
gral Hodge conjecture holds for codimension c cycles on X, then the group
Hc(X(R),Z/2)alg is entirely determined: it is the image of the morphism

(1.4) Hdg2c
G (X(C),Z(c))0 → Hc(X(R),Z/2)

induced by (1.1).
The same line of reasoning shows that, regardless of the validity of the

real integral Hodge conjecture for X, the inclusion

Hc(X(R),Z/2)alg ⊂ Hc(X(R),Z/2)

is strict if (1.4) is not surjective. As we noticed in [BW20b, Remarks 2.7],
this remark explains all the seemingly disparate examples of varieties with
Hc(X(R),Z/2)alg ̸= Hc(X(R),Z/2) appearing in the literature. We were
able to construct an example of a new kind, not explained by a defect of
surjectivity of (1.4), and based instead on a counterexample to the real
integral Hodge conjecture (obtained by adapting over R the degeneration
techniques of Totaro [Tot13]).

Theorem 1.2.8 (Benoist–Wittenberg [BW20b]). There is a smooth hyper-
surface of bidegree (4, 4) in P1

R×P3
R with H1(X(R),Z/2)alg ̸= H1(X(R),Z/2).
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The case of 1-cycles

A topological analysis of the morphism (1.4) implies the following.

Theorem 1.2.9 (Benoist–Wittenberg [BW20b]). Let X be a smooth projec-
tive variety over R with X(R) ̸= ∅ and H1(X(C),Z/2) = H2(X,OX) = 0.

(i) If the real integral Hodge conjecture for 1-cycles on X holds, then
H1(X(R),Z/2)alg = H1(X(R),Z/2).

(ii) The converse holds if XC satisfies the integral Hodge conjecture for
1-cycles.

In particular, a positive answer to Question 1.2.4 would imply that
H1(X(R),Z/2)alg = H1(X(R),Z/2) for all smooth projective rationally con-
nected varieties over R. In combination with Theorem 2.3.1, this would
yield approximation results of loops in the real locus of real rationally con-
nected varieties by real loci of real algebraic curves (a weak version of Ques-
tion 0.1.17 considered in the introduction).

Theorem 1.2.9 is restricted to real varieties with X(R) ̸= ∅ because
the property that H1(X(R),Z/2)alg = H1(X(R),Z/2) is vacuous otherwise.
When X(R) = ∅, we discovered that it should be replaced with a more
exotic property: the existence of a curve of even genus.

Theorem 1.2.10 (Benoist–Wittenberg [BW20b]). Let X be a smooth pro-
jective variety over R with X(R) = ∅ and H1(X(C),Z/2) = H2(X,OX) = 0.

(i) If the real integral Hodge conjecture for 1-cycles on X holds, then X
admits a morphism from a smooth projective curve of even genus.

(ii) The converse holds if XC satisfies the integral Hodge conjecture for
1-cycles.

Let us emphasize that while smooth projective varieties over R with real
points always admit morphisms from curves of even genus, some smooth
projective varieties over R with no real points do not. As above, in view of
Theorem 1.2.10, Question 1.2.4 predicts the existence of curves of even genus
in all smooth projective rationally connected varieties over R, a weakening
of cohomological nature of Question 0.2.1.

To conclude this paragraph, we indicate that this point of view leads
to new results even in the case of surfaces, where the real integral Hodge
conjecture was known to hold. For instance, combining the above analysis
with a new duality theorem for equivariant cohomology, we prove:

Theorem 1.2.11 (Benoist–Wittenberg [BW20b]). Let X be a smooth pro-
jective surface over R with H2(X,OX) = 0.

(i) If H1(X(R),Z/2) ̸= 0, then H1(X(R),Z/2)alg ̸= 0.
(ii) The variety X contains a curve of even geometric genus if and only if

the natural morphism Pic(X)[2∞]→ Pic(XC)G[2∞] is onto.
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1.2.6 Positive results

We finally state some partial positive results obtained in [BW20c] in the
direction of Question 1.2.4.

Theorem 1.2.12 (Benoist–Wittenberg [BW20c]). The real integral Hodge
conjecture holds for smooth projective real Fano threefolds with no real points.

Theorem 1.2.13 (Benoist–Wittenberg [BW20c]). Let f : X → B be a
morphism of smooth projective varieties over R with a conic as generic fibre.
If B satisfies the real integral Hodge conjecture for 1-cycles, then so does X.

Theorem 1.2.14 (Benoist–Wittenberg [BW20c]). Let f : X → B be a
morphism of smooth projective varieties over R whose generic fibre is a
degree δ del Pezzo surface, with B a curve. If δ ∈ {9, 8, 7, 6, 5, 3}, or if δ = 4
and B(R) = ∅, or if δ = 1 and the smooth real fibers of f have connected
real loci, then X satisfies the real integral Hodge conjecture for 1-cycles.

When investigating the real integral Hodge conjecture for 1-cycles on a
geometrically uniruled threefold X (Question 1.2.4 (ii)), it is natural in view
of the birational invariance of this property (see Theorem 1.2.3) to study
separately the various possible outcomes of the minimal model program ap-
plied to X: possibly singular Fano threefolds, conic bundles over surfaces,
del Pezzo fibrations over curves. Theorems 1.2.12, 1.2.13 and 1.2.14 respec-
tively concern these three cases. Note that only the case of conic bundles
over surfaces is solved entirely by Theorem 1.2.13 (as the real integral Hodge
conjecture is known to hold on surfaces by Theorem 1.2.3).

All the above positive results are about geometrically uniruled varieties.
Much less is known about the Calabi–Yau threefolds considered in Ques-
tion 1.2.4 (iii) (see however the partial results of de Gaay Fortman for real
abelian threefolds [dGF22]).

In view of Theorem 1.2.10, we deduce from Theorem 1.2.12 the exis-
tence of curves of even geometric genus in all smooth projective real Fano
threefolds, of which Theorem 0.2.3 is a particular case (one can ensure that
the curve is smooth thanks to the smoothing method of [Hir68]). Simi-
larly, Theorems 1.2.13 and 1.2.14 have applications to the computation of
H1(X(R),Z/2)alg (using Theorem 1.2.9) and hence to algebraic approxima-
tion problems (using Theorem 2.3.1).

The techniques of proof of Theorems 1.2.12, 1.2.13 and 1.2.14 are varied.
The proof of Theorem 1.2.12 is an outgrowth of an attempt to adapt over

the reals Voisin’s proof of the integral Hodge conjecture for complex uniruled
threefolds X. Voisin’s idea is to fix a very ample smooth surface S ⊂ X.
By the weak Lefschetz theorem, any Hodge class α ∈ Hdg4(X(C),Z(2))
comes by push-forward from a class β ∈ H2(S(C),Z(1)). If β were Hodge,
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it would be algebraic by the Lefschetz (1, 1) theorem, and one would de-
duce the algebraicity of α. There is however no reason why β should be
Hodge. Voisin’s idea is to let S vary in its linear system. For some values
of the parameters (along Noether–Lefschetz loci), the surface S will carry
extra Hodge classes, hence extra algebraic cycles. One can hope that their
push-forwards to X, for all possible choices of parameters, will span the
group Hdg4(X(C),Z(2)) of integral Hodge classes and hence imply their al-
gebraicity. One therefore needs an abundance result for Noether–Lefschetz
loci, which is the heart of [Voi06]. Over the reals, there is a parallel theory of
real Noether–Lefschetz loci (see §1.3.5 for generalities and §1.3.6 and §3.2.2
for applications). Unfortunately, we do not know how to show an abundance
result for real Noether–Lefschetz loci in the same generality as Voisin over C.
However, when X is a smooth Fano threefold, one can often choose S to be
a member of the anticanonical linear system of X, in which case S is a K3
surface and h2,0(S) = 1. This leads to huge simplifications which allow us
to apply this strategy to prove Theorem 1.2.12.

Both Theorem 1.2.13 and 1.2.14 are proved by using geometrically the
fibration structure of the real algebraic variety X. Let us now explain some
key features of their proofs.

Let f : X → B be a conic bundle as in Theorem 1.2.13. Imagine that
we want to prove directly the algebraicity of some class α ∈ H1(X(R),Z/2)
which is predicted to be algebraic by Theorem 1.2.13. Represent α by a
collection of loops γi : S1 → X(R). By the hypothesis on the base, the
collection of loops f(R) ◦ γi : S1 → B(R) is known to be algebraic: there
exists a curve C ⊂ B such that clR(C) =

∑
i(f(R) ◦ γi)∗[S1]. It is then

natural to try to algebraize α =
∑

i(γi)∗[S1] by somehow lifting the curve C
to X. This is however impossible in general, as X might have no real points
over some real points of C. This difficulty would however be resolved if
one could choose C(R) to appropriately approximate the f(R) ◦ γi, instead
of only having the same homology class in B(R), as X obviously has real
points above the images of f(R)◦γi. This can be done using Theorem 2.3.1.
The proof of Theorem 1.2.13 hinges on this approximation theorem, as well
as on others due to Akbulut and King, to Bröcker, and to Ischebeck and
Schülting [AK85a, Brö80, IS88].

Finally, let f : X → B be a del Pezzo fibration as in Theorem 1.2.14.
We assume, as we may, that its reduced fibers are strict normal crossings
divisors in X. To prove the algebraicity of a class in H4

G(X(C),Z(2))0, our
main idea is to write it as a linear combination of the class of an algebraic
multisection of f and of classes supported on fibers of f . On the one hand,
this requires to be able to produce sufficiently many algebraic multisections
of f . This part of the proof is the reason for the restrictions on the degree δ
of the del Pezzo fibration. The hardest case, when δ = 4 and B(R) = ∅,
relies on Corollary 1.3.6 below. On the other hand, this requires to prove
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that the group H4
G,Xb(C)(X(C),Z(2)) of classes supported on a fiber Xb ⊂ X

of f is spanned by classes of algebraic curves lying on Xb. Over algebraically
closed fields, such results were obtained by Esnault and Wittenberg [EW16]
and we adapt their arguments over the reals.

1.3 The period-index problem for real surfaces
In this section, we present an application of Hodge theory to the arith-

metic of real function fields.

1.3.1 The period-index problem

Let K be a field, and let Br(K) be its Brauer group. A Brauer class
α ∈ Br(K) has two main invariants. The period per(α) is the order of α in
the torsion group Br(K). The index ind(α) is the smallest degree of a finite
field extension of K splitting α (equivalently, the gcd of the degrees of such
extensions).

These invariants are not unrelated. They share the same prime divisors,
and the period always divides the index. Finding further constraints on
the period and the index (usually with the intent to compute the index
which is the geometrically interesting invariant) is the so-called period-index
problem. Here are two significant results in this direction.

Theorem 1.3.1 (de Jong [dJ04]). Let K be the function field of a surface
over an algebraically closed field. If α ∈ Br(K), then ind(α) = per(α).

Theorem 1.3.2 (Lieblich [Lie15]). Let K be the function field of a surface
over a finite field. If α ∈ Br(K), then ind(α) | per(α)2.

1.3.2 Function fields of real algebraic surfaces

We will be interested in analogues of Theorems 1.3.1 and 1.3.2 for func-
tion fields K of real algebraic surfaces. In this setting, if α ∈ Br(K), de
Jong’s theorem and a norm argument imply that either ind(α) = per(α)
or ind(α) = 2 per(α). The case ind(α) = 2 per(α) really may happen
as was first noticed by Albert [Alb32], for instance for K = R(x, y) and
α = (−1,−1) + (x, y) ∈ Br(K)[2]. Our goal is therefore to determine condi-
tions under which the equality ind(α) = per(α) holds.

One can for instance suppose that α vanishes in restriction to the real
points of the surface.

Theorem 1.3.3 (Benoist [Ben19]). Let S be a connected smooth surface
over R. Let α ∈ Br(S) ⊂ Br(R(S)) be such that α|x = 0 for all x ∈ S(R).
Then ind(α) = per(α).

As a particular case, we deduce the next corollary.
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Corollary 1.3.4 (Benoist [Ben19]). Let S be a connected smooth surface
over R with S(R) = ∅. If α ∈ Br(R(S)), then ind(α) = per(α).

We are also able to entirely compute the index of unramified classes:
those classes that extend to a Brauer class of a whole smooth projective
model of the surface. We refrain from writing down the precise statement
here (see [Ben19, Theorem 0.5]).

1.3.3 Applications to the u-invariant

We were led to prove Theorem 1.3.3 because of the following arithmetic
applications. The u-invariant of a field K has been defined by Elman and
Lam [EL73] to be the maximal rank of an anisotropic quadratic form over K
with trivial signature with respect to all the field orderings of K. It is
measure of the complexity of quadratic forms over K. Of course, if K
admits no field ordering, the condition on signatures is vacuous.

As was noted by Pfister [Pfi82], the next theorem is a consequence of
Theorem 1.3.3.

Theorem 1.3.5 (Benoist [Ben19]). The u-invariant of the function field of
a real algebraic surface is equal to 4.

The function field of a connected smooth real algebraic surface S admits
no field ordering if and only if S has no real points [Art27]. In this case,
Theorem 1.3.5 reduces to Theorem 0.1.8, which we state again as a corollary.

Corollary 1.3.6 (Benoist [Ben19]). Let S be a connected smooth surface
over R such that S(R) = ∅. Then any quadratic form of rank ≥ 5 over R(S)
has a nontrivial zero.

1.3.4 A Hodge-theoretic approach

We now explain the strategy of the proof of Theorem 1.3.3.
Let S be a connected smooth surface over R, and fix a Brauer class

α ∈ Br(S) ⊂ Br(R(S)) that vanishes in restriction to the real points of S. A
norm argument based on de Jong’s theorem allows us to assume that per(α)
is a power of 2, and an additional dévissage reduces us to the critical case
where per(α) = 2. One then has to show that ind(α) = 2.

We fix a smooth projective compactification S of S such that R := S \S
is a strict normal crossings divisor. Showing that ind(α) = 2 amounts to
finding a morphism π : T → S of smooth projective surfaces over R that is
generically finite of degree 2, and such that π∗α = 0 in Br(R(T )).

In order to ensure that π∗α is unramified on T , i.e., belongs to the
subgroup Br(T ) ⊂ Br(R(T )), we arrange that π ramifies along R (as ram-
ification kills ramification). More precisely, we fix a sufficiently ample line
bundle L on S, we choose a general divisor D ∈ |L⊗2(R)|, and we let π
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be (the minimal resolution of singularities of) a double cover of S ramified
along R ∪D.

At this point, we have made sure that π∗α ∈ Br(T )[2]. To analyze this
group, we make use of the short exact sequence

0→ H2
G(T (C),Z(1))/⟨cl(Pic(T )), 2⟩ → Br(T )[2]→ H3

G(T (C),Z(1))[2]→ 0

breaking down Br(T )[2] into a topological component H3
G(T (C),Z(1))[2]

and a cycle-theoretic component H2
G(T (C),Z(1))/⟨cl(Pic(T )), 2⟩. Ensuring

that the image of π∗α in H3
G(T (C),Z(1))[2] vanishes is a purely topological

matter. It makes use of a real analogue of the weak Lefschetz theorem, and
only works after having chosen the divisor D (more precisely, the topology of
its real locus D(R) ⊂ S(R)) with great care, thanks to appropriate algebraic
approximation theorem such as Theorem 2.3.1.

We have now arranged that π∗α ∈ H2
G(T (C),Z(1))/⟨cl(Pic(T )), 2⟩. It

remains to show that this class vanishes. There is however no reason why
this should happen. Indeed, this property is deeply influenced by the size
of the image of cl : Pic(T ) → H2

G(T (C),Z(1)), hence, in view of the real
Lefschetz (1, 1) theorem (see Theorem 1.2.3), by the Hodge theory of the
surface T . The idea around this difficulty is to let the divisor D vary in
a family. The surface T will vary accordingly, and one may hope that for
some value of the parameters (when they hit so-called real Noether–Lefschetz
loci), the Picard group Pic(T ) of T will jump in a way that kills π∗α.

In §1.3.5, we explain abundance results for real Noether-Lefschetz loci
that will allow us to achieve this goal in §1.3.6.

1.3.5 Density of real Noether–Lefschetz loci

Over the complex numbers, an infinitesimal criterion for the density of
Noether–Lefschetz loci has been discovered by Green [CHM88, §5] (see also
[Voi02]). In [Ben18], we proved a real analogue of this criterion.

The setting is the following. Let B be a smooth real algebraic variety.
Let H2

Q be a Q-local system on B(C) endowed with a weight 2 variation of
Hodge structures. In particular, each fiber of the holomorphic vector bundle
H2 := H2

Q⊗QOB(C) is endowed with a weight 2 Hodge structure such that the
Hodge filtration F •H2 varies holomorphically, and such that the connection
∇ : H2 → H2 ⊗ Ω1

B(C) induced by H2
Q satisfies Griffiths transversality.

We fix an action of G := Gal(C/R) on H2
Q which is compatible with its

natural action on B(C). We let G act on the total space of H2 through the
involution which is induced, for b ∈ B(C), by the diagonal action

(1.5) H2
b

∼−→ H2
Q,b ⊗Q C σ⊗σ−−−→ H2

Q,σ(b) ⊗Q C ∼−→ H2
σ(b).

We assume that (1.5) preserves the factors Hp,q of the Hodge decomposi-
tions. In this situation, adapting the complex arguments of Voisin in [Voi02],
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we prove the following density theorem for the real Noether–Lefschetz locus

NLR := {b ∈ B(R) | (H2
Q ∩H1,1)G ̸= 0}.

Proposition 1.3.7 (Benoist [Ben18]). With the above notation, assume
that there exist b ∈ B(R) and λ ∈ (H1,1

b )G such that the map

(1.6) ∇(λ) : TB(C),b → H
0,2
b

obtained by evaluating ∇ on λ is onto. Then NLR is analytically dense in
the connected component of B(R) containing b.

Over the complex numbers, several strategies have been devised to verify
in practice the hypothesis of the Green density criterion: the original degen-
eration method of Ciliberto, Harris and Miranda [CHM88], computations
with Jacobian rings [Kim91], use of explicit Noether–Lefschetz loci [CL91],
or the much more general arguments of Voisin [Voi06].

Over the reals, the requirement that λ be G-invariant makes the verifi-
cation of the hypothesis of Proposition 1.3.7 much harder. In particular, we
are unable to adapt Voisin’s work [Voi06] in this setting.

1.3.6 End of the proof

Let us now explain how Proposition 1.3.7 is applied to finish the proof
of Theorem 1.3.3 sketched in §1.3.4. We denote by T → B the family of
smooth projective double covers of S obtained by letting the divisor D vary.
We consider the G-equivariant variation of Hodge structures H2

Q on B(C),
as in §1.3.5, given by

H2
Q,b := Ker

[
π∗ : H2(Tb(C),Q(1))→ H2(S(C),Q(1))

]
.

To prove the abundance result for real Noether–Lefschetz loci that is re-
quired to make the argument work, we need to verify the hypothesis of
Proposition 1.3.7 for H2

Q. We use the idea of Ciliberto and Lopez [CL91]:
we choose (b, λ) such that λ is a Hodge class in H2

Q,b constructed as the class
of an algebraic cycle.

To do so, we argue geometrically. We arrange that for a particular value
of b ∈ B(R), there is a curve Γ ⊂ S(R) that splits in T , i.e., such that
π−1(Γ) is the union of two curves Γ1 and Γ2. We then choose λ to be
the projection in H2

Q,b of clC(Γ1). It turns out to be quite hard to ensure
the desired surjectivity of (1.6). This requires a very delicate choice of the
curve Γ, which is only possible if one has blown up beforehand, at the very
beginning of the proof, the surface S at many general points.

Another application of Proposition 1.3.7 in the same vein will be given
in §3.2.2.
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Chapter 2

Algebraic approximation

2.1 The Nash–Tognoli theorem
Let us first state the celebrated Nash–Tognoli theorem.

Theorem 2.1.1 (Nash–Tognoli [Nas52, Tog73]). Any compact C∞ manifold
is diffeomorphic to the real locus of a smooth projective variety over R.

It would be desirable to prove a variant of the Nash–Tognoli theorem
applicable to C∞ maps. However, one cannot expect to algebraize all C∞

maps f : M → N of compact C∞ manifolds. Indeed, the fibers of such
maps may in general be quite wild (arbitrary closed subsets of M), which
precludes them from being algebraizable on the nose. The best one could
hope for is to approximate f (in the C∞ topology) by algebraizable maps.
This hope is still too optimistic (as shown by Benedetti and Dedò [BD84]),
and understanding when this is possible is the content of Question 0.1.14,
which we now recall.

Question 2.1.2. Let f : N → M be a C∞ map of compact C∞ manifolds.
When can one approximate f in C∞(N,M) by maps of the form ϕ−1◦g(R)◦ψ,
where g : Y → X is a morphism of smooth projective varieties over R, and
ψ : N ∼−→ Y (R) and ϕ : M ∼−→ X(R) are diffeomorphisms?

While this question is widely open at present, the variant of this question
where the algebraic structure on the target manifold M is fixed is fully
understood, thanks to a relative variant of the Nash–Tognoli theorem due to
Benedetti–Tognoli and Akbulut–King. To state it, we define the unoriented
cobordism group MOd(M) of a compact C∞ manifold M to be the set of
cobordism classes of C∞ maps f : N →M of compact C∞ manifolds. When
M = X(R) is the real locus of a smooth projective variety X over R, we let

MOd(X(R))alg ⊂ MOd(X(R))
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be the subgroup of algebraic cobordism classes, generated by those maps of
the form g(R) for some morphism g : Y → X of smooth projective varieties
over R. We finally let wi denote the Stiefel–Whitney characteristic classes.

Theorem 2.1.3 (Benedetti–Tognoli, Akbulut–King [BT80, AK81a]). Let X
be a smooth projective variety over R and let f : N → X(R) be a C∞ map
of compact C∞ manifolds. The following are equivalent.

(i) For all neighborhoods U ⊂ C∞(N,X(R)) of f , there exist a morphism
g : Y → X of smooth projective varieties over R and a diffeomorphism
ψ : N ∼−→ Y (R) such that g(R) ◦ ψ ∈ U .

(ii) One has [f ] ∈ MO∗(X(R))alg.
(iii) For all i1, . . . , ir, one has f∗[wi1(N) . . . wir (N)] ∈ H∗(X(R),Z/2)alg.

What is really proven in [BT80, AK81a] is the equivalence (i)⇔(ii). That
(ii)⇔(iii) may be deduced from the work of Ischebeck and Schülting [IS88].
Note that Theorem 2.1.3 does indeed reduce to the classical Nash–Tognoli
theorem when X is a point.

2.2 Algebraizable cohomology classes
Let M be a compact C∞ manifold. A cohomology class in H∗(M,Z/2)

is said to be algebraizable if it belongs to ϕ∗(H∗(X(R),Z/2)alg) for some
diffeomorphism ϕ : M ∼−→ X(R) onto the real locus of a smooth projective
variety X over R. In view of condition (iii) in Theorem 2.1.3, solving Ques-
tion 2.1.2 is essentially equivalent to understanding when a cohomology class
is algebraizable (or, more precisely, when a collection of cohomology classes
are simultaneously algebraizable). This gives a strong motivation to study
the algebraizability of cohomology classes.

On the positive side, Stiefel–Whitney classes of real vector bundles on M ,
and fundamental classes of submanifolds of M are known to be algebraiz-
able, as are all the elements of the subring A(M) ⊂ H∗(M,Z/2) generated
by these classes [BT80, AK81a]. Kucharz asked in [Kuc05, Conjecture A]
whether, conversely, all algebraizable classes belonged to A(M). We answer
this question in the negative.

Theorem 2.2.1 (Benoist [Ben22a]). There exists a compact C∞ manifold M
carrying an algebraizable cohomology class which does not belong to A(M).

On the negative side, non-algebraizable classes where previously known
to exist in all even degrees ≥ 2 thanks to Kucharz [Kuc08]. We are able to
give examples in all degrees ≥ 2, answering a question raised by Benedetti
and Dedò [BD84, p. 150] and Kucharz [Kuc05, p. 194].

Theorem 2.2.2 (Benoist [Ben22a]). For any c ≥ 2, there exists a com-
pact C∞ manifold M and a class in Hc(M,Z/2) that is not algebraizable.
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Our proofs of both Theorems 2.2.1 and 2.2.2 rely on the simple observa-
tion that algebraizable classes are preserved by mod 2 Steenrod operations,
a fact first noticed by Akbulut and King [AK85b], which is a consequence
of the relative Wu theorem of Atiyah and Hirzebruch [AH61].

To prove Theorem 2.2.1, it suffices to exhibit a compact C∞ manifold M
such that A(M) is not preserved by Steenrod operations.

Squares of algebraizable classes always lift to integral cohomology classes
(this is a consequence of (1.3)). Kucharz used this remark in [Kuc08] to
obstruct the algebraizability of some cohomology classes of even degree.
Unfortunately, the square of a cohomology class of odd degree always has
an integral lift, and hence this obstruction cannot be applied directly to odd
degree classes. However, Kucharz’s obstruction may very well apply to the
image of an odd degree cohomology class by a Steenrod operation. This is
how we prove Theorem 2.2.2.

2.3 Algebraic approximation of C∞ submanifolds
Let X be a smooth projective variety of dimension n over R, and let

i : N ↪→ X(R) be a C∞ submanifold of dimension d. We let c := n − d
denote the codimension of N in X(R).

2.3.1 An approximation problem

Theorem 2.1.3 characterizes when the inclusion i : N ↪→ X(R) may be
approximated in the C∞ topology by an algebraic map g(R) : Y (R)→ X(R).
This does not solve on the nose the problem of whether the submanifold N
may be approximated by real loci of real algebraic subvarieties of X. Indeed,
the real locus of g(Y ) ⊂ X may be bigger than g(Y (R)), if some pairs of
complex conjugate points of Y happen to collapse to the same complex point
of X. Determining when the next approximation property holds is therefore
an interesting problem.

Property (A). For all neighbourhoods U ⊂ C∞(N,X(R)) of the inclusion i,
there exist j ∈ U and a closed subvariety Z ⊂ X which is smooth along Z(R)
such that j(N) = Z(R).

For curves, this problem was resolved in successive works by Akbulut–
King, Bochnak–Kucharz and Benoist–Wittenberg [AK88, BK03b, BW20c].

Theorem 2.3.1 (Akbulut–King, Bochnak–Kucharz, Benoist–Wittenberg).
If d = 1, then (A) holds if and only if i∗[N ] ∈ H1(X(R),Z/2)alg.

Can one generalize Theorem 2.3.1 to higher-dimensional cycles? To do
so, one has to take into account the following finer necessary condition based
on cobordism, which already appeared in the statement of Theorem 2.1.3.
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Property (B). One has [i : N ↪→ X(R)] ∈MOalg
d (X(R)).

So, when are (A) and (B) equivalent? We obtain both positive and
negative results on this question, explained respectively in §2.3.2 and §2.3.3.

2.3.2 Positive results: linkage

On the positive side, we show the sufficiency of (B) for cycles of low
dimension (below the half of the dimension of the ambient variety).

Theorem 2.3.2 (Benoist [Ben20a]). If d < c, then Properties (A) and (B)
are equivalent.

In the particular case where X = Pn
R, Property (B) is always satisfied,

and Theorem 2.3.2 reduces to Theorem 0.1.16.
To prove Theorem 2.3.2, we first apply Theorem 2.1.3 to approximate

the embedding i : N ↪→ X(R) by a map g(R) : Y (R) → X(R) induced
by a morphism g : Y → X of smooth projective varieties over R. As we
already explained in §2.3.1, setting Z := g(Y ) does not yield a proof of
Theorem 2.3.2 because g(C) might not be injective, so that the inclusion
g(Y (R)) ⊂ Z(R) might be strict. However, under the hypothesis that d < c,
the C∞ map g(C) is generically expected to be an embedding, which would
allow us to conclude. This heuristic explains the role of the hypothesis
that d < c in Theorem 2.3.2 (reminiscent of Whitney’s embedding theorem
in differential geometry [Whi36]).

Unfortunately, one cannot in general deform g algebraically, let alone
render the C∞ map g(C) generic in the above sense after an algebraic de-
formation of g. One therefore needs a different kind of moving technique.
To this effect, we use the method of moving by linkage first exploited by
Hironaka in [Hir68].

The basic idea is the following. Fix an embedding e : Y ↪→ PN
R ×X of Y

in a trivial projective bundle over X, in such a way that g = pr2 ◦ e. Fix a
sufficiently ample line bundle L on PN

R ×X, and let s1, . . . , sc+N be general
sections of L vanishing on Y . Then

{s1 = · · · = sN+c = 0} = Y ∪ Y ′,

where Y ′ has the same dimension as Y . The variety Y ′ is said to be linked
to Y and one writes Y ∼ Y ′. One would like to replace Y with Y ′ and
hope that it serves our purposes better. There are however two difficulties
to overcome.

The first difficulty is that the real locus of Y ′ is not at all close to the
real locus of Y . To solve this problem, one performs two links instead of one!
More precisely, one chooses a section t of a sufficiently ample line bundle on
PN
R ×X that has no real zeros, and one considers a link Y ′ ∼ Y ′′ of the form

{s′
1 = · · · = s′

N+c = 0} = Y ′ ∪ Y ′′,
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where s′
i is very close to si · t in the analytic topology. This choice ensures

that Y ′′(R) is close to Y (R) (as the second link almost undoes the effect of
the first link at the level of real loci).

The second difficulty is that Y ′′ now inevitably has singularities (away
from its real locus). This makes it impossible to reasonably hope that the
projection Y ′′ → X is an embedding. We however claim that, after repeating
this procedure a large number of times (exponential in d), we will eventually
reach a subvariety Y (t) ⊂ PN

R × X, whose real locus is close to Y (R) and
such that the projection Y (t) → X is injective at the level of C-points.
One can then set Z := g(Y (t)) to conclude. The verification of this claim is
nontrivial, and requires a study of the linkage construction in families, based
on commutative algebra results due to Peskine and Szpiro, and to Huneke
and Ulrich [PS74, HU85].

2.3.3 Negative results: the double point formula

To state our counterexamples to the equivalence of (A) and (B), we
define α(m) to be the number of ones in the binary expansion of an integerm.

Theorem 2.3.3 (Benoist [Ben20a]). If d ≥ c and α(c+1) = 2, there exist X
and i : N ↪→ X(R) such that (B) holds but (A) fails.

We first present the simplest counterexample that we construct, for
which n = 4 and c = d = 2. In this case, one can choose N = P2(R)
and X = P1

R × P3
R, and let i : P2(R) ↪→ R4 ⊂ P1(R)× P3(R) be any embed-

ding of P2(R) in a standard affine chart of P1(R) × P3(R). Let us explain
why (A) cannot hold in this example.

Assume that we managed to approximate the immersion i by an alge-
braic map g(R) : Y (R) → X(R) induced by a morphism g : Y → X of
smooth projective varieties over R, for instance thanks to an application of
Theorem 2.1.3. Our goal is to show that setting Z := g(Y ) ⊂ X cannot
solve our approximation problem, i.e., that Z cannot be smooth along its
real locus. To do so, we will show that there necessarily exist two complex
conjugate points of Y that collapse to the same point of X, which will then
be a singular real point of Z.

To prove that Z has such a real double point, the idea is to count them.
If δ is the number of double points of Z, we will verify that δ is odd, and
hence that at least one of these double points has to be real. Fulton’s double
point formula [Ful98, §9.3] (which refines earlier works of Todd and Laksov
[Tod40, Lak78]) reads:

(2.1)
2δ = (g∗[Y ])2 − c2(NY/X)

= (g∗[Y ])2 + g∗c2(X)− c1(Y ) · g∗c1(X) + [c2
1(Y )− c2(Y )].

At this point, our knowledge that X = P1
R×P3

R, that Y (R) ≃ P2(R) and
that the embedding Y (R) ↪→ X(R) is homotopically trivial is sufficient to
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prove that the first three terms of the right-hand side of (2.1) are divisible
by 4. As for the fourth term c2

1(Y )− c2(Y ), the Noether formula

(2.2) c2
1(Y ) + c2(Y ) = 12χ(Y,OY )

implies that it is congruent to 2c2(Y ) modulo 4. That Y (R) ≃ P2(R) may
then be used to show that it is congruent to 2 modulo 4. It now follows
from (2.1) that δ is odd, as required.

Difficulties arising from the fact that Z might have worse singularities
than double points are entirely solved by Fulton’s refined intersection theory,
already taken into account in [Ful98, §9.3].

For higher values of the codimension c, the proof follows a similar path.
One must however replace the above application of the Noether formula (2.2)
by more general divisibility results for Chern numbers, valid for higher-
dimensional compact complex manifolds. To obtain such divisibility results,
we exploit our knowledge of the structure of the complex cobordism ring,
following a strategy due to Rees and Thomas [RT77] and relying on results
of theirs.

Unfortunately, we were not able to use the kind of obstructions sketched
in this paragraph to produce a counterexample to Question 0.1.15.

2.3.4 Applications to Chow groups

The techniques described in §2.3.2 and 2.3.3 (use of linkage and of dou-
ble point formulae) have other applications, to the structure of Chow groups
of real algebraic varieties. More specifically, we use them to study the prob-
lems of determining the subgroups of Chow groups generated by classes of
subvarieties with empty real loci (in Theorem 2.3.4), or of subvarieties that
are smooth along their real loci (in Theorem 2.3.5).

Recall that α(m) is the number of ones in the binary expansion of an
integer m.

Theorem 2.3.4 (Benoist [Ben20a]).
(i) Let X be a smooth projective variety of dimension c + d over R. If

d < c, then Ker[clR : CHd(X) → Hd(X(R),Z/2)] is generated by
classes of subvarieties of X with empty real loci.

(ii) If α(c + 1) ≥ 2 and d ≥ c, there exists a smooth projective variety of
dimension c+d over R such that Ker[clR : CHd(X)→ Hd(X(R),Z/2)]
is not generated by classes of subvarieties of X with empty real loci.

Theorem 2.3.4 (i) was shown to hold when d = 0 by Colliot-Thélène and
Ischebeck [CTI81], and when d = 1 and c = 2 by Kucharz [Kuc04]. It is
new in all other cases.
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Theorem 2.3.4 (ii) was known to hold for all even values of c, again
thanks to Kucharz [Kuc04]. We extend his result to all values of c not of
the form 2k− 1. It is not possible to entirely remove the hypothesis on c, as
there are no such counterexamples in the case c = 1 of divisors, by a result
of Bröcker [Brö80].

Theorem 2.3.5 (Benoist [Ben20a]).
(i) Let X be a smooth projective variety of dimension c + d over R. If

d < c, then CHd(X) is generated by classes of subvarieties of X that
are smooth along X(R).

(ii) If α(d + 1) ≥ 3 and d ≥ c, there exists a smooth projective variety of
dimension c+ d over R such that CHd(X) is not generated by classes
of subvarieties of X that are smooth along X(R).

Theorem 2.3.5 (i) is a consequence of the original smoothing results of
Hironaka [Hir68] when d ≤ 3. Theorem 2.3.5 (ii), on the other hand, is
entirely new.

The problem considered in Theorem 2.3.5 is closely related to a classi-
cal question going back to Borel and Haefliger [BH61]: is the Chow group
of a smooth projective complex variety X generated by classes of smooth
subvarieties? After early positive results due to Hironaka and Kleiman
[Hir68, Kle69], which in particular settled the question if dim(X) ≤ 5,
a 9-dimensional counterexample was discovered by Hartshorne, Rees and
Thomas [HRT74].

By exploiting in complex algebraic geometry the complex cobordism ring
computations alluded to at the end of §2.3.3, Debarre and myself were able
to obtain a counterexample of the lowest possible dimension.

Theorem 2.3.6 (Benoist–Debarre [BD23]). There exist a smooth projective
variety X of dimension 6 over C and an algebraic class in H4(X(C),Z) that
is not a linear combination of classes of smooth algebraic subvarieties of X.

More precisely, inspired by an earlier work of Debarre [Deb95], we study
the question of Borel and Haefliger when X is the Jacobian of a very general
curve of genus g polarized by its theta divisor θ, and for the minimal coho-
mology classes θc

c! ∈ H
2c(X(C),Z). Theorem 2.3.6 is obtained when g = 6

and c = 2.

2.4 The tight approximation property
In the algebraic approximation problems considered in Theorem 2.1.3

and in §2.3.1, the target manifold is the real locus of a fixed smooth pro-
jective variety over R, but the algebraic structure on the source manifold is
allowed to vary. In contrast, algebraic approximation results for C∞ maps
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f : Y (R) → X(R) between the real loci of two fixed smooth projective
varieties Y and X over R cannot possibly hold without strong geometric
hypotheses on Y and X. Indeed, there is no reason why there should even
exist any nonconstant morphism YC → XC.

Already when Y = P1
R, one should restrict to varieties X carrying many

rational curves. It is therefore natural to impose that X be a rationally
connected variety (and it is then reasonable to allow Y to be any smooth
projective real algebraic curve).

We cannot rule out the existence of interesting results for other classes
of real algebraic varieties X. In the case of K3 surfaces, we do not even
know the answer to the following question (see [BW21, Remark 3.8]).

Question 2.4.1. Let X be a real K3 surface with X(R) ̸= ∅. Does there
exist a nonconstant morphism P1

R → X?

In contrast, all complex K3 surfaces are known to carry infinitely many
rational curves [CGL22].

2.4.1 Definition of tight approximation

It turns out to be useful, both to actually prove approximation results
and to extend the scope of their applications, to consider the problem of
approximating sections of one-parameter families of rationally connected
varieties, instead of morphisms to a fixed rationally connected variety. In
[BW21], we define a quite general approximation property in this spirit: the
tight approximation property.

Let B be a connected smooth projective curve over R with function
field F := R(B). Recall that we set G := Gal(C/R).

Let f : X→ B be a flat projective morphism of smooth varieties over R.
One says that f satisfies the tight approximation property if for all G-stable
open neighborhoods Ω of B(R) in B(C), for all G-equivariant holomorphic
sections u : Ω→ X(C) of f(C) over Ω, and for all b1, . . . , bm ∈ Ω and r ≥ 0,
there exists a sequence sn : B → X of sections of f having the same r-jets
as u at the bi and such that the sn(C)|Ω converge to u in C∞(Ω,X(C)).

We also say that a smooth variety X over F satisfies the tight approxi-
mation property if so does some birational model f : X→ B of X as above.
(It follows from Theorem 2.4.3 below that this property does not depend on
the birational model f : X → B of X). Our main motivation to formulate
these definitions is to ask the following question (see [BW21, Question 3.6]).

Question 2.4.2. Do smooth projective rationally connected varieties over F
satisfy the tight approximation property?
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2.4.2 Connections with the literature

In the particular case where f : X→ B is a constant fibration with fiber a
rationally connected variety X, tight approximation predicts the existence of
many algebraic morphisms B → X. An outstanding positive result in this
case is Kollár’s theorem that there exist real rational curves through any
finite collection of real points in a fixed connected component of the real
locus of a real rationally connected variety [Kol99]. Very little was known
on C∞ approximation questions in this context (such as Question 0.1.17),
beyond the case of rational varieties (see the works of Bochnak and Kucharz
[BK99, BK03a] discussed in §2.4.3).

Let us insist that the curve B may not be geometrically connected. In
this case, the curve B can be thought of as a complex curve, and Ques-
tion 2.4.2 encompasses the Graber–Harris–Starr theorem according to which
one-parameter families of complex rationally connected varieties always have
a section [GHS03]. It also contains as a particular case the conjecture that
such families satisfy the weak approximation property (see [CTG04, HT06]
for significant results in this direction).

In the real case, Question 2.4.2 may in particular be thought of as a sub-
stitute for the Graber–Harris–Starr theorem. In this direction, it notably
implies Question 0.2.1, as well as Lang’s conjecture that low degree hyper-
surfaces over function fields of real curves with no real points have rational
points (see Question 0.1.7 for n = 1; for singular hypersurfaces, one must
also use [HX09]).

There is however no hope that rationally connected varieties over F sat-
isfy weak approximation in the real case in general, because of obstructions
induced by the topology of real points: for f : X → B to have an algebraic
section, it is necessary that f(R) : X(R) → B(R) should have a C∞ sec-
tion. This explains the importance of having imposed a C∞ approximation
condition in the definition of tight approximation, and of having insisted
that B(R) ⊂ Ω. These obstructions were first studied as analogues in real
algebraic geometry of the Brauer–Manin obstruction over number fields (see
[CT96, Sch96, Duc98]). This point of view led in particular to the proof of (a
variant of) the tight approximation property for fibrations in Severi–Brauer
varieties over P1

F in [Duc98].

2.4.3 Birational aspects

The case of constant fibrations was investigated by Bochnak and Kucharz
in [BK99] in the real setting (in which case they only consider approximation
in C∞(B(R),X(R))), and in [BK03a] in the complex setting. In these articles,
they prove two important facts concerning the approximation properties
that they consider: birational invariance, and validity for projective spaces.
Combining these facts, they deduce their validity for all rational varieties.

41



We adapted their arguments for the tight approximation property.

Theorem 2.4.3 (Benoist–Wittenberg [BW21]). Assume that f : X → B
and f ′ : X′ → B are flat projective morphisms of smooth varieties over R
and that there exists a birational morphism g : X→ X′ such that f = f ′ ◦ g.
Then f satisfies the tight approximation property if and only if so does f ′.

Theorem 2.4.4 (Benoist–Wittenberg [BW21]). Rational varieties over F
satisfy the tight approximation property.

It is absolutely crucial for the validity of Theorem 2.4.3 that tight ap-
proximation incorporates a weak approximation property (controlling the
jets of sections at finitely many points of B), as is already apparent in
[BK99, BK03a]. Theorem 2.4.4 can be reduced to the case of projective
spaces thanks to Theorem 2.4.3. It then follows from a G-equivariant ver-
sion of the Runge approximation theorem.

2.4.4 Behaviour in fibrations

Our first main result about the tight approximation property is its com-
patibility with fibrations.

Theorem 2.4.5 (Benoist–Wittenberg [BW21]). Let g : X → X ′ be a dom-
inant morphism between smooth varieties over F . If X ′ and the fibers of g
above the F -points of a dense open subset of X ′ satisfy the tight approxima-
tion property, then so does X.

A fibration theorem for a weaker property than tight approximation,
which in addition assumes X ′ to be F -rational, had been independently
proven by Pál and Szabó in [PS20].

Theorem 2.4.5 can be used to show the tight approximation property for
some varieties that have a fibration structure. Here is an example.

Theorem 2.4.6 (Benoist–Wittenberg [BW21]). Let X be be a smooth pro-
jective variety of dimension ≥ 2 over F that is either

(i) a cubic hypersurface containing an F -line, or
(ii) a complete intersection of two quadrics with an F -point.

Then X satisfies the tight approximation property.

Indeed, projecting the cubic from an F -line yields a conic bundle over a
projective space, and projecting the complete intersection from its tangent
space at an F -point yields a quadric bundle over P1

F .
Theorem 2.4.6 is particularly interesting because it implies the tight

approximation property for those cubic hypersurfaces and complete inter-
sections of two quadrics, smooth of dimension ≥ 2, that are defined over R.
This is how we prove the next theorem (which appeared as Theorem 0.1.18
in the introduction).

42



Theorem 2.4.7 (Benoist–Wittenberg [BW21]). Let X be a cubic hypersur-
face or a complete intersection of two quadrics, which is smooth of dimen-
sion ≥ 2 over R. Then algebraic maps are dense in C∞(P1(R), X(R)).

Let us now sketch the proof of Theorem 2.4.5. Let g : X → X′ be a
model of g : X → X ′. Our goal is to construct a section s of f : X → B
such that s(C) approximates (in the sense of C∞ approximation on compact
subsets as well as in the sense of jets) a fixed G-equivariant holomorphic
section u : Ω→ X(C) of f(C) over Ω.

By applying tight approximation for f ′, one can find a section s′ : B → X′

of f ′ such that s′(C) approximates g(C)◦u in this sense. One then considers
the fibration h : X×X′ B → B obtained by restricting g over the image of s′.
To conclude, it would remain to use the tight approximation property for h
in order to construct an appropriate section s of h (which we can also view
as a section of f).

For this to work, which holomorphic section of h(C) over Ω would we like
s(C) to approximate? It would have to be a small deformation of u whose
image in X(C) would happen to lie exactly over the image of s′(C). Such a
deformation is not hard to construct, by making use of the normal form of
submersions, if g is smooth along the image of u (and s′ approximates g(C)◦u
well enough). Unfortunately, possible singularities of g along the image of u
create significant difficulties in the construction of such a deformation.

Our solution to this problem is that it is always possible, after possibly
replacing X and X′ by different birational models, to assume that the image
of u entirely avoids the singular locus of g(C). This surprising fact may
be thought of as a substitute, over a higher-dimensional base, of the Néron
smoothening process. Our proof of it makes uses toroidal geometry in an
essential way.

2.4.5 Descent along torsors

Our second main result concerning tight approximation is a descent the-
orem for this property.

Theorem 2.4.8 (Benoist–Wittenberg [BW21]). Let X be a smooth variety
over F . Let S be a linear algebraic group over F . Let Q → X be a left
S-torsor over X. If the twists of Q by right S-torsors over F all satisfy the
tight approximation property, then so does X.

The statement of Theorem 2.4.8 (and the general mechanism of its proof)
is inspired by the descent method of Colliot-Thélène and Sansuc over number
fields, as further developed by Harari and Skorobogatov. Crucial inputs
are Scheiderer’s deep results on homogeneous spaces under linear algebraic
groups over functions fields of real curves [Sch96], and Colliot-Thélène and
Gille’s proof of weak approximation for homogeneous spaces under linear
algebraic groups over function fields of complex curves [CTG04].

43



Combining Theorems 2.4.5 and 2.4.8 with structure results for linear
algebraic groups and Scheiderer’s Hasse principle [Sch96], we deduce the
following concrete application.

Theorem 2.4.9 (Benoist–Wittenberg [BW21]). Homogeneous spaces under
connected linear algebraic groups over F satisfy tight approximation.

Theorem 2.4.9 does not formally imply weak approximation for homoge-
neous spaces under connected linear algebraic groups over F because, as we
already noted in §2.4.2, there are in general topological obstructions to weak
approximation in this context. However, relying yet another time on Schei-
derer’s work [Sch96], one can verify that these obstructions always vanish for
such homomogeneous spaces. We may therefore deduce from Theorem 2.4.9
the conjecture of Colliot-Thélène that we already stated in Theorem 0.1.9.

Theorem 2.4.10 (Benoist–Wittenberg [BW21]). Homogeneous spaces un-
der connected linear algebraic groups over F satisfy weak approximation.

Theorem 2.4.10 had been proven by Colliot-Thélène [CT96] when the
stabilizers are trivial and by Scheiderer [Sch96] when they are connected.
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Chapter 3

Positivity and sums of squares

3.1 Sums of squares

3.1.1 Sums of squares of polynomials

Let f ∈ R[x1, . . . , xn] be a nonnegative polynomial, and let d be its
degree. We note that d is even, because a real polynomial of odd degree
always changes sign. It is tempting to try to explain the positivity of f by
writing it as a sum of squares of polynomials. It was discovered by Hilbert
[Hil88] that this is not always possible. Hilbert moreover determined all the
possible values of (n, d) for which such a result holds.

Theorem 3.1.1 (Hilbert [Hil88]).

(i) If n ≤ 1, d ≤ 2, or (n, d) = (2, 4), all nonnegative f ∈ R[x1, . . . , xn] of
degree d are sums of squares of polynomials.

(ii) If n ≥ 2, d ≥ 4 and (n, d) ̸= (2, 4), there exists f ∈ R[x1, . . . , xn]
nonnegative of degree d which is not a sum of squares of polynomials.

The most famous example of a nonnegative polynomial which is not a
sum of squares of polynomials is Motzkin’s polynomial

(3.1) 1 + x2y4 + x4y2 − 3x2y2.

3.1.2 Sums of squares of rational functions

As Hilbert conjectured in his 17th problem, and as was eventually es-
tablished by Artin [Art27], one way to repair the failure of a nonnegative
polynomial to be expressible as a sum of squares of polynomials is to allow
denominators.

Theorem 3.1.2 (Artin [Art27]). Any nonnegative f ∈ R[x1, . . . , xn] is a
sum of squares in R(x1, . . . , xn).
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Such sums of squares problems pertain to quadratic form theory. That
nonnegative polynomials are always sums of squares of rational functions,
but are not sums of squares of polynomials in general, can be thought of
as a manifestation of the fact that quadratic forms are better behaved over
fields (such as R(x1, . . . , xn)) than over general rings (such as R[x1, . . . , xn]).

3.1.3 Sums of squares in local rings: bad points

Let f ∈ R[x1, . . . , xn] be a nonnegative polynomial. A point p ∈ Cn is
said to be a bad point for f if, in all representations of f as sums of squares
in R(x1, . . . , xn), some denominator vanishes at the point p. Equivalently,
letting mp ⊂ R[x1, . . . , xn] denote the maximal ideal of polynomials vanish-
ing at p, the point p is bad for f exactly when f is not a sum of squares in
the local ring R[x1, . . . , xn]mp .

Here are two motivations to study bad points. First, they are exactly the
local obstructions to writing a nonnegative polynomial as a sum of squares
of polynomials. Second, investigating bad points is a problem concerning
quadratic forms in local rings, which is of intermediate difficulty between
the ideal situation of quadratic forms over fields and the much wilder case
of quadratic forms over general rings.

Bad points were first introduced under this name by Delzell in his PhD
thesis [Del80], but the first examples appeared in a 1956 letter of Straus to
Kreisel: if f ∈ R[x1, . . . , xn] is not a sum of squares of polynomials, then its
homogenization in R[x1, . . . , xn+1] has a bad point at the origin. A major
result, proven in increasing generality by Choi–Lam, Delzell and Scheiderer
[CL77, Del80, Sch01] states the set of bad points has codimension ≥ 3 in Cn.
In particular, there are no bad points when n = 2.

The above-mentioned results solve the problem of determining for which
values of (n, d) bad points may exist, except in the case (n, d) = (3, 4).
Our first result on bad points sorts this out, yielding an analogue of Theo-
rem 3.1.1 for the existence of bad points.

Theorem 3.1.3 (Scheiderer [Sch01], Benoist [Ben22b]).

(i) If n ≤ 2, d ≤ 2, or (n, d) = (3, 4), all nonnegative f ∈ R[x1, . . . , xn] of
degree d have no bad points.

(ii) If n ≥ 3, d ≥ 4 and (n, d) ̸= (3, 4), there exists f ∈ R[x1, . . . , xn]
nonnegative of degree d with a bad point.

In three variables, which is the first case of interest, all known examples
of bad points shared striking common features. On the one hand, they
were all real points. It was asked by Scheiderer in [Sch00, Remark 1.4 2]
whether all bad points of a nonnegative f ∈ R[x, y, z] are real. On the other
hand, if the real bad point is assumed to be the origin, the polynomial f
was not even a sum of squares in the ring R[[x, y, z]] of formal power series.
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A question of Brumfiel appearing in [Del80, p. 62] asked whether this is a
general phenomenon. We answer both questions in the negative.

Theorem 3.1.4 (Benoist [Ben22b]). There exists f ∈ R[x, y, z] nonnegative
with a nonreal bad point.

Theorem 3.1.5 (Benoist [Ben22b]). There exists f ∈ R[x, y, z] nonnegative
which is a sum of squares in R[[x, y, z]] but has a bad point at the origin.

To prove Theorems 3.1.4 and 3.1.5, one has to overcome the same ob-
stacle. Let m ⊂ R[x, y, z] be the ideal of polynomials vanishing on the bad
point. In both cases, one has to prove that f is not a sum of squares in
R[x, y, z]m, although f is necessarily a sum of squares in all the completions
of this local ring. We thus need to devise an obstruction to f being a sum
of squares which is sufficiently global in nature.

Here is our solution to this difficulty. We arrange things so that f van-
ishes on an integral real curve Γ ⊂ A3

R such that Γ(R) is infinite, hence
Zariski-dense in Γ. Let I ⊂ R[x, y, z]m be the ideal of Γ. If f was a sum
of squares of elements of R[x, y, z]m, all these elements would have to van-
ish on Γ, and f would belong to I2. To reach a contradiction, it therefore
suffices to ensure that f /∈ I2.

This is not easy to achieve, because the positivity of f and the fact
that it vanishes on Γ imply that f belongs to I2 generically along Γ or,
in other words, that f belongs to the symbolic square I(2) of I. Starting
from a classical example of an ideal I ⊂ R[x, y, z] with I2 ̸= I(2), one can
construct pairs (f,Γ) for which the above strategy applies, thereby proving
Theorems 3.1.4 and 3.1.5.

3.2 Sums of few squares
Let us recall Pfister’s quantitative improvement of Artin’s theorem, which

is the archetype of the sums of few squares problems which we now consider.

Theorem 3.2.1 (Pfister [Pfi67]). Any nonnegative f ∈ R[x1, . . . , xn] is a
sum of 2n squares in R(x1, . . . , xn).

3.2.1 Consequences of the Milnor conjectures

The main modern tool to attack sums of few squares problems are the
Milnor conjectures proven by Voevodsky [Voe03]. They were first applied
in this way in [CTJ91, Jan16], to prove analogues of Pfister’s theorem over
number fields.

Theorem 3.2.2 (Jannsen [Jan16]). If n ≥ 2, any nonnegative polynomial
f ∈ Q[x1, . . . , xn] is a sum of 2n+1 squares in Q(x1, . . . , xn).
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Let us state concrete consequences of the Milnor conjectures in this
spirit, that we will use in §§3.2.2–3.2.5 (see e.g. [Ben20b, Proposition 2.1],
[Ben23, Proposition 6.3] and [Lam80, Chapter 11, Theorem 2.7]). In these
statements, we denote by {f} ∈ H1(K,Z/2) the image of an invertible el-
ement f in a field K of characteristic ̸= 2 by the Kummer isomorphism
K∗/(K∗)2 ∼−→ H1(K,Z/2).

Proposition 3.2.3. Let K be a field of characteristic ̸= 2. Fix f ∈ K∗ and
r ≥ 0. The following are equivalent:

(i) the element f is a sum of 2r squares in K;
(ii) one has {f} · {−1}r = 0 in Hr+1(K,Z/2).

If f is a sum of squares in K, then (i) and (ii) are implied by:
(iii) the groups Hk(K[

√
−1],Z/2) vanish for k ≥ r + 1.

Proposition 3.2.4. Let K be a field of characteristic ̸= 2. Fix f ∈ K∗ and
r ≥ 0. The following are equivalent:

(i) the element f is a sum of 2r − 1 squares in K;
(ii) one has {−1}r = 0 in Hr(K[

√
−f ],Z/2).

In real algebraic geometry, these statement are usually used in conjunc-
tion with Artin’s comparison theorem between étale and Betti cohomology
of complex algebraic varieties [SGA43] (or, more precisely, with its exten-
sion by Cox to a comparison theorem between étale and equivariant Betti
cohomology of real algebraic varieties [Cox79]).

3.2.2 Sums of 3 squares and Noether–Lefschetz loci

The Cassels–Ellison–Pfister theorem [CEP71] states that Pfister’s The-
orem 3.2.1 is optimal in n = 2 variables. More precisely, it is proven in
[CEP71] that Motzkin’s polynomial (3.1) is not a sum of 3 squares in R(x, y).

As we explained in §0.2.3, Colliot-Thélène has provided in [CT93] an al-
ternative proof of the Cassels–Ellison–Pfister theorem based on the Noether–
Lefschetz theorem. The main idea of [Ben18] is that one can use finer Hodge-
theoretic results (namely, density results for Noether–Lefschetz loci) to also
obtain abundance results for sums of 3 squares.

Theorem 3.2.5 (Benoist [Ben18]). Fix d ≥ 2 even. Let Πd ⊂ R[x, y]d
be the set of nonnegative real polynomials of degree ≤ d. The set of those
polynomials that are sums of 3 squares in R(x, y) is analytically dense in Πd.

Let f ∈ Πd ⊂ R[x, y]d be a nonnegative polynomial. Assume that the
homogenization F ∈ R[X,Y, Z] of F defines a smooth plane curve C ⊂ P2

R,
and let S → P2

R be the double cover ramified along C with equation

S := {W 2 + F (X,Y, Z) = 0}.
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It follows from Proposition 3.2.4 that f is a sum of 3 squares in R(x, y)
if and only if {−1}2 ∈ H2

ét(S,Z/2) vanishes on a Zariski-open subset of S;
equivalently, if and only if this class is algebraic. This happens if and only
if its image in H2

G(S(C),Z/2) by Cox’s comparison theorem between étale
cohomology and equivariant Betti cohomology (see [Cox79]) is algebraic. In
view of the real Lefschetz (1, 1) theorem (see Theorem 1.2.3), such is the case
if and only if this image lifts to an integral Hodge class in Hdg2(S(C),Z(1)).

This property is of course influenced by the Hodge theory of the sur-
face S, and the above analysis allows us to completely understand how it
depends on the polynomial f . When the coefficients of f vary, the surface S
varies in an algebraic family, and one can consider the G-equivariant weight 2
variation of Hodge structures H2

Q (in the sense of §1.3.5) modelled on the
primitive cohomology groups H2(S(C),Q(1))prim. The polynomial f is then
a sum of 3 squares in R(x, y) exactly along some real Noether–Lefschetz loci
of the parameter space of the family.

To prove Theorem 3.2.5, it remains to apply the density criterion for
real Noether–Lefschetz loci given by Proposition 1.3.7. To do so, we take
inspiration from the complex work of Ciliberto and Lopez [CL77] (as we
already did in §1.3.6): we choose the class λ required in the hypotheses of
Proposition 1.3.7 to be the class of an algebraic cycle, and more precisely,
the class of a determinantal curve Γ ⊂ S (for a particular choice of S).

3.2.3 Low degree equations

In two variables, Hilbert’s Theorem 3.1.1 shows that Pfister’s 2n bound
may always be improved for equations of degree d ≤ 4. It is natural to
wonder whether this can also be done for polynomials in more variables. In
this direction, we obtain the following result.

Theorem 3.2.6 (Benoist [Ben17]). Let f ∈ R[x1, . . . , xn] be nonnegative
of degree d. If d ≤ 2n − 2, or if d = 2n and n is even or equal to 3 or 5,
then f is a sum of 2n − 1 squares in R(x1, . . . , xn).

It was pointed out to us by Leep that the d ≤ 2n−2 case of Theorem 3.2.6
can also be deduced from results of him and Becher [Lee09, BL11].

Let us now sketch our proof of Theorem 3.2.6. Exactly as in §3.2.2, we
let F ∈ R[X0, . . . , Xn] denote the homogenization of f , and we consider the
double cover X → Pn

R defined by the equation

X := {W 2 + F (X0, . . . , Xn) = 0}.

We assume henceforth that the hypersurface {F = 0} is smooth, and hence
that so is X. (The case where these varieties are singular can be reduced
to the smooth case by a degeneration argument based on the use of nonar-
chimedean real closed fields.)
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At this point, we may explain the role of the hypothesis that d ≤ 2n
in Theorem 3.2.6: it is equivalent to the rational connectedness of the real
algebraic variety X. This shows that it is a very natural hypothesis from the
geometric point of view. One might therefore dream that Pfister’s bound
becomes optimal as soon as d ≥ 2n+2. It also becomes reasonable to expect
that Theorem 3.2.6 could be extended to the case where d = 2n and n ≥ 7
is odd (note however that it would not hold for n = 1 and d = 2). We are
unable to prove this at present.

Let us resume the proof of Theorem 3.2.6. By the criterion of Propo-
sition 3.2.4, we have to show that, under our hypotheses on d, the class
{−1}n ∈ Hn(X,Z/2) vanishes in restriction to a Zariski-open subset of X
or, in other words, that it vanishes in the unramified cohomology group
Hn

nr(X,Z/2).
A first idea is to work with integral coefficients instead of torsion coeffi-

cients (we use 2-adic étale cohomology here, but equivariant Betti cohomol-
ogy would also work). Let us denote by ω the lift of {−1} by the reduction
modulo 2 isomorphism H1(R,Z2(1)) ∼−→ H1(R,Z/2). We actually prove the
(seemingly) stronger vanishing of the class ωn ∈ Hn

nr(X,Z2(n)).
To this effect, the main tool we use is Bloch–Ogus theory [BO74]. Based

on the Milnor conjectures, we produce an exact sequence

(3.2) Hn
nr(XC,Z2)→{α∈Hn

nr(X,Z2(n))|α·ω= 0}→H1(X,Hn(Z2(n+1))).

The left group Hn
nr(XC,Z2) of (3.2) vanishes by a combination of the Milnor

conjectures and of a decomposition of the diagonal argument due to Bloch–
Srinivas and Colliot-Thélène–Voisin [BS83, CTV12] (this is the only place
where the rational connectedness of X is used).

We then show by a direct geometric argument that the cohomology class
ωn+1 ∈ Hn+1

ét (X,Z2(n+ 1)) has coniveau ≥ 2 (in many cases, one even has
ωn+1 = 0 on the nose). This implies that ωn belongs to the middle group
{α ∈ Hn

nr(X,Z2(n)) | α · ω = 0} of (3.2). As the image of ωn in the right
group of (3.2) is precisely the obstruction for ωn+1 to have coniveau ≥ 2 (by
Bloch–Ogus theory), which we know vanishes, we deduce from the exactness
of (3.2) that ωn ∈ Hn

nr(X,Z2(n)) vanishes, as wanted.

3.2.4 Sums of squares of real power series

In this paragraph, we study a local variant of Hilbert’s 17th problem.
Let R{{x1, . . . , xn}} denote the ring of convergent real power series in n
variables. An analogue of Artin’s theorem in this context has been proven
by Risler [Ris76].

Theorem 3.2.7 (Risler [Ris76]). An element f ∈ R{{x1, . . . , xn}} is a sum
of squares in Frac(R{{x1, . . . , xn}}) if and only if it is nonnegative in some
neighborhood of the origin.
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Such elements will be said to be nonnegative. To obtain a quantitative
analogue à la Pfister of Risler’s theorem, one can apply Proposition 3.2.3
(iii)⇒(i). As the field Frac(C{{x1, . . . , xn}}) has cohomological dimension n,
we see that a nonnegative f ∈ R{{x1, . . . , xn}} is a sum of 2n squares in
Frac(R{{x1, . . . , xn}}).

It is not hard to see that a nonnegative f ∈ R{{x}} is in fact a square,
and Choi, Dai, Lam and Reznick [CDLR82] proved that a nonnegative
f ∈ R{{x1, x2}} is a sum of 2 squares. This led them to conjecture that
for all n ≥ 1, a nonnegative f ∈ R{{x1, . . . , xn}} is a sum of 2n−1 squares in
Frac(R{{x1, . . . , xn}}). This was confirmed by Hu [Hu15] when n = 3, and
proved by us in general.

Theorem 3.2.8 (Benoist [Ben20b]). Fix n ≥ 1. Any nonnegative element
f ∈ R{{x1, . . . , xn}} is a sum of 2n−1 squares in Frac(R{{x1, . . . , xn}}).

We actually prove a more general theorem, where R{{x1, . . . , xn}} is
replaced by an arbitrary n-dimensional regular excellent Henselian local ring
whose residue field κ has characteristic 0. The bound 2n−1 then has to be
replaced by 2n+δ−1, where δ is the cohomological dimension of κ[

√
−1]. As

the proof of Theorem 3.2.8 already illustrates the main difficulties that have
to be overcome, we do not consider this greater generality in what follows.

Theorem 3.2.8 follows from a closely related companion theorem. Pfister
has defined the level s(K) of a field K to be the smallest integer s such
that −1 is a sum of s squares in K (or +∞ if −1 is not a sum of squares
in K, which happens exactly when K is formally real, i.e., when K admits
a field ordering). He showed in [Pfi65] that this invariant is always a power
of 2 when finite. The next theorem is due to Hu [Hu15] when n ≤ 2 and to
us in general.

Theorem 3.2.9 (Benoist [Ben20b]). Fix n ≥ 1. Let L be a finite extension
of Frac(R{{x1, . . . , xn}}) that is not formally real. Then s(L) ≤ 2n−1.

We set A := R{{x1, . . . , xn}} and K := Frac(A). Define S := Spec(A),
and let s ∈ S be the closed point of S.

Let us first explain why Theorem 3.2.9 implies Theorem 3.2.8. Let
f ∈ A be nonnegative. By Proposition 3.2.3 (i)⇔(ii), one has to show that
{f} · {−1}n−1 = 0 in Hn(K,Z/2). Let us first verify that this class is un-
ramified over S. Its only possible nonzero residues are along divisors D ⊂ S
at which f vanishes with odd multiplicity, and these residues are equal
to {−1}n−1. Moreover, the function fields of the divisors that occur can-
not be formally real by nonnegativity of f (otherwise, the function f would
change sign across the real points of D). It therefore follows from Theo-
rem 3.2.9 that all these residues vanish, and hence that {f}·{−1}n−1 belongs
to Hn

nr(S,Z/2). In view of the isomorphisms Hn
ét(S,Z/2) ∼−→ Hn

nr(S,Z/2)
and Hn

ét(S,Z/2) ∼−→ Hn(R,Z/2) induced by Panin’s solution of the Gersten
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conjecture in this context [Pan03], and by the proper base change theorem,
the class {f} · {−1}n−1 ∈ Hn

nr(S,Z/2) is induced by a class in Hn(R,Z/2).
The nonnegativity of f prevents it from being induced by the nonzero class
{−1}n ∈ Hn(R,Z/2), and the only possibility is that {f} · {−1}n−1 = 0.

Let us now present the idea of the proof of Theorem 3.2.9. By resolution
of singularities, one can find a projective morphism π : X → S such that X is
connected, regular, with strict normal crossings reduced special fiber (Xs)red,
and with function field equal to L. Applying Proposition 3.2.3 (i)⇔(ii)
again, one sees that one has to show that {−1}n ∈ Hn(L,Z/2) vanishes. In
other words, one must show that the class {−1}n ∈ Hn

ét(X,Z/2) vanishes
in restriction to some Zariski-open subset U ⊂ X. It turns out to be very
easy to concretely construct such a Zariski-open subset: define U := X \D,
where D ⊂ X is any π-ample divisor such that D∪(Xs)red is a strict normal
crossings divisor in X. To verify that U works, one computes

(3.3) Hn
ét(U,Z/2) ∼−→ Hn

ét(Us,Z/2) = 0.

The isomorphism in (3.3) is an adaptation in our setting of a (non-proper)
base change theorem due to Saito and Sato in a p-adic context [SS10]. The
vanishing in (3.3) is a manifestation of the weak Lefschetz theorem; it holds
because Us is a real affine variety of dimension n − 1 with no real points
(as L is not formally real by hypothesis).

3.2.5 Sums of squares of real-analytic functions

The real-analytic analogue of Hilbert’s 17th problem (Question 0.1.4) is
open in general. However, an analogue of Artin’s theorem in this context
has been proven by Jaworski, under a compactness hypothesis (we state
a slightly more general result than the one appearing in [Jaw86], possibly
authorizing singularities, which can be proven in the exact same way).

Theorem 3.2.10 (Jaworski [Jaw86]). Let M be a normal real-analytic
space, let K ⊂ M be a compact subset, and let f : M → R be a non-
negative real-analytic function. Then f is a sum of squares of real-analytic
meromorphic functions in some neighborhood of K in M .

No quantitative result was known in this direction (unless M is a surface,
in which case f was known to be a sum of 5 squares [ABFR05], and even
of 3 squares if M is a manifold [Jaw82]). We show that, in the generality of
Theorem 3.2.10, Pfister’s 2n bound holds.

Theorem 3.2.11 (Benoist [Ben23]). Let M be a normal real-analytic space
of dimension n, let K ⊂ M be a compact subset, and let f : M → R be a
nonnegative real-analytic function. Then f is a sum of 2n squares of real-
analytic meromorphic functions in some neighborhood of K in M .
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In keeping with the motto that real geometry is complex geometry done
equivariantly with respect to the action of the group G := Gal(C/R) gener-
ated by complex conjugation, it is crucial for the proof of Theorem 3.2.11 to
work in the complex-analytic context. The natural setting is that of Stein
spaces: the complex-analytic analogues of affine varieties. They are those
complex-analytic spaces S on which the higher cohomology groups of all
coherent sheaves vanish. A compact subset K ⊂ S is said to be Stein if
it admits a basis of Stein open neighborhoods in S. We denote by O(K)
andM(K) the rings of germs of holomorphic and meromorphic functions in
a neighborhood of K. Our complex-analytic enhancement of Theorem 3.2.11
is the following theorem.

Theorem 3.2.12 (Benoist [Ben23]). Let S be a normal Stein space of di-
mension n on which G acts through an antiholomorphic involution. Fix a
G-invariant Stein compact subset K ⊂ X. Any f ∈ O(K)G which is non-
negative on a neighborhood of KG in SG is a sum of 2n squares in M(K)G.

Here is a typical example of application of Theorem 3.2.12. Choose
S = Cn endowed with the involution z 7→ z̄, and let K ⊂ S be the closed
unit ball. Then O(K) is the ring of power series

∑
I aIz

I in z1, . . . , zn with
complex coefficients that have radius of convergence > 1 (i.e. that converge
in some neighborhood of K), and O(K)G is the subring of those that have
real coefficients. Theorem 3.2.12 then asserts that any f ∈ O(K)G that
takes nonnegative values in a neighborhood of the closed unit ball in Rn is
a sum of 2n squares in the fraction field M(K)G of O(K)G.

Theorem 3.2.12 follows from Theorem 3.2.11 thanks to the works of
Cartan, Grauert and Tognoli establishing the existence of Stein complexifi-
cations of normal real-analytic spaces (see [Car57, Gra58, Tog67]).

Theorem 3.2.12 reduces to the following cohomological dimension com-
putation, thanks to the criterion of Proposition 3.2.3 (iii)⇒(i).

Theorem 3.2.13 (Benoist [Ben23]). Let S be a normal Stein space of di-
mension n and let K ⊂ S be a connected Stein compact subset. Then the
field M(K) has cohomological dimension n.

The conclusion of Theorem 3.2.13 means that the cohomology of the
absolute Galois group ofM(K) with value in any finite Galois-module van-
ishes in degree > n. The strategy of its proof is to exploit the fact, due to
Hamm [Ham83] and based on Morse theory, that a Stein space of dimen-
sion n has the homotopy type of a finite CW-complex of dimension n, and
hence that its singular cohomology vanishes in degree > n. To conclude, it
remains to prove a theorem comparing étale cohomology (which generalizes
Galois cohomology) and singular cohomology.

In algebraic geometry, such a comparison theorem is due to Mike Artin
(see [SGA43]). We prove the following analytic counterpart in Stein ge-

53



ometry (more precisely, in relative algebraic geometry over a Stein com-
pactum K).

Theorem 3.2.14 (Benoist [Ben23]). Let S be a Stein space. Let X be an
O(S)-scheme of finite type and let L be a constructible torsion étale abelian
sheaf on X. If one lets U run over all Stein open neighborhoods of a Stein
compact subset K of S, the change of topology morphisms

(3.4) colim
K⊂U

Hk
ét(XO(U),LO(U))→ colim

K⊂U
Hk((XO(U))an,Lan)

are isomorphisms for k ≥ 0.

The known proofs of Artin’s comparison theorem in algebraic geometry
are based on fibration arguments (to somehow reduce to the case of curves
that can be dealt with by a direct computation). Unfortunately, we do not
know how to implement such fibrations arguments in Stein geometry, and
one has to devise a new strategy of proof.

Appropriate dévissage arguments allow us to reduce to the case where
X = Spec(O(S)) and L = Z/m. One then has to show that the morphisms

colim
K⊂U

Hk
ét(Spec(O(U)),Z/m)→ colim

K⊂U
Hk(U,Z/m)

are isomorphisms for k ≥ 0. To compare the étale topology on Spec(O(U))
and the classical topology on U , we make use of the Leray spectral se-
quences associated to the morphisms of sites εU : (XO(U))an → (XO(U))ét.
To conclude, we need to show that the morphism Z/m → εU,∗Z/m is an
isomorphism and that the higher direct images RqεU,∗Z/m vanish for q ≥ 1,
at least after taking the colimit over all possible U .

The first assertion follows from Bingener’s relative GAGA theorem over
a Stein compactum [Bin76]. The second assertion requires to show that
singular cohomology classes on U (or more generally on analytifications of
étale O(U)-schemes) are étale-locally trivial. This is the heart of the proof.
Our strategy to attack it is to use Grauert’s bump method of exhausting U
by Stein compacta with controlled topological and analytical properties, as
developed by Henkin and Leiterer, and Forstnerič [HL98, For17].

In order to remove the compactness hypotheses in Theorems 3.2.11
and 3.2.12, one would like to answer positively the following question.

Question 3.2.15. Let S be a connected normal Stein space of dimension n.
Does the field M(S) have cohomological dimension n?

We were unable to use our strategy of proof of Theorem 3.2.13 to an-
swer Question 3.2.15. One reason is that Theorem 3.2.14 does not hold
without a compactness hypothesis: the morphisms appearing in (3.4) are
not always isomorphisms if one does not take the colimit over all Stein open
neighborhoods U of K.
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Chapter 4

Rationality and intermediate
Jacobians

A variety over a field k is said to be k-rational if it is birational to a pro-
jective space; equivalently if its function field is k-isomorphic to k(x1, . . . , xn).

Over the complex numbers (and more generally over algebraically closed
fields), several techniques have been developed to detect that a variety is
not C-rational. The most prominent ones, discovered almost simultaneously,
make use of the Brauer group (often in the guise of torsion in H3) or more
generally of the unramified cohomology (Artin–Mumford [AM72]), of the
group of birational automorphisms (Iskovskikh–Manin [IM71]) and of the
intermediate Jacobian (Clemens–Griffiths [CG72]) of the variety.

Over a nonclosed field k with algebraic closure k, deciding which k-ratio-
nal varieties are k-rational is a problem of arithmetic interest. Obstructions
induced by the group of birational automorphisms or by the Brauer group
have been used to obstruct the k-rationality of k-rational varieties, already
in dimension 2 (see [Seg51, Man66]).

In this chapter, we explain that it is also possible to use intermediate Ja-
cobians to this effect, and we derive new examples of non-k-rational varieties
as a consequence. As the Clemens–Griffiths method only applies to varieties
of dimension 3, we henceforth consider a smooth projective k-rational three-
fold X over a field k.

4.1 The intermediate Jacobian

4.1.1 Construction methods

Over the complex numbers, the intermediate Jacobian of X is classically
constructed by the transcendental Hodge-theoretic method of Griffiths. A
construction over an arbitrary algebraically closed field, based on the remark
that the intermediate Jacobian of X parametrizes codimension 2 algebraic
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cycles on X, has been provided by Murre [Mur85]. These constructions
have then been showed by Achter, Casalaina–Martin and Vial [ACMV17] to
descend over the base field k, if k is perfect.

Unfortunately, we do not know how to implement these constructions if
the field k is imperfect, a generality which may be important in applications
(see Theorem 4.2.6 and the discussion below).

To covercome this difficulty, Wittenberg and I give in [BW23] an entirely
new construction of the intermediate Jacobian of X, which is applicable
over an arbitrary field k. As Murre, we take the point of view that the
intermediate Jacobian of X is a parameter space for codimension 2 algebraic
cycles on X. Our idea, inspired by Grothendieck’s construction of the Picard
scheme in the case of codimension 1 cycles, is then to define the intermediate
Jacobian through its functor of points.

4.1.2 The functor CH2
X/k

Let (Sch) be the category of quasi-compact and quasi-separated k-schemes
and let (Ab) be the category of abelian groups. Defining a functor

CH2
X/k : (Sch)op → (Ab)

which intuitively parametrizes codimension 2 cycles on X is not an easy task,
as Chow groups are not contravariantly functorial with respect to arbitrary
morphisms. This is the reason why Grothendieck’s Picard scheme does not
really parametrize codimension 1 cycles, but rather line bundles, which can
be thought of as a cohomological counterpart of codimension 1 cycles.

We are therefore led to use a cohomological variant of codimension 2 cy-
cles. Among several possibilities, we chose to base our definition on K-theory.
The idea is that on a smooth projective threefold X, the Grothendieck–
Riemann–Roch theorem implies that K0(Xk) is (at least rationally) built
from cycles of codimension 0, 1, 2 and 3. Substracting the contributions
of cycles of codimension 0, 1 and 3, there only remains the contribution
of codimension 2 cycles. Moreover, this may even be made to work inte-
grally, thanks to Jouanolou’s Riemann–Roch theorem without denomina-
tors [Jou70].

Let us now proceed to give the definition of the functor CH2
X/k associated

with a smooth projective k-rational threefold X over k. We first define three
functors (Sch)op → (Ab) by setting

ZX/k(T ) = Z(X ×k T )
PicX/k(T ) = Pic(X ×k T )
K0,X/k(T ) = K0(X ×k T ),

and we let ZX/k,fppf ,PicX/k,fppf and K0,X/k,fppf denote their fppf sheafifica-
tions. To remove from K0,X/k,fppf the contribution of cycles of codimen-
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sion ≤ 1, we further define

SK0,X/k,fppf := Ker
[
K0,X/k,fppf

(rk,det)−−−−→ ZX/k,fppf × PicX/k,fppf
]

to be the kernel of the morphism given by the rank and the determinant
of vector bundles. To remove the contribution of codimension 3 cycles, we
prove that there exists a unique morphism νX : ZX/k,fppf → SK0,X/k,fppf
such that the image of νX(1) in K0(Xk) is the class [O{x}] ∈ K0(Xk) of the
structure sheaf of any k-point x ∈ X(k). We then set

CH2
X/k := Coker

[
ZX/k,fppf

νX−−→ SK0,X/k,fppf ].

This definition has been fine-tuned so there exists a natural isomorphism

(4.1) CH2(Xk) ∼−→ CH2
X/k(k).

4.1.3 Representability

Here is our main representability theorem concerning CH2
X/k. We let

CH2(Xk)alg ⊂ CH2(Xk) denote the subgroup of algebraically trivial cycles,
and we define the Néron–Severi group NS2(Xk) := CH2(Xk)/CH2(Xk)alg to
be the quotient.

Theorem 4.1.1 (Benoist–Wittenberg [BW23]). Let X be a smooth k-ratio-
nal threefold over a field k.

(i) There exists a smooth k-group scheme CH2
X/k representing CH2

X/k.

(ii) The identity component (CH2
X/k)0 of CH2

X/k is an abelian variety.

(iii) The map (4.1) restricts to a bijection CH2(Xk)alg
∼−→ (CH2

X/k)0(k).

To prove Theorem 4.1.1, one may use fppf descent to replace k by any
finite extension of it (a clear benefit of the functorial point of view). We may
thus assume that X is k-rational. This also allows us to use a resolution of
indeterminacies result of Abhyankar [Abh98] to find a diagram

(4.2) X
q←− XN → · · · → Xj

pj−→ Xj−1 → · · · → X0 = P3
k

of smooth projective varieties over k, where q is birational and the pj are
blow-ups along smooth centers. Starting from the basic case of X0 = P3

k, we
show by induction on j that Theorem 4.1.1 holds for Xj , and then deduce
Theorem 4.1.1 for X from its validity for XN .

We now define the intermediate Jacobian of X to be the abelian va-
riety (CH2

X/k)0. In view of Theorem 4.1.1 (iii), the group of geomet-
ric connected components of CH2

X/k may be identified with NS2(Xk). If
γ ∈ NS2(Xk)Aut(k/k), we let (CH2

X/k)γ denote the corresponding connected
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component of CH2
X/k. These (CH2

X/k)0-torsors also play a role in rationality
problems.

The Clemens–Griffiths method requires the construction of an interme-
diate Jacobian not only as an abelian variety, but as a principally polarized
abelian variety. The above strategy of following step by step diagram (4.2)
allows us to also construct the desired principal polarization on (CH2

X/k)0.

4.2 Applications to rationality problems

4.2.1 Obstructions to rationality

Here is the most general obstruction to rationality that we derive from
our construction.

Theorem 4.2.1 (Benoist–Wittenberg [BW23]). Let X be a smooth k-ratio-
nal threefold over a field k. There exists a smooth projective curve C over k
such that the k-group scheme CH2

X/k is a direct factor of PicC/k, in a way
compatible with the canonical principal polarizations.

The proof of Theorem 4.2.1 again makes use of diagram (4.2), which
indeed exists over the base field k if k is perfect. In this case, one can
(almost) choose C to be the disjoint union of the smooth projective curves
that are blown-up in this diagram.

If the base field k is imperfect, diagram (4.2) still exists by work of
Cossart and Piltant [CP08], but the projective varieties that appear in it
may only be regular (and not smooth), and the centers of the blow-ups pj

may also only be regular (and not smooth). Note however that the curve C
in the statement of Theorem 4.2.1 is required to be smooth. Consequently, in
order to prove Theorem 4.2.1 as stated, one has to show that the nonsmooth
regular curves that are blown up in (4.2) do not contribute to CH2

X/k, and
hence that they can be discarded. This highly nontrivial fact relies on a
detailed study of which Jacobians of reduced projective curves over k split
as a direct product of an affine k-group scheme and of an abelian variety
over k.

One can deduce from Theorem 4.2.1 more concrete obstructions to ra-
tionality. Here are the two that we will use later.

Theorem 4.2.2 (Benoist–Wittenberg [BW23]). Let X be a smooth k-ratio-
nal threefold over a field k.

(i) There exists a smooth projective curve C over k and an isomorphism
(CH2

X/k)0 ≃ Pic0
C/k of principally polarized abelian varieties over k.

(ii) Assume that there exists a curve C as in (i), which is geometrically
connected of genus ≥ 2. Then, for all γ ∈ NS2(Xk)Aut(k/k), there exists
d ∈ Z such that (CH2

X/k)γ ≃ Picd
C/k as (CH2

X/k)0 ≃ Pic0
C/k-torsors.
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4.2.2 Conic bundles

It was first noticed in [BW20a] that Theorem 4.2.2 (i) may lead to ex-
amples of k-rational varieties that are not k-rational. Indeed, it may happen
that the intermediate Jacobian (CH2

X/k)0 of a smooth projective k-rational
threefold is not isomorphic to the Jacobian of a smooth projective curve
over k, despite necessarily being so over k.

Here are simple examples that are obtained in this way, as an application
of Theorem 4.2.2 (i).
Theorem 4.2.3 (Benoist–Wittenberg [BW20a]). Let k be a field.

(i) If k has characteristic ̸= 2 and α ∈ k∗ \ (k∗)2, the variety defined
by the affine equation {s2 − αt2 = x4 + y4 + 1} is k-unirational and
k(
√
α)-rational but not k-rational.

(ii) If k has characteristic 2 and β ∈ k \k is such that α := β2 +β ∈ k, the
variety defined by the affine equation {s2 + st+αt2 = x3y+ y3 +x} is
k-unirational and k(β)-rational but not k-rational.

When k = R and α = −1, Theorem 4.2.3 (i) yields Theorem 0.1.11.
Let us briefly sketch how the nonrationality assertion in Theorem 4.2.3 (i)

is proven (the proof of Theorem 4.2.3 (ii) is entirely similar).
LetX be a well-chosen smooth projective model of the considered variety.

The intermediate Jacobian of Xk is computed to be the Jacobian Pic0
Γ

k
/k

of the smooth plane quartic curve Γ with equation {X4 + Y 4 + Z4 = 0}.
However, the actions of Aut(k/k) on the k-points of these two abelian va-
rieties over k are not compatible, and it turns out that the intermediate
Jacobian of X is isomorphic to a quadratic twist of Pic0

Γ/k (associated with
the involution −Id and with the field extension k(

√
α)/k). If the princi-

pally polarized abelian variety (CH2
X/k)0 were the Jacobian of a smooth

projective curve C over k, a version of the Torelli theorem due to Serre (see
[Lau01, Appendix]) would imply that C is also a quadratic twist of Γ. This
is however impossible because no automorphism of Γ acts as −Id on Pic0

Γ/k

since Γ is not hyperelliptic. One may apply Theorem 4.2.2 (i) to conclude.

4.2.3 Complete intersections of two quadrics

That torsors under the intermediate Jacobian may lead to finer obstruc-
tions to rationality, as in Theorem 4.2.2 (ii), was first noticed by Hasset
and Tschinkel in [HT21b]. There, they used these obstructions to find ra-
tionality criteria for smooth three-dimensional complete intersections of two
quadrics over R (then over fields of characteristic 0 in [HT21a]). Thanks to
the constructions of §4.1, we extend this result to arbitrary base fields.
Theorem 4.2.4 (Benoist–Wittenberg [BW23]). Let k be a field and let
X ⊂ P5

k be a smooth complete intersection of two quadrics. Then X is
k-rational if and only if it contains a line defined over k.
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We complement Theorem 4.2.4 with a general (separable) unirationality
criterion for smooth complete intersections of two quadrics, extending earlier
results appearing in [Man86, CTSSD87, Kne15].

Theorem 4.2.5 (Benoist–Wittenberg [BW23]). Let X be a smooth complete
intersection of two quadrics of dimension ≥ 2 over a field k. Then X is
separably k-unirational if and only if it contains a k-point.

Based on Theorems 4.2.4 and 4.2.5, we obtain a counterexample of a
new kind to the Lüroth problem.

Theorem 4.2.6 (Benoist–Wittenberg [BW23]). Let κ be an algebraically
closed field. There exists a smooth complete intersection of two quadrics
X ⊂ P5

κ((t)) which is separably κ((t))-unirational, κ((t
1
2 ))-rational, but not

κ((t))-rational.

Theorem 4.2.6 is particularly interesting when κ has characteristic 2.
Dolgachev and Duncan [DD18] have showed that a three-dimensional smooth
complete intersection of two quadrics X over a perfect field k of character-
istic 2 is always k-rational. Theorem 4.2.6 shows that their result cannot be
extended to imperfect base fields, even if X is assumed to have a k-point.

In addition, when κ has characteristic 2, the variety X over the field
k := κ((t)) considered in Theorem 4.2.6 has a k-point, is rational over the
perfect closure of k, but not over k itself. No such example was known
before. The results of Segre, Iskovskikh and Manin on the rationality of
surfaces over nonclosed fields (see [Isk96]) imply that no example of this
kind can exist in dimension ≤ 2. As the construction of such an example
really requires to distinguish between X and its base change to the perfect
closure of k, the theory of intermediate Jacobians over possibly imperfect
fields that we developed in Section 4.1 turns out to be absolutely essential.

Let us finally give a hint at how Theorem 4.2.4 is deduced from The-
orem 4.2.2 (ii). Let X ⊂ P5

k be a smooth complete intersection of two
quadrics. Let F be the variety of lines in X and let Γ be the Albanese
image of the variety of conics in X. A geometric study of the variety X and
of algebraic curves lying on it shows that the degree map induces an iso-
morphism deg : NS2(Xk) ∼−→ Z, that Γ is a geometrically connected smooth
projective curve of genus 2, and that there are natural isomorphisms

(4.3) F ∼−→ (CH2
X/k)1 and Pic1

Γ/k
∼−→ (CH2

X/k)2.

In addition, the second isomorphism in (4.3) is compatible with the canonical
principal polarizations. In particular, all the varieties appearing in (4.3) may
be considered as Pic0

Γ/k ≃ (CH2
X/k)0-torsors.

Assume that X is k-rational. Then, by Theorem 4.2.2 (ii), there exists
d ∈ Z such that Picd

Γ/k ≃ (CH2
X/k)1. As Pic1

Γ/k
∼−→ (CH2

X/k)2, it follows
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that Pic1−d
Γ/k ≃ (CH2

X/k)1. Now either d or 1− d is even. Since Pic2
Γ/k has a

k-point (the class of the canonical bundle KΓ of Γ), it follows that the torsor
(CH2

X/k)1 also has a k-point. In view of the isomorphism F ∼−→ (CH2
X/k)1,

we deduce that F (k) ̸= ∅. This exactly means that X contains a line defined
over k.
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ABSTRACT 

The central theme of this memoir is the influence of algebraic cycles on questions of real 
algebraic geometry. We study a variant of the integral Hodge conjecture for real algebraic 
varieties that takes into account the topology of their real loci. We then consider several 
problems pertaining to real algebraic geometry: Lang’s conjecture for real function fields, 
algebraic approximation of differentiable objects, sums of squares representations of 
positive functions in the spirit of Hilbert’s 17th problem, rationality questions. Our 
contributions to each of these directions of research require the use of varied techniques 
of the theory of algebraic cycles.

RÉSUMÉ 

Le thème central de ce mémoire est l’influence des cycles algébriques sur des questions 
de géométrie algébrique réelle. Nous étudions une variante de la conjecture de Hodge 
entière pour les variétés algébriques réelles qui prend en compte la topologie de leur lieu 
réel. Nous considérons ensuite divers problèmes de géométrie algébrique réelle : 
conjecture de Lang pour les corps de fonctions réels, approximation algébrique d’objets 
différentiables, représentation de fonctions positives comme sommes de carrés dans 
l’esprit du 17ème problème de Hilbert, questions de rationalité. Les contributions que 
nous apportons à chacune de ces directions de recherche requièrent l’utilisation de 
techniques variées de la théorie des cycles algébriques.
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