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1 Introduction

Suppose © is a noncompact Riemann surface (e.g. a domain in the

complex plane). Let R denote the ring of holomorphic functions on 2. If A

and B are n x n matrices over R, they are said to be pointwise similar on

if A(z) and B(z) are similar for each z in 2. It is easy to construct pointwise

similar matrices which are not similar. However, it does imply that A and

B are similar on some smaller surface ‘, and under certain circumstances,

one can prescribe that a fixed point z is in ¢‘ (see [(Wal,[OS],[G1]).
We wish to consider a stronger condition—local similarity. Say A and B

are locally similar if for each z € , there exists a neighborhood " of z such

that A and B are similar over the ring of holomorphic functions on ‘. This

is equivalent to asserting that A and B are similar over localization of R

at P,; = { f | f(z) = 0} for each z € N (this is not obvious). We shall show

(Theorem 4.1) that this is equivalent to A and B being globally similar. In

Section 5, we apply this to obtain results about pointwise similarity.

In order to solve this problem, one needs to consider representations of

finitely generated R—algebras. We show (Section 3) that R satisfies some

very nice algebraic properties. In particular, R is Bézout, has one in the

stable range, and its quotient field has trivial Brauer group. We study the

problem in an algebraic setting. |

The problem can be generalized to the case of a commutative ring R.

One replaces 2 by a subset of Spec R. In Section 4, we establish suffi—
cient conditions for a local—global principle to hold (which includes rings

of analytic functions). In Section 6, for a certain class of rings (including

orders over Dedekind domains), we describe a method for determining by
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how much the local—global principle fails. These results have applications

to various cancellation problems.

These types of problems can all be viewed as studying representations

which become equivalent under certain extension of scalars. This point

of view is discussed in Section 7. In particular, we give a proof of the

Noether—Deuring Theorem.

2 Some Preliminary Results

In this section, we state and prove some results which will be useful

later. Let R be commutative ring with 1. Then Spec R is the set of prime

ideals of R. If A is an R—algebra and M and N are A—modules, write

M, = M ®r R,,where R, is the localization of R and P for some P in

Spec R. So M, is a A,—module. The Krull dimension of R is the maximum

length of a chain of prime ideals in R. We say that one is in the stable

range of a ring S if az + b = 1 implies a + by is a unit for some y in S.

This definition is left—right symmetric (this is not obvious). We first record

some properties of zero dimensional rings (i.e., maximal ideals are minimal

primes). See [GW] for proofs. In particular, the result applies to local

rings.

Lemma 2.1 Let J be the Jacobson radical of R, and assume that R/J has

Krull dimension zero. Let A be a module finite R—algebra. Let M be a

finitely generated A—module.

(a) One is in the stable range of E = End,(M).

(b) IfN and X are finitely generated A—modules, then MOX = NOX

implies M Z N.

(c) Let tM denote t copies of M. Then tM Z tN implies M % N.

(d) If M and N are finitely presented, then Mp > Np for all P in

Spec R implies M % N.

Lemma 2.2 Let A be a finitely generated R—algebra. Let M and N be

A—modules which are finitely generated as R—modules.

(a) E = Enda(M) is a direct limit of module finite R—algebras.

(b) If R is noetherian, then Homa(M, N) is a finitely generated R—
module.

(c) If R is a Priifer domain (i.e. finitely generated ideals are pro—

jective) and M and N are R—projective, then Hom,(M, N) +is finitely

generated as an R—module.
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Proof: (a) follows from the observation that E is the homomorphic

image of a subalgebra of M,,(R), the ring of n x mn matrices over R. (b)

is obvious. Let A1, — ++, A, be generators for A over R. Consider the exact

sequence |

0 — Hom,(M, N) — Homa(M, N) —> @Homr(M, N),
i=1

where T(0) = (0A1 — A10, * ,0A, — A,0). Since M and N are finitely gen—

erated projective modules, so is Homp(M, N). Since R is Priifer, the image

of r is projective, and so Homa(M, N) is an R—summand of Homg(M, N).

In certain situations, one only wants to work with a subset of Spec R
(e.g., if R is a ring of functions on Q). The next result says this is sufficient

under suitable conditions.

Lemma 2.3 Assume R is a Priifer domain. Let A be a finitely gener—

ated R—algebra. Let M and N be A—modules which are finitely generated
projective R—modules. Suppose Q is a subset of Spec R such that if I is

a finitely generated ideal of R, then I is contained in some element of N..

Then Mp S Np for all P in Q implies Mp Z Np for all P in Spec R.

Proof: First assume that M and N are free. Since Mp Z Np for

P in 9, this implies M & N as R—modules. Thus one can define the

determinant of an element in Homp(M, N). By Lemma 2.2, there exists

Ci,...,0, a set of R—generators for Homr(M, N). Define f(x, <>,z,) =

det(z101+<++z,0,). Since Mp Z Np for P in , f takes on values outside

of P. Hence by hypothesis, the coefficients of f generate R as an ideal. Let

P be in Spec R. If R/P is infinite, then clearly f represents an element not

in P, and so Mp 3 Np. If R/P is finite, pass to a faithfully flat extension

S in which f does represent a unit (e.g. take S to be R[z], localized at

the set of polynomials whose coefficients are not contained in any maximal

ideal). Then M ®2 S Z N ®r S and so by the Noether—Deuring Theorem

(see Section 7), Mp 2 Np for all P.

If M and N are not free, choose projective R—modules M‘ and N‘ such

that M @ M‘ and N © N‘ are free R—modules of the same finite rank. We

can assume that A is a free R—algebra. Extend the action of A to M‘ and N/‘

by letting the generators act trivially on them. By theprevious paragraph,

M & M‘ is locally isomorphic to N © N‘. Clearly M‘ and N‘ are locally R—

isomorphic (and hence locally A—isomorphic). By local cancellation (Lemma

2.1(b)), this implies M and N are locally isomorphic.

Lemma 2.4 Let A be an R—algebra and M a finitely presented A—module.

(a) If R‘ is a flat commutative estension of R, then Homy(M‘, N‘) >

Homa(M, N) ®r R‘, where A‘ = A Qr, R‘.
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(b) The map 0: N > Homa(M, N) is an additive bijection from the

category of A—modules which are summands of tM for some t to

the category of finitely generated projective E = End,(M)— mod—

ules. Moreover, 0 also induces a bijection between the genus of M,

G(M) = {N | Np 2 Mp for all P} and G(E).

Proof: This is well known. Note that M®zgHom,(M, N) Z N (via m@0 «—

o(m)). See also [G2].

We remark that if R is a domain (or more generally reduced with only

finitely many minimal primes) and M and N are finitely generated torsion

free R—modules, then (a) and (b) also hold (cf. [W2, 3.5]).
If A is a ring, we say that mn is in the stable range of A if aX + <+

a,A + BA = A implies there exist A1, ++, A, € A with A = X(a;+ BA;)A.

If this holds, write sr(A) < n. The next proof is based on [G, 4.4].

Lemma 2.5 Suppose A is a subring of T and I is a common two sided

ideal of A and T‘. Then sr(A) < maz{sr(IP), sr(A/I)} =n.

Proof: Assume arA +++++ a,A + BA = A. Since sr(A/I) < n, there

exist a} = a; + Pa; with «jA+++ a‘,A +I = A. So we can assume a,; = a}.

Thus

1 = (LZa;b;) + d

for some b; € A and d E I. Also, there exist c, c; € A with

1 = Sa;c;+ Ac.

Thus d= Za;c;d + Ped, whence

1 = Hab; + Hasce:id + Bed = Fai(b; + cid) + Bed

So by replacing # by Acd, we can assume B E I. Set e; = b; + c;d. Then
ZDa;e; + B = 1. Squaring this expression yields Za;A + 3*A = A. Since

sr(I‘) < n, this implies that XZ(a; + A°f;)P = T for some f; 6 T. Then

g; = Bf; € I C A. Set J = S(a; + Ag;)A. Then JT = T, and J 35 JI =

JIT = JTI = I. Since J + I = A, this implies J = A, as desired.

We shall need the next well known result for reference (cf. [W2]).

Lemma 2.6 Assume st(A) = 1. If P is a finitely generated projective

A—module, then st(End, (P)) = 1. In particular, st(M,,(A)) = 1.

One can ask about the stable range of other overrings. It is apparently

still open as the whether integral extensions of commutative rings R with

sr(R) = 1 also have this property. One case that is trivial to verify is the

following:
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Lemma 2.7 Let R be Bézout domain (i.e. finitely generated ideals are

principal) with quotient field K. If S is an overring of R contained in K,

then sr(S) < sr(R). Also S is a Bézout domain.

We give an example to show that some hypothesis is necessary.

Example 2.8 Let T = k[u,v] be the polynomial ring in two variables

over a field k. Let R be the ring of polynomials T[z] localized at the

set of primitive polynomials (i.e. polynomials f(x) = X a;xz‘ such that

T = y a;T). It is easy to verify that sr(R) =1 (c.., [VK]). Let R‘ = R[w_~‘],
where w = u* +v. We claim that sr(R‘) £ 1. Note that uR‘ + vR‘ = R‘,
Suppose that u + vt is a unit for some t € R‘. By multiplying by some unit

of R‘, this yields

guw"u + vs = w*f,

where m,n > 0, f and g are primitive polynomials in T[z] and s E T[z].

By substituting in v = 0, we obtain

Inr+1 _ ,,2m
Jou — U fo,

where fo, go are obtained from f, g by evaluation at v = 0. Thus either fo

or go is a multiple of u. However this implies that f or g is in the ideal of

T[xz] generated by u and v. This contradicts the primitivity.

Lemma 2.9 Let S be a ring with T a two sided ideal. If T :s semiprime

and artinian as a left S—module, then T is generated by a central idempotent.

Proof: Let I be a minimal left S—ideal of T. Since T is semiprime,

TI #0, so TI = 1‘ = I. Also if I‘ is a nonzero left ideal of T contained in

I, then TI is S—invariant, so as TF # 0, I‘ = I. Thus as T is artinian as

an S—module and every minimal submodule of T is a summand, it follows

that T7 is artinian semisimple. In particular, T = eT = Te, where e is the

identity of T. If s € S, then es = ese = se, and the result follows.

Proposition 2.10 Let R be a Priifer domain such that (R/I)/rad(R/I)

is von Neumann regular whenever I £0. Let T be the R—torsion ideal of a

module finite R—algebra A. Let J be the Jacobson radical of A. If JNT = 0,
then A = T & Ap (as rings), where Ap is the annthilator of T.

Proof: Since R is Priufer, T is an R—summand of A, whence finitely

generated. So fT = 0 for some nonzero f in R. Let K/fR be the radical

of R/fR. Thus KT = 0 and R/K is von Neumann regular. If P is a

maximal ideal of R, then Tp is finite dimensional over R/P. Moreover, Tp

is semiprime. Thus the result holds locally by Lemma 2.9, whence globally.
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3 Properties of Rings of Holomorphic Functions

Throughout this section Q will denote a noncompact Riemann surface

R = H(M), the ring of holomorphic functions on , and K = M(), the
field of meromorphic functions on 2. If z C Q, let P, ={ f € R| f(2) = 0}.

Let R, denote the localization of R at P,. This is somewhat smaller than

R;, the ring of germs of analytic functions at z, which is contained in the
completion of R,. Note that this completion is the ring of formal power

series. We record some properties of AR.

Lemma 3.1 ([F, Theorem 25.5]) Given a discrete subset X of 2 and non—

negative integers mn,;, x E X, there exists f E R such that the multiplicity

of f at z is ny,.

Lemma 3.2 R, is a local principal ideal domain.

Lemma 3.3 (Strong Approximation) Let X be a discrete subset of Q.

Then given positive integers n,, x E X and functions f, holomorphic about
x, there exists f C R such that f = f, mod (P,)"*. Moreover, if f,(x) £ 0

for each xz E X, we can choose f to be a unit of R.

Proof: Choose h E6 R such that X is exactly the set of zeroes of h

and that the order of the zero is n,. Let U, = (2 — X) U {z}. Then

{U,} is an open cover of Q. Define a meromorphic function g, = f,/h on

U,. If z £ y, then g,; — g, is holomorphic on U, NU, C 1 — X. Hence

by [F, Theorem 26.3], there exists a meromorphic function g on 2 with

4 — 9; holomorphic on U, for all z E6 X. Set f = gh. Then on U;,
J = gh = (g — gz)h + gsh = (g — g:)h + f.. Since g — g, is holomorphic on

U,, so is f. Thus f € R. Since h E (P,)"**,f = f, mod (P,)"*.

Moreover, if f,(x) # 0 for each z E X then f, = e* mod (P,)"* for

some analytic d,. Hence by the previous paragraph, there exists d E R

with d = d, mod (P,)"* for each z, and so f = e* = f, mod (P,)"**, with f

a unit.

Recall that a ring is Bézout if every finitely generated ideal is principal.

Lemma 3.4 (a) If f,g E R with no common zero, then f + gh is a unit of

R for some h e R. (b) R is Bézout.

Proof: For part (a), let X be the set of zeroes of g. This is discrete (if

g £0). Since f does not vanish on X, by the previous result, there exists

a unit u € R such that u = f mod (P,)"*, where n, is the multiplicity of

the zero of g at z. Hence h = (u— f)/g E R, and u = f + gh, as desired.

For part (b), let f, g 6 R. Let X be the set of common zeroes of f

and g. Choose h such that Ah vanishes only on X, and the order of the

zero is the minimum of the orders for f and g. Then f/h and g/h C R

and have no common zeroes. So by (a), 1 = a(f/h) + b(g/h) in R. Hence
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fR + gR = hR. We wish to apply these results to certain extensions of R

by means of the following:

Proposition 3.5 Let K‘ be a finite dimensional field extension of K. Then

there exists a finite branched covering ¥ of 1 such that K‘ is the field of

meromorphic functions of Q‘. If R‘ is the ring of holomorphic functions on

Q‘, then R‘ is the integral closure of R in K‘.

Proof: The first statement is [F, Theorem 8.12]. The fact that R‘ is the

integral closure of R follows from [F, Theorems 8.2 and 8.3].

Corollary 3.6 Let R be the integral closure of R in the algebraic closure

of K. Then

(a) R is Bézout,

(b) st(R) = 1, and

(c) R satisfies the primitive criterion (i.e. given f(x) = Ca;z‘ € Riz]

with R= y a;R, then f represents a unit in R).

Proof: (a) and (b) follow from the two previous results. Now (c) follows

from (a) and (b) by [G3, Lemma 5.2] .

Note that R itself does not in general satisfy the primitive criterion (see

[EG, Example 5.51.)

The next result shows that no division rings arise over K. The following

proof is based on a letter of M. Artin. By an R—order in a K—algebra A, we

mean an integral subalgebra A such that KA = A.

Proposition 3.7 Let A be a simple finite dimensional K—algebra. If T is

mazimal R—order of A, then T Z M,(R‘) (and A > M.,(K‘)), where K‘ is
the center of A and R‘ is the integral closure of R in K‘. In particular, K

has trivial Brauer group.

Proof: By Lemma 3.5, we can assume K = K‘. Since R, is a discrete

valuation ring with algebraically closed residue field and the group of units

is divisible, it follows that the Brauer group of its quotient field K, is trivial

(this also completes the proof if Q is simply connected—use Lemma 3.1

instead of the fact that R, is a local pid.)

Suppose dim A = »‘. Then T‘; = T ®z2 R, is a maximal order in A, Z

M,,(K,). Since R, is a pid, T‘, > M,(R,). Thus there exists an open cover

O of Q such that for U E O, $y : Ty — M,,(Ry) is an isomorphism,

where Ry is the ring of holomorphic functions on U. If U,V e O with

U NV nonempty, then $y and gy are two representations of T‘uny = T ®r

Runy onto Mi(Runy). Since Ruyny is Bézout, any two representations are

equivalent. Hence «(U, V)py = gya(U, V) for some a(U, V) € GL,,(Ruyny).

Moreover a is uniquely determined up to a scalar. It is straightforward
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to verify that a 6 H‘(M,PGL,), where PGL, is the (nonabelian) sheaf
associated to PGL,(R). |

Consider the sequences of sheaves

exp
1 — Z — ¥ — H* — 1, and

1 — Y* — GL, — PGL, — 1,

where H is the sheaf of germs of analytic functions and H* is the sheaf

on nonvanishing germs of analytic functions. Since H*(Q, U) = 0 (c.., [H,

p. 178]) and H°(Q, Z) = 0 (by dimension), it follows that H°(M, M*) = 0.
Since H‘(X, GL,) = 0 (c.., [F, Corollary 30.5]), we have H‘(X, PGL,) = 0.
Hence «(U, V) = B(U)B(V)~‘ for some A 6 H°(X,PGL,). Now replace
$v by B(U)~‘ ¢;B(U) (this is independent of the lift of (U) to GL,(Rpy)).
Then $y = gy on U NV. Thus ¢ defines a global map from I into M,(R).

Since ¢ is locally an isomorphism, it is globally, and the result follows.

In the case 2 is a compact Riemann surface, the triviality of the Brauer

group is a classical result of Tsen. In fact Tsen proves that the field satisfies

certain stronger properties. We do not know if this is still true in the

noncompact case. One can derive results about quadratic forms and the

Witt ring of K from Proposition 3.7. For example, it follows that any

quadratic form in two variables is universal (i.e. az* + by" =c always has a

solution for ab # 0 in K), and so any quadratic form is a sum of hyperbolic

planes and either a one or two dimensional space.

We need to record some other properties of R. Recall that the Krull

dimension of a commutative ring is the maximum length of a chain of prime
ideals. |

Proposition 3.8 If I is a nonzero ideal of R, then S; = (R/I)/rad(R/I)
is von Neumann regular.

Proof: Choose 0 £ f E I. By Lemma 3.3,

R/fR=Z || R/(P,;)"**,
zseZ(f)

where Z(f) are the zeroes of f and n, is the multiplicity of the zero of f

at z. Hence S; is a direct product of fields, and the result follows.

Proposition 3.9 Let K‘ be a finite dimensional field estension of K, and

let R‘ denote the integral closure of R in K. Suppose R C S C R‘ and S

has quotient field K‘.

(a) There exists 0 £6 C R‘ with 6R‘ C S.

(b) R‘ is a finitely generated R—module.
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Proof: (a) follows just from the fact that K" is separable. Just choose

a in S with K" = K[al, and take 6 € R to be the discriminant of a.
For (b), observe that for each z, R, is pid so there exist A,,; E R‘, 1 <

i < [K‘: K), with R‘ = § RA;,;. Choose A; € R‘ so that A; approximates

Az,; as closely as possible at each x in the zeros of 6. Let T = ) RA,; + Ra].

If z is not a zero of 6, then T, = R,[a]} = R; while if z is a zero of 6 then

T, = 3 R,A; =Rl (by Nakayama‘s lemma). From this, it is easy to deduce

that T= R‘ is finitely generated.

4 One—Dimensional Rings Satisfying a Local—Global

Principle

In this section R will denote an integrally closed integral domain with
quotient field K satisfying the following conditions for any finite dimen—

sional extension K‘ of K:

(4.1a) The integral closure R‘ of R in K"‘ is Bézout.

(4.1b) sr(R) = 1. |

(4.1¢c) Br(K‘) = 0.

(4.1d) If I is a nonzero ideal of R, then (R/1I)/ rad(R/I) is von Neu—

mann regular.

(4.1e) If S is an R—subalgebra of R‘ with quotient field K‘, then 6R‘ C

S for some nonzero 6 E R.

Examples of such rings include the ring of all algebraic integers, the ring

of holomorphic functions on a noncompact Riemann surface (see the pre—

vious section), and semilocal domains whose quotient field is algebraically

closed, and the ring of all algebraic integers. The crucial conditions for our
purposes are (a) and (b). It may be possible to eliminate (c), and this is

possible when considering the problem of matrix similarity. One can avoid

(e) by working in characteristic zero or in orders in separable K—algebras.

Fix a subset Q of Spec R such that if r E R is not a unit, then r E P

for some P in Q (e.g., if R is the ring of holomorphic functions on then

Q suffices). The main result of this section is a local—global principle for

modules over R—algebras.

Theorem 4.1 Let A be a finitely generated R—algebra (where R satisfies

(4.1a—e)). Let M and N be A—modules which are finitely generated free

R—modules. The following are equivalent:

(1) M, 3 Np for all P e 91.

(ii) M,, > Np for all P E Spec R
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(iii) M > N.

Proof: Clearly (iii) implies (i). Since R is Bézout, (i) implies (ii) by

Lemma 2.3.
So assume (ii) holds. By Lemmas 2.2 and 2.4, we can assume M = A

and N is a projective A—module. Let A = A ®r K. Since A is a free

R—module, A embeds in A. Let J be the Jacobson radical of A, and set

I = AM J. Since I is nilpotent, A/I % N/IN if and only if A & N.
Moreover, since A/I is R—torsionfree, it is in fact R—free. So we can assume

A is a semisimple K—algebra. By (4.1c), A = ©M(n;, K;), where K; is a

finite dimensional field extension of K. Let R,; be the integral closure of R

in K;, and set T = QR,. Then TA is a module finite T—algebra. So by

(4.1a), TA = T & QM(n;, R;). Since T is finitely generated over T and
A = KA, there exists 0 £ d € R with dP C RA. Let Z = A NT. Let

Z, be the projection of Z onto R;. Since KZ = T, Z; and R,; have the

same quotient field. Thus 0 # fR; C Z, for some 0 # f E R. Let e; be

the central idempotent in R;. Then ge; € A for some 0 # g E R. Hence

gZ,; C gZe; C A. Thus gfdP C gfTA C A. Set c= gdf.

Let R, be the ring obtained from R by inverting all elements of R

relatively prime to c. Thus every maximal ideal of R, contains c, and so

R,, modulo its Jacobson radical is zero dimensional. Thus by Lemma 2.1,

A @r R., = A, Z N,. Since each R,; is Bézout, PN Z TA = TP, and so we

can assume that N C PN =T. Since A, Z N,,, it follows that N, = A,.a for

some & € A. Since T‘, = T.,N, = T.a, this implies a is a unit in I,. Without

loss of generality,. we can also assume that a E I‘. Hence ‘= aP + cl. By —

(4.1b) and Lemma 2.6, sr(I) = 1, and so a + cy is a unit in |. Now

set L = A(a + cy). Note that if c ¢ P, then Lp = Tp = Ap = Np (as

cP C A). Also J = (a+ cy)a~‘ z= 1 mod cl,. Hence # is a unit in A,.
Thus L, = A,« = N,. Thus N = L = A(a« + cy) Z A, as desired.

Corollary 4.2 Assume the hypotheses of the theorem,,

(1) If tM Z +N, then M & N.

(ii) If M GX % N @ X for X a finitely generated A—module, then
M3 N.

Proof: The results hold locally (cf., [GW]), whence globally by the
theorem.

One other observation will be useful later.

Proposition 4.3 If A is a module finite R—algebra, then sr(A) = 1.

Proof: Since A is module finite, it is a homomorphic image of a subal—

gebra of M,,(R). So we can assume A C M,,(R). Moreover, we can assume

that the nilradical of A = 0. Hence A is an order in a semisimple K—algebra

24



A. Let T be a maximal R—order in A. Then 1 = QM(n;, R;) where R; is

the integral closure of R in a finite dimensional field extension. As in the

proof of the theorem, 0 # cP C A, for some 0 # c € R. Since A/cT is a
module finite R/c algebra, and R satisfies (4.1d), it follows from [GW] that

sr(A/cl‘) = 1. By Lemma 2.6, sr(I‘) = 1. Hence by Lemma 2.5, sr(A) = 1.

One can give another proof using the theorem and results in [G3].
There is a cohomological interpretation of Theorem 4.1 which we state

without proof.

Corollary 4.4 Let R be the ring of analytic functions on a noncompact

Riemann surface. Let A be a module finite free R—algebrao. Let G be the

sheaf associated to the group of units of A. Then H(M,G) = 0.

It is also worthwhile to note that when R is the ring of analytic func—
tions on a noncompact Riemann surface, there are several notions of local

isomorphism. One can consider the localization, the ring of germs at a

point, or the ring of formal power series. Since the latter two are faithfully
flat extensions of the first, it follows by Section 7 that all of these notions

are the same.

We close this section by observing that the result hold for modules as

well as lattices.

Corollary 4.5 Let R satisfy the hypotheses of (4.1). If A is a module

finite R—algebra and M and N are finitely presented A—modules such that

M, Z N, for all mazimal ideals P of R (or a sufficiently large subset), then

M 3 N.

Proof: By Lemma 2.4, we can assume M and N are projective. Let T be

the R—torsion ideal of R and J the Jacobson radical of A. So M & N if and

only if M/JM > N/JN. Hence we can assume J = 0. By Proposition 2.10,

A = Ao ©@T. Thus we can consider the two cases separately. If A = Ap,
Theorem 4.1 applies. If A =T, the result follows by [GW] or Lemma 2.1.

5 Pointwise Equivalence of Representations

In this section, we consider a weaker condition than local equivalence

of modules (or representations). Let R be a commutative ring with 1,

and fix a subset Q of Spec R. If a E R, let a(P) denote its image in

R/P (and similarly for polynomials, matrices, etc.) Let K(P) denote the

quotient field of R/P. If A is an R—algebra and M is a A—module, set

M(P) = M@r K(P). So M(P) is a A(P) = A ®r K(P) module. If M and

N are A—modules such that M(P) Z N(P) as A(P)—modules for all P E 2,

we say M and N are pointwise isomorphic on Q. This is equivalent to saying

that M ®_r S Z N ®gr S as A ®r S—modules, where S is the direct product

of the K(P), P in Q. Since K(P) = Rp/PRp, Mp & Np as Ap—modules
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obviously implies M(P) & N(P). It is easy to see that M(P) = N(P)

does not imply Mp & Np (e.g., take M = R and N = R/P). In fact, even
assuming M(P) > N(P) for all P 6 does not imply Mq Z No for all

Q e . Choose a maximal ideal P of R with z e P — P". Consider the
representations of R[xz] given be the two matrices,

0 z a (° #

o o °°" \o o J

The corresponding modules M and N satisfy Mo 3 No for all Q with

z not in Q, M(P) > N(P), but Mp is not isomorphic to Np. Another

example is obtained by considering

0 1 0

A = 0 O z and A‘ .

0 0 0

Theorem 5.1 Let R be an integral domain with quotient field K. Assume

A is a module finite R—algebra and M and N are finitely presented A—

modules. Then the following are equivalent:

(i) M(P) 3 N(P) for a dense subset Q of Spec R (i.e., |P = 0, P E

(i) M @r K 2 N ®r K as A ®r K—modules.

(iii) M(P) 3 N(P) for a dense open subset of Spec R.

Proof: Assume (i) holds and set S= [[I K(P), P € 2. Since 2 is dense,

K embeds in K ®rm S8 =T. Thus M @x T 2N ®_x T as A® T—modules

where A = A®gK is finite dimensional K—algebra. By the Noether—Deuring

theorem (see Section 7), this implies M ®@pg K 3 N ®r K as A—modules. So

(ii) holds.
If M ®r K & N ®r K as A ®r K—modules, then we can assume the

isomorphism is given by a ® 1 for some a E Homa(M, N). L = kero and

N/a(M) are both torsion modules. Since N is finitely presented, there

exists 0 # d e R with dN C o(M). Set R‘ = R[1/d]. Then a induces a

surjection from M ®2 R‘ onto N ®@rg R‘. Since N ®@r R‘ is finitely presented,

L ®r R‘ must be finitely generated (as an R‘—module). Thus there exists

some nonzero multiple f of d with fL = 0. Thus a(P) induces an isomor—

phism form M(P) to N(P) for any P e % = {Q € Spec R | f ¢ Q}. This
is the desired dense (and open) subset of R.

See [G1] or [OS] for some what different proof in the matrix case. One

can generalize this to rings other than domains.
In [Wal, [OS], and [G1], various conditions in the matrix case were

discussed which forced pointwise equivalence at P to imply local equivalence

on some neighborhood of P (which is the same as equivalence over Rp).

These can be extended.
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Let A be a finitely generated R—algebra. If M and N are A—modules

which are finitely generated as R—modules, define vp(M, N) to be the small—

est nonnegative integer v such that

p: Homa,(Mp, Np) — Homa,(M(P), N(P))

and

¢,: Homa, (Mp/P*"*‘*‘Mp, Np/P*""Np) —> Homa,(M(P), N(P))

have the same image. If no such integer exists, set vp(M,N) = oo. It

follows from the Artin—Rees Lemma (cf., [G1]) that if Rp is noetherian,

then vp(M, N) is finite. The following generalizes results in [Wal, [OS],

and [G1].

Lemma 5.2 If vp(M,N)= 0 and Mp Z Np as Rp—modules, then M(P) =

N(P) implies Mp Z Np as Ap—modules.

Proof: Let a be an isomorphism form M(P) to N(P). Since vp(M, N) =

0, there exists a Ap—homomorphism 3 from Mp to Np such that the fol—

lowing diagram commutes:

Mp —> Np
l l

M(P) —> N(P).

Since a is surjective, it follows from Nakayama‘s lemma that 3 is surjective.

Since Mp Z Np as Rp—modules, this implies B3 is injective. Hence Mp Z
Np. |

More generally, the proof of Lemma 5.2 shows that if vp(M, N) = v

and Mp 2 Np as R—modules, then Mp/P"*t‘Mp & Np/P"+‘Np implies

Mp Z Np (cf., [G1, Theorem 3.2].) Examples where vp = 0 include the

case where M is projective or A = RG, G a finite group, and M and N are

permutation modules.

In the case Rp is a principal ideal domain, one can explicitly compute

vp(M, N). We do this only in the torsion free case. So assume R is a

local principal ideal domain with quotient field K, A is a finitely generated

R—algebra M and N are A—lattices (i.e., A—modules which are finitely gen—

erated R torsion free modules). Let H = Homp(M,N). Let z1,..., z; be

generators for A over R. Then there is an exact sequence

0 — Hom,(M, N) 4 tH

where T(a) = (0z1 — z10,...,0z; — z;0). So T is a linear transforma—

tion between two free R—modules. Hence T has a matrix representation as

Diag (p",...,p*%,0,...,0) with e; < e; < ++ < e,, where P = pR is the
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maximal ideal of R. By tensoring this sequence with R/P!, it is easy to

see that vp(M, N) =e, and that s = rank T. |

If N‘ is another A—lattice we get a corresponding map T". If N‘®rK =

N ®r K and N‘/P"!N‘ % N/P""N, where v = vp(M, N), then T and
T‘ are equivalent over K and also over R/P"*‘. Hence they are equivalent

over R. Then vp(M,N) = vp(M, N‘). Combining this observation with

Lemma 5.2 yields:

Proposition 5.3 Let R be an integral domain with quotient field K. Sup—
pose A is a finitely generated R—algebra, M and N are A—modules, and

P E Spec R such that Rp is a principal ideal domain and Mp and Np are

Rp—free modules of finite rank. Set v= vp(M,N). Then Mp Z Np if and

only if Mp/P"*‘Mp = Np/P"*‘*Np and M(O) = N(O).

Proposition 5.3 shows that v depends only on M not on N. This is not

true if Rp is not a principal ideal domain (see [G1]). However, one special
case does apply.

Proposition 5.4 Let R be an integral domain with quotient field K. Let

A be a finitely generated R—algebra. Assume M and N are A—modules such

that Mp and Np are free Rp—modules. If vp(M, N) = 0, then M(O) 3 N(O)

and M(P) 3 N(P) implies Mp & Np. |

Proof: This is proved in the same manner as the previousresult. Instead

of using the invariant factors, quote [G1, Theorem 3.1].

If A is an n x n matrix over R, then A determines an R[xz]—module M

isomorphic as an R—module to nR, where xz acts on M via multiplication

by A. Two matrices determine isomorphic modules if and only if they are

similar. Thus, one can define vp(A, B) for a pair of square matrices. There

is a canonical form for matrices with vp(A, A) = 0.

Proposition 5.5 (G1, Theorem 5.2) Let A be an mn xn matriz over R.

Then vp(A, A) = 0 if and only if A is similar over Rp to

Ci 0

0 C:

where C; is the companion matriz of f;(x) in Rp[z] and f;f;41.

We can obtain global versions of the preceding results by using Section 4.

Let us say a commutative ring R is a weak L G—ring if whenever M and N are

A—lattices, then Mp 2 Np for all P E Spec R implies M Z N. In particular,

this includes the rings in Section 4, but also includes other classes of rings.

In particular, semilocal rings, or more generally rings R with R/ rad R von

Neumann regular satisfy this. See [EG] for other examples.
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Theorem 5.6 Let R be a weak LG Priifer domain with quotient field K.

Suppose A is a finitely generated R—algebrao and M and N are A—lattices

with M ®r K % N ®rK as A ®r K—modules. Set Q‘ = {P C Spec R |

vp(M, M) =:0 and M(P) 3 N(P) }. Then there exists a in R such that a is

not in P for any P in QX" with M@prpR[a‘] 2 N®gR[a~‘]. In particular, M

and N are isomorphic an a dense open subset Q2" of Spec R with Q" 5 QV‘.

If " = Spec R, then M & N.

Proof: Let R‘ be the ring obtained from R by inverting all elements t

in R such that t is not in any element of ‘. It is an easy exercise to prove

that R‘ is also a weak LG—ring. By Proposition 5.4, Mp & Np for all P in

Q‘. Observe that if 1 € R‘ is not a unit, then t € PR‘ for some P E ¥‘.

Since R (and so R‘) is Bézout (by the weak LG property), Lemma 2.3
implies that M ® Rp 2 N ®2 Rp as A ®r Rp—modules for all P in Spec R‘.

Hence M ®grg R‘ 2 N ®r R‘. Suppose ¢ is an isomorphism. Without loss of

generality, ¢ E Hom»,(M, N). Since M and N are R—free of the same rank,

a = det ¢ is defined. Since ¢ is an isomorphism on R‘, a is a unit in R‘,
i.e., a is not in P for any P in Q‘. Let Q" = {P in Spec R | a is not in P }.

The last statement follows for if Q‘ = Spec R, then R = R‘.

In particular, we can obtain global versions of the matrix results of

Wasow, Ostrowski, Friedland, Ohm and Schneider and the author. We

state these only for rings of analytic functions. There are obvious versions

for a larger class of rings as well as for sets of matrices.

Theorem 5.7 Let Q be a noncompact Riemann surface with R its ring

of analytic functions. Let A and B be two n x mn matrices over R. Let

Q = {z € Q |v,(A, B) = 0 and A(z) and B(z) are similar}, and assume
Q‘ nonempty.

(a) (Generalization of Wasow) There exists an open codiscrete sub—

manifold Qo D X‘ of 91 such that A and B are similar over Ro, the

ring of analytic functions on Ro.

(b) If X = 92, then A and B are similar over R.

(c) (Generalization of Ostrowski) Let Q; = { z | v,(A, A) = 0}. Then

A is similar to C, the rational canonical form on Q, (i.e., over the
ring R,; of analytic functions on Q,). Moreover, ; is an open codis—

crete submanifold of l.

(d) A is similar to C over R if and only if v,(A, A) = 0 for all z.

Proof: (a) is just a restatement of Theorem 5.6 in a special case. Now

(b) follows from (a).

By [G1, Theorem 5.2], v,(A, A) = 0 if and only if A is similar over R,

to C. Then (c) follows from (a). In particular, if 1; = , the this implies

A is similar to C. Conversely, by [G1, Theorem 5.2], v,(C, C) = 0. So if A

is similar to C, then v,(A, A) = 0 also.
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The earlier results mentioned above merely asserted the existence of a

neighborhood of a point z € !‘ ( or 1) satisfying the conclusion.

6 The Genus Class Group and Cancellation

Let A be a module finite R—algebra. If M is a finitely presented A—

module (or R is reduced with only finitely many minimal primes and M

is a A—module which is a finitely generated torsion free R—module), define

the genus of M, G(M) to be the collection of finitely presented A—modules

N with Mp & Np for all P in Spec R. By Lemma 2.4, this is in one to

one correspondence with G(E), where E = Enda(M). One can put a group

structure on finitely generated projective E—modules (via Kp,(F)) which via

the bijection of Lemma 2.4 imposes one on

Div M = { N | N is a A—summand of sM for some s > 0} > G(M).

We wish to give a more explicit description of this group structure in
a special case. The next result is essentially [W1, Theorem 3.2], (see also

[G2]). Write MIN to indicate M is isomorphic to a summand of N.

Lemma 6.1 Let R be a commutative ring of Krull dimension one with only

a finite number of minimal primes. Let A be a module finite R—algebra. As—
sume that A, B, and C are finitely generated A—modules such that either

they are finitely presented or A is reduced and A, B, and C are R torsion—

free. If Cp|Ap and Cp|Bp for each minimal prime P and Cp|Ap or Cp|Bp

for each mazimal prime P, then C|A & B.

Corollary 6.2 Let R, A and A be as in 6.1. If Bi, B, € G(A), there exist

Ci, C; € G(A) with B; @ B, % A QC; and B,; @ C, % A @ A.

Now assume R and A are as above and M satisfies the conditions of

Lemma 6.1. If N E G(M), let

[N] = {N‘ e G(M) | N‘ & kM = N © kM for some k} —

(in fact k = 1 suffices). Now define [Ni,] + [N;] = [N3], where N3; @ M >
N;, @ N,. This makes G(M) = {[N] | N ¢ G(M) } into an abelian group.

We wish to describe G(M) and obtain some consequences. If A C T are
two R—algebras with a common ideal I, we can compare G(A) and G(T)

via a result of Milnor (see [B, p. 482]). In fact, in the case of interest for

us, we can derive this fairly easily. The following will unify certain classical

results for orders over Dedekind domains (c.f., [CR] and [G2]), ring orders
(see [L], [WW]), and the results of Section 4. Let U(A) denote the group

of units of A.

So for the rest of this section, assume that A C T are rings such that:
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(1) 1 = ©Endz,(P;), where R,; is a one—dimensional Priifer domain

and P; is a finitely generated projective R—module,

(2) T is integral over Z, the center of A.

(3) There exists an ideal I of Z such that I contains a regular element

and IR C A.

We wish to study certain A—modules. Let Lat A denote the category
of finitely generated A—modules which are Z torsionfree (an alternative

description is as follows: let K,; denote the quotient field of R;, and set

= Q K,;; M is in Lat A if M embeds in KM = K ®@z M). Let PM =

{X ¥mMm | ¥m ET, m e M} C KM. So TPM is a D—lattice. Since the genus

of PM is well understood (in terms of the Picard group of the R;), we focus

our attention on the kernel of G(M) — G(TM). We show that G(M) and

G(M) coincide in the case under discussion.

Let D(M) = {N e G(M) | PN % TM }. We wish to describe D(M).
Set E= End,(M) C F = Endr(TM) C Enda(KM) = B, where A =
K®zA. Note IF C E. If N E D(M), then we may assume N C PN = PM.

Let Z; denote the localization of Z at the set of regular elements which are

relatively prime to I. Then Z; is zero dimensional modulo its radical. Hence

by [GW], N, 2 M; = (Z1 ®z M). Thus there exists a € B with N; = Mra.

Since PN = TM, this implies a € U(F;). Conversely given a E U(F;),

define N, = Mra NPM. Note if P E Spec Z, then (N,)p = Mp if P does

not contain I, while if P D5 I, then (N,)p = (Mp)a. Hence N, € G(M).
Also PN, = TM. Thus N, € D(M). It is straightforward to compute that

N., 3 N; & U(E;)aU(F) = U(E;)BU(F). Note that if a = B mod IF;,
then N, = N5. Thus we obtain:

Proposition 6.3 There is bijection between D(M) and the set of double

cosets U(E/I)\U(F/I)/U*(F/I), where U*(F/I) is the image of U(F) in

U(F/1T).
Since F > Endp(PM) 2 ©Endp,(P;) where P; is a finitely generated

projective R—module, we can define the determinant v: P — T = QR; —

T/IT. Since F/IF is a direct sum of matrix rings over zero dimensional

rings, every element of determinant 1 is a product of elementary matrices

and hence is in U*(F/I). Combining this with Proposition 6.3 and applying

v yields:

Corollary 6.4 D(M) is in one to one correspondence with

U(T/I)/U*(T/I)A(M), where A(M) is the subgroup of U(I) equal to

v(U(E/T)).
Note that if T/I is finite, this implies D(M) is finite. Corollary 6.4

induces a group structure on D(M). To see that it is the same as the

earlier one, we note that N, © N; £ Ny; ® M (set L = M & M, note both

N,@Ns and Nyg@M are in D(L), and compute v(Ny©N;3) = v(NagO@M).)
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Theorem 6.5 Suppose M; and M; are faithful A—lattices. Then

A(M, © M;) = A(Mi )A(M2).

Proof: Let a = ( a 5 ) c U(E/IE), where E = Enda(M; © M;). If

1 I

«~! = a h , then dd‘ + eb‘ = 1 in E,/IE;, where Eq = End,(M;).

Since E; is integral over Z/I which is zero dimensional, it follows that

sr(E,/I) = 1. Hence u = d+ cb‘e is a unit of Ea/IF, for some e. Thus

a b 1 be 1 0 1 0 _ a* b*

c d 0 1 0 ut" —e 1 J 0 1 J"

Hence v ( a ° ) = v(u)u(a*) € A(M;, )A(M3).

Corollary 6.6 IfMOX % N@X where X is a summand of kM for some

k, then M 3 N.

Proof: Without loss of generality X = kM and M is faithful. Then

by local cancellation, N € G(M). Since T‘ is Morita equivalent to T, we

also have PN Z PM. So N € D(M). Thus N Z N,, for some a. Set L =
(k+1)M. Observe that N, @kM = L; where 8 = diag(a,1,...,1). Hence

Lg 3 L implies v(@) e A(L)U*(T/I) = A(M)U*(T/1), and so N, 2 M.

In particular, this implies G(M) = G(M).

Corollary 6.7 IfMOX Z NOX, for some lattice X then MOP & NGT.

Proof: First assume M is faithful. As in the previous proof, N Z N.,

for some a. Thus v(a) € U(T/I) = A(M ©@T) = A(M)A(T‘). In the general
case, we can replace M by M @I, and then apply Corollary 6.6.

There are many similar results that can be derived by these techniques.

We state some without proof. Most of these can be found in [G2] for orders

over Dedekind domains. The proofs are essentially unchanged except that

we use the fact that T/I is zero dimensional instead of the fact that in [G2],

T/I is artinian. |

Theorem 6.8 (a) If Mp is isomorphic to a summand of Np for all

P E Spec Z, then N % M‘ @ N‘ for some M‘ € G(M).

(b) If L € G(M & N), then L % M‘ & N‘ for some M‘ E G(M) and

N‘ e G(N).

(c) If L € G(tM), then L = (t — 1)M & M‘.
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Theorem 6.9 If Mp is isomorphic to a summand of Np for all P in

Spec Z and the multiplicity of each A—composition factor in KN is strictly

larger than KM, then M is isomorphic to a summand of N. In particular,

if Mp is isomorphic to a summand of Np for all P and F is a faithful

A—lattice, then M is a summand of N © F.

Note that the results of Section 4 follow from Corollary 6.4. For if

sr(T) = 1, then U*(T/I) = U(T/I) and so |D(M)| = 1. So if N € G(M),
then 7 Bézout implies PN Z TM, whence N E D(M), and so N & M.

Corollary 6.10 If M and X are faithful lattices, then the following se—

quence is exact:

0 — D(M, X) — G(M) * G(M & x) — 0

where p(N) = N & X. Moreover,

D(M, X) = A(X)/A(X)nU*(T/I)\(M).

In particular, if A = R, we obtain the results of [WW] on stable isomor—

phism classes.

Corollary 6.11 If M is a faithful R—lattice, then M & R Z N @ R if and

only if N 3 N.,, where v(a) E U*(T/I)A(M)A(R). If M has constant rank
t, then M © RZ N G R implies tM 31tN . |

Note that if M has rank t, then A(M) 5 A(R)‘.

7T The Noether—Deuring Theorem

As we observed earlier, most of the problems discussed here can be

phrased in terms of ring extensions.

We fix some notation for this section. Let R be a commutative ring and

A a module finite R—algebra. If R‘ is a commutative extension of R, let

A‘ = R‘ ®r A. If M is a A—module, then M‘ = R‘ ®2 A is a A‘—module. The

question addressed here is: does M‘ > N‘ imply M % N ? The answer in

general is no. However, there is a positive answer when R is a field. This

was proved be Noether and Deuring. There have been manyextensions by

Reiner and Zassenhaus, Roggenkamp, Grothendieck, and others.

Theorem 7.1 (Grothendieck) If R is a local ring with mazimal ideal P,

R‘ :s faithfully flat, and M and N are finitely presented A—modules, then

M‘Z N‘ implies M 3 N.
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Proof: Let R = R/P, A = A/PA, M = M/PM, N = N/PN. Now

M‘ % N‘ clearly implies dimM = dim N. Since M and N are finitely

preseented, the isomorphism between M‘ and N‘ is given by 3° s;@®@0;, where

0; E Hom,(M,N) and s; 6 R‘. Define f(x1,...,z1) = det({ s;i0;) E
R[z;,..., z;], where 0; maps M into N. By hypothesis f(4;,—...,31) # 0.
Hence f £ 0. If R is infinite, this implies f(f1,...,7h) # 0 for some

r; € R. Thus a = §©r;0; is surjection from M to N. Similarly, there exists

a surjection r from N to M. Hence To is a surjection from M to itself.

Thus T0 is an automorphism and so M 2 N. If R is finite, pass to a

free rank t finitely generated extension R" so that the residue field of R" is

sufficiently large that f represents a nonzero element in the residue field of

R" (take R" = R[xz]/g(x)), where g(x) is irreducible of large degree). Then

the argument above shows M" Z N", and so tM = tN as A—modules. Then

M 3 N by [GW].

If the assumption that R is local is dropped, the result is no longer true.

The obstruction to this is exactly G(M). Also, note the same proof shows

that M"‘N‘ implies M|N.

Corollary 7.2 If R‘ is a faithfully flat commutative extension and M and

N are finitely presented A—modules, then M‘ % N‘ implies N c G(M).

Conversely, if N E G(M), there exists a faithfully flat estension R‘ with

M‘3 N‘.

Proof: The first statement is an immediate consequence of the theorem.

For the second one, take R‘ to be the direct product oof the localization of

R (other extensions will suffice).

If faithfully flat is replaced by faithful finitely generated projective, then

by a result of Bass it follows that M‘ Z N‘ implies tM Z tN for some t.

It is apparently still open as to whether the converse is true. It is when R

is Dedekind [G2] and when A = M = R [BG]. If only finite generation is
assumed then by an example of S. Wiegand, the corollary is false even for
R semilocal.

One can also derive similar results for modules as in Section 4. See [G2].
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