
J. reine angew. Math., Ahead of Print Journal für die reine und angewandte Mathematik
DOI 10.1515/crelle-2014-0025 © De Gruyter 2014

Some remarks concerning
the Grothendieck period conjecture

By Jean-Benoît Bost at Orsay and François Charles at Orsay

Abstract. We discuss various results and questions around the Grothendieck period
conjecture, which is a counterpart, concerning the de Rham–Betti realization of algebraic vari-
eties over number fields, of the classical conjectures of Hodge and Tate. These results give new
evidence towards the conjectures of Grothendieck and Kontsevich–Zagier concerning transcen-
dence properties of the torsors of periods of varieties over number fields.

Let Q be the algebraic closure of Q in C, let X be a smooth projective variety over Q
and let X an

C denote the compact complex analytic manifold that it defines. The Grothendieck
period conjecture in codimension k on X , denoted GPCk.X/, asserts that any class ˛ in the
algebraic de Rham cohomology group H 2k

dR .X=Q/ of X over Q such that

1

.2⇡ i/k

Z

�

˛ 2 Q

for every rational homology class � in H2k.X
an
C ;Q/ is the class in algebraic de Rham coho-

mology of some algebraic cycle of codimension k in X , with rational coefficients.
We notably establish that GPC1.X/ holds when X is a product of curves, of abelian

varieties, and of K3 surfaces, and that GPC2.X/ holds for a smooth cubic hypersurface X
in P5

Q
. We also discuss the conjectural relationship of Grothendieck classes with the weight

filtration on cohomology.

In this article, Q denotes the algebraic closure of Q in C.
Let X be a smooth projective variety over Q and let X an

C denote the compact complex
analytic manifold defined by the set of complex points of the smooth projective complex vari-
etyXC . If a cohomology class ˇ inH 2k.X an

C ;Q/ is algebraic – in other words, if ˇ is the class
of some algebraic cycle of codimension k in XC , or equivalently in X , with rational coeffi-
cients –, then the class .2⇡ i/kˇ inH 2k.X an

C ;C/ belongs to the Q-vector subspaceH 2k
dR .X=Q/

of H 2k.X an
C ;C/ defined by the algebraic de Rham cohomology of X over Q.

During the preparation of this paper, the first author has partially been supported by the project Positive
of the Agence Nationale de la Recherche (grant ANR-2010-BLAN-0119-01) and by the Institut Universitaire de
France. Most of this work has been completed while the second author was a member of IRMAR at the University
of Rennes 1.
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2 Bost and Charles, Concerning the Grothendieck period conjecture

The Grothendieck period conjecture GPCk.X/ claims that, conversely, any cohomology
class ˇ in H 2k.X an

C ;Q/ such that .2⇡ i/kˇ belongs to H 2k
dR .X=Q/ is algebraic.

This work is mainly devoted to the codimension 1 case of this conjecture. We investi-
gate this case by combining transcendence results on commutative algebraic groups derived
from the transcendence theorems of Schneider and Lang and diverse geometric constructions
inspired by the “philosophy of motives”. Our transcendence arguments elaborate on the ones
in [11], and the motivic ones are variations on arguments classical in the study of absolute
Hodge classes and of the conjectures of Hodge and Tate.

By means of these techniques, we notably establish the validity of GPC1.X/ when X
is a product of curves, of abelian varieties, and of K3 surfaces (or more generally of smooth
projective hyperkähler varieties with second Betti number at least 4) over Q. This allows us to
show that GPC2.X/ holds for a smooth cubic hypersurface X in P5

Q
.

1. Introduction

1.1. The conjecture GPCk.X/. Let X be a smooth projective variety1) over Q.

1.1.1. De Rham and Betti cohomology groups. We refer the reader to [14, 24, 27] for
additional references and details on the basic facts recalled in this paragraph.

To X are attached its algebraic de Rham cohomology groups, defined as the hypercoho-
mology groups

H i
dR.X=Q/ ´ Hi .X;�✏

X=Q
/

of the algebraic de Rham complex

�✏
X=Q

W 0 ! �0

X=Q
D OX

d�! �1

X=Q

d�! �2

X=Q

d�! � � � :
We may also consider the compact connected complex analytic manifold X an

C defined by the
smooth projective varietyXC over C deduced fromX by extending the base field from Q to C,
and its Betti cohomology groups H i .X an

C ;Q/.
The base change Q ,! C defines a canonical isomorphism

(1.1) H i
dR.X=Q/˝Q C ⇠�! H i

dR.XC=C/ ´ Hi .XC;�
✏
XC=C/;

and the GAGA Comparison Theorem shows that “analytification” defines an isomorphism

(1.2) Hi .XC;�
✏
XC=C/

⇠�! Hi .X an
C ;�

✏
X an

C
/;

where �✏
X an

C
denotes the analytic de Rham complex

�✏
X an

C
W 0 ! OX an

C

d�! �1
X an

C

d�! �2
X an

C

d�! � � � :
Finally the Analytic Poincaré Lemma shows that the injective morphism of sheaves

CX an
C
,! OX an

C

on X an
C defines a quasi-isomorphism of complexes of abelian sheaves

CX an
C

q:i:��! �✏
X an

C
;

1) By a variety over some field k, we mean a geometrically integral separated scheme of finite type over k.
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Bost and Charles, Concerning the Grothendieck period conjecture 3

and consequently an isomorphism of (hyper)cohomology groups

(1.3) H i .X an
C ;C/

⇠�! Hi .X an
C ;�

✏
X an

C
/:

The composition of (1.1), (1.2), and of the inverse of (1.3) defines a natural comparison iso-
morphism

(1.4) H i
dR.X=Q/˝Q C ⇠�! H i .X an

C ;C/:

Besides, the extension of fields of coefficients Q ,! C defines a natural isomorphism

(1.5) H i .X an
C ;Q/˝Q C ⇠�! H i .X an

C ;C/:

In this article, the isomorphisms (1.4) and (1.5) will in general be written as equalities.
For instance, for any element ˛ in H i

dR.X=Q/ (resp. ˇ in H i .X an
C ;Q/), its image by the in-

clusion H i
dR.X=Q/ ,! H i .X an

C ;C/ (resp. H i .X an
C ;Q/ ,! H i .X an

C ;C/) determined by (1.4)
(resp. (1.5)) will be denoted ˛˝Q 1C (resp. ˇ˝Q 1C), or even ˛ (resp. ˇ) when no confusion
may arise.

1.1.2. Cycle maps. Recall that there is a canonical way of associating a class clXdR.Z/

in H 2k
dR .X=Q/ with any element Z of the group Zk.X/ of algebraic cycles on X of pure

codimension k (see for instance [27, Section II.7] and [20, Section I.1]). This construction
defines cycle maps

clXdR W Zk.X/ ! H 2k
dR .X=Q/:

These maps are compatible with algebraic equivalence and intersection products. They are
functorial and compatible with Gysin maps.

When k D 1, the cycle Z is a divisor on X and clXdR.Z/ may be defined as the image of
the class of OX .Z/ in Pic.X/ ' H 1.X;O⇥

C / by the map

c1; dR W H 1.X;O⇥
X / ! H 2

dR.X=Q/

induced in (hyper)cohomology by the morphism of (complex of) sheaves

d log W O⇥
X ! �

1; dD0

X=Q
,! �✏

X=Q
Œ1ç;

f 7! f �1 . df:

Starting from c1; dR, one may define Chern classes ck; dR of vector bundles, and consequently
of coherent OX -modules, over X . Then the class of any closed integral subscheme Z of codi-
mension k in X is given by

clXdR.Z/ ´ .�1/k�1

.k � 1/ä ck; dR.OZ/:

Similarly, using Chern classes in Betti cohomology, one defines “topological” cycles
maps

clXB W Zk.XC/ ! H 2k.X an
C ;Q/:

We refer the reader to [41, Chapter 11] for a discussion of alternative constructions of the cycle
class clXB .Z/ attached to a cycle Z in Zk.XC/, notably in terms of the integration current ıZ
on X an

C .
Occasionally, when no confusion may arise, we shall simply denote by ŒZç the cycle class

of a cycle Z in de Rham or in Betti cohomology.
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4 Bost and Charles, Concerning the Grothendieck period conjecture

Up to a twist by some power of 2⇡ i , the above two constructions of cycle classes are
compatible:

Proposition 1.1. For any integer k and any cycle Z in Zk.X/, the following equality
holds in H 2k.X an

C ;C/:

(1.6) clXdR.Z/˝Q 1C D ✏k;d .2⇡ i/
k clXB .ZC/˝Q 1C;

where ✏k;d denotes a sign2).

For k D 1, that is, for the first Chern class, this is a straightforward consequence of the
definitions (see for instance [16, Section 2.2.5]). This special case implies the general one by
the general formalism of Chern classes.

1.1.3. The conjecture GPCk.X/. As indicated at the end of Section 1.1.1, we shall
write the canonical injections

H i .X an
C ;Q/ ,! H i .X an

C ;Q/˝Q C ⇠�! H i .X an
C ;C/

and
H i

dR.X=Q/ ,! H i
dR.X=Q/˝Q C ⇠�! H i .X an

C ;C/

as inclusions. For any integer k, we also consider the space

H i .X an
C ;Q.k// ´ H i .X an

C ; .2⇡ i/
kQ/;

and we identify it with the subspace .2⇡ i/kH i .X an
C ;Q/ of H i .X an

C ;C/.
According to these conventions, the relation (1.6) may be written

clXdR.Z/ D ✏k;d .2⇡ i/
k clXB .ZC/

and shows that the image of clXdR lies in the finite-dimensional Q-vector space

H 2k
Gr .X;Q.k// ´ H 2k

dR .X=Q/ \H 2k.X an
C ;Q.k//:

These groups depend functorially on X : to any morphism f W X ! Y of smooth projective
varieties over Q one can attach a Q-linear pullback map

f ⇤
Gr W H 2k

Gr .Y;Q.k// ! H 2k
Gr .X;Q.k//;

defined by the pullback maps f ⇤
dR and .f an

C;B/
⇤ in algebraic de Rham and Betti cohomology.

The cycle class map
clXdR D ✏k;d .2⇡ i/

k clXB
from Zk.X/ to H 2k

Gr .X;Q.k// extends uniquely to a Q-linear map

clXGr W Zk.X/Q ! H 2k
Gr .X;Q.k//;

and the Grothendieck Period Conjecture for cycles of codimension k in X is the assertion:

Grothendieck Period Conjecture for cycles of codimension k in X (GPCk.X/). The
morphism of Q-vector spaces clXGr W Zk.X/Q ! H 2k

Gr .X;Q.k// is onto.
2) This sign is a function of k and d ´ dimX only, depending on the sign conventions used in the con-

structions of the cycle maps clXdR and clXB .
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Bost and Charles, Concerning the Grothendieck period conjecture 5

This assertion characterizes – conjecturally – the cohomology classes with rational coef-
ficients of algebraic cycles inX by their joint rationality properties in the de Rham cohomology
of X=Q and in the Betti cohomology of X an

C .
Observe that since Hilbert schemes of subschemes ofX are defined over Q,Zk.XC/ and

its subgroupZk.X/ have the same image inH 2k.X an
C ;Z/ by the cycle class map clXB and that,

according to Proposition 1.1, the surjectivity of the cycle map

clX
dR;Q

W Zk.X/Q ! H 2k
dR .X=Q/

and the one of
clXB;Q W Zk.XC/Q ! H 2k.X an

C ;Q/

are equivalent. Therefore, when these cycle maps are surjective, GPCk.X/ is true and

H 2k
Gr .X;Q.k// D H 2k.X an

C ;Q.k//:

This discussion applies trivially when k D 0 or k D dimX – in particular GPC1.X/

holds for any smooth projective curve X over Q – and for any k when X is a cellular variety,
for instance a Grassmannian (cf. [23, Examples 1.9.1 and 19.1.11]).

Also observe that, as a straightforward consequence of the Hard Lefschetz Theorem, ifX
is a smooth projective variety over Q of dimension n and if 2k  n, the following implication
holds:

GPCk.X/ H) GPCn�k.X/:

The Grothendieck period conjecture is mentioned briefly in [24, note (10), p. 102] and
with more details in [34, Historical Note of Chapter IV]. It is presented by André in his
monographs [1, Section IX.2.2] and [4, Section 7.5]. See Section 2 for a discussion of the
relation between the original formulation of Grothendieck period conjecture and the conjec-
tures GPCk.X/ considered in this article.

1.2. Summary of our results. In [11, Section 5] the conjecture GPC1.X/ is discussed
and is shown to hold when X is an abelian variety over Q. In this article, we give some fur-
ther evidence for the validity of GPCk.X/, mainly when k D 1. This work may be seen as
a sequel of [11], inspired by the philosophy advocated by André in [4, Chapter 7], where the
Grothendieck period conjecture appears as a conjecture on realization functors on categories
of motives, parallel to similar “full faithfulness conjectures”, such as the Hodge conjecture or
the Tate conjecture.

Several of our results, and to some extent their proofs, may be seen as translations,
in the context of the Grothendieck period conjecture, of diverse classical results concerning
the Tate conjecture, that are due to Tate himself ([39]), Jannsen ([29]), Ramakhrishnan and
Deligne ([40, (5.2) and (5.6)]) and André ([2]). See also [44] and [13] for related arguments.

Here is a short summary of some of our results, presented in an order largely unrelated
to the logical organization of their proofs:

(1) Stability of GPC1.X/ under products. For any two smooth projective varieties X
and Y over Q, GPC1.X ⇥ Y / holds if and only if GPC1.X/ and GPC1.Y / hold.

(2) Reduction to surfaces. Let X be a smooth projective subvariety of PN

Q
of dimen-

sion � 3. For any linear subspace L of codimension dimX � 2 in PN

Q
that is transverse3) to X ,

the validity of GPC1.X \ L/ implies the validity of GPC1.X/.
3) Namely, such that X and L meet properly and their scheme theoretic intersection X \ L is smooth.
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6 Bost and Charles, Concerning the Grothendieck period conjecture

For any smooth projectiveX as above, such transverse linear subspaces L do exist by the
theorem of Bertini, and consequently the validity of GPC1.X/ for arbitrary smooth projective
varieties follows from its validity for smooth projective surfaces.

(3) Extension to open varieties. Compatibility with rational maps. The definition of the
algebraic de Rham cohomology and the construction of the comparison isomorphism (1.4)
may be extended to an arbitrary smooth variety X over Q (cf. [24]). As a consequence, the
Grothendieck period conjecture extends as well.

For cycles of codimension 1, this does not lead to an actual generalization of the
Grothendieck period conjecture for smooth projective varieties. Indeed we shall prove that
for any smooth projective variety X over Q and any non-empty open U subscheme of X ,
GPC1.U / holds if and only if GPC1.X/ holds.

This immediately implies the birational invariance of GPC1.X/. More generally, we shall
show that, for any two smooth projective varieties X and Y over Q, if there exists a dominant
rational map f W X Ü Y , then GPC1.X/ implies GPC1.Y /.

(4) GPC1.X/ holds for X an abelian variety or a K3 surface, or more generally, for
a smooth projective hyperkähler variety with second Betti number at least 4.

(5) GPC2.X/ holds for X a smooth cubic hypersurface in P5

Q
.

1.3. Organization of this article. In Section 2, we discuss the original formulation
of the Grothendieck period conjecture, stated in terms of the torsor of periods of a smooth
projective variety X over Q and of the algebraic cycles over its powers Xn, and its relation
with the conjectures GPCk.Xn/. Our discussion may be seen as a complement of the one by
André in [4, Sections 7.5.2 and 23.1] and incorporates some interesting observations by Ayoub
and Gorchinsky.

In Section 3, we recall the transcendence theorems à la Schneider–Lang on which the
proofs of our results will rely: these theorems provide a description of morphisms of connected
algebraic groups over Q in terms of Q-linear maps between their Lie algebras that are com-
patible with their “periods”. From this basic result, we derive a description of biextensions by
the multiplicative group Gm of abelian varieties over Q in terms of their “de Rham–Betti”
homology groups. In turn, this implies the stability of GPC1 under products, and its validity
for abelian varieties.

In substance, the derivation of the results of Section 3 involves arguments of the same
nature as the ones used in the proof of GPC1 for abelian varieties in [11]. However we believe
that emphasizing the role of biextensions leads to results that are conceptually more satisfac-
tory, and better suited to applications.

Section 4 is devoted to the natural generalization of the conjecture GPCk concerning
quasi-projective smooth varieties over Q. In particular, we show that the validity of GPC1

for such a variety and for a smooth projective compactification are equivalent. Here again, our
main tools are the transcendence theorems on algebraic groups recalled in Section 3. The results
in this section actually establish, in small degree, the conjecture asserting that “Grothendieck
cohomology classes on smooth quasi-projective varieties over Q live in weight zero.”

Section 5 is devoted to results on the Grothendieck period conjecture obtained by
means of various constructions involving absolute Hodge cycles. In particular, we show that the
general validity of GPC1 would follow from the case of smooth projective surfaces. Besides,
we use the classical results of Deligne in [17] concerning the Kuga–Satake correspondence
to derive the validity of GPC1 for K3 surfaces and their higher-dimensional generalizations
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Bost and Charles, Concerning the Grothendieck period conjecture 7

starting from its validity for abelian varieties, already established in Section 3. Finally, we
establish GPC2.X/ for a smooth cubic hypersurface X in P5

Q
, by using the construction of

Beauville–Donagi in [8].

Acknowledgement. We are grateful to Joseph Ayoub and Serguey Gorchinsky for
sharing their insight regarding the relationship between the Kontsevich–Zagier conjecture and
full faithfulness conjectures for categories of motives. This article has also benefited from the
careful reading and suggestions of an anonymous referee, whom we warmly thank.

2. The Grothendieck period conjecture and the torsor of periods

In this section, we discuss the relationship between the Grothendieck period conjecture
and the better-known conjectures of Grothendieck and Kontsevich–Zagier on periods. The con-
tent of this section is certainly familiar to specialists and appears in various forms in [4, 5, 28].

At the expense of concision, and in order to keep in line with the general tone of the
paper, we will focus on giving concrete statements rather than using exclusively the language
of Tannakian categories.

2.1. The de Rham–Betti category and the torsor of periods. In this subsection, we
unwind standard definitions in the case of the Tannakian category of de Rham–Betti realiza-
tions, see for instance [20, Chapter II].

2.1.1. The categories CdRB; Q and CdRB. As in [11, Sections 5.3 and 5.4], we shall
use the formalism of the category CdRB of “de Rham–Betti realizations” à la Deligne–Jannsen
(cf. [20, Section 2.6], [29] and [4, Section 7.5]). In this paper, we will often work with rational
coefficients and we introduce the corresponding category CdRB; Q.

By definition, an object in CdRB; Q is a triple

M D .MdR;MB; cM /;

where MdR (resp. MB) is a finite-dimensional vector space over Q (resp. Q), and cM is an
isomorphism of complex vector spaces

cM W MdR ˝Q C ⇠�! MB ˝Q C:

For obvious reasons, the vector space MdR (resp. MB) is called the de Rham realization
(resp. the Betti realization) of M . The isomorphism cM will be referred to as the compari-
son isomorphism.

Given two objects M and N in CdRB; Q, the group HomdRB;Q.M;N / of morphisms
from M to N in CdRB; Q is the subgroup of HomQ.MdR; NdR/ ˚ HomQ.MB; NB/ consist-
ing of pairs .�dR;�B/ such that the following diagram is commutative:

MdR ˝Q C

cM

✏✏

�dR˝Q IdC
// NdR ˝Q C

cN

✏✏

MB ˝Q C
�B˝Q IdC

// NB ˝Q C.
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8 Bost and Charles, Concerning the Grothendieck period conjecture

In more naive terms, an object M of CdRB; Q may be seen as the data of the finite-
dimensional C-vector space MC ´ MdR ˝Q C ' MB ˝Z C, together with a “Q-form” MdR
and a “Q-form” MB of MC . Then, for any two objects M and N in CdRB; Q, the morphisms
from M to N in CdRB; Q may be identified with the C-linear maps �C W MC ! NC which are
compatible with both the Q-forms and the Q-forms of M and N .

For any k 2 Z, we denote by Q.k/ the object of CdRB; Q defined by

Q.k/dR ´ Q and Q.k/B ´ .2⇡ i/kQ

inside C.
An integral version CdRB of the category CdRB; Q is defined similarly: MB is now a free

Z-module of finite rank, cM an isomorphism from MdR ˝Q C onto MB ˝Z C, and �B a mor-
phism of Z-modules. For any k 2 Z, we denote by Z.k/ the object of CdRB defined by

Z.k/dR ´ Q and Z.k/B ´ .2⇡ i/kZ

inside C.
The category CdRB (resp. CdRB; Q) is endowed with a natural structure of rigid tensor

category, with Z.0/ (resp. Q.0/) as a unit object, and with tensor products and duals defined in
an obvious way in terms of tensor products and duality of C, Q, and Z (resp. Q)-modules.

Analogs of the groups H 2k
Gr appearing in the Grothendieck period conjecture above may

be defined in the setting of CdRB.

Definition 2.1. Let M D .MdR;MB; cM / be an object of CdRB (resp. CdRB; Q). Then
the Z-module (resp. Q-vector space) MGr is defined by

MGr ´ HomdRB.Z.0/;M/ (resp. MGr ´ HomdRB;Q.Q.0/;M/):

Clearly, the space MGr can be identified with the intersection of MB and cM .MdR/

inside MB ˝ C.

2.1.2. The torsor of periods of an element of CdRB. We briefly recall the notion of an
abstract torsor – defined without specifying a structure group. We refer to [28] for sorites on
abstract torsors.

IfM D .MdR;MB; cM / is an object of CdRB; Q, we denote by Iso.MdR˝QC;MB˝QC/
the complex variety of C-linear isomorphisms from MdR ˝Q C to MB ˝Q C.

Definition 2.2. Let M D .MdR;MB; cM / be an object of CdRB; Q. Let V be a closed
algebraic subset of Iso.MdR ˝Q C;MB ˝Q C/. We say that V is a torsor if for any triple
.f; g; h/ of points of V , the element

f ı g�1 ı h W MdR ˝Q C ! MB ˝Q C

belongs to V . We say that V is defined over Q if it may be obtained by field extension from
some closed algebraic subset of the variety over Q defined as the space of Q-linear isomor-
phisms Iso.MdR;MB ˝Q Q/.

As follows from the above definition, an intersection of torsors is again a torsor. As a con-
sequence, we can consider the torsor generated by a subset of Iso.MdR ˝Q C;MB ˝Q C/.
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Bost and Charles, Concerning the Grothendieck period conjecture 9

Definition 2.3. LetM D .MdR;MB; cM / be an object of CdRB; Q. The torsor of periods
of M , which we denote by �M , is the torsor generated by the Zariski closure ZM of cM in
the Q-scheme Iso.MdR;MB ˝Q Q/.

By definition, the set of complex points ZM .C/ of the Zariski closure of the integral
schemeZM over Q is the intersection of all Q-algebraic subsets of Iso.MdR ˝Q C;MB ˝Q C/
that contain cM .

At this level of generality, it is not easy to describe concretely the torsor of periods
of a given object of CdRB. However, Grothendieck classes provide equations for this torsor
as follows.

LetM D .MdR;MB; cM / be an object of CdRB; Q. Letm, n be two non-negative integers,
and let k be an integer. Any isomorphism f W MdR ! MB ˝Q Q induces a canonical isomor-
phism from .M˝m ˝ .M_/˝n ˝ Q.k//dR to .M˝m ˝ .M_/˝n ˝ Q.k//B ˝Q Q. We will
denote it by f as well.

Definition 2.4. Let M D .MdR;MB; cM / be an object of CdRB; Q. Given an element ˛
in .M˝m ˝ .M_/˝n/Gr, let �˛ be the torsor whose Q-points are the isomorphisms

f W MdR ! MB ˝Q Q
such that

f .˛dR/ D ˛B:

The Tannakian torsor of periods of M , which we denote by �T
M , is the intersection of the �˛

as m; n and ˛ vary.

By definition of Grothendieck classes, �˛ is defined over Q. Tautologically, since
˛B D cM ˝m˝.M _/˝n.˛dR/;

the comparison isomorphism cM is a complex point of �˛. The lemma below follows.

Lemma 2.5. Let M D .MdR;MB; cM / be an object of CdRB; Q. Then

�M ⇢ �T
M :

The discussion above can be readily rephrased in a more concise way, using the fact that
the category CdRB; Q is a Tannakian category. Namely, both M 7! MdR and M 7! MB ˝Q Q
are fiber functors with value in the category of Q-vector spaces. Those are the de Rham and
the Betti realization of CdRB; Q, respectively. Isomorphisms between these two fiber functors
give rise to a torsor under the Tannakian group of CdRB; Q. Now any objectM in CdRB; Q gives
rise to a Tannakian subcategory hM i generated byM . The torsor of isomorphisms between the
de Rham and the Betti realization of hM i is precisely �T

M – hence the notation. It is a torsor
under the Tannakian fundamental group of M – more precisely, this fundamental group may
be realized as a Q-subgroup G of GL.MB/, and �T

M is a torsor under GQ.

Remark 2.6. In general, the inclusion of �M in �T
M is strict. Indeed, �M is a torsor

under a subgroup H of GL.MB ˝ Q/. If �T
M D �M , then the group H would be equal to the

group GQ above. In particular, it would be defined over Q. However, it is easy to construct an
object M in CdRB; Q, with dimMB D dimMdR D 2, such that the group H ⇢ GL.MB ˝ Q/
above is not defined over Q.
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10 Bost and Charles, Concerning the Grothendieck period conjecture

Remark 2.7. Let M be an element of CdRB; Q. If Q.1/ is an object of hM i, for any
triple .m; n; k/ 2 N2 ⇥ Z, and any element ˛ 2 .M˝m ˝ .M_/˝n ˝ Q.k//Gr, the Tannakian
torsor�T

M is contained in�˛, where�˛ is defined by the obvious extension of Definition 2.4.

2.2. The Zariski closure of the torsor of periods and transcendence conjectures.
After the general discussion above, we specialize to the case of objects in CdRB; Q coming from
the cohomology of algebraic varieties.

2.2.1. Torsor of periods and de Rham–Betti realization. Let X be a smooth projec-
tive variety over Q. As explained in the introduction, given a non-negative integer k and an
integer j , the comparison isomorphism between de Rham and Betti cohomology allows us to
associate to X an object Hk

dRB.X;Z.j // in CdRB, its k-th de Rham–Betti cohomology group4)

with coefficients in Z.j /, as well as its rational version Hk
dRB.X;Q.j // in CdRB; Q. Moreover,

the compatibility of the cycle maps with the comparison isomorphism between de Rham and
Betti cohomology induces a cycle map

clXGr W Zk.X/ ! H 2k
dRB.X;Q.k//Gr:

Of course,H 2k
dRB.X;Q.k//Gr D H 2k

Gr .X;Q.k// and this map coincides with the one introduced
in Section 1.1.3. If k D 1, the map factorizes throughout Pic.X/ and defines a map

cX
1; Gr W Pic.X/ ! H 2

Gr.X;Q.1//:

For any integers k and j , we write Hk
Gr.X;Q.j // (resp. Hk

Gr.X;Z.j //) for Hk
dRB.X;Q.j //Gr

(resp. Hk
dRB.X;Z.j //Gr).

The de Rham (resp. Betti) realization of Hk
dRB.X;Z.j // is by definition Hk

dR.X=Q/
(resp. Hk.X an

C ;Z.j // ´ .2i⇡/jHk.X an
C ;Z/). The comparison isomorphism is the one in-

duced from (1.4) and (1.5). The comparison isomorphism can be rewritten in terms of actual
periods. Indeed, the k-th homology group Hk.X

an
C ;Z/ is dual to Hk.X an

C ;Z.j // via the map

� 7! 1

.2i⇡/j
.�; � /;

where . � ; � / denotes the canonical pairing between homology and cohomology. In these terms,
the inverse of the comparison isomorphism

Hk
dR.X=Q/˝ C ! Hk.X an

C ;Z.j //˝ C

is dual to the pairing

(2.1) Hk
dR.X=Q/˝Hk.X

an
C ;Z.0// ! C; ˛ ˝ � 7! 1

.2i⇡/j

Z

�

˛:

We denote by H ✏
dRB.X;Z.0// the object

L
k H

k
dRB.X;Z.0// in the category CdRB, and

by H ✏
dRB.X;Q.0// its rational variant in CdRB; Q. The discussion of the previous paragraph

applied toM D H ✏
dRB.X;Q.0// gives rise to torsors naturally associated to the de Rham–Betti

cohomology of X .
4) Note that, by definition, the Z-modules appearing in objects of CdRB are torsion-free. Accordingly, when-

ever Betti homology or cohomology groups with integer coefficients appear, it will be understood that these are
considered modulo their torsion subgroup.
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Bost and Charles, Concerning the Grothendieck period conjecture 11

Lemma 2.8. Let X be a smooth projective variety over Q. Then Q.�1/ is a direct
factor of H 2

dRB.X;Q.0//.

Proof. Let ŒH ç be the cohomology class of a hyperplane section of X . This class cor-
responds to a map Q.0/ ! H 2

dRB.X;Q.1//. By Poincaré duality and the Hard Lefschetz
Theorem, the bilinear form

˛ ˝ ˇ 7!
Z

X

˛ [ ˇ [ ŒH çdim.X/�2

is non-degenerate both on H 2.X an
C ;Q.0// and H 2

dR.X=Q/.
Since it is compatible to the comparison isomorphism – as the latter is compatible with the

algebra structure on cohomology and the trace map –, the orthogonal of ŒH ç in bothH 2
B .X;Q/

andH 2
dR.X=Q/ corresponds to a subobject ofH 2

dRB.X;Q.1//. Since ŒH çdim.X/ ¤ 0, this shows
that Q . ŒH ç is a direct factor of H 2

dRB.X;Q.1//, isomorphic to Q.0/. As a consequence,
Q.�1/ is a direct factor of H 2

dRB.X;Q.0//.

Definition 2.9. Let X be a smooth projective variety over Q.

(1) The torsor of periods of the variety X , which we denote by �X , is the torsor of periods
ofH ✏

dRB.X;Q.0//, i.e., the torsor generated by the Zariski-closureZX ´ ZH ✏
dRB.X;Q.0//

of cH ✏
dRB.X;Q.0// in the Q-scheme Iso.H ✏

dR.X=Q/;H
✏
B.X;Q/˝Q Q/.

(2) The Tannakian torsor of periods of X , which we denote by �T
X , is the Tannakian torsor

of periods of H ✏
dRB.X;Q.0//.

(3) The torsor of motivated periods of X , which we denote by �And
X , is the intersection of

the torsors�˛ defined in Definition 2.4, where ˛ runs through cycle classes of motivated
cycles – in the sense of André [3] – in the de Rham–Betti realizations H 2k

dRB.X
n;Q.k//

as n and k vary.

(4) The motivic torsor of periods of X , which we denote by �mot
X , is the intersection of the

torsors �˛ defined in Definition 2.4, where ˛ runs through cycle classes of algebraic
cycles in the de Rham–Betti realizations H 2k

dRB.X
n;Q.k// as n and k vary.

Note that the motivic torsor of periods �mot
X is what is called the torsor of periods

in [4, Chapitre 23]. The cohomology of Xn is a direct factor(!) of H ✏
dRB.X;Q.0//

˝n by the
Künneth formula. Using Lemma 2.8, this justifies the definition of �And

X and �mot
X . Under the

standard conjectures [25], �mot
X is a torsor under the motivic Galois group of X .

Lemma 2.10. Let X be a smooth projective variety over Q. The Tannakian torsor of
periods ofX is the intersection of the torsors�˛ defined in Definition 2.4, where ˛ runs through
Grothendieck classes in the de Rham–Betti realizations H j

dRB.X
n;Q.k// as j , n and k vary.

Proof. Lemma 2.8 and Remark 2.7 show that �T
X is the intersection of the �˛, as ˛

runs through Grothendieck classes in tensor products of the cohomology groups of X , their
dual and Q.k/. Using Poincaré duality and the Künneth formula, this proves the lemma.

Corollary 2.11. Let X be a smooth projective variety over Q. We have

(2.2) ZX ⇢ �X ⇢ �T
X ⇢ �And

X ⇢ �mot
X :
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12 Bost and Charles, Concerning the Grothendieck period conjecture

2.2.2. Transcendence and full faithfulness conjectures for smooth projective vari-
eties. The Grothendieck period conjecture of [24, note (10), p. 102] is the following.

Conjecture 2.12. Let X be a smooth projective variety over Q. Then

ZX D �mot
X :

In other words, the comparison isomorphism is dense in the motivic torsor of periods.

Given Corollary 2.11, Conjecture 2.12 would imply that all of the inclusions in (2.2) are
equalities. As in [30, Section 4.2], it has a simple interpretation in terms of periods, meaning
that any polynomial relation between periods of the form

1

.2i⇡/j

Z

�

˛;

where j is any integer and ˛ (resp. � ) is an element ofHk
dR.X

n=Q/ (resp.Hk..X
n/an

C ;Q/) for
some non-negative n, is induced by algebraic cycles on self-products of X .

There are few cases where Conjecture 2.12 is known to be true, the most significant
one being perhaps the case where X is an elliptic curve with complex multiplication, due
to Chudnovsky [15].

Our next result relates the conjectures GPCk to the inclusions (2.2).

Proposition 2.13. Let X be a smooth projective variety over Q.

(1) Assume that GPCk.Xn/ holds for every k and n, and that H j
Gr.X

n;Q.k// D 0 unless
j D 2k. Then �T

X D �mot
X .

(2) Assume that X satisfies the standard conjectures of [25] and that �T
X D �mot

X . Then
GPCk.Xn/ holds for every k and n, and H j

Gr.X
n;Q.k// D 0 unless j D 2k.

Proof. Assume that GPCk.Xn/ holds for every k and n, and that H j
Gr.X

n;Q.k// D 0

unless j D 2k. Then Lemma 2.10 shows that �T
X D �mot

X , as they are defined by the same
equations.

Now assume that X satisfies the standard conjectures of [25] and that �T
X D �mot

X . This
implies that the motivic Galois group Gmot.X/ of X – with respect to the Betti realization – is
a well-defined reductive group over Q, coming from the Tannakian category of pure motives
generated by X , and that �T

X is a torsor under Gmot.X/Q.
Let ˛ be an element of H j

dRB.X
n;Q.k//Gr for some j; k and n. By definition of �T

X ,
and since �mot

X D �T
X , if f is any point of �mot

X , f .˛B/ D cX .˛dR/, where cX is the compar-
ison isomorphism. Deligne’s principle A of [20], or rather its Tannakian proof as in [10, Sec-
tion 2.11], implies that ˛ is the cohomology class of an algebraic cycle. In particular, j D 2k,
which proves the proposition.

The same proof gives the following results for motivated cycles.

Proposition 2.14. Let X be a smooth projective variety over Q.

(1) Assume that for every k and n, classes inH 2k
Gr .X

n;Q.k// are classes of motivated cycles,
and that H j

Gr.X
n;Q.k// D 0 unless j D 2k. Then �T

X D �And
X .
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Bost and Charles, Concerning the Grothendieck period conjecture 13

(2) Assume that�T
X D �And

X . Then for all k and n, Grothendieck classes inH 2k
dRB.X

n;Q.k//
are classes of motivated cycles, and H j

Gr.X
n;Q.k// D 0 unless j D 2k.

The results above explains in which respect the conjectures GPCk are weaker than
Conjecture 2.12. Indeed, they do not address whether the Zariski-closureZX of the comparison
isomorphism is actually a torsor. We have nothing to say in this direction – see the recent work
of Ayoub [5] for related results in the function field case.

In more concrete terms, this corresponds to the fact that while Conjecture 2.12 ad-
dresses the transcendence of any single period 1

.2i⇡/j

R
� ˛, the conjectures GPCk deal with the

existence, given a de Rham cohomology class ˛, of some element � of Betti cohomology such
that 1

.2i⇡/j

R
� ˛ is transcendental.

Additionally, it should be noted that the torsor �X only depends on the triple

.H ✏
dR.X=Q/;H

✏
B.X;Q/˝ Q;H ✏

dR.X=Q/˝ C ! H ✏
B.X;Q/˝ C/;

and as such does not depend on the Q-structure ofH ✏
B.X;Q/˝ Q, whereas�T

X a priori does –
see Remark 2.6.

Propositions 2.13 and 2.14 also show that the conjectures GPCk should be supplemented
by the conjectures asserting that, if X is a smooth projective variety over Q, then

H
j
Gr.X;Q.k// D 0

unless j D 2k.
For general j and k, this conjecture seems widely open, and corresponds to the lack of

a theory of weights for the de Rham–Betti realization of the cohomology of smooth projective
varieties over Q. We will discuss this issue in Section 4.3.

2.2.3. A few remarks about the mixed case. Most of the discussion and the con-
jectures above could be extended to the framework of arbitrary varieties over Q, without
smoothness or projectivity assumptions. The de Rham–Betti realization still makes sense, as
well as the notion of Grothendieck classes, as we recall at the beginning of Section 4. It is
possible, with some care, to state conjectures similar to GPCk in this setting.

As in the previous paragraph, the Kontsevich–Zagier conjecture of [30, Section 4] bears
a similar relationship to the conjectures GPCk in the mixed case as Conjecture 2.12 does in the
pure case. As the results of our paper mostly deal with the pure case, we will not delve in this
theoretical setting any further. Let us however give one result in that direction – another one
for open varieties will be discussed below in Section 4.

Observe that, for any given smooth variety X over Q, there exists a cycle map from
the higher Chow groups CHi .X; n/ to the Q-vector space H 2i�n

Gr .X;Q.i// of Grothendieck
classes in the de Rham–Betti group H 2i�n

dRB .X;Q.i//. As in the usual case of Chow groups,
this is due to the compatibility of the cycle maps to the Betti and de Rham cohomology; see for
instance [29].

Theorem 2.15. For any smooth quasi-projective variety U over Q, the cycle map

CH1.U; 1/Q ! H 1
Gr.U;Q.1//

is surjective.
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14 Bost and Charles, Concerning the Grothendieck period conjecture

Proof. We only give a sketch of the proof and leave the details to the reader.
Using resolution of singularities, we can find a smooth projective variety X over Q con-

taining U such that the complement of U in X is a divisorD. Mutatis mutandis, the arguments
in [29, Corollary 9.10] show that the cycle map

CH1.U; 1/Q ! H 1
Gr.U;Q.1//

is surjective if and only if the Abel–Jacobi map in de Rham–Betti cohomology

Pic0.X/˝ Q ! Ext1dRB.Q.0/;H
1
dRB.X;Q.1///

is injective. This Abel–Jacobi map coincides with the map dRB attached to the Albanese
variety A of X that is defined in [11, Section 5.5]. As observed in [11, Proposition 5.4], its
injectivity is a consequence of Theorem 3.1, applied to G1 D A and to G2 an extension of A
by Gm; Q.

3. Transcendence and de Rham–Betti cohomology of abelian varieties. Applications to
biextensions and divisorial correspondences

3.1. Transcendence and periods of commutative algebraic groups over Q. For any
smooth algebraic group over some field k, we denote by

LieG ´ TeG

its Lie algebra – a k-vector space of rank dimG. A k-morphism � W G1 ! G2 of smooth
algebraic groups over k induces a k-linear map

Lie� WD D�.e/ W LieG1 ! LieG2

between their Lie algebras. This construction is clearly compatible with extensions of the base
field k.

Let G be a connected commutative algebraic group over C. Its analytification Gan is
a connected commutative complex Lie group. The exponential map expG of this Lie group
is an étale, hence surjective, morphism of complex Lie groups from the vector group LieG
defined by the Lie algebra of G to this analytification Gan. The kernel of expG

PerG ´ Ker expG

– the group of “periods” of G – is a discrete subgroup of LieG, and fits into an exact sequence
of commutative complex Lie groups:

0 ���! PerG ,��! LieG
expG���! Gan ���! 0:

Let G1 and G2 be two connected commutative algebraic groups over Q. Consider an
element � in the Z-module HomQ-gp.G1; G2/ of morphisms of algebraic groups over Q
from G1 to G2. This Q-linear map

Lie� ´ D�.e/ W LieG1 ! LieG2

is compatible with the exponential maps of G1;C and G2;C , in the sense that the C-linear
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Bost and Charles, Concerning the Grothendieck period conjecture 15

map Lie�C D .Lie�/C fits into a commutative diagram

LieG1C

expG1C
✏✏

Lie �C // LieG2C

expG2C
✏✏

Gan
1C

�C // Gan
2C .

In particular,
.Lie�/C.PerG1C/ ⇢ PerG2C:

This construction defines an injective morphism of Z-modules:

Lie W HomQ-gp.G1; G2/ ! π 2 HomQ.LieG1;LieG2/ j  C.PerG1C/ ⇢ PerG2Cº:
In the next sections, we shall use the following description of the morphisms of connected

commutative algebraic groups over Q in terms of the associated morphisms of Lie algebras and
period groups:

Theorem 3.1. If the group of periods PerG1C generates LieG1C as a complex vector
space, then the map

Lie W HomQ-gp.G1; G2/ ! π 2 HomQ.LieG1;LieG2/ j  C.PerG1C/ ⇢ PerG2Cº
is an isomorphism of Z-modules.

This theorem is a consequence of the classical transcendence theorems à la Schneider–
Lang ([33, 38, 42]). See [9, Section 5, Proposition B] and [11, Corollary 4.3].

When G1 is the multiplicative group Gm; Q, then LieG1 is a one-dimensional Q-vector
space, with basis the invariant vector field X @

@X
, and the group of periods PerG1C is the sub-

group 2⇡ iZX @
@X

of CX @
@X

. The hypothesis of Theorem 3.1 is then satisfied, and we obtain:

Corollary 3.2. For any connected commutative algebraic group G over Q, we have an
isomorphism of Z-modules:

HomQ-gp.Gm; Q; G/
⇠�! πv 2 LieG j 2⇡ iv 2 PerGCº D LieG \ 1

2⇡ i
PerGC;

� 7! Lie�
✓
X
@

@X

◆
:

We finally recall that the theorem of Schneider–Lang also provides a Lie theoretic
description of morphisms of Q-algebraic groups of source the additive group Ga; Q; see for
instance [11, Theorem 4.2]:

Theorem 3.3. For any connected commutative algebraic group G over Q, we have an
isomorphism of Z-modules5)

HomQ-gp.Ga; Q; G/
⇠�! πv 2 LieG j expGC

.Cv/ \G.Q/ ¤ ;º;

� 7! Lie�
✓
@

@X

◆
:

5) This still holds, as a bijection of sets, when G is an arbitrary algebraic group over Q.
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16 Bost and Charles, Concerning the Grothendieck period conjecture

As any morphism in HomQ-gp.Ga; Q; G/ is either zero or injective, this immediately
yields the following:

Corollary 3.4. For any connected commutative algebraic group G over Q, we have

LieG \ PerGC D π0º:

3.2. Divisorial correspondences and biextensions of abelian varieties. In this sub-
section, we gather diverse basic facts concerning divisorial correspondences between smooth
projective varieties and biextensions of abelian varieties. We state them in the specific frame-
work of varieties over Q, where they will be used in this article, although, suitably formulated,
they still hold over an arbitrary base. For proofs and more general versions, we refer the reader
to [32, Chapter VI], [37, notably Chapters III, IV, and XI], [21], and [26, Exposés VII and VIII
(notably Sections VII.2.9 and VIII.4)].

3.2.1. Notation. Let X be a smooth projective variety over Q, equipped with some
“base point” x 2 X.Q/. To X is attached its Picard group

Pic.X/ ´ H 1.X;O⇥
X /;

its connected Picard variety Pic0
X=Q (the abelian variety that classifies line bundles over X

algebraically equivalent to zero), and its Néron–Severi group

NS.X/ ´ Pic.X/=Pic0
X=Q.Q/;

that is, the group of line bundles over X up to algebraic equivalence.
We shall also consider the Albanese variety of X , defined as the abelian variety

Alb.X/ ´ .Pic0
X=Q/

^

dual to Pic0
X=Q, and the Albanese morphism

albX;x W X ! Alb.X/:

It is characterized by the fact that the pullback by .albX;x; IdPic0
X=Q

/ of a Poincaré bundle
on .Pic0

X=Q/
^ ⇥ Pic0

X=Q is isomorphic to a Poincaré bundle over the product X ⇥ Pic0
X=Q

(trivialized along πXº ⇥ Pic0
X=Q). It is also a “universal pointed morphism” from .X; x/ to

an abelian variety.

3.2.2. Divisorial correspondences. Let X and Y be two smooth projective varieties
over Q, equipped with base points x 2 X.Q/ and y 2 Y.Q/.

The group of divisorial correspondences DC.X; Y / between X and Y may be defined as
a subgroup of Pic.X ⇥ Y / by the following condition, for any line bundle L over X ⇥ Y of
class ŒLç in Pic.X ⇥ Y /:

ŒLç 2 DC.X; Y / ” LjX⇥πyº ' OX⇥πyº and Ljπxº⇥Y ' Oπxº⇥Y :

This construction is clearly functorial in .X; x/ and .Y; y/: if .X 0; x0/ and .Y 0; y0/ are
two pointed smooth projective varieties over Q and if f W X 0 ! X and g W Y 0 ! Y are two
Q-morphisms such that f .x0/ D x and f .y0/ D y, then the pullback morphism

.f; g/⇤ W Pic.X ⇥ Y / ! Pic.X 0 ⇥ Y 0/
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Bost and Charles, Concerning the Grothendieck period conjecture 17

defines, by restriction, a morphism of abelian groups:

.f; g/⇤ W DC.X; Y / ! DC.X 0; Y 0/:

Observe that Pic.X/ and Pic.Y / may be identified with subgroups of Pic.X ⇥ Y / (by
means of the pullback by the projections from X ⇥ Y to X and Y ), and that, taking these
identifications into account, we get a functorial decomposition of the Picard group of the
product X ⇥ Y :

(3.1) Pic.X ⇥ Y / ⇠�! Pic.X/˚ Pic.Y /˚ DC.X; Y /:

Moreover the Picard variety Pic0
X⇥Y=Q may be identified with Pic0

X=Q ⇥ Pic0
Y=Q, and

consequently the subgroup Pic0
X⇥Y=Q.Q/ of Pic.X ⇥ Y / with the product of the subgroups

Pic0
X=Q.Q/ and Pic0

Y=Q.Q/ of Pic.X/ and Pic.Y /. The composite map

DC.X; Y / ,! Pic.X ⇥ Y / ⇣ NS.X ⇥ Y /
is therefore injective, and, if we still denote by DC.X; Y / its image in NS.X ⇥ Y /, the decom-
position (3.1) becomes, after quotienting by Pic0

X⇥Y=Q.Q/,

(3.2) NS.X ⇥ Y / ⇠�! NS.X/˚ NS.Y /˚ DC.X; Y /:

Also observe that, through the cycle maps, the decompositions (3.1) and (3.2) are com-
patible with the Künneth decomposition of the second cohomology group of X ⇥ Y .

3.2.3. Divisorial correspondences and biextensions of abelian varieties. The next
two propositions show that the group DC.X; Y / of divisorial correspondences associated to
some smooth projective varieties (over Q) may be identified with the group

Biext1
Q-gp

.Alb.X/;Alb.Y /I Gm/

of biextensions of their Albanese varieties by the multiplicative group Gm.

Proposition 3.5. For any two smooth projective varieties X and Y over Q, equipped
with base points x 2 X.Q/ and y 2 Y.Q/, the Albanese morphisms albX;x and albY;y induce
isomorphisms of groups of divisorial correspondences:

(3.3) .albX;x; albY;y/
⇤ W DC.Alb.X/;Alb.Y // ⇠�! DC.X; Y /:

Let A1 and A2 be two abelian varieties over Q.
Recall that a biextension of .A1; A2/ by Gm (over Q) is a Gm-torsor over A1 ⇥ A2

equipped with two compatible partial group laws. In particular, as a Gm-torsor, it is trivialized
over A1 ⇥ π0º and π0º ⇥ A2, hence defines an element of DC.A1; A2/.

In turn, if L is a line bundle over A1 ⇥ A2 trivialized over π0º ⇥ A2, then, for any
point x 2 A1.Q/, the line bundle Ljπxº⇥A2

is algebraically equivalent to zero and therefore
defines a Q-point ˛L.x/ of the dual abelian variety A^

2 . Moreover this construction defines
a morphism of Q-algebraic groups

˛L W A1 ! A^
2 :

If we switch the roles of A1 and A2 in this discussion, we get the morphism of abelian
varieties dual to the previous one:

˛^
L W A2 ! A^

1 :
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18 Bost and Charles, Concerning the Grothendieck period conjecture

Proposition 3.6. For any two abelian varieties A1 and A2 over Q, the above construc-
tions define isomorphisms of Z-modules:

Biext1
Q-gp

.A1; A2I Gm/
⇠�! DC.A1; A2/

⇠�! HomQ-gp.A1; A
^
2 /(3.4)

⇠�! HomQ-gp.A2; A
^
1 /:

We finally recall the description of the Néron–Severi group of an abelian variety in terms
of its symmetric biextensions by Gm.

Let A be an abelian variety over Q, and let m; pr1; pr2 W A ⇥ A ! A denote respectively
the addition law and the two projections. According to the theorem of the cube, for any line
bundle L over A, the line bundle

ƒ.L/ ´ m⇤L˝ pr⇤
1L

_ ˝ pr⇤
2L

_ ˝ L0

– or rather the corresponding Gm torsor over A ⇥ A – is equipped with a canonical structure
of symmetric biextension of .A;A/ by Gm. Moreover, according to the theorem of the square,
the class of ƒ.L/ in the subgroup

SymBiext1
Q-gp

.A;AI Gm/

of symmetric biextensions in Biext1
Q-gp

.A;AI Gm/ depends only on the class of L in the
Néron–Severi group of A.

Proposition 3.7. For any abelian variety A over Q, the above construction, together
with the isomorphisms (3.4) with A1 D A2 D A, define isomorphisms of Z-modules:

(3.5) NS.A/ ⇠�! SymBiext1
Q-gp

.A;AI Gm//
⇠�! Homsym

Q-gp
.A;A^/;

where
Homsym

Q-gp
.A;A^/ ´ π� 2 HomQ-gp.A;A

^/ j �^ D �º:

3.3. Transcendence and de Rham–Betti (co)homology groups of abelian varieties.
Application to biextensions. We combine the transcendence results of Section 3.1 and the
relations between Néron–Severi groups, divisorial correspondences, and biextensions recalled
in Section 3.2 to derive diverse full faithfulness properties of the de Rham–Betti realization.
These results constitute variants and complements of the results in [11, Sections 5.2-4] that we
now briefly recall.

To any abelian variety A over Q is attached its de Rham–Betti cohomology group

H 1
dRB.A/ ´ H 1

dRB.A;Z.0//

and its de Rham–Betti homology group

H1; dRB.A/ ´ H 1
dRB.A/

_;

the object in CdRB dual to H 1
dRB.A/.

We recall thatH1; dRB.A/may be identified with the object Lie PerE.A/ of CdRB defined
by the Lie algebra LieE.A/ of the universal vector extension ofA and the subgroup PerE.A/C
of LieE.A/C consisting of the periods of the complex Lie group E.A/C ([11, Section 5.3.3]).
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Bost and Charles, Concerning the Grothendieck period conjecture 19

Moreover, any morphism
� W A ! B

of abelian varieties over Q may be uniquely lifted to a morphism of their universal vector
extensions

E.�/ W E.A/ ! E.B/:

In turn,E.�/ defines a morphism Lie PerE.�/ in HomdRB.Lie PerE.A/;Lie PerE.B//, which
actually coincides with the morphism H1;dRB.�/ in HomdRB.H1;dRB.A/;H1;dRB.B// dual to
the pullback morphism H 1

dRB.�/ in HomdRB.H
1
dRB.B/;H

1
dRB.A//.

In this way, we define functorial maps

HomQ-gp.A;B/! HomQ-gp.E.A/;E.B//! HomdRB.H1; dRB.A/;H1; dRB.B//;(3.6)

� 7!E.�/ 7!H1; dRB.�/:

The first map � 7! E.�/ is easily seen to be bijective. Moreover Theorem 3.1, withG1 D E.A/

and G2 D E.B/, shows that the second one, which sends E.�/ to Lie PerE.�/ D H1; dRB.�/,
is also bijective (cf. [11, Theorem 5.3]).

Besides, the construction of the de Rham–Betti (co)homology groups is compatible
with the duality of abelian varieties. Namely, for any abelian variety A over Q, the first
Chern class in H 2

Gr.A ⇥ A^;Z.1// of its Poincaré line bundle defines an isomorphism in CdRB
(cf. [11, Section 5.3.3]):

(3.7) H1; dRB.A/
⇠�! H 1

dRB.A
^;Z.1//:

Let A1 and A2 be two abelian varieties over Q. If we compose the isomorphism in
Proposition 3.6, the fully faithful functor H1; dRB considered in (3.6), and the duality isomor-
phism (3.7), we get an isomorphism of Z-modules:

Biext1
Q-gp

.A1; A2I Gm/ ����! HomQ-gp.A1; A
^
2 /(3.8)

H1; dRB����! HomdRB.H1; dRB.A1/;H1; dRB.A
^
2 //

⇠����! HomdRB.H1; dRB.A1/;H
1
dRB.A2;Z.1///:

Observe that the range of this map may be identified with

HomdRB.H1; dRB.A1/˝H1; dRB.A2/;Z.1//

and also with

HomdRB.Z.0/;H
1
dRB.A1/˝H 1

dRB.A2;Z.1/// DW ŒH 1
dRB.A1/˝H 1

dRB.A2/˝ Z.1/çGr:

We refer the reader to [18, Section 10.2] for a discussion of biextension of complex
abelian varieties (and more generally, of 1-motives) in the context of Hodge structures, and for
diverse equivalent constructions of the map from Biext1

Q-gp
.A1; A2I Gm/ to

HomdRB.H1; dRB.A1/˝H1; dRB.A2/;Z.1// ' ŒH 1
dRB.A1/˝H 1

dRB.A2/˝ Z.1/çGr

defined by (3.8). We shall content ourselves with the following description of this map. If L
denotes the Gm-torsor over A1 ⇥ A2 defined by some biextension class ˛ of .A1; A2/ by Gm,
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20 Bost and Charles, Concerning the Grothendieck period conjecture

its first Chern class in de Rham cohomology c1; dR.L/ defines an element of

H 2
dR.A1 ⇥ A2=Q/ ' 2̂

H 1
dR.A1 ⇥ A2=Q/

' 2̂
ŒH 1

dR.A1/˚H 1
dR.A2=Q/ç

' 2̂
H 1

dR.A1=Q/˚ 2̂
H 1

dR.A2=Q/˚ ŒH 1
dR.A1=Q/˝H 1

dR.A2=Q/ç;

which actually belongs to the last summandH 1
dR.A1=Q/˝H 1

dR.A2=Q/. The map (3.8) sends ˛
to the element

BA1;A2
.˛/ ´ c1; dR.L/ 2 H 1

dR.A1=Q/˝H 1
dR.A2=Q/:

The following theorem summarizes the isomorphisms constructed in the previous para-
graphs. They may be seen as counterparts, valid for abelian varieties over Q and their de Rham–
Betti realizations, of classical facts concerning complex abelian varieties and their Hodge
structures (compare for instance the isomorphism (3.10) and [18, Construction (10.2.3)]).

Theorem 3.8. The following statements hold.

(1) For any two abelian varieties A and B over Q, the map

(3.9) H1; dRB W HomQ-gp.A;B/
⇠�! HomdRB.H1; dRB.A/;H1; dRB.B//

is an isomorphism of Z-modules.

(2) For any two abelian varieties A1 and A2 over Q, the map

(3.10) BA1;A2
W Biext1

Q-gp
.A1; A2I Gm/

⇠�! ŒH 1
dRB.A1/˝H 1

dRB.A2/˝ Z.1/çGr

is an isomorphism of Z-modules.

3.4. The conjecture GPC1 for abelian varieties and for products of smooth projec-
tive varieties. For any abelian variety A over Q, the isomorphism

BA;A W Biext1
Q-gp

.A;AI Gm/
⇠�! ŒH 1

dRB.A/˝H 1
dRB.A/˝ Z.1/çGr

maps the subgroup
SymBiext1

Q-gp
.A;AI Gm/

of symmetric biextensions in Biext1
Q-gp

.A;AI Gm/ onto the subgroup

ŒH 1
dRB.A/˝H 1

dRB.A/˝ Z.1/çalt
Gr

of skew-symmetric, or alternating, elements in ŒH 1
dRB.A/˝H 1

dRB.A/˝ Z.1/çGr (see for
instance [11, Sections 5.3.3 and 5.4] for a discussion of the sign issue involved in this identi-
fication). In turn, ŒH 1

dRB.A/˝H 1
dRB.A/˝ Z.1/çalt

Gr may be identified with H 2
Gr.A;Z.1//, and

the composite isomorphism

NS.A/
ƒ���! SymBiext1

Q-gp
.A;AI Gm/

BA;A���! H 2
Gr.A;Z.1//

with the first Chern class cA
1;Gr, or equivalently with the classical “Riemann form”.
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Bost and Charles, Concerning the Grothendieck period conjecture 21

We finally recover the main result of [11, Section 5]:

Corollary 3.9. For any abelian variety A over Q, the cycle map establishes an isomor-
phism of Z-modules:

cA
1;Gr W NS.A/ ⇠�! H 2

Gr.A;Z.1//:

In particular, GPC1.A/ holds.

Finally, we consider two smooth projective varieties X and Y over Q, equipped with
base points x 2 X.Q/ and y 2 Y.Q/, and their Albanese maps albX;x W X ! Alb.X/ and
albY;y W Y ! Alb.Y /. By pullback, these maps induce isomorphisms in CdRB:

H 1
dRB.albX;x/ W H 1

dRB.Alb.X// ⇠�! H 1
dRB.X/

and
H 1

dRB.albY;y/ W H 1
dRB.Alb.Y // ⇠�! H 1

dRB.Y /:

The Künneth decompositions in de Rham and Betti cohomology define an isomorphism
in CdRB:

H 2
dRB.X ⇥ Y / ⇠�! H 2

dRB.X/˚H 2
dRB.Y /˚ .H 1

dRB.X/˝H 1
dRB.Y //;

and consequently an isomorphism of Z-modules:

H 2
Gr.X ⇥ Y;Z.1// ⇠�! H 2

Gr.X;Z.1//˚H 2
Gr.Y;Z.1//˚ ŒH 1

dRB.X/˝H 1
dRB.Y /˝ Z.1/çGr:

Moreover the compatibility of the decompositions (3.1) and (3.2) with the Künneth
decompositions shows that the first Chern class in de Rham–Betti cohomology

cX⇥Y
1; Gr W Pic.X ⇥ Y / ! H 2

Gr.X ⇥ Y;Z.1//;
which for any divisor Z in X ⇥ Y maps ŒO.Z/ç to clX⇥Y

Gr .Z/, coincides with cX
1; Gr (resp.,

with cY
1; Gr) when restricted to the first (resp., second) summand of the decomposition (3.1)

of Pic.X ⇥ Y /, and defines a map

BX;Y W DC.X; Y / ! ŒH 1
dRB.X/˝H 1

dRB.Y /˝ Z.1/çGr

by restriction to the third summand.
The construction of BX;Y is compatible with the Albanese embeddings. Indeed, as one

easily checks by unwinding the definitions of the morphisms involved in the above discussion,
the following diagram is commutative:

Biext1
Q-gp

.Alb.X/;Alb.Y /I Gm/

BAlb.X/;Alb.Y /

✏✏

⇠ // DC.X; Y /

BX;Y

✏✏

ŒH 1
dRB.Alb.X//˝H 1

dRB.Alb.Y //˝ Z.1/çGr
⇠ // ŒH 1

dRB.X/˝H 1
dRB.Y /˝ Z.1/çGr,

where the upper (resp., lower) horizontal arrow is the isomorphisms deduced from Proposi-
tions 3.5 and 3.6 (resp., the isomorphism H 1

dRB.albX;x/˝H 1
dRB.albY;y/˝ IdZ.1/).

According to Theorem 3.8 (2), the left vertical arrow BAlb.X/;Alb.Y / in the diagram above
is an isomorphism. Together with the previous discussion, this establishes the following.
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22 Bost and Charles, Concerning the Grothendieck period conjecture

Corollary 3.10. For any two smooth projective varieties X and Y over Q, the map

(3.11) BX;Y W DC.X; Y / ! ŒH 1
dRB.X/˝H 1

dRB.Y /˝ Z.1/çGr

is an isomorphism of Z-modules, and consequently

(3.12) GPC1.X/ and GPC1.Y / ” GPC1.X ⇥ Y /:

As observed above (see Section 1.1.3), for trivial reasons, GPC1.X/ holds for any smooth
projective curve X over Q. Consequently, Corollary 3.10 implies the validity of GPC1.X/ for
any product X of smooth projective curves over Q.

4. Weights in degree 1 and the second cohomology groups of smooth open varieties

In this section, we study the generalization of the Grothendieck period conjecture GPCk

to smooth non-proper varieties over Q, mainly when k D 1, and we establish the birational
invariance of GPC1.

Specifically, let X be a smooth quasi-projective variety over Q. According to [24], we
may still consider the algebraic de Rham cohomology groups of X over Q,

H i
dR.X=Q/ ´ Hi .X;�✏

X=Q
/;

and the comparison isomorphisms (1.4) and (1.5) still hold in this quasi-projective setting.
Moreover the definitions of cycles classes in de Rham and Betti cohomology also extend, and
Proposition 1.1 is still valid.

As a consequence, we may introduce the de Rham–Betti cohomology groups of X ,
denotedHk

dRB.X;Z.j // – as before, defined in terms of the Betti cohomology modulo torsion –
and Hk

dRB.X;Q.j //, as well as the Q-vector spaces

H 2k
Gr .X;Q.k// ´ H 2k

dR .X=Q/ \H 2k.X an
C ;Q.k//

and the cycle map
clXGr W Zk.X/Q ! H 2k

Gr .X;Q.k//:

We shall say that GPCk.X/ holds when this map is onto.
Here again, our main technical tool will be a transcendence theorem à la Schneider–Lang,

which will allow us to establish a purity property of classes in H 2
Gr.X;Q.1//. This result and

its proof suggest some conjectural weight properties of the cohomology classes in

Hk
Gr.X;Q.j // ´ Hk

dR.X=Q/ \Hk.X an
C ;Q.j //

that we discuss at the end of this section.

4.1. Transcendence and H 1. We have the following:

Theorem 4.1. For any smooth quasi-projective variety X over Q, we have

H 1
dR.X=Q/ \H 1.X an

C ;Q/ D π0º
inside H 1

dR.XC=C/ ' H 1.X.C/;C/. In other words,

H 1
Gr.X;Q.0// D π0º:
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When X is Gm, this theorem precisely asserts the transcendence of ⇡ , and is equivalent
to Corollary 3.4 for G D Gm.

Actually a considerable strengthening of Theorem 4.1 is known to hold (cf. [6, notably
Corollary 6.9]):

For any cohomology class ˛ in H 1
dR.X=Q/ (identified with a subspace of H 1.X an

C ;C/)
and any � 2 H1.X.C/;Z/, the integral

R
� ˛ either vanishes, or belongs to C n Q.

This follows from the so-called “analytic subgroup theorem” of Wüstholz ([43]) – a gen-
eralized version of Baker’s transcendence results on linear forms in logarithms, valid over any
commutative algebraic group over Q – combined with the construction of generalized Albanese
varieties in [22].

For the sake of completeness, we sketch a proof of Theorem 4.1 based on the less
advanced transcendence results, à la Schneider–Lang, recalled in Section 3.1.

Proof of Theorem 4.1. (1) Assume first that X is projective. Then H 1
dR.X=Q/ may be

identified with the Lie algebra of the universal vector extension

EX=Q ´ E.Pic0
X=Q/

of the Picard variety Pic0
X=Q, which classifies algebraically trivial line bundles over X . More-

over the canonical isomorphism

LieEX=Q
⇠�! H 1

dR.X=Q/

defines, after extending the scalars from Q to C and composing with the comparison isomor-
phism (1.4), an isomorphism of complex vector spaces

LieEX=Q;C
⇠�! H 1

dR.X=Q/˝Q C ⇠�! H 1.X an
C ;C/

which maps PerEX=Q;C to the subgroup

H 1.X an
C ;Z.1// D 2⇡ iH 1.X an

C ;Z/

of H 1.X an
C ;C/ (see for instance [35, 36] and [12, Appendix B]).

Therefore, applied to G D EX=Q, Corollary 3.2 shows that

(4.1) HomQ-gp.Gm; Q; EX=Q/
⇠�! H 1

dR.X=Q/ \H 1.X an
C ;Z/;

where the intersection is taken in H 1
dR.XC=C/ ' H 1.X an

C ;C/.
Now the algebraic group EX=Q is an extension of an abelian variety by a vector group,

and there is no non-zero morphism of algebraic groups from Gm; Q to E. Finally (4.1) shows
that

H 1
dR.X=Q/ \H 1.X an

C ;Z/ D π0º;
or equivalently

H 1
dR.X=Q/ \H 1.X an

C ;Q/ D π0º:
(2) In general, we may consider a smooth projective varietyX over Q containingX as an

open dense subvariety. Let .Yi /i2I be the irreducible components of X nX of codimension 1
in X . The inclusion morphism i W X ,! X and the residue maps along the components Yi
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24 Bost and Charles, Concerning the Grothendieck period conjecture

of X nX determine a commutative diagram with exact lines (compare with the diagram (4.6)
in the proof of Proposition 4.3):

(4.2) 0 // H 1
dR.X=Q/

✏✏

i⇤
dR // H 1

dR.X=Q/

✏✏

ResdR // Q
I

✏✏

0 // H 1.X
an
C ;C/

i⇤
C // H 1.X an

C ;C/
ResC // CI

0 // H 1.X
an
C ;Q.1//

OO

i⇤
B // H 1.X an

C ;Q.1//

OO

ResB // QI .

OO

The vertical arrows in this diagram are injections (defined, in the first two columns, by the
comparison isomorphisms (1.4) for X and X , and the inclusion of Q.1/ into C) that will be
written as inclusions in the sequel, and the middle line may be identified with the tensor product
with C over Q (resp. over Q) of the first (resp. third) one.

We need to show that any element in the intersection of H 1
dR.X=Q/ and H 1.X an

C ;Q/
actually vanishes. Let ˛ be such an element in H 1

dR.X=Q/ \H 1.X an
C ;Q/. Its residue ResC ˛

belongs to QI (since it is also ResdR ˛) and to .2⇡ i/�1QI (since it may also be written
.2⇡ i/�1 ResB.2⇡ i˛/). The transcendence of 2⇡ i now shows that ResC ˛ vanishes, and the
exactness of the lines in (4.2) that ˛ belongs to (the image by i⇤C of)H 1

dR.X=Q/ \H 1.X
an
C ;Q/.

According to the first part of the proof, this intersection vanishes.

Observe that part (1) of the proof of Theorem 4.1, with Gm replaced by Ga and Corol-
lary 3.2 by Corollary 3.4, establishes the following:

Theorem 4.2. For any smooth projective variety X over Q, we have

H 1
dR.X=Q/ \H 1.X an

C ;Q.1// D π0º
inside H 1

dR.XC=C/ ' H 1.X an
C ;C/. In other words, we have

H 1
Gr.X;Q.1// D π0º:

4.2. Purity of H 2
Gr.U; Q.1//. We have the following:

Proposition 4.3. Let X be a smooth projective variety over Q and U be a dense open
subscheme of X . Let i W U ,! X denote the inclusion morphism, .D˛/1˛A the irreducible
components ofX n U of codimension 1 inX , and .ŒD˛ç/1˛A ´ .clXGr.D˛//1˛A their im-
ages in H 2

Gr.X;Q.1//. Then the following diagram of Q-vector spaces:

(4.3) 0 // QA .D1;:::;DA/
// Z1.X/Q

clXGr
✏✏

i⇤
// Z1.U /Q

clUGr
✏✏

// 0

QA .ŒD1ç;:::;ŒDAç/
// H 2

Gr.X;Q.1//
i⇤
Gr // H 2

Gr.U;Q.1//
// 0

is commutative with exact lines.
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This directly implies:

Corollary 4.4. The Q-linear map clXGr W Z1.X/Q ! H 2
Gr.X;Q.1// is onto if and only

if clUGr W Z1.U /Q ! H 2
Gr.U;Q.1// is onto. In other words,

GPC1.X/ ” GPC1.U /:

Let us emphasize that the “non-formal” part of the proof of Proposition 4.3 is the surjec-
tivity of the map

i⇤ W H 2
Gr.X;Q.1// ! H 2

Gr.U;Q.1//:

It shows (and is basically equivalent to the fact) that H 2
Gr.U;Q.1// is included in the

weight zero part W0H
2.U an

C ;Q.1// of H 2.U an
C ;Q.1//. This purity result will be deduced

from the transcendence properties of theH 1 recalled in Theorem 4.1, applied to components of
codimension 1 of X n U .

Corollary 4.4 implies the birational invariance of GPC1.X/. From this result, together
with the compatibility of direct images of cycles with trace maps in de Rham and Betti coho-
mology, one easily derives that, more generally, for any two smooth projective varieties X; Y
over Q, if there exists a dominant rational map f W X Ü Y , then GPC1.X/ implies GPC1.Y /.
(Compare [40, (5.2) Theorem (b)].) This is also a special case of our results in Section 5
(cf. Corollary 5.4).

Proof of Proposition 4.3. The commutativity of (4.3) and the exactness of its first line
are clear. We are left to establish the exactness of its second line.

Let us consider F ´ X n U , the union F>1 of its irreducible component of codimension
strictly bigger than 1, and the closed subset Fsing of non-regular points of F . Observe that,
since Fsing [ F>1 has codimension strictly bigger than 1 in X , the inclusion j W V ,! X of
the open subscheme

V ´ X n .Fsing [ F>1/

induces compatible isomorphisms between de Rham and Betti cohomology groups:

(4.4) H i
dR.X=Q/

✏✏

⇠ // H i
dR.V=Q/

✏✏

H i .X an
C ;C/

⇠ // H i .V an
C ;C/

H i .X an
C ;Q.1//

OO

⇠ // H i .V an
C ;Q.1//

OO

for i 2 π0; 1; 2º.
The open subscheme U ´ X n F is contained in V . Moreover

D ´ V n U D F n .Fsing [ F>1/ D
[

1˛A

D˛ n .Fsing [ F>1/

is a closed smooth divisor in V , with irreducible components

VD˛ ´ D˛ n .Fsing [ F>1/; 1  ˛  A:
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The inclusions D ,! V and DC ,! VC define compatible Gysin isomorphisms with value in
the cohomology with support:

(4.5) H i�2
dR .D=Q/

✏✏

⇠ // H i
dR;D.V=Q/

✏✏

H i�2.Dan
C ;C/

⇠ // H i
Dan

C
.V an

C ;C/

H i�2.Dan
C ;Q/

OO

⇠ // H i
Dan

C
.V an

C ;Q.1//.

OO

Therefore the long exact sequences of cohomology groups, relating the cohomology of V with
support inD, the cohomology of V and the cohomology of U D V nD, may be interpreted as
a “Gysin exact sequences” which, combined with the isomorphisms (4.4), fits into a commuta-
tive diagram with exact lines:

(4.6) H 0
dR.D=Q/ D Q

A

✏✏

�dR // H 2
dR.X=Q/

✏✏

i⇤
dR // H 2

dR.U=Q/

✏✏

ResdR // H 1
dR.D=Q/

H 0.Dan
C ;C/ D CA �C // H 2.X an

C ;C/
i⇤
C // H 2.U an

C ;C/
ResC // H 1.Dan

C ;C/

H 0.Dan
C ;Q/ D QA

OO

�B // H 2.X an
C ;Q.1//

OO

i⇤
B // H 2.U an

C ;Q.1//

OO

ResB // H 1.Dan
C ;Q/.

In (4.4), (4.5) and (4.6), the vertical arrows are injections, that we shall write as inclusions
in the sequel. The middle line may be identified with the tensor product with C over Q (resp.
over Q) of the first (resp. third) one. By definition, the map �C (resp. �dR, �B) maps anyA-tuple
.�˛/1˛A in CA (resp. in QA, QA) to

P
1˛A �˛ŒD˛ç.

Recall also that, for Q-divisors on the smooth projective variety X , homological and
numerical equivalence coincide (see for instance [23, Section 19.3]), and that, if d ´ dimX ,
we have compatible isomorphisms of one-dimensional vector spaces:

H 2d .X=Q/

✏✏

⇠
TrdR

// Q

✏✏

H 2d .X an
C ;C/

⇠
TrC

// C

H 2d .X an
C ;Q.d//

OO

⇠
TrB
// Q.

OO

Consequently, if D denotes the dimension of the Q-vector space im �B, we may choose
a B-tuple .C1; : : : ; CD/ of elements of Z1.X/ such that the map

 W H 2.X an
C ;C/ ! CD;

c 7! .TrC.c . ŒCi ç//1iD;
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where ŒCi ç denotes the cycle class of Ci in H 2d�2
Gr .X;Q.d � 1//, defines by restriction iso-

morphisms of Q-, Q-, and C-vector spaces:

 B W Im�B
⇠�! QD;  dR W Im�dR

⇠�! Q
D
;  C W Im�C

⇠�! CD:

Consider a class c inH 2
Gr.U;Q.1//. Its image under ResC belongs to Im ResdR\Im ResB,

hence to the subspace

H 1
dR.D=Q/ \H 1.Dan

C ;Q/ D
M

1˛A

H 1
dR.

VD˛=Q/ \H 1. VDan
˛;C;Q/

of
H 1.Dan

C ;C/ D
M

1˛A

H 1. VDan
˛;C;C/:

According to Theorem 4.1, this intersection vanishes, therefore we may find ˛ 2 H 2
dR.X=Q/

and ˇ 2 H 2.X an
C ;Q.1// such that

c D i⇤dR˛ D i⇤Bˇ:

The class ı ´ ˇ � ˛ in H 2.X an
C ;C/ satisfies i⇤Cı D 0, hence belongs to Im�C . More-

over  C.ı/ D  B.ˇ/ �  dR.˛/ belongs to QD . Consequently ı belongs to Im�dR, and finally
the class ˇ D ˛ C ı belongs to H 2

Gr.X;Q.1// and is mapped to c by i⇤Gr.
This establishes the surjectivity of i⇤Gr in the second line of (4.3). Its exactness then

follows from the exactness at H 2.X an
C ;Q.1// of the last line of (4.6).

4.3. Periods and the weight filtration. The reader will have noticed that the arguments
of the preceding sections essentially reduce to reasoning on weights. We briefly discuss what
relationship one might expect between the weight filtration and Grothendieck classes.

Let X be a smooth quasi-projective variety over Q. As shown in [16] (see also [19])
both the algebraic de Rham cohomology groups of X and its Betti cohomology groups with
rational coefficients are endowed with a canonical weight filtration W✏. This is an increasing
filtration on cohomology. The group WnH

k.X an
C ;Q.j // is the subspace of weight at most n

in Hk.X an
C ;Q.j //, and the group Grn

W✏H
k.X an

C ;Q.j // is the “part” of weight n. The weight
filtration is functorial and compatible with products.

If the smooth varietyX is projective, the groupHk.X an
C ;Q.j // is of pure weight k � 2j ,

meaning that
Grn

W✏H
k.X an

C ;Q.j // D 0

unless n D k�2j . In general, the weights ofHk.X an
C ;Q.j // all lie between k�2j and 2k�2j

as proved in [16], meaning that

Wk�2j �1H
k.X an

C ;Q.j // D 0 and W2k�2jH
k.X an

C ;Q.j // D Hk.X an
C ;Q.j //:

The results above hold with Betti cohomology replaced by de Rham cohomology, and the
weight filtration is compatible with the comparison isomorphism between de Rham and Betti
cohomology; see [29, Chapter 3]. As a consequence, the de Rham–Betti cohomology groups
of X are endowed with a weight filtration W✏ as well, that is sent to the weight filtration above
on both the de Rham and the Betti realization. The graded objects Grn

W✏H
k
dRB.X;Q.j // are

also objects of the category CdRB; Q.
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Along the lines of Section 2.2.2, it might be sensible to formulate the following:

Conjecture 4.5. Grothendieck classes on smooth quasi-projective varieties live in
weight zero. In other words, let X be a smooth quasi-projective variety over Q, and let j; k
be two integers. Then:

(1) W�1H
k
dRB.X;Q.j //Gr D 0.

(2) The natural injection

W0H
k
dRB.X;Q.j //Gr ,! Hk

dRB.X;Q.j //Gr

is an isomorphism.

The results of Sections 4.1 and 4.2 above may be rephrased as partial results towards
Conjecture 4.5.

Theorem 4.6. Conjecture 4.5 holds if X is a smooth quasi-projective variety and .j; k/
is equal to .0; 1/; .1; 1/ or .1; 2/.

Proof. The statement is exactly what is proved in Theorem 4.1, Theorem 4.2 and Propo-
sition 4.3 respectively.

5. Absolute Hodge classes and the Grothendieck period conjecture

In this section, we explain how some well-known results regarding absolute Hodge cycles
and the conjectures of Hodge and Tate may be transposed into the setting of the Grothendieck
period conjecture.

5.1. Absolute Hodge classes. The natural cohomological setting that relates the Hodge
conjecture and the Grothendieck period conjecture is the one of absolute Hodge classes, as
introduced by Deligne in [20]. While it is not strictly necessary to introduce absolute Hodge
classes to prove the results in this section, as one can rely on André’s motivated classes only,
consider it worthwhile to compare the definition of Grothendieck classes to that of absolute
Hodge classes. We refer to [20] and the survey [14] for details on absolute Hodge classes.

Let X be a smooth projective variety over an algebraically closed field K of finite
transcendence degree over Q. If � is an embedding ofK into C, let �X be the complex variety
deduced from X by the base field extension � W K ! C.

Definition 5.1. Let ˛ be a cohomology class in H 2k
dR .X=K/.

(1) Let � be an embedding ofK into C. We say that ˛ is rational relative to � if the image of
˛ inH 2k

dR .�X=C/ belongs to the image of the Betti cohomology groupH 2k.�X an;Q.k//
under the comparison isomorphism (1.4).

(2) The class ˛ is a Hodge class relative to � if it is rational relative to � and ˛ belongs
to F kH 2k

dR .X=K/, where F ✏ is the Hodge filtration.

(3) The class ˛ is an absolute rational class if ˛ is rational relative to all embeddings of K
into C.
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(4) The class ˛ is an absolute Hodge class if it is an absolute rational class and belongs
to F kH 2k

dR .X=K/.

(5) Given an embedding � ofK into C, we say that a class ˇ inH 2k.�X an;Q.k// is absolute
rational (resp. absolute Hodge) if its image under the comparison isomorphism (1.4) is
absolute rational (resp. absolute Hodge).

Observe that, in the preceding definition, when K is the field Q and � is the inclusion
of Q in C, the set of classes in H 2k

dR .X=K/ rational relative to � is the group H 2k
Gr .X;Q.k//.

Proposition 5.2. LetX be a smooth projective variety over Q, k be a non-negative inte-
ger, andK be an algebraically closed field of finite transcendence degree over Q containing Q.
Let ˛ be a class in H 2k

dR .XK=K/. Then each of the following conditions imply the following:

(1) The class ˛ is algebraic.

(2) The class ˛ is motivated (in the sense of André [3]).

(3) The class ˛ is an absolute Hodge class.

(4) The class ˛ is an absolute rational class.

(5) The class ˛ lies in H 2k
Gr .X;Q.k//.

Proof. The only step that does not formally follow from the definitions is the fact
that absolute rational classes lie in H 2k

Gr .X;Q.k//. By the observation above, this reduces to
proving that if ˛ is an absolute rational class inH 2k

dR .XK=K/, then ˛ is defined over Q, that is,
˛ belongs to the subspace H 2k

dR .X=Q/. This is proven in [20, Corollary 2.7].

The question whether (4) implies (3) is asked by Deligne in [20, Question 2.4].

Let X and Y be two smooth projective algebraic varieties over Q. As explained in [20]
(see also [14, Section 11.2.6]), the definition of an absolute Hodge class given above can be
extended to that of an absolute Hodge morphism

f W H 2k.X an
C ;Q.k// ! H 2l.Y an

C ;Q.l//:

Note that, as a consequence of Proposition 5.2 above, such a morphism maps H 2k
dR .X=Q/

to H 2l
dR.Y=Q/ and H 2k

Gr .X;Q.k// to H 2l
Gr .Y;Q.l//.

The following proposition somehow asserts the motivic nature of the Grothendieck
period conjecture. Its proof relies heavily on the existence of polarizations.

Proposition 5.3. Let X and Y be two smooth projective varieties over Q, and let k
and l be two non-negative integers. Let

f W H 2k.X an
C ;Q.k// ! H 2l.Y an

C ;Q.l//

be an absolute Hodge morphism.

(1) We have
f .H 2k

Gr .X;Q.k/// D H 2l
Gr .Y;Q.l// \ Im.f /:
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(2) Assume that X satisfies the Hodge conjecture in codimension k and that Y satisfies the
Grothendieck period conjecture in codimension l . Then we have

f .H 2k
Gr .X;Q.k/// D H 2l

Gr .Y;Q.l// \ Im.f / D f .clXGr.Z
k.X/Q//:

In particular, if f is injective, then X satisfies the Grothendieck period conjecture in
codimension k.

(3) Assume that f is algebraic, namely, that f is induced by an algebraic correspondence
between X and Y , and that X satisfies the Grothendieck period conjecture in codimen-
sion k. Then

H 2l
Gr .Y;Q.l// \ Im.f / D clYGr.Z

k.Y /Q/ \ Im.f /:

In particular, if f is surjective, then Y satisfies the Grothendieck period conjecture in
codimension l .

Proof. (1) This is a semisimplicity result that relies in an essential way on polarizations.
By [14, Proposition 24 and Corollary 25], there exists an absolute Hodge morphism

g W H 2l.Y an
C ;Q.l// ! H 2k.X an

C ;Q.k//

such that the restriction of g to the image of f is a section of f . Now if ˇ is an element
of H 2l

Gr .Y;Q.l// \ Im.f /, ˛ ´ g.ˇ/ belongs to H 2k
Gr .X;Q.k// and f .˛/ D ˇ.

(2) Let g be as above, and let ˛ be an element of H 2k
Gr .X;Q.k//. Then f .˛/ lies in

H 2l
Gr .Y;Q.l// \ Im.f /. Since Y satisfies the Grothendieck period conjecture in codimension l ,

f .˛/ is the cohomology class of an algebraic cycle on Y . In particular, f .˛/ is a Hodge class.
Since g is absolute Hodge, ˛0 D g.f .˛// is a Hodge class as well, hence the class of an

algebraic cycle onX sinceX satisfies the Hodge conjecture in codimension k. By the definition
of g, ˛ and ˛0 have the same image by f .

(3) Let g be as above, and let ˇ be an element ofH 2l
Gr .Y;Q.l// \ Im.f /. Then ˛ D g.ˇ/

belongs to H 2k
Gr .X;Q.k//. Since X satisfies the Grothendieck period conjecture in codimen-

sion k, ˛ is the cohomology class of an algebraic cycle. Since f is algebraic, ˇ D f .˛/ is the
cohomology class of an algebraic cycle as well.

Corollary 5.4. Let X and Y be two smooth projective varieties over Q. If there exists
a dominant rational map f W X Ü Y , then

(5.1) GPC1.X/ H) GPC1.Y /:

Proof. Let Ä be the graph of f in X ⇥ Y , and let ⇡ W Ä 0 ! Ä be a resolution of
singularities of Ä . Since Ä 0 is birational to X , Corollary 4.4 shows that GPC1.X/ is equivalent
to GPC1.Ä 0/. The second projection from Ä 0 to Y is dominant. As a consequence, up to
replacing X with Ä 0, we can assume that f is a morphism from X to Y .

Consider the map

f ⇤ W H 2.Y an
C ;Q.1// ! H 2.X an

C ;Q.1//:

It is an absolute Hodge morphism, and is well known to be injective. Indeed, if V is a subvariety
of X such that the dimension of V is equal to the dimension of Y and the restriction of f to V
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is dominant, and if ŒV ç is the cohomology class of V , then the map

H 2.Y an;Q.1// ! H 2.Y an;Q.1//; ˛ 7! f⇤.f ⇤˛ [ ŒV ç/;
is equal to the multiplication by the degree ŒQ.V / W Q.Y /ç of V over Y .

By part (2) of Proposition 5.3 and Lefschetz’s theorem on .1; 1/-classes, this proves
that GPC1.X/ implies GPC1.Y /.

Corollary 5.5. Let X be a smooth projective variety over Q of dimension at least 3,
and let Y be a smooth hyperplane section of X defined over Q. Then

GPC1.Y / H) GPC1.X/:

Proof. The statement is again a consequence of Proposition 5.3 (2) and Lefschetz’s
theorem on .1; 1/-classes, applied to the (algebraic, hence absolute Hodge) morphism

i⇤ W H 2.X an
C ;Q.k// ! H 2.Y an

C ;Q.k//

defined by the inclusion map i W Y ,! X . Indeed, according to the Weak Lefschetz Theorem,
i⇤ is injective.

Observe that, as pointed out in Section 1.2, Corollary 5.5 shows that the validity of
GPC1.X/ for arbitrary smooth projective varieties would follow from its validity for smooth
projective surfaces.

Observe also that, when the dimension of X is greater than 3, Corollary 5.5 is a straight-
forward consequence of the classical weak Lefschetz theorems for cohomology and Picard
groups, which show that when this dimension condition holds, the injection i W Y ,! X induces
isomorphisms i⇤ W H 2

Gr.X;Q.1//
⇠�! H 2

Gr.Y;Q.1// and i⇤ W Pic.X/ ⇠�! Pic.Y /. Accordingly,
the actual content of Corollary 5.5 concerns the case where X is a threefold and Y is a surface.

5.2. Abelian motives. In this subsection, we use Proposition 5.3 together with the
Kuga–Satake correspondence to extend the Grothendieck period conjecture from abelian vari-
eties to some varieties whose motive is – conjecturally – abelian.

Recall that a smooth projective variety X over a subfield of C is said to be holomor-
phic symplectic if its underlying complex variety is simply connected and if H 0.X;�2

X / is
generated by a global everywhere non-degenerate two-form.

Examples of holomorphic symplectic varieties include Hilbert schemes of points and
their deformations, generalized Kummer surfaces and their deformations, as well as two classes
of sporadic examples in dimension 6 and 10. We refer to [7] for details.

Theorem 5.6. The following statements hold.

(1) Let X be a smooth projective holomorphic symplectic variety over Q, and assume that
the second Betti number of X is at least 4. Then GPC1.X/ holds.

(2) Let X be a smooth cubic hypersurface in P5

Q
. Then GPC2.X/ holds.

To control the geometry of the projective varieties considered in Theorem 5.6, we shall
rely on the following two classical results.
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Theorem 5.7. Let X be a smooth projective holomorphic symplectic variety over Q,
and assume that the second Betti number of X is at least 4. Then there exists an abelian
variety A over Q and an absolute Hodge injective morphism

(5.2) KS W H 2.X an
C ;Q.1// ! H 2.Aan

C ;Q.1//:

When X is a K3 surface, this is in substance the main assertion concerning the Kuga–
Satake correspondence in [17], which was written before the introduction of the notion of
absolute Hodge classes. In the proof of [3, Lemme 7.1.3], André shows that, in the case
of K3 surfaces, the Kuga–Satake correspondence is a motivated cycle. The general result –
actually, the fact that the Kuga–Satake correspondence for general holomorphic symplectic is
motivated – is proved in [2, Corollary 1.5.3 and Proposition 6.2.1]; see also [14, Section 4.5].

Let us only recall that the Kuga–Satake correspondence, first introduced in [31], is
defined analytically through an algebraic group argument at the level of the moduli spaces of
holomorphic symplectic varieties and abelian varieties, which are both open subsets of Shimura
varieties. It is not known whether it is induced by an algebraic cycle, although this is expected
as an instance of the Hodge conjecture.

The second result is due to Beauville and Donagi in [8].

Theorem 5.8. Let X be a smooth cubic hypersurface in P5

Q
. Then there exists a smooth

projective holomorphic symplectic fourfold F over Q, and an isomorphism

(5.3) � W H 4.X an
C ;Q.2// ! H 2.F an

C ;Q.1//

that is induced by an algebraic correspondence between X and F .

Proof. While we refer to [8] for the details of its proof, we briefly indicate the basic
geometric constructions behind this theorem.

Let F be the variety of lines in X . Beauville and Donagi prove that F is a smooth pro-
jective holomorphic symplectic variety of dimension 4 with second Betti number equal to 23.

By the following construction, codimension 2 cycles on X are related to divisors on F .
Let Z be the incidence correspondence between F and X . Points of Z are pairs .l; x/

where l is a line inX and x a point of l . The incidence correspondenceZ maps to bothF andX
in a tautological way. Since F has dimension 4, Z has dimension 5, and the correspondence
induces a mapH 4.X an

C ;Q.2// ! H 2.F an
C ;Q.1//. This map is the required isomorphism.

From the result of Beauville and Donagi, we get the following.

Corollary 5.9. LetX be a smooth cubic hypersurface in P5

Q
. Then there exists a smooth

projective holomorphic symplectic fourfold F over Q, and an isomorphism

H 2.F an
C ;Q.1// ! H 4.X an

C ;Q.2//

that is induced by an algebraic correspondence between F and X .

Proof. Let F be as in Theorem 5.8. Let  W H 6.F an
C ;Q.3// ! H 4.X an

C ;Q.2// be the
Poincaré dual to �. It is induced by an algebraic correspondence since � is. Let Œhç be the
cohomology class of a hyperplane section of F . By the Hard Lefschetz Theorem, the map

H 2.F an
C ;Q.1// ! H 6.F an

C ;Q.3//; ˛ 7! ˛ [ Œhç2;
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is an isomorphism. It is of course induced by an algebraic correspondence. As a consequence,
the map

H 2.F an
C ;Q.1// ! H 4.X an

C ;Q.2//; ˛ 7!  .˛ [ Œhç2/;
is an isomorphism that is induced by an algebraic correspondence.

Proof of Theorem 5.6. Given the existence of the Kuga–Satake morphism (5.2) and of
the Beauville–Donagi isomorphism (5.3), the proposition follows from standard arguments.

(1) We know that GPC1.A/ holds and that X satisfies the Hodge conjecture in codi-
mension 1 by the Lefschetz .1; 1/ Theorem. Proposition 5.3 (2) applied to the Kuga–Satake
morphism shows that GPC1.X/ holds.

(2) Let F be as in Theorem 5.8. Since we just proved that GPC1.F / holds, Corollary 5.9
and Proposition 5.3 (3) allow us to conclude.
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