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Dedicated to Roy Smith on his 65th birthday.

ABSTRACT. We study complex abelian varieties of dimension g that have a
vector bundle of rank g with a section that vanishes at a single point, with
multiplicity 1.

The authors of [PSP] study which varieties X (defined, say, over an alge-
braically closed field) satisfy what they call “the diagonal property”: there exists
a vector bundle of rank dim(X) on X x X with a section whose zero-scheme is
the diagonal. This property is known to hold for all flag varieties SL,, /P ([F1])
and, using a variant of Serre’s construction, they show that it holds for projective
surfaces which have a cohomologically trivial line bundle. In particular, it holds for
abelian surfaces.

The diagonal property implies the weaker “point property”: for each point x
of X, there exists a vector bundle of rank dim(X) on X with a section whose zero-
scheme is x. When X is a group variety, these two properties are equivalent (it is
even enough to have the point property for a single point x).

In this note, we study these (equivalent) properties when X is a complex abelian
variety. We show in §1 that a general non-principally polarized abelian variety of a
sufficiently high dimension does not have these properties. Using Picard bundles,
we show in §2 that these properties hold when X is the Jacobian of a smooth
curve (or a product of such). However, Lange pointed out that in any dimension,
principally polarized abelian varieties that have the point property are dense in
their moduli space (Remark 2.4). I do not know any principally polarized abelian
variety that does not have the point property, although I would like to think that
Jacobians of curves are the only principally polarized abelian varieties with Picard
number 1 that have this property, thereby giving us another (partial) solution to
the Schottky problem. In §3 and 4, we prove a necessary condition for the point
property to hold, and use it to get restrictions on possible vector bundles.

We work over the complex numbers, although the results of §2 and 3 are valid
over an algebraically closed field of arbitrary characteristic.
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1. Non-principally polarized abelian varieties

Let X be an abelian variety of dimension g. If & is a vector bundle of rank g
on X with a section whose zero-scheme is the origin o, we have ¢,(&) = [o] in the
Chow group of X. We use simple-minded numerics coming from the fact that the
number

V(X&) = /X chy (&)

(this is the Hirzebruch-Riemann-Roch formula; [F2], Corollary 15.2.1) is an integer.
If (X, ) is a very general polarized abelian variety of type (41 | --- | d4) ([BL],
§3.1), we know by Mattuck’s theorem ([BL], Theorem 17.4.1) that ¢;(&) is, in

cohomology, a rational multiple of ¢*. Since 51-27154‘! is a nondivisible integral class

in H?(X,Z), we may write

gi
1 (&) = aj—— ith a; € Z.
(1.1) ¢ (&) a251 sl with a; € Z
We obtain ([Mc], p. 20)
[¢5] Qg
1.2 X =6---0, D[—,...
( ) X( 75)) 61 69 (517 751”.55])
where
by 1 0 .. .0
b by 1 :
b3 /2! bo /2! b
(13)  D(by,...,by) == 3/ 2/ !
by /3! bs /3! .0
: : o1
bg/(g—1)! bg—1/(g—1)! --- bg/30 ba/2! by
ProPOSITION 1.1. A wery general nonprincipally polarized abelian variety of
type (01 | --- | 64) whose dimension g is greater than some prime factor of 64/61

does not have the point property.

PrROOF. We may assume §; = 1. Expanding the determinant (1.3), we see that

the integer (X, &) can be written as (—1)971 ﬁ + 0y gy for some integer a.
It follows that a4 is divisible by ged(dy, (9 — 1)!), hence the proposition. |

2. Jacobians of curves

Let C' be a smooth connected projective curve of genus g > 2 and let JC be
its Jacobian, endowed with its canonical principal polarization 6. Any element £ of
JC defines a numerically trivial line bundle P: on JC.

Fixing a point ¢ of C, we view the curve C' as embedded in JC' by sending a
point z of C to the isomorphism class of O¢(x — ¢) and we define W; as the i-fold
sum C + - - - + C, with the convention Wy = {o}.

Let & be the Poincaré line bundle on C'x JC', uniquely defined by the properties

@|{c}><JC§ﬁJC and 9|CX{§}§P§|C for all £ € JC.
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Following [S], §2, Definition (see also [Mk], and [Mu], Definition 4.1), we define
the Picard bundle by'
F = R'q.(Z @p*Oc(—c))
wherep : CxJC — C and q : CxJC — JC are the projections. By [S], the sheaf F
is locally free of rank g on JC. Moreover, if ¢ is the involution £ — Ko —(2g—2)c—&
of JC, the morphism? 7 : P(:*.%) — JC is isomorphic to the Abel-Jacobi map
o C(29-1) — JC
T4+ x99-1 — Oc(z1+ -+ 2291 — (29 — 1))
and the divisor C(2972) 4 ¢ in C?9~1) represents the ample line bundle Op(-7)(1)
([S], Theorem 2). The Chern classes of .# were computed by Mattuck in [Mk], §6,
Corollary (see also [S], §4, and [G], Corollary 3 to Theorem 4); he obtains:
(21) Cg_i(j) = [Wz] for all 7 € {0, R ,g},
in the Chow group of JC.

THEOREM 2.1. For alli € {0,...,g}, we have
o) f-eec;

0 otherwise.

W(JC, F @ P:) = {

Moreover, the (scheme-theoretic) zero-locus of any nonzero section of F is Wy =
{o}.

The first statement of the theorem was also obtained in [Mu], Proposition 4.3,
using the Fourier transform (see also [G], Corollary 2 to Theorem 4).

PRrOOF. We have
H'(JC,Z @ P) ~ H'(JC,.*F @ ."P)
~ Hz(P(L*y),ﬁp(L*g)(l) ®7T*P,§)
~ HY(CP™Y Opeey(C*7D L)@ a*Pg)
~ AHYC,c—€)@Sym* " HY(C,c - €)
by [I], §3.1. This space vanishes if £ ¢ —C, and if £ represents Oc(c — ¢), it is
isomorphic to A'H?(C, K¢ — /).

In particular, the zero-locus of a nonzero section of *.# is the set of points &’
of JC such that a=1(¢") C C(29-2) 4 ¢ ie., ¢ is a base-point for the linear system
|Oc((2g — 1)c) ® Per|. This is {¢(0)}. By (2.1), the order of vanishing at this point
must be 1, and this proves the last statement of the theorem. ([

COROLLARY 2.2. The Jacobian of any smooth projective curve satisfies the
point property.

Of course, any (finite) product of varieties that satisfy the point property also
satisfies this property.

The vector bundle .% is known to be stable ([K]), and its Euler characteristic
is 0 (by Theorem 2.1, or [MK], §8).

IThis is the sheaf denoted by .#_1 (or F_1) in [S] and [Mu], and by Psy—1 in [K] and [EL].
In the terminology of [Mul], the sheaf ¢ (—c), viewed as a (torsion) sheaf on JC, is IT and its
Fourier-Mukai transform is .%.

2As in [S], we use Grothendieck’s convention for projectivization.
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We may ask to what extent .% is unique. In dimension 2, Mukai proved the
following ([Mu], Theorem 5.4): on a principally polarized abelian surface (X,0),
any stable vector bundle of rank 2 with first Chern class 6 and second Chern class
1 is a translate of F tensored by a numerically trivial line bundle. However, the
vector bundle & constructed in [PSP] to prove the point property for an abelian
surface X is different: it appears as an extension

(2.2) 0—0x —&—PRI, —0

where P = det(&’) can be any nontrivial numerically trivial line bundle on X (& is
of course not stable, only semistable).

ProPOSITION 2.3. The Picard bundle does not deform outside the closure of
the Jacobian locus in the moduli space ; of principally polarized abelian varieties
of dimension g.

PrROOF. In the terminology of [Mul], any small deformation ¢ of .# remains
WIT, 1 ([Mu], Proposition 4.3), and 9 is W ITy; since it is nonzero, its support
must have dimension at least 1. Since .Z has support —C', the support of 9 has
dimension at most 1 and must be a deformation of —C' (and, possibly, finitely many
points). This can only happen if the deformed abelian variety is still a Jacobian
(or a product of such) by Matsusaka’s criterion ([Ma]). O

REMARK 2.4 (Lange). For any g > 0, the set of principally polarized abelian
varieties that satisfy the point property is dense in 7;,. This can be seen as follows:
any abelian variety isogeneous to EY9, where F is an elliptic curve with complex
multiplication, is isomorphic to the product of g elliptic curves ([BL], Exercise
5.6.(10)), hence has the point property. Moreover, the corresponding subset of <7
is dense ([L]). These varieties all have Picard number g?. An explicit example of
such a principally polarized abelian fourfold which is not a Jacobian can be found
in [D], §5.

3. A necessary condition

Following ideas of [PSP], we get a necessary condition, on any smooth projec-
tive variety, for the point property to be satisfied.

PROPOSITION 3.1. Let X be a smooth projective variety of dimension g and let
& be a vector bundle of rank g on X with a section s whose zero-scheme is a single
point x. All sections of det(&) @ wx then vanish at x.

PROOF. Let .Z be the invertible sheaf det(&) = A9&. The long exact sequence
(Koszul complex)

O—>/\gé"v—>-~-—>/\zé"v—>é"vi>fw—>0

determines an element [s] of Ext% ' (.7,,.2"). The short exact sequence 0 — ., —
Ox — C, — 0 induces another exact sequence

Extd (S, 2Y) D Bxtd (Cy, 2Y) — HI(X, £Y) L BExtd (I, £Y) — 0
The image of 5([s]) by the morphism
(3.1) Ext% (C,,.2Y) — H*(X, &atf, (Cp, 2Y)) ~C



THE DIAGONAL PROPERTY FOR ABELIAN VARIETIES 5

is nonzero because & is locally free (compare with the proof of [PSP], Proposi-
tion 1). Since, by Serre duality, the vector space on the left-hand-side of (3.1) is
also 1-dimensional, (3 is surjective, hence 7 is bijective and its Serre-dual is

H' (X, Z®wx ® 7,) = H' (X, Z ®@wx)
In other words, all sections of . ® wx vanish at x. O

Of course, det(&) ® wx might have no nonzero sections, in which case the
proposition says nothing at all.

4. Principally polarized abelian varieties

Let now (X, 6) be a very general principally polarized abelian variety of dimen-
sion g and let & be a vector bundle of rank g on X. We may, as in (1.1), write in
cohomology ¢;(&) = a;0°/il, with a; € Z, and x(X,&) = D(a1,...,a,) (see (1.2)).
This number is an integer, and this implies various congruences, one example of
which is the following.

PrOPOSITION 4.1. If p:= g — 1 is prime, we have
ajag—1 =ay (mod p)
In particular, if ag =1, ay s prime to p.

Proor. Expanding the determinant (1.3) along its last row, we get

1
X(X,8) = (-1)77 ——(ag — arag-1) +a
(g—1r !
where a is a rational number with a denominator whose prime factors are all < p.
Since x(X, &) is an integer, this proves the proposition. O

Combining this result with Proposition 3.1, we obtain the following.

COROLLARY 4.2. Let (X,0) be a very general principally polarized abelian va-
riety of dimension g and let & be a vector bundle of rank g on X with a section
whose zero-scheme is the origin.

If & is stable, or if & is semistable and g — 1 is prime, ¢1(&) = 0.

In particular, if ¢ = 2 and & is stable, it follows from the result of Mukai
mentioned in §2 that & is a translate of the vector bundle .% constructed there,
tensored by a numerically trivial line bundle.

PROOF. Write ¢1(&) = a16. If & is stable (resp. semistable), we have a; > 1
(resp. a; > 0). On the other hand, by Proposition 3.1, the linear system | det(&)]
has a base-point, hence a; < 1 by the Lefschetz Theorem. Finally, by Proposition
4.1, if g — 1 is prime, a; # 0. This proves the corollary. ]
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