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Abstract. We study the geometry and the period map of nodal
complex prime Fano threefolds with index 1 and degree 10. We
show that these threefolds are birationally isomorphic to Verra
threefolds, i.e., hypersurfaces of bidegree (2, 2) in P2 ×P2. Using
Verra’s results on the period map for these threefolds and on the
Prym map for double étale covers of plane sextic curves, we prove
that the fiber of the period map for our nodal threefolds is the union
of two disjoint surfaces, for which we give several descriptions. This
result is the analog in the nodal case of a result of [DIM] in the
smooth case.
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1. Introduction

Nodal prime Fano threefolds of degree 10. There are 10 irre-
ducible families of smooth complex Fano threefolds X with Picard
group Z[KX ], one for each degree (−KX)3 = 2g − 2, where g ∈
{2, 3, . . . , 10, 12}. The article is a sequel to [DIM], where we studied
the geometry and the period map of smooth complex Fano threefolds
X with Picard group Z[KX ] and degree 10. Following again Logachev
([Lo], §5), we study here complex Fano threefolds X with Picard group
Z[KX ] and degree 10 which are general with one node. They are de-
generations of their smooth counterparts and their geometry is made
easier to study by the fact that they are (in two ways) birationally
conic bundles over P2.

Two conic bundle structures. More precisely, the nodal variety X
is anticanonically embedded in P7, and it has long been known that
the projection from its node O maps X birationally onto a (singular)
intersection of three quadrics XO ⊂ P6. The variety XO, hence also X,
is therefore (birationally) a conic bundle with discriminant the union
of a line Γ1 and a smooth sextic Γ6 (see [B1], 5.6.2), and associated

connected double étale cover π : Γ̃6 ∪ Γ1
1 ∪ Γ2

1 → Γ6 ∪ Γ1 (§4.2). On
the other hand, the “double projection” of X from O (i.e., the linear
projection from the 4-dimensional embedded Zariski tangent space at
O) is also (birationally) a conic bundle, with discriminant curve another
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smooth plane sextic Γ?6 and associated connected double étale cover

π? : Γ̃?6 → Γ?6 (§4.1).

Birational isomorphism with Verra threefolds. We show (Theo-
rem 4.5) that these two conic bundle structures define a birational map
from X onto a (general) hypersurface T ⊂ P2 × P2 of bidegree (2, 2).
These threefolds T were studied by Verra in [V]. Both projections to P2

are conic bundles and define the connected double étale covers π and
π? of the discriminant curves, which are nonisomorphic smooth sextics.
In particular, the associated Prym varieties Prym(π) and Prym(π?)
are isomorphic (to the intermediate Jacobian J(T )) and Verra showed
that the Prym map from the space of connected double étale covers of
smooth plane sextics to the moduli space of 9-dimensional principally
polarized abelian varieties has degree 2.

Fibers of the period map. This information is very useful for the
determination of the fiber of the period map of our nodal threefolds
X, i.e., for the description of all nodal threefolds of the same type
with intermediate Jacobian isomorphic to J(X). This J(X) is a 10-
dimensional extension by C? of the intermediate Jacobian of the min-
imal desingularization of X, which is also the intermediate Jacobian
of T , and the extension class depends only on T (§7.3). A nodal X
can be uniquely reconstructed from the data of a general sextic Γ6 and
an even theta characteristic M on the union of Γ6 and a line Γ1: by
work of Dixon, Catanese, and Beauville, the sheaf M (on P2) has a free
resolution by a 7 × 7 symmetric matrix of linear forms, which defines
the net of quadrics whose intersection is XO (Theorem 6.1 and Remark

6.2). We show that given the double cover π : Γ̃6 → Γ6, the set of even
theta characteristics M on Γ6∪Γ1, which induce π on Γ6, is isomorphic
to the quotient of the special surface Sodd(π) (as defined in [B3]) by
its natural involution σ (Proposition 6.3). Together with Verra’s re-
sult, this implies that the general fiber of the period map for our nodal
threefolds is birationally the union of the two surfaces Sodd(π)/σ and
Sodd(π?)/σ? (§7.3).

A result of Logachev ([Lo], Proposition 5.8) says that the surface Sodd

is also isomorphic to the minimal model Fm(X) of the normalization
of the Fano surface Fg(X) of conics contained in X. On the one hand,
we obtain the analog in the nodal case of the reconstruction theorem
of [DIM], Theorem 9.1: a general nodal X can be reconstructed from
the surface Fg(X). On the other hand, the present description of the
fiber of the period map at a nodal X fits in with the construction in
[DIM] of two (proper smooth) surfaces in the fiber of the period map
at a smooth X ′, one of them isomorphic to Fm(X ′)/ι ([DIM], Theorem
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6.4). In both the smooth and nodal cases, the threefolds in the fiber
of the period map are obtained one from another by explicit birational
transformations called line and conic transformations (see §4.3 and
§5.5).

Unfortunately, because of properness issues, we cannot deduce from
our present results that a general fiber of the period map for smooth
prime Fano threefolds of degree 10 consists of just these two surfaces
(although we prove here that these surfaces are distinct, which was a
point missing from [DIM]), although we certainly think that this is the
case.

Singularities of the theta divisor. The singular locus of the theta
divisor of the intermediate Jacobian of a Verra threefold was described
in [V]. This description fits in with a conjectural description of the
singular locus of the theta divisor of the intermediate Jacobian of a
smooth prime Fano threefold of degree 10 that we give in §8. This
conjecture would imply the conjecture about the general fiber of the
period map mentioned above.

2. Notation

• As a general rule, Vm denotes an m-dimensional (complex) vector
space, Pm an m-dimensional projective space, and Γm a plane curve
of degree m. We fix a 5-dimensional complex vector space V5 and
we consider the Plücker embedding G(2, V5) ⊂ P9 = P(∧2V5) and its
smooth intersection W with a general P7 (§3.1).
• O ∈ W is a general point, Ω ⊂ P9 is a general quadric with vertex

O, and X = W ∩ Ω ⊂ P7 is an anticanonically embedded prime Fano

threefold with one node at O; X̃ → X is the blow-up of O.
• pO : P7 99K P6

O is the projection from O. We write ΩO = pO(Ω) ⊂
P6
O, general quadric, WO = pO(W ) ⊂ P6

O, base-locus of a pencil Γ1

of quadrics or rank 6, and XO = pO(X) ⊂ P6
O, base-locus of the net

Π = 〈Γ1,ΩO〉 of quadrics.
• WO contains the 3-plane P3

W = pO(TW;O) and XO contains the
smooth quadric surface Q = P3

W ∩ ΩO. The singular locus of WO is
a rational normal cubic curve CO ⊂ P3

W . The singular locus of XO is
Q ∩ CO = {s1, . . . , s6}.
• P̃6

O → P6
O is the blow-up along P3

W , W̃O ⊂ P̃6
O is the (smooth)

strict transform of WO, and X̃O ⊂ W̃O the (smooth) strict transform
of XO.
• The projection pW : X 99K P2

W from the 4-plane TW;O is a bira-

tional conic bundle with associated double étale cover π? : Γ̃?6 → Γ?6
and involution σ?.
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• Γ7 = Γ6 ∪ Γ1 ⊂ Π is the discriminant curve of the net of quadrics

Π that contain XO, with associated double étale cover π : Γ̃6 ∪ Γ1
1 ∪

Γ2
1 → Γ6 ∪ Γ1 and involution σ. We write {p1, . . . , p6} = Γ1 ∩ Γ6 and

{p̃1, . . . , p̃6} = Γ1
1 ∩ Γ̃6.

• Fg(X) is the connected surface that parametrizes conics on X, with

singular locus the smooth connected curve Γ̃?6 of conics on X passing

through O, and ν : F̃g(X) → Fg(X) is the normalization (§5.2). The

smooth surface F̃g(X) carries an involution ι; its minimal model is

F̃m(X).
• Seven and Sodd are the special surfaces associated with π, with

involution σ (§5.3). There is an isomorphism ρ : F̃m(X) ∼→Sodd (§5.4).
• T ⊂ P2 × P2 is a Verra threefold, i.e., a smooth hypersurface of

bidegree (2, 2).

3. The fourfolds W and WO

3.1. The fourfold W . As explained in [DIM], §3, the intersections

W = G(2, V5) ∩P7 ⊂ P(∧2V5),

whenever smooth and 4-dimensional, are all isomorphic under the ac-
tion of PGL(V5). They correspond dually to pencils P⊥7 of skew-
symmetric forms on V5 which are all of maximal rank. The map that
sends a form in the pencil to its kernel has image a smooth conic
cU ⊂ P(V5) that spans a 2-plane P(U3), where U3 ⊂ V5 is the unique
common maximal isotropic subspace to all forms in the pencil (see §9.1
for explicit equations).

3.2. Quadrics containing W . To any one-dimensional subspace V1 ⊂
V5, one associates a Plücker quadric in |IG(2;V5)(2)| obtained as the pull-
back of G(2, V5/V1) by the rational map P(∧2V5) 99K P(∧2(V5/V1)).
This gives a linear map

γG : P(V5) −→ |IG(2;V5)(2)| ' P49

whose image consists of quadrics of rank 6. Since no such quadric
contains P7 and |IW (2)| has dimension 4, we obtain an isomorphism

(1) γW : P(V5) ∼−→|IW (2)|.

The quadric γW ([V1]) ⊂ P7 has rank 6 except if the vertex of γG([V1]),
which is the 3-plane P(V1 ∧ V5) contained in G(2, V5), meets P7 along
a 2-plane, which must be contained in W . This happens if and only if
[V1] ∈ cU ([DIM], §3.3).
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Given a point O ∈ W , corresponding to a 2-dimensional subspace
VO ⊂ V5 , the quadrics that contain W and are singular at O corre-
spond, via the isomorphism (1), to the projective line P(VO) ⊂ P(V5).

3.3. The P2-bundle P(MO) → P2
O. As in [DIM], §3.4, we define,

for any hyperplane V4 ⊂ V5, the 4-dimensional vector space MV4 =
∧2V4 ∩ V8 (where V8 ⊂ ∧2V5 is the vector space such that P7 = P(V8))
and the quadric surface

QW;V4 = G(2, V4) ∩P(MV4) ⊂ W.

Let P2
O ⊂ P(V ∨5 ) be the set of hyperplanes V4 ⊂ V5 that contain VO,

and consider the rank-3 vector bundle MO → P2
O whose fiber over [V4]

is MV4/∧2VO and the associated P2-bundle P(MO)→ P2
O.

3.4. The fourfold WO. Let O be a point of W , let VO ⊂ V5 be the
corresponding 2-dimensional subspace, and let pO : P7 99K P6

O be the
projection from O. We set

WO = pO(W ) ⊂ P6
O.

The group Aut(W ) acts on W with four orbits O1, . . . , O4 indexed by
their dimensions (§9.1), so there are four different WO. We will restrict
ourselves to the (general) case O ∈ O4, although similar studies can be
made for the other orbits.

Since O ∈ O4, the line P(VO) ⊂ P(V5) does not meet the conic cU
(§9.1), hence all quadrics in the pencil γW (P(VO)) are singular at O and
have rank 6 (§3.2). This pencil projects to a pencil of rank-6 quadrics in
P6
O whose base-locus contains the fourfold WO. Since WO has degree 4,

it is equal to this base-locus and contains the 3-plane P3
W = pO(TW;O).

The locus of the vertices of these quadrics is a rational normal cubic
curve CO ⊂ P3

W , which is the singular locus of WO and parametrizes
lines in W through O (see §9.2 for explicit computations).

In fact, all pencils of rank-6 quadrics in P6 are isomorphic ([HP],
Chapter XIII, §11). In particular, all quadrics in the pencil have a
common 3-plane, and the fourfold that they define in P6 is isomorphic
to WO.

3.5. The P2-bundle W̃O → P2
W . Let P2

W parametrize 5-planes in P7

that contain TW;O (or, equivalently, 4-planes in P6
O that contain P3

W ).

Let ε : P̃6
O → P6

O be the blow-up of P3
W , with P̃6

O ⊂ P6
O×P2

W , and let

W̃O ⊂ P̃6
O be the strict transform of WO.

We will prove in §9.2 that the projection W̃O → P2
W is a P2-bundle,

and that W̃O is smooth. Furthermore, there is an isomorphism P2
O '

P2
W such that the induced isomorphism P2

O×P6
O ' P2

W ×P6
O gives by
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restriction an isomorphism between the P2-bundles P(MO)→ P2
O and

W̃O → P2
W (see §9.3).

Finally, the strict transform P̃3
W of P3

W in W̃O is the intersection

of the exceptional divisor of ε with W̃O; it has therefore dimension
3 everywhere. Since it contains the inverse image of the cubic curve
CO ⊂ P3

W , which is a surface (§9.2), it must be the blow-up of P3
W

along CO. The fibers of the projection P̃3
W → P2

W are the bisecant
lines to CO.

4. The threefolds X and XO

We consider here singular threefolds

X = G(2, V5) ∩P7 ∩ Ω,

where Ω is a quadric in P9, such that X has a unique singular point
O, which is a node.

Lemma 4.1 (Logachev). The intersection G(2, V5) ∩ P7 is smooth,
hence isomorphic to W , and one may choose Ω to be a cone with vertex
O.

Proof. We follow [Lo], Lemmas 3.5 and 5.7. If the intersection W ′ =
G(2, V5)∩P7 is singular, the corresponding pencil P⊥7 of skew-symmetric
forms on V5 contains a form of rank ≤ 2, and one checks that the sin-
gular locus of W ′ is

Sing(W ′) =
⋃

!∈P⊥7 ; rank(!)≤2

G(2, ker(ω)) ∩P7,

hence is a union of linear spaces of dimension ≥ 1. In particular, the
intersection with the quadric Ω either has at least two singular points or
a singular point which is not a node. It follows that W = G(2, V5)∩P7

is smooth.
Consider now the map

|IW (2)| 99K
{

Hyperplanes in TP7;O

containing TW;O

}
' P2

Ω′ 7−→ TΩ′;O.

It is not defined exactly when Ω′ is singular at O, which happens along
the projective line γW (P(VO)) (§3.2). Since it is nonconstant, it is
therefore surjective.

Assume that Ω is smooth at O. Since W ∩ Ω is singular at O, we
have TW;O ⊂ TΩO

, hence there exists a quadric Ω′ ⊃ W smooth at O
such that TΩ′;O = TΩ;O. Some linear combination of Ω and Ω′ is then
singular at O and still cuts out X on W . �
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Conversely, we will from now on consider a general quadric Ω with
vertex O in the orbit O4. The intersection X = W ∩Ω is then smooth
except for one node at O and Pic(X) is generated by the class of OX(1)
(the lines from the two rulings of the exceptional divisor of the blow-up
of O in X are numerically, but not algebraically, equivalent (see §7.2;
the reader will check that the proof of this fact does not use the fact
that X is locally factorial!), hence the local ring OX;O is factorial ([M],
(3.31)) and the Lefschetz Theorem still applies ([G], Exp. XII, cor. 3.6;
the hypotheses H1(X,OX(−k)) = H2(X,OX(−k)) = 0 for all k > 0
follow from Kodaira vanishing on W )).

We keep the notation of §3.4 and set ΩO = pO(Ω) and XO = pO(X).

Let X̃ → X be the blow-up of O. The projection pO from O induces a
morphism

X̃
’
� XO ⊂ WO ⊂ P6

O

which is an isomorphism except on the union of the lines in X through
O. There are six such lines, corresponding to the six points s1, . . . , s6

of Sing(WO) ∩ ΩO, which are the six singular points of XO.
The threefold XO ⊂ P6

O is the complete intersection of three quadrics
and conversely, given the intersection of WO with a general smooth
quadric ΩO, its inverse image under the birational map W 99K WO is
a variety of type X10 with a node at O.

4.1. The conic bundle pW : X 99K P2
W and the double cover

π? : Γ̃?6 → Γ?6. Keeping the notation of §3.5, consider the projection

pW : X 99K P2
W

from the 4-plane TW;O. It is also induced onXO ⊂ P6
O by the projection

from the 3-plane P3
W = pO(TW;O), hence is a well-defined morphism

on the strict transform X̃O of XO in the blow-up P̃6
O of P6

O along P3
W ,

where P̃6
O ⊂ P6

O ×P2
W .

Proposition 4.2. The variety X̃O is smooth and the projection X̃O →
P2
W is a conic bundle with discriminant a smooth sextic Γ?6 ⊂ P2

W .

We denote the associated double cover by π? : Γ̃?6 → Γ?6. It is étale
by [B1], prop. 1.5, and connected.1

1Any nontrivial conic bundle over P2
O defines a nonzero element of the Brauer

group of C(P2
O) which, since the Brauer group of P2

O is trivial, must have some
nontrivial residue: the double cover of at least one component of the discriminant
curve must be irreducible.
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Also, fibers of X̃O → P2
W project to conics in XO. Since the strict

transform of P3
W in W̃O is a P1-bundle (§9.2), they meet the quadric

Q in two points.

Proof. We saw in §3.5 that W̃O → P2
W is a P2-bundle. The smoothness

of X̃O then follows from the Bertini theorem, which also implies that
the discriminant curve is smooth. The fact that it is a sextic follows
either from direct calculations or from Theorem 4.5. �

With the notation of §3.3, consider now the rank-3 vector bundle
MO → P2

O whose fiber over [V4] is MV4/∧2 VO. Inside P(MO), the
quadric ΩO defines a conic bundle QΩ;O → P2

O, and QΩ;O is smooth by
the Bertini theorem.

Proposition 4.3. The double cover associated with the conic bundle

QΩ;O → P2
O is isomorphic to π? : Γ̃?6 → Γ?6.

Proof. We saw in §3.5 that the P2-bundles W̃O → P2
W and P(MO)→

P2
O are isomorphic and the isomorphism restricts to an isomorphism

between the conic bundles X̃O → P2
W and QΩ;O → P2

O, because they
are pull-backs of the same quadric ΩO ⊂ P6

O. It follows that the
associated double covers are isomorphic. �

4.2. The double cover Γ̃6 → Γ6. Let P be the net of quadrics in P6
O

that contain XO. The discriminant curve Γ7 ⊂ P (which parametrizes
singular quadrics in P) is the union of the line Γ1 of quadrics that
contain WO, and a sextic Γ6. The pencil Γ1 meets Γ6 transversely at
six points p1, . . . , p6 corresponding to quadrics whose vertices are the
six singular points s1, . . . , s6 of XO ([B1], §5.6.2).

All quadrics in P have rank at least 6 (because rank-5 quadrics in
P6
O have codimension 3). In particular, there is a double étale cover

π : Γ̃6 ∪ Γ1
1 ∪ Γ2

1 → Γ6 ∪ Γ1

corresponding to the choice of a (2-dimensional) family of 3-planes
contained in a quadric of rank 6 in P. The 3-plane P3

W is contained
in all the quadrics in the pencil Γ1 and defines the component Γ1

1 and

points {p̃1, . . . , p̃6} = Γ1
1 ∩ Γ̃6. The curve Γ̃6 is smooth and connected

(footnote 1).
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4.3. Line transformations. Let ` be a general line contained in X.
As in the smooth case ([DIM], §6.2), one can perform a line transfor-
mation of X along `:

X̃‘

"
��

�
// X̃ ′‘

"′

��

X
 `

// X‘,

where ε is the blow-up of `, with exceptional divisor E, the birational
map χ is a (−E)-flop, ε′ is the blow-down onto a line `′ ⊂ X‘ of a
divisor E ′ ≡ −KX̃′`

− χ(E), and X‘ is another nodal threefold of type

X10. The map ψ‘ is associated with a linear subsystem of |I 3
‘ (2)|. Its

inverse ψ−1
‘ is the line transformation of X‘ along the line `′. Moreover,

ψ‘ is defined at the node O of X and ψ−1
‘ is defined at the node O′ of

X‘.
As explained in [IP] §4.1–4.3, this is a general process. One can also

perform it with the image `O of ` in XO and obtain a diagram ([IP],
Theorem 4.3.3.(ii))

X̃O;‘O

��

// X̃ ′O;‘O

p′`
��

XO
p`

// P2,

where p′‘ is a conic bundle and p‘ is again associated with a linear
subsystem of |I 3

‘O
(2)|. The birational conic bundle p‘ can be described

geometrically as follows ([B1], §1.4.4 or §6.4.2): a general point x ∈ XO

is mapped to the unique quadric in P = P2 containing the 2-plane
〈`O, x〉. Its discriminant curve is Γ7 = Γ1 ∪ Γ6.

Lemma 4.4. Let X‘ 99K X‘;O′ ⊂ P6
O′ be the projection from the node

O′ of X‘ and let `′O′ be the image of the line `′ ⊂ X‘. There is a
commutative diagram

XO

pW
��

 `,O
// X‘;O′

p`′
��

P2
W P′.

Proof. A general fiber of pW is a conic which meets Q in two points
(§4.1). Its strict transform F on X is a quartic curve that passes twice
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through the node O and does not meet `, hence its image ψ‘(F ) ⊂ X‘

has degree 8 and passes twice through the node O′ of X‘. Moreover,

E ′ · χ(ε−1(F )) = (−KX̃′`
− χ(E)) · χ(ε−1(F ))

= (−KX̃`
− E) · ε−1(F )

= ε∗OX(1)(−2E) · ε−1(F )

= deg(F ) = 4.

The image of F in X‘ is therefore an octic that passes twice through the
node O′ and meets `′ in 4 points. Its image in X ′‘;O′ is a rational sextic
that meets `′O′ in 4 points. Since the map p‘′ is associated with a linear
subsystem of |I 3

‘′
O′

(2)|, it contracts this sextic. In other words, images

of general fibers of pW by ψ‘;O are contracted by p‘′ , which proves the
lemma. �

4.4. The Verra threefold associated with X. A Verra threefold
([V]) is a smooth hypersurface of bidegree (2, 2) in P2 ×P2.

Theorem 4.5. A general nodal Fano threefold of type X10 is birational
to a general Verra threefold.

More precisely, let X be a general nodal Fano threefold of type X10.
We show that for a suitable choice of ` ⊂ XO, the two birational conic
bundle structures:

• pW : X 99K P2
W , with discriminant curve Γ?6 (§4.1), and

• p‘ : X 99K P, with discriminant curve Γ6 ∪ Γ1 (§4.3),

induce a birational isomorphism

ψ‘ := (pW , p‘) : X 99K T,

where T ⊂ P2
W × P is a general Verra threefold. In particular, the

sextics Γ6 and Γ?6 are general.

Proof of the theorem. Recall that XO = WO ∩ΩO contains the smooth
quadric surface Q = P3

W ∩ΩO. Instead of choosing a general line as in
§4.3, we choose a line ` contained in Q, not passing through any of the
six singular points of XO.

In suitable coordinates, WO ⊂ P6
O is the intersection of the quadrics

Ω1(x) = x0x1 + x2x3 + x4x5

Ω2(x) = x1x2 + x3x4 + x5x6,

and P3
W = P(〈e0, e2, e4, e6〉) (§9.2). We may assume ` = P(〈e2, e4〉).

The quadric ΩO contains `, hence its equation is of the form

ΩO(x) = x2λ2(x′) + x4λ4(x′) + q(x′),
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where λ2 and λ4 are linear and q quadratic in x′ = (x0, x1, x3, x5, x6).
The projection pW : XO 99K P2

W sends x to (x1, x3, x5). The map
p‘ : XO 99K P = 〈Ω1,Ω2,ΩO〉 sends a general point x ∈ XO to the
unique quadric in P containing the 2-plane 〈`, x〉 (§4.3). We obtain

p‘(x) = (x1λ4(x′)− x3λ2(x′), x3λ4(x′)− x5λ2(x′), x2
3 − x1x5).

A general (conic) fiber of pW is mapped by p‘ onto a conic in P because
p‘ becomes linear once restricted to a fiber of pW .

Similarly, let us consider the fiber of p‘ at the general point [ΩO] ∈ P.
It is the set of points x ∈ XO such that the 2-plane 〈`, x〉 is con-
tained in ΩO. This means λ2(x′) = λ4(x′) = 0, and consequently
q(x′) = 0, so that x′ describes a plane conic in its parameter space
P(〈e0, e1, e3, e5, e6〉). Since the projection to P2

W factors through this
4-plane, a general fiber of p‘ is mapped by pW birationally onto a conic
in P2

W .
Since the restriction of pW (resp. p‘) to a general fiber of p‘ (resp. pW )

is birational onto its image, the product map

ψ‘ = (pW , p‘) : XO 99K P2
W ×P

is birational onto its image T ⊂ P2
W ×P. Let (d, e) be the bidegree of

this hypersurface: d (resp. e) is the degree of the image by pW (resp. p‘)
of a general fiber of p‘ (resp. pW ). Since these plane curves are conics,
we have d = e = 2, and T is a Verra threefold.

Finally, the fact that T is general follows from a dimension count. �

Remark 4.6. Let ρ1 : T → P2
W and ρ2 : T → P be the two projections.

The surface ψ‘(Q) ⊂ T is isomorphic to the blow-up of Q at the six
singular points s1, . . . , s6 of XO. It is also equal to ρ−1

2 (Γ1).
For x in Q `, the only quadrics in P that contain the 2-plane 〈`, x〉

are in the pencil Γ1. This implies p‘(Q) ⊂ Γ1 and ψ‘(Q) ⊂ ρ−1
2 (Γ1). A

dimension count shows that given the Verra threefold T ⊂ P2
W×P, the

line Γ1 ⊂ P is general. It follows that ρ−1
2 (Γ1) is a smooth del Pezzo

surface of degree 2 which is equal to ψ‘(Q); its anticanonical (finite)
map is the double cover ρ1Q : ψ‘(Q)→ P2

W .
With the notation of §4.1, it follows from the comments at the end of

§3.5 that the inverse image Q̃ of Q in X̃O is isomorphic to the blow-up
of Q at the six singular points of XO. We have a commutative diagram

Q̃
 Q

//

pW
  

ψ‘(Q)

�1Q
{{

P2
W .
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Since ρ1Q is finite, ψQ must be a morphism; since Q̃ and ψ‘(Q) are
both del Pezzo surfaces of degree 2, it is an isomorphism.

Remark 4.7. Let us analyze more closely the conic bundle structure
p‘ : X 99K P for our choice of ` ⊂ Q. Following the classical construc-
tion of [B1], 1.4.4, we set

X‘ = {(P,Ωp) ∈ G(2,P6
O)×P | ` ⊂ P ⊂ Ωp}

and consider the birational map

ϕ‘ : X 99K X‘

x 7−→ (〈`, x〉, p‘(x)).

Away from Γ1, the second projection q‘ : X‘ → P is a conic bundle with
discriminant curve Γ6, whereas q−1

‘ (Γ1) is the union of two components:

Q1 = {(P,Ωp) ∈ G(2,P6
O)× Γ1 | ` ⊂ P ⊂ P3

W} ' P1 × Γ1,

and the closure of

{(P,Ωp) ∈ G(2,P6
O)× Γ1 | P ∩P3

W = `, P ⊂ Ωp}.
They correspond respectively to the two components Γ1

1 and Γ2
1 of

π−1(Γ1) (see §4.2). We have ϕ‘(Q) = Q1 and lines `− ⊂ Q that meet `
map to sections of Q1 → Γ1. Consider the diagram

Q1 Q
∼

oo ψ‘(Q)
"

oo

∩ ∩ ∩
X‘

q`
''

X
’`

oo
 `

//

p`
��

T

�2
ww

P.

The map ρ2Q : ϕ‘(Q) → Γ1 has six reducible fibers, above the points
p1, . . . , p6 of Γ1∩Γ6, and each contains one exceptional divisor E1, . . . , E6

of ε. Since lines `+ ⊂ Q from the same ruling as ` map to fibers of ρ2Q,
the other components must be the strict transforms `+

1 , . . . , `
+
6 of these

lines passing through s1, . . . , s6.
As mentioned above, a general line `− ⊂ Q from the other ruling

maps to a section of ρ2Q that does not meet E1, . . . , E6, hence must
meet `+

1 , . . . , `
+
6 ; moreover, these components of reducible fibers of the

conic bundle ρ2 : T → P correspond to the points of Γ1
1 ∩ Γ̃6, which

we denoted by p̃i in §4.2. We also denote by `−1 , . . . , `
−
6 the strict

transforms of those lines passing through s1, . . . , s6. The line `−i meets
`+
j if and only if i 6= j, and meets Ej if and only if i = j. It maps

by both projections ρ1 and ρ2 to a line. Finally, `±i + Ei is rationally
equivalent to `±.
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5. The variety of conics contained in X

5.1. The surfaces Fg(X) and F (X). We follow [Lo], §5, but with
the notation of [DIM], §5. In particular, Fg(X) is the variety of conics
contained in X. As remarked in [DIM], §3.1, any nonreduced conic
contained in W is contained in a 2-plane contained in W . Since the
family of these 2-planes has dimension 1 and none of them contain O,
and nonreduced conics have codimension 3, all conics contained in a
general X are reduced. Let

F (X) = {(c, [V4]) ∈ Fg(X)×P(V ∨5 ) | c ⊂ G(2, V4)}.
The projection F (X)→ Fg(X) is an isomorphism except over the one
point corresponding to the only ρ-conic cX contained in X ([DIM],
§5.1).

We define as in [DIM], §5.2 an involution ι on F (X) as follows. For
any hyperplane V4 ⊂ V5, define quadric surfaces

QW;V4 = G(2, V4) ∩P(MV4) and QΩ;V4 = Ω ∩P(MV4).

If (c, [V4]) ∈ F (X), the intersection

X ∩P(MV4) = QW;V4 ∩QΩ;V4 ,

has dimension 1 (as we saw in §4, X is locally factorial and Pic(X) is
generated by OX(1), hence the degree of any surface contained in X is
divisible by 10). Since c is reduced, one checks by direct calculation that
as a 1-cycle, it is the sum of c and another (reduced) conic contained
in X, which we denote by ι(c). One checks as in [Lo], Lemma 3.7, that
since X is general, ι(c) 6= c for all c, and some quadric in the pencil
〈QW;V4 , QΩ;V4〉 is a pair of distinct planes. This defines a fixed-point-free
involution ι on F (X).

5.2. Conics in X passing through O. Since O ∈ O4, any such conic
c is a τ -conic, hence is contained in a unique G(2, V4), and [V4] ∈ P2

O.
The quadric QΩ;V4 is then a cone with vertex O.

If QΩ;V4 is reducible, i.e., if [V4] ∈ Γ?6, the conics c and ι(c) meet at
O and another point. The two points of π?−1([V4]) correspond to the
two 2-planes contained in QΩ;V4 , hence to [c] and [ι(c)]. By Proposition

4.3, these conics c are parametrized by the curve Γ̃?6.
If QΩ;V4 is irreducible, c ∪ ι(c) is the intersection of the cone QΩ;V4

with a pair of planes, and c is the union of two (among the six) lines
in X through O.

Theorem 5.1 ([Lo], §5). The variety Fg(X) is an irreducible surface.

Its singular locus is the smooth connected curve Γ̃?6 of conics on X pass-

ing through O described above, and its normalization F̃g(X) is smooth.
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Moreover, the curve of σ-conics (which is disjoint from Γ̃?6) is excep-

tional on Fg(X), and its inverse image on F̃g(X) can be contracted to

a smooth surface F̃m(X) (as in the smooth case; see [DIM], §5.3). The

involution ι induces an involution on F̃m(X).

Logachev also proves that the inverse image of Γ̃?6 in F̃g(X) has two

connected components Γ̃?6;+ and Γ̃?6;−, which map isomorphically to Γ̃?6
by the normalization ν : F̃g(X) → Fg(X). They can be described as
follows.

Let c ⊂ X be a conic passing through O corresponding to a point of

Γ̃?6. The curve pO(c) is a line ` ⊂ XO that meets, but is not contained
in, the smooth quadric surface Q = P3

W∩ΩO. The two points of ν−1([c])

correspond to the conics [`∪ `+] ∈ Γ̃?6;+ and [`∪ `−] ∈ Γ̃?6;− contained in
XO, where `+ and `− are the two lines in Q passing through its point
of intersection with `.

In particular, Γ̃?6;± carries an involution σ?± induced by the involution

σ? of Γ̃?6. On the other hand, the involution ι of F̃g(X) maps Γ̃?6;+
isomorphically onto Γ̃?6;−. The identification Γ̃?6;+

∼→ Γ̃?6;− induced by
the normalization ν is ι ◦ σ?+ = σ?− ◦ ι.

5.3. The special surfaces Seven and Sodd. There is an embedding

P∨ ↪→ Γ
(6)
6 that sends a line in P to its intersection with Γ6. Its inverse

image in Γ̃
(6)
6 is a surface S with two connected components Seven and

Sodd, each endowed with an involution σ. They are defined by

Seven = {[D̃] ∈ S | h0(Γ̃6, π
∗OP(1)(D̃)) even}

and similarly for Sodd ([B3], §2, cor.). By [B3], prop. 3, they are smooth
because Γ6, being general, has no tritangent lines.

In particular, the point p̃1 + · · ·+ p̃6 of Γ̃
(6)
6 defined at the end of §4.2

is in S. We will show in Proposition 6.3 that it is in Sodd.

5.4. The isomorphism F̃m(X) ∼→Sodd. Let c be a conic on X such
that O /∈ 〈c〉. The projection pO(c) is a conic in XO, and the set of
quadrics in P that contain 〈pO(c)〉 is a line Lc ⊂ P. For each point p of
Lc ∩Γ6, if the vertex vp of Ωp is not in the 2-plane 〈pO(c)〉, the 3-plane

〈pO(c), vp〉 defines a point p̃ ∈ Γ̃6 above p. This defines a point ρg([c])
in S.

One checks by direct calculation (§9.2) that the 2-plane Π = 〈cX〉 is
disjoint from TW;O. It follows that cX satisfies the conditions above,
hence ρg([cX ]) is well-defined. Moreover, the line LcX is Γ1, and for
each pi ∈ Γ1 ∩ Γ6, the 3-planes P3

W and 〈pO(cX), vpi〉 meet only at vpi ,
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hence belong to different families; it follows that we have ρg([cX ]) =
σ(p̃1 + · · ·+ p̃6), which is in the surface Sodd. We have therefore defined
a rational map

ρg : Fg(X) 99K Sodd.

Logachev then proves ([Lo], §5) that ρg induces an isomorphism

(2) ρ : F̃m(X) ∼→Sodd.

This isomorphism commutes with the involutions ι and σ: since the 3-
planes 〈pO(c), vp〉 and 〈pO(ι(c)), vp〉 meet in codimension 1, they belong
to different families, hence ρg ◦ ι = σ ◦ ρg.

Let us explain how ρ is defined on the normalization F̃g(X). If

c ⊂ X is a conic passing through O corresponding to a point of Γ̃?6 and
` = pO(c), the two points of ν−1([c]) correspond to the conics [` ∪ `+]
and [` ∪ `−], where `+ and `− are the two lines in Q passing through
its point of intersection with `.

The images by ρ of these two points are defined as usual: the set of
quadrics in P that contain 〈` ∪ `±〉 is a line L± ⊂ P; for each point
p of L± ∩ Γ6, if the vertex vp of Ωp is not in the 2-plane 〈` ∪ `±〉, the

3-plane 〈` ∪ `±, vp〉 defines a point p̃ ∈ Γ̃6 above p.

5.5. Conic transformations. Let c be a general conic contained in
X. As in the smooth case ([DIM], §6.2), one can perform a conic
transformation of X along c:

X̃c

"
��

// X̃ ′c

"′

��

X
 c

// Xc,

where ε is the blow-up of c, the birational map χ is a flop, ε′ is the
blow-down onto a conic c′ ⊂ Xc of a divisor, and Xc is another nodal
threefold of type X10. Moreover, ψc is defined at the node O of X and
ψ−1
c is defined at the node of Xc.
As in the smooth case, there is an isomorphism

ϕc : Fm(X) ∼→Fm(Xc)

which commutes with the involutions ι and ϕc(ι([c])) = [cXc ] ([DIM],
Proposition 6.2).
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6. Reconstructing the threefold X

We keep the notation of §4.2: in the net P of quadrics in P6
O which

contain XO, the discriminant curve Γ7 = Γ6 ∪Γ1 parametrizes singular

quadrics, and the double étale cover π : Γ̃7 → Γ7 corresponds to the
choice of a family of 3-planes contained in a quadric of rank 6 in P6

O.

Theorem 6.1. We have the following properties.

a) The morphism v : Γ7 → P6
O that sends p ∈ Γ7 to the unique

singular point of the corresponding singular quadric Ωp ⊂ P6
O

is an embedding and v∗ : H0(P6
O,OP6

O
(1))→ H0(Γ7, v

∗OP6
O

(1))
is an isomorphism. Furthermore, the invertible sheaf MX on
Γ7 defined by MX(1) = v∗OP6

O
(1) is a theta characteristic and

H0(Γ7,MX) = 0.

b) The double étale cover π : Γ̃7 → Γ7 is defined by the point
η = MX(−2), of order 2 in J(Γ7).

c) The variety XO ⊂ P6
O is determined up to projective isomor-

phism by the pair (Γ7,MX).

In c), we prove more precisely that given an isomorphism f : Γ7
∼→Γ′7

such that f ∗MX′ = MX , there exists a projective isomorphismXO
∼→X ′O

which induces f .

Proof. Item a) is proved in the same way as [B1], lemme 6.8 and lemme
6.12.(ii); item b) as [B1], lemme 6.14; and item c) as [B1], prop. 6.19.
The isomorphism v∗OP6

O
(2) ' OΓ7(6) can also be seen directly by not-

ing that a quadric in the net P is given by a 7 × 7 symmetric matrix
A of linear forms on P, and that when this matrix has rank 6, the
comatrix of A (whose entries are sextics) is of the type (vivj)1≤i;j≤7,
where v1, . . . , v7 are homogeneous coordinates of the vertex. �

Remark 6.2. Conversely, given a reduced septic Γ7 ⊂ P and an in-
vertible sheaf M on Γ7 that satisfies H0(Γ7,M) = 0 and M2 ' OΓ7(4),
there is a resolution

(3) 0 −→ OP(−2)⊕7 A−→ OP(−1)⊕7 −→M −→ 0

of M viewed as a sheaf on P, where A is a 7× 7 symmetric matrix of
linear forms, everywhere of rank ≥ 6, with determinant an equation of
Γ7. Indeed, this follows from work of Catanese ([C2], Remark 2.29 and
[C3], Theorem 2.3) and Beauville ([B2], Corollary 2.4; the hypothesis
that Γ7 be integral is not needed in the proof because M is invertible)
who generalized an old result of Dixon’s ([Di]) for smooth plane curves.

Given any smooth sextic Γ6 ⊂ P that meets a line Γ1 transversely,
there exists on the septic Γ7 = Γ6∪Γ1 an invertible theta characteristic
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M such that H0(Γ7,M) = 0 ([C1], Theorem 7 or Proposition 13).
So we obtain by (3) a net of quadrics in P6

O whose base-locus is the
intersection of WO with a smooth quadric. By taking its inverse image
under the birational map W 99K WO, we obtain a variety of type X10

with, in general, a single node at O.

The following proposition describes how the theta characteristic MX

is related to our previous constructions.

Proposition 6.3. Let Γ6 be a general plane sextic, let π : Γ̃6 → Γ6

be a connected double étale cover, with associated involution σ and line
bundle η of order 2 on Γ6. There is a commutative diagram Invertible theta characteristics

M on the union of Γ6 and a
transverse line such that M |Γ6 ' η(2)

 �
//

))

S/σ

��

P∨,

where θ is an open embedding and maps even (resp. odd) theta char-
acteristics to Sodd/σ (resp. Seven/σ).

Furthermore, if MX is the (even) theta characteristic associated with
a general nodal X, we have

θ(MX) = ρ([cX ]).

(The map ρ was defined in §5.4.)

Proof. For any invertible theta characteristic M on Γ7 = Γ6 ∪ Γ1 ⊂ P
such that M |Γ6 ' η(2), the invertible sheaf M(−2) has order 2 in

J(Γ7), hence defines a double étale cover π : Γ̃7 → Γ7 which induces
the given cover over Γ6. The inverse image of Γ1 splits as the disjoint

union of two rational curves Γ1
1 and Γ2

1, and the intersections Γi1 ∩ Γ̃6

define divisors D̃ = p̃1 + · · · + p̃6 and σ∗D̃, hence a well-defined point
in S/σ.

This defines a morphism θ which is compatible with the morphisms
to P∨. These morphisms are both finite of degree 25 ([H], Theorem
2.14), hence θ is an open embedding. Since S/σ is smooth with two
components, the set of M as in the statement of the theorem, with
fixed parity, is smooth and irreducible.

Finally, for any s ∈ H0(Γ̃6, π
∗O(1)(D̃)), set

s± = σ∗s · sD̃ ± s · s�∗D̃.
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We have

s− ∈ H0(Γ̃6, π
∗O(2))− ' H0(Γ6,M |Γ6)

and

s+ ∈ H0(Γ̃6, π
∗O(2))+ ' H0(Γ6,O(2)) ' H0(P,O(2)).

Since the points pi = π(p̃i), i ∈ {1, . . . , 6}, are distinct, we have an
exact sequence

(4) 0→ H0(Γ7,M)→ H0(Γ6,M |Γ6)⊕H0(Γ1,M |Γ1)→
6⊕
i=1

Cpi ,

and since s+(pi) = s−(pi), the pair (s−, s+|Γ1) defines an element of

H0(Γ7,M). Since s− = 0 if and only if s ∈ sD̃ · H0(Γ̃6, π
∗O(1)), we

obtain an exact sequence

(5) 0→ H0(Γ6,O(1))→ H0(Γ̃6, π
∗O(1)(D̃))→ H0(Γ7,M).

Since Γ6 is general, there is, by [C1], Theorem 7 or Proposition 13, a
transverse line Γ1 and an even theta characteristic M on Γ7 = Γ6 ∪ Γ1

such that H0(Γ7,M) = 0. Because of (5), θ(M) is in Sodd/σ; we proved
above that the set of all even theta characteristics is irreducible, hence
it must map to Sodd/σ, and odd theta characteristics must map to
Seven/σ. �

Corollary 6.4. A general nodal X of type X10 can be reconstructed,

up to projective isomorphism, from the double étale cover π : Γ̃6 → Γ6

and the point ρ([cX ]) of Sodd/σ.

Remark 6.5. The map θ is never an isomorphism: even if we allow
lines [Γ1] ∈ P∨ which are (simply) tangent to Γ6 at a point p1 (this
happens when the quadric ΩO is tangent to the cubic curve CO), we
only get elements of S/σ of the type 2p̃1 + p̃3 + · · ·+ p̃6.

To fill up the remaining 16 points p̃1 + σ(p̃1) + p̃3 + · · · + p̃6 of S/σ
above [Γ1], we need to let our nodal threefold “degenerate” to an X
with a node O in the orbit O3 (the pencil of quadrics that defines WO

then contains a unique quadric of rank 5 and Γ6 becomes tangent to
Γ1 at the corresponding point). Similarly, bitangent lines Γ1 to Γ6

correspond to the case where the node O is in the orbit O2 (there are
then two quadrics of rank 5 in the pencil Γ1). Although what should be
done for flex lines is not clear, it seems likely that for Γ6 general plane
sextic, there should exist a family of nodalX parametrized by a suitable
proper family of (even, possibly noninvertible) theta characteristics on
the union of Γ6 and any line, isomorphic over P∨ to Sodd/σ. This
would fit with the results of [DIM], where a proper surface contained
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in a general fiber of the period map is constructed: as explained in
§7.3, this surface degenerates in the nodal case to Sodd/σ.

6.1. More on Verra threefolds. Let Π1 and Π2 be two copies of
P2. Recall from §4.4 that a Verra threefold is a general (smooth)
hypersurface T ⊂ Π1 × Π2 of bidegree (2, 2). Each projection ρi :
T → Πi makes it into a conic bundle with discriminant curve a smooth
plane sextic Γ6;i ⊂ Πi and associated connected double étale covering

πi : Γ̃6;i → Γ6;i. We have

J(T ) ' Prym(Γ̃6;1/Γ6;1) ' Prym(Γ̃6;2/Γ6;2).

The special subvariety Si associated with the linear system |OΠi
(1)|

is the union of two smooth connected surfaces Sodd
i and Seven

i (§5.3).
Let C the subscheme of the Hilbert scheme of T that parametrizes

reduced connected purely 1-dimensional subschemes of T of degree 1
with respect to both ρ∗1OΠ1(1) and ρ∗2OΠ2(1). For T general, the scheme
C is a smooth surface and a general element of each irreducible com-
ponent corresponds to a smooth irreducible curve in T ([V], (6.11)).

Proposition 6.6. For T general, the surfaces C , Seven
1 , and Seven

2 are
smooth, irreducible, and isomorphic.

Proof. Let [c] be a general element of C . Each projection ρi|c : c →
Πi induces an isomorphism onto a line that meets Γ6;i in six distinct
points. For each of these points p, the curve c meets exactly one of the
components of ρ−1

i (p), hence defines an element of Si. This defines a
rational map

C 99K Si
over Π∨i .

Conversely, let Li ⊂ Πi be a general line. By Bertini, the surface
F1 = ρ−1

1 (L1) is smooth and connected. It is ruled over L1 with exactly
six reducible fibers. The projection ρ2|F1 : F1 → Π2 is a double cover
ramified along a smooth quartic Γ4 ⊂ Π2, andKF1 ≡ −ρ∗2L2. Let L be a
bitangent line to Γ4. The curve ρ−1

2 (L) has two irreducible components
and total degree 2 over Π1. Either one component is contracted by ρ1

and it is then one of the 12 components of the reducible fibers of ρ1|F1 :
F1 → L1, or both components are sections and belong to C . Since
there are 28 bitangents, the degree of C → Π∨1 is 2× (28− 12) = 32.

More generally, for any line L1 ⊂ Π1, the surface F1 = ρ−1
1 (L1) is

irreducible, maps 2-to-1 to Π2 with ramification a quartic, and only
finitely many curves are contracted. Any smooth [c] ∈ C with c ⊂ F1

must map to a line everywhere tangent to the ramification, and there
is only a finite (nonzero) number of such lines.
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It follows that every component of C dominates Π∨1 . Moreover, the
morphisms C → Π∨i , Sodd

i → Π∨i , and Seven
i → Π∨i are all finite of

degree 32. It follows that the smooth surface C is irreducible and
maps isomorphically to a component of Si. It remains to prove that
this component is Seven

i .
According to Theorem 4.5, we may assume that T is obtained from

a nodal X of type X10, as explained in §4.4. In Remark 4.7, we con-
structed a curve `−1 of bidegree (1, 1) whose image in S is σ(p̃1) + p̃2 +
· · · + p̃6. Since ρ([cX ]) = σ(p̃1 + · · · + p̃6) (§5.4) and ρ([cX ]) ∈ Sodd

(Proposition 6.3), this finishes the proof. �

7. The extended period map

7.1. Intermediate Jacobians. The intermediate Jacobian J(X) of
our nodal X appears as an extension

(6) 1→ C? → J(X)→ J(X̃)→ 0,

with extension class eX ∈ J(X̃)/±1. Since X̃ is birationally isomorphic

to a general Verra threefold T (Theorem 4.5), J(X̃) and J(T ), having
no factors that are Jacobians of curves, are isomorphic (see the classical
argument used for example in the proof of [DIM], Corollary 7.6). In
particular, by [V], we have

(7) J(X̃) ' Prym(Γ̃6/Γ6) ' Prym(Γ̃?6/Γ
?
6).

7.2. The extension class eX. Choose a general line ` ⊂ XO. A point

of Γ̃6 corresponds to a family of 3-planes contained in a singular Ωp. In
this family, there is a unique 3-plane that contains `, and its intersection
with XO is the union of ` and a rational normal cubic meeting ` at two

points. So we get a family of curves on X̃ parametrized by Γ̃6 hence
an Abel-Jacobi map

J(Γ̃6)→ J(X̃)

which vanishes on π∗J(Γ6) and induces (the inverse of) the isomorphism

(7) (here, Prym(Γ̃6/Γ6) is seen as the quotient J(Γ̃6)/π∗J(Γ6)). Also,
there is a natural map

β : S → Prym(Γ̃6/Γ6) ⊂ J(Γ̃6)

defined up to translation (here, Prym(Γ̃6/Γ6) is seen as the kernel of

the norm morphism Nm : J(Γ̃6) → J(Γ6)) which can be checked to
be a closed embedding (as in [B3], C, p. 374). Finally, we have an
Abel-Jacobi map

α : F̃m(X)→ J(X̃)
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(also defined up to translation). Logachev proves that the diagram

F̃m(X)
∼
�

//

�
��

Sodd

�
��

J(X̃) Prym(Γ̃6/Γ6)
∼

oo

commutes up to a translation ([Lo], Proposition 5.16, although the
leftmost map in the diagram there should be Φ, not 2Φ). In particular,
α is a closed embedding.

The extension class eX of (6) is the image in J(X̃)/± 1 by the Abel-
Jacobi map of the difference between the (homologous) lines `+ and
`− from the two rulings of the smooth quadric surface Q = P3

W ∩ ΩO

([Co], Theorem (0.4)). In particular, if ν : F̃m(X) → Fm(X) is the

normalization, it follows from §5.2 that we have for all [c] ∈ Γ̃?6

eX = α([c+])− α([c−]),

where ν−1([c]) = {[c+], [c−]}. Since α is injective, eX is nonzero.

Note that α ◦ ι+ α is constant on F̃m(X), say equal to C. We have

(8) α(Γ̃?6;−) = α(Γ̃?6;+)− eX ,

the involution σ?± on α(Γ̃?6;±) is given by x 7→ C ± eX − x, and these

curves are Prym-canonically embedded in J(X̃) ' Prym(Γ̃?6/Γ
?
6).

Remark 7.1. The semi-abelian variety J(X) can be seen as the com-

plement in the P1-bundle P(OJ(X̃) ⊕ PeX ) → J(X̃) (where PeX is the

algebraically trivial line bundle on J(X̃) associated with eX) of the two

canonical sections J(X̃)0 and J(X̃)∞. A (nonnormal) compactifica-

tion J(X) is obtained by glueing these two sections by the translation
x 7→ x + eX and it is the proper limit of intermediate Jacobians of
smooth threefolds of type X10. The Abel-Jacobi map Fg(X) 99K J(X)

then defines an embedding Fm(X) ↪→ J(X) (use Logachev’s descrip-
tion of the nonnormal surface Fm(X) given in §5.2 and (8)).

7.3. Extended period map. Let N ?
10 (resp. ∂N ?

10) be the stack of
smooth or nodal threefolds of type X10 (resp. of nodal threefolds of
type X10), and let A ?

10 (resp. ∂A ?
10) be the stack of principally polar-

ized abelian varieties of dimension 10 and their rank-1 degenerations
(resp. of rank-1 degenerations) ([Mu]). There is an extended period
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map ℘? : N ?
10 → A ?

10 and a commutative diagram

N ?
10

}∗

��

∂N ?
10

@}∗

��

? _oo
�

**
�? **

A ?
10 ∂A ?

10

p

��

? _oo

��

connected double
étale covers

of plane sextics

/isom. = P

Prymtt
A9

where the map p◦∂℘∗ = Prym◦π = Prym◦π? sends a nodal threefold of
type X10 to the intermediate Jacobian of its minimal desingularization.

A dimension count shows that ∂N ?
10 is irreducible of dimension 21.

By [V], Corollary 4.10, the map Prym is 2-to-1 onto its 19-dimensional
image. The irreducible variety P therefore carries a birational invo-
lution σ and π? = σ ◦ π. By Corollary 6.4, the general fiber of π is
birationally the surface Sodd/σ so, with the notation of §6.1, if T is a
general Verra threefold, the fiber (p ◦ ∂℘∗)−1(J(T )) is birationally the
union of the two special surfaces Sodd

1 /σ1 and Sodd
2 /σ2.

We proved in [DIM], Theorem 7.1, that ℘∗(N ?
10) has dimension 20. It

follows that ∂℘∗(∂N ?
10) has dimension 19, hence the fibers of π must be

contracted by ∂℘∗ . This can also be seen by checking that the various
nodal threefolds corresponding to general points in this fiber differ by
conic transformations (§5.5) hence have same intermediate Jacobians
(there is a birational isomorphism between them which is defined at
the nodes).

From Lemma 4.4, we deduce that a line transform of a nodal X
produces another nodal X‘ such that the covers π(X‘) and π?(X) are
isomorphic. Since their intermediate Jacobians are isomorphic (there
is a birational isomorphism between X and X‘ which is defined at the
nodes), the surfaces Sodd

1 /σ1 and Sodd
2 /σ2 are in the same fiber of ℘?.

It follows that p is birational on ℘∗(∂N ?
10): the extension class e is

canonically attached to a general Verra threefold. Moreover, since a
general nonempty fiber of ∂℘∗ is the union of two distinct irreducible
surfaces (obtained by conic and line transformations), the two smooth
irreducible surfaces contained in a general nonempty fiber of ℘? con-
structed in [DIM] are disjoint.

Unfortunately, we cannot deduce from our description of a general
nonempty fiber of ∂℘∗ that a general nonempty fiber of ℘? consists only
of these two surfaces, since there are difficult properness issues here.



24 O. DEBARRE, A. ILIEV, AND L. MANIVEL

8. Singularities of the theta divisor

We keep the notation of §6.1. In [V], Theorem 4.11, Verra proves
that the singular locus of a theta divisor Ξ of the intermediate Jacobian
of a general Verra threefold T has (at least) three components, all 3-
dimensional:2

Singex
�i

(Ξ) = π∗iHi + Γ̃6;i + Sodd
i

for i ∈ {1, 2}, and a union of components ([V], Remark 4.12)

ΞT ⊂ Singst
�1

(Ξ) ∩ Singst
�2

(Ξ)

which Verra calls distinguished.
What follow are some speculations on the singular locus of the in-

termediate Jacobian of a general Fano threefold X ′ of type X10. We
proved in [DIM] that a general fiber of the period map has (at least)
two connected components which are quotient of smooth proper sur-
faces F (X ′) and F ?(X ′) by involutions.

Conjecture 8.1. The singular locus of the theta divisor of the inter-
mediate Jacobian of a general threefold X ′ of type X10 has dimension
4 and contains a unique component of that dimension; this component
is a translate of F (X ′) + F ?(X ′).

When X ′ degenerates to a nodal X, with associated Verra threefold
T , the surface F (X ′) degenerates to the special surface Sodd

1 , and the
surface F ?(X ′) to Sodd

2 . If (J(T ),Ξ) is the intermediate Jacobian of
T , the singular locus of the theta divisor degenerates to a subvariety
of J(X) (see Remark 7.1) which projects onto Sing(Ξ · Ξe) (see [Mu],
(2.4), pp. 363–364). So the degenerate version of the conjecture is the
following.

Conjecture 8.2. Let (J(T ),Ξ) be the intermediate Jacobian of a gen-
eral Verra threefold T , with canonical extension class e. The singular
locus of Ξ · Ξe has dimension 4 and has a unique component of that
dimension. This component is a translate of Sodd

1 + Sodd
2 .

According to §7.2 and (8), there is an embedding Γ̃6;2 ⊂ Sodd
1 ⊂ Γ̃

(6)
6;1

such that for all D̃ ∈ Γ̃
(6)
6;1 in this curve, D̃ + e is linearly equivalent to

an effective divisor D̃′ ∈ Sodd
1 . This implies

π∗1H1 + e ≡ σ∗1D̃ + D̃ + e ≡ σ∗1D̃ + D̃′,

2Recall that the singularities of a theta divisor Ξ of the Prym variety of a dou-
ble étale covering π are of two kinds: the stable singularities Singst

π (Ξ), and the
exceptional singularities Singex

π (Ξ) (see [D], §2, for the definitions).
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hence h0(Γ̃6;1, π
∗
1H1 + e) ≥ 2. It follows that Singex

�1
(Ξ), hence also

Singex
�2

(Ξ), is contained in Ξe. In particular, Singex
�i

(Ξ) is contained in
the singular locus of Ξ · Ξe, and is also contained in a translate of
Sodd

1 + Sodd
2 by (8).

9. Appendix: explicit computations

9.1. The fourfold W . It follows from [PV], Proposition 6.4, that there
exists a basis (e1, . . . , e5) for V5 such that the pencil of skew-symmetric
forms on V5 that defines W in G(2, V5) (see §3.1) is spanned by e∗1 ∧
e∗4 + e∗2 ∧ e∗5 and e∗1 ∧ e∗5 + e∗3 ∧ e∗4. In other words, in coordinates for the
basis

B = (e12, e13, e14, e15, e23, e24, e25, e34, e35, e45)

for ∧2V5, where eij = ei ∧ ej, the linear space V8 that cuts out W has
equations

x14 + x25 = x15 + x34 = 0.

The unique common maximal isotropic subspace for all forms in the
pencil is

U3 = 〈e1, e2, e3〉.
It contains the smooth conic

cU = (x2
1 + x2x3 = x4 = x5 = 0),

which parametrizes the kernels of the forms in the pencil. The unique
β-plane (see [DIM], §3.3) contained in W is

Π = G(2, U3) = 〈e12, e13, e23〉

and the orbits for the action of Aut(W ) are (see [DIM], §3.5)

• O1 = c∨U = (x2
23 + 4x12x13 = 0) ⊂ Π,

• O2 = Π c∨U ,
• O3 = (W ∩ (x45 = 0)) Π,
• O4 = W O3.

9.2. The fourfold WO. The point O = [e45] is in the dense orbit O4,
which can be parametrized by

O4 = {(−ux−v2, u2−vy,−v, u, uv+xy, x, v,−u, y, 1) | (u, v, x, y) ∈ C4}

in the basis B, and TW;O ⊂ P7 has equations

x12 = x13 = x23 = x14 + x25 = x15 + x34 = 0.

In particular, TW;O ∩ Π = ∅.
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The quadrics that contain W and are singular at O correspond, via
the isomorphism (1), to one-dimensional subspaces V1 ⊂ VO = 〈e4, e5〉
(see §3.2). It follows that the projection WO ⊂ P6

O is defined by

(9) x12x34 − x13x24 + x14x23 = x12x35 + x13x14 − x34x23 = 0,

where (x12, x13, x14, x23, x24, x34, x35) are coordinates for V8/〈e45〉. It
contains the 3-plane

P3
W = pO(TW;O) = (x12 = x13 = x23 = 0)

and its singular locus is the twisted cubic CO ⊂ P3
W defined by

(10) rank

(
x14 x34 −x35

x24 x14 x34

)
≤ 1.

Let P̃6
O → P6

O be the blow-up of P3
W . It is defined in P6

O ×P2
W by the

condition

(11) rank

(
a12 a13 a23

x12 x13 x23

)
≤ 1,

where a12, a13, a23 are homogeneous coordinates on P2
W . The strict

transform W̃O ⊂ P̃6
O of WO is defined by the equations

(12) a12x34 − a13x24 + a23x14 = a12x35 + a13x14 − a23x34 = 0.

It follows that W̃O → WO is an isomorphism over WO CO and a

P1-bundle over CO. Furthermore, the projection W̃O → P2
W is a P2-

bundle, hence W̃O is smooth.

9.3. The P2-bundles P(MO) → P2
O and W̃O → P2

W are isomor-
phic. If V4 ⊂ V5 is a hyperplane that contains VO and is defined by
the equation b1x1 + b2x2 + b3x3 = 0, the vector space MV4 = ∧2V4 ∩ V8

defined in §3.2 has equations

b1x14 + b2x24 + b3x34 = −b1x34 − b2x14 + b3x35 = 0

and

b2x12 + b3x13 = b1x12 − b3x23 = b1x13 + b2x23 = 0

in V8. It is therefore equal to the fiber of W̃O → P2
W at the point

a = (b3,−b2, b1) (see (11) and (12)). This isomorphism P2
O ' P2

W

induces an isomorphism P2
O ×P6

O ' P2
W ×P6

O, hence an isomorphism

between the P2-bundles P(MO)→ P2
O and W̃O → P2

W .
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École Normale Supérieure, 45 rue d’Ulm, 75230 Paris cedex 05, France

E-mail address: Olivier.Debarre@ens.fr

Institute of Mathematics, Bulgarian Academy of Sciences, Acad.
G. Bonchev Str., bl. 8, 1113 Sofia, Bulgaria

E-mail address: ailiev@math.bas.bg
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