Fano varieties and polytopes

Olivier DEBARRE

The Fano Conference
\qquad
Torino, September 29 - October 5, 2002

Smooth Fano varieties

A smooth Fano variety (over a fixed algebraically closed field \mathbf{k}) is a smooth projective variety whose anticanonical divisor is ample.

Examples (1) A Fano curve is P^{1}.
(2) Smooth Fano (del Pezzo) surfaces are $\mathbf{P}^{1} \times \mathbf{P}^{1}$ and the blow-up of \mathbf{P}^{2} in at most 8 points, with no three colinear.
(3) Smooth Fano threefolds have been classified in characteristic zero.
(4) A finite product of Fano varieties is a Fano variety.
(5) A smooth complete intersection in \mathbf{P}^{n+s} defined by equations of degrees $d_{1} \geq \cdots \geq$ $d_{s}>1$ is a Fano variety if and only if $d_{1}+\cdots+d_{s} \leq n+s$. In any given dimension n, there are only finitely many choices for the degrees (because $s \leq \sum\left(d_{i}-1\right) \leq n$).
(6) A cyclic covering $X \rightarrow \mathbf{P}^{n}$ of degree $d>$ 1 branched along a smooth hypersurface of degree $d e$ is a Fano variety if and only if ($d-1$) $e \leq n$ (again, there are only finitely many choices for d and e when n is fixed).
(7) In characteristic zero, a projective variety acted on transitively by a connected linear algebraic group (such as a flag variety) is a smooth Fano variety.
(8) If X is a smooth (Fano) variety and D_{1}, \ldots, D_{r} are nef divisors on X such that $-K_{X}-D_{1}-\cdots-D_{r}$ is ample, the (Grothendieck) projective bundle $\mathbf{P}\left(\oplus_{i=1}^{r} \mathscr{O}_{X}\left(D_{i}\right)\right)$ is a Fano variety.

Toric varieties

The algebraic torus of dimension n over \mathbf{k} is

$$
\mathbf{T}^{n}=\operatorname{Spec}\left(\mathbf{k}\left[U_{1}, U_{1}^{-1}, \ldots, U_{n}, U_{n}^{-1}\right]\right)
$$

A toric variety is an algebraic variety defined over k with an action of T^{n} and a dense open orbit isomorphic to T^{n}. They can all be constructed from very explicit combinatorial data.

Affine toric varieties

1) Given a pair of dual lattices

$$
\begin{gathered}
M \simeq \mathbf{Z}^{n} \subset M_{\mathbf{R}}=M \otimes_{\mathbf{Z}} \mathbf{R} \\
N=\operatorname{Hom}_{\mathbf{Z}}(M, \mathbf{Z}) \subset N_{\mathbf{R}}=N \otimes_{\mathbf{Z}} \mathbf{R}
\end{gathered}
$$

2) a cone σ in N_{R} generated by a finite number of vectors in N and containing no lines, such as
3) and the dual cone

$$
\sigma^{\vee}=\left\{u \in M_{\mathbf{R}} \mid\langle u, v\rangle \geq 0 \text { for all } v \in \sigma\right\}
$$

the semigroup $\sigma^{\vee} \cap M$ is finitely generated (by the dots).
4) Define an affine variety by

$$
X_{\sigma}=\operatorname{Spec}\left(\mathrm{k}\left[\sigma^{\vee} \cap M\right]\right)
$$

In our example,

$$
\begin{aligned}
X_{\sigma} & =\operatorname{Spec}\left(\mathrm{k}\left[U, U V, U V^{2}\right]\right) \\
& \simeq \operatorname{Spec}\left(\mathrm{k}[X, Y, Z] /\left(X Z-Y^{2}\right)\right)
\end{aligned}
$$

5) If τ is a face of σ,

$$
\sigma^{\vee} \cap M \subset \tau^{\vee} \cap M
$$

The corresponding map $X_{\tau} \rightarrow X_{\sigma}$ makes X_{τ} into a principal open subset of X_{σ}. (If $u \in M$ is such that $\tau=\sigma \cap u^{\perp}, X_{\tau}=\left(X_{\sigma}\right)_{u}$.)

In our example,

$$
\begin{aligned}
X_{\tau} & =\operatorname{Spec}\left(\mathbf{k}\left[U, U^{-1}, V\right]\right)=\left(X_{\sigma}\right)_{U} \\
X_{\{0\}} & =\operatorname{Spec}\left(\mathbf{k}\left[U, U^{-1}, V, V^{-1}\right]\right)=\left(X_{\sigma}\right)_{U V}
\end{aligned}
$$

6) The torus T^{n} acts on X_{σ} and X_{τ} and the inclusion $X_{\tau} \rightarrow X_{\sigma}$ is equivariant.

General toric varieties

A fan Δ is a finite set of cones in $N_{\mathbf{R}}$ as above such that:

- every face of a cone in Δ is in Δ;
- the intersection of any two cones in Δ is in Δ.
Construct an irreducible n-dimensional k-scheme X_{Δ} with an action of \mathbf{T}^{n} by gluing the affine
varieties X_{σ} and $X_{\sigma^{\prime}}$ along the open set $X_{\sigma \cap \sigma^{\prime}}$, for all σ and σ^{\prime} in Δ.

The scheme X_{Δ} is irreducible, separated and normal. Each X_{σ}, hence also X_{Δ}, contains the open set $X_{\{0\}}=\mathrm{T}^{n}$.

All toric varieties are obtained via this construction.

Example The toric surface associated with the fan that consists of $\sigma_{1}, \sigma_{2}, \sigma_{3}$ and their faces:

is the projective cone in \mathbf{P}^{a+1} over the rational normal curve in \mathbf{P}^{a}. For $a=1$, this is P^{2}.

Projectivity criterion

Δ is the set of cones spanned by the faces of a polytope Q with
 vertices in N and the origin in its interior

Given a polytope Q, we denote by $\mathscr{V}(Q)$ the set of its vertices.

Smooth toric Fano varieties

Let Q be a polytope in $N_{\mathbf{R}}$.
Each facet of Q is
the convex hull of $\Rightarrow X_{Q}$ smooth Fano a basis of N

In this case, the anticanonical divisor $-K_{X_{Q}}$ is very ample. We call such a polytope a smooth Fano polytope. Its only integral interior point is the origin. Its dual

$$
P=\left\{u \in M_{\mathbf{R}} \mid\langle u, v\rangle \leq 1 \text { for all } v \in Q\right\}
$$

is a polytope with vertices in M. It is usually not a Fano polytope, although its only integral interior point is the origin. We have

$$
\begin{aligned}
\operatorname{Pic}\left(X_{Q}\right) & \simeq \mathrm{Z}^{\not{ }^{\mathscr{V}}(Q)-n} \\
h^{0}\left(X,-K_{X}\right) & =\#(M \cap P) \\
\left(-K_{X}\right)^{n} & =n!\operatorname{vol}(P)
\end{aligned}
$$

Examples (1) There is only 1 smooth Fano polytope in \mathbf{R}, the interval $S_{1}=[-1,1]$.
(2) Up to the action of $G L(2, \mathbf{Z})$, there are only 5 smooth Fans polytopes in \mathbf{R}^{2} :

$$
\begin{equation*}
\mathbf{P}^{1} \times \mathbf{P}^{1} \tag{2}
\end{equation*}
$$

P^{2} blown up
at a point
\mathbf{P}^{2} blown up at 2 points

P^{2} blown up at 3 points

The dual polytopes are

and the formulas above are easily checked in these cases.
(3) The product of smooth Fano polytopes Q and Q^{\prime} is a smooth Fano polytope and $X_{Q \times Q^{\prime}}=X_{Q} \times X_{Q^{\prime}}$.
(4) Let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis for N and set $e_{0}=-e_{1} \cdots-e_{n}$. The simplex

$$
S_{n}=\operatorname{Conv}\left(\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}\right)
$$

is a smooth Fano polytope. When n is even,

$$
\begin{aligned}
& A_{n}=\operatorname{Conv}\left(\left\{e_{0}, \pm e_{1}, \ldots, \pm e_{n}\right\}\right) \\
& B_{n}=\operatorname{Conv}\left(\left\{ \pm e_{0}, \pm e_{1}, \ldots, \pm e_{n}\right\}\right)
\end{aligned}
$$

are smooth Fano polytopes.

When $n=2 m+1$, the $n+1$ vertices $e_{0},-e_{1}, e_{2}, \ldots,-e_{2 m+1}$ are on the same facet $-x_{1}+x_{2}-x_{3}+\cdots-x_{2 m+1}=1$.

One has $X_{S_{n}} \simeq \mathbf{P}^{n}$, whereas $X_{A_{2 m}}$ and $X_{B_{2 m}}$ are obtained from $\mathbf{P}^{2 m}$ by a series of blow ups (b.u.) and blow downs (b.d.), such as

The following result, which improves on an earlier result of Ewald, is one of the few classification results that are valid in all dimensions.

Theorem (Casagrande) Any smooth Fano polytope in $N_{\mathbf{R}}$ with a set of vertices symmetric about the origin that spans $N_{\mathbf{R}}$ is isomorphic to a product of $S_{1}, A_{2 r}$ and $B_{2 s}$.

Kähler-Einstein metrics Compact complex manifolds with a positive Kähler-Einstein metric (i.e., whose Ricci form is a positive (constant) multiple of the Kähler form) are Fano varieties, but it is a difficult problem to find conditions on a complex Fano manifold so that a Kähler-Einstein metric exists.

However, there is a criterion for toric Fano manifolds (Tian, Batyrev \& Selivanova): if $Q \subset N_{\mathbf{R}}$ is a smooth Fano polytope and the only point of N fixed by the finite group

$$
G_{Q}=\{g \in \mathrm{GL}(N) \mid g(Q)=Q\}
$$

is the origin, the Fano variety X_{Q} has a KählerEinstein metric. This condition implies that the barycenter of Q (resp. of Q^{\vee}) is the origin. We have the following implications:

The only point of N fixed by G_{Q} is the origin
X_{Q} has a K.E. metric
The set of points of M in the relative interiors of facets of Q^{\vee} is symmetric about the origin
and
the Futaki character $\underset{\text { vanishes }}{\operatorname{Lie}\left(\operatorname{Aut}\left(X_{Q}\right)\right)} \rightarrow \mathbf{C}$
and
the barycenter of Q^{\vee} is the origin

Examples (1) In dimension two, the answer to the question "does X_{Q} have a KählerEinstein metric?" is:

$$
Q
$$

Q^{\vee}

YES

NO

NO

YES

The polytopes S_{n} and B_{n} all satisfy the BatyrevSelivanova criterion. Using the criterion above, one checks that the automorphism group of $X_{A_{2 m}}$ is not reductive.
(2) Fix positive integers $a_{1}, \ldots, a_{m}, r_{1}, \ldots, r_{m}$ with $a_{i} \leq r_{i}$. The projective bundle

$$
X=\mathbf{P}\left(\mathscr{O}\left(a_{1}, 0, \ldots, 0\right) \oplus \cdots \oplus \mathscr{O}\left(0, \ldots, a_{m}\right)\right)
$$

over $\mathbf{P}^{r_{1}} \times \cdots \times \mathbf{P}^{r_{m}}$ is a smooth Fano variety (this is a particular case of Example (8)) whose automorphism group is reductive (by direct computation). It is the toric variety associated with the smooth Fano polytope Q with
vertices:

$$
\begin{array}{r}
g_{1}, \ldots, g_{m} \quad \text { with } g_{1}+\cdots+g_{m}=0 \\
e_{i 1}, \ldots, e_{i r_{i}}, a_{i} g_{i}-\left(e_{i 1}+\cdots+e_{i r_{i}}\right) \\
\quad \text { for } i=1, \ldots, m
\end{array}
$$

If all the r_{i} are equal and all the a_{i} are equal, it satisfies the Batyrev-Selivanova criterion, hence X has a Kähler-Einstein metric.

The barycenter of Q^{\vee} is the origin if and only if the integrals

$$
\int_{g_{1}, \ldots, g_{m} \leq 1} g_{i}, \ldots, g_{m}=0<1 \prod_{j=1}^{m}\left(r_{j}+1-a_{j} g_{j}\right)^{r_{j}} d \mu
$$

all vanish for $1 \leq i \leq m$. I have checked that for $r_{1}, \ldots, r_{m} \leq 10$, they do only when all the r_{i} are equal and all the a_{i} are equal.

Number of vertices Let $Q \subset N_{\mathbf{R}}$ be a smooth Fano polytope with dual P. There is a one-to-one correspondence

$$
\left.\begin{array}{rl}
\left\{\begin{array}{c}
\text { vertices of } P \\
(\text { resp. } Q)
\end{array}\right\} & \leftrightarrow \\
u & \leftrightarrow
\end{array} \begin{array}{c}
\text { facets of } Q \\
(\text { resp. } P)
\end{array}\right\}
$$

For any $u \in \mathscr{V}(P)$ and $v \in \mathscr{V}(Q)$, we have

$$
\langle u, v\rangle \in \mathbf{Z} \quad, \quad\langle u, v\rangle \leq 1
$$

with equality if and only if $v \in F_{u}$.

Theorem (Voskresenskiĩ, Klyachko) A smooth Fano polytope of dimension n has most $2 n^{2}$ vertices.

Proof. Let Q be a smooth Fano polytope, with dual P. The origin is in the interior of P, hence in the interior of the convex hull of at most $2 n$ vertices by Steinitz's theorem: we have

$$
0=\lambda_{1} u_{1}+\cdots+\lambda_{d} u_{d} \quad \lambda_{1}, \ldots, \lambda_{d}>0
$$

where the vertices u_{1}, \ldots, u_{d} of P generate $M_{\mathbf{R}}$ and $n<d \leq 2 n$.

Let v be a vertex of Q. We have $\left\langle u_{i}, v\right\rangle \neq 0$ for at least one i, hence $\left\langle u_{i}, v\right\rangle>0$ for at least one i. This implies $v \in F_{u_{i}}$, hence the vertices of Q are all on $F_{u_{1}} \cup \cdots \cup F_{u_{d}}$. Since each facet has n vertices, Q has at most $n d \leq 2 n^{2}$ vertices.

Batyrev conjectures that a smooth Fano polytope of dimension n has at most

$$
\begin{cases}3 n & \text { if } n \text { is even } \\ 3 n-1 & \text { if } n \text { is odd }\end{cases}
$$

vertices. This holds for $n \leq 5$ (Batyrev, Casagrande).

There is equality for n even for $A_{2}^{n / 2}$ and for n odd for $A_{2}^{(n-1) / 2} \times S_{1}$.

The (asymptotically) best known bound is

$$
\begin{aligned}
\# \mathscr{V}(Q) & \leq n+2+2 \sqrt{\left(n^{2}-1\right)(2 n-1)} \\
& \leq 2 \sqrt{2 n^{3}}
\end{aligned}
$$

Corollary Up to the action of $\mathrm{GL}(n, \mathbf{Z})$, there are only finitely many smooth Fano polytopes in \mathbf{R}^{n}.

Proof. The number of vertices of such a polytope Q is at most $2 n^{2}$. Since each facet of Q has n vertices, their number is at most $\binom{2 n^{2}}{n}$, hence the volume of Q is at most $\frac{1}{n!}\binom{2 n^{2}}{n}$. Fix the vertices e_{1}, \ldots, e_{n} of a facet of Q and set $S=\operatorname{Conv}\left(\left\{0, e_{1}, \ldots, e_{n}\right\}\right)$. For any vertex $v=v_{1} e_{1}+\cdots+v_{n} e_{n}$ of Q, the volume of $\operatorname{Conv}(v, S)$ is at most $\frac{1}{n!}\binom{2 n^{2}}{n}$, hence $\left|v_{i}\right| \leq\binom{ 2 n^{2}}{n}$. The integral vector v may therefore take only finitely many values.

Volume of the dual polytope Let Q be a smooth Fano polytope. The integer

$$
\left(-K_{X_{Q}}\right)^{n}=n!\operatorname{vol}\left(Q^{\vee}\right)
$$

is often called the degree of the smooth Fano variety X_{Q}.

Theorem Let Q be a smooth Fano polytope of dimension n with $\rho+n$ vertices, $\rho>1$. We have

$$
\operatorname{vol}\left(Q^{\vee}\right) \leq\left(\frac{(n-1)^{\rho+1}-1}{n-2}\right)^{n} \leq n^{\rho n}
$$

Equivalently, a smooth toric Fano variety X of dimension n and Picard number $\rho \geq 2$ satisfies

$$
\begin{equation*}
\left(-K_{X}\right)^{n} \leq n!n^{\rho n} \tag{1}
\end{equation*}
$$

Remarks (1) When $\rho=1$, we have $X \simeq \mathbf{P}^{n}$, hence

$$
\left(-K_{X}\right)^{n}=(n+1)^{n}
$$

When $\rho=2$, we have by classification

$$
\left(-K_{X}\right)^{n} \leq n^{2 n}
$$

For any integers $\rho \geq 2$ and $n \geq 4$ such that $\frac{n}{\log n} \geq 2^{\rho-2}$, there are examples of smooth toric Fano varieties X of dimension n and Picard number ρ with

$$
\left(-K_{X}\right)^{n} \geq\left(\frac{n^{\rho}}{2^{\rho^{2}-1}(\log n)^{\rho-1}}\right)^{n}
$$

so the bound (1) is not too far off.
(2) The pseudo-index

$$
\iota_{X}=\min _{C \subset X} \operatorname{mational~curve}\left(-K_{X} \cdot C\right)
$$

of X can be computed in a purely combinatorial way from Q. One can get the more precise bound (for $\rho>1$)

$$
\operatorname{vol}\left(Q^{\vee}\right) \leq\left(n\left(n+1-\iota_{X}\right)^{\rho-1}\right)^{n}
$$

(3) If X_{Q} is a compact complex manifold of dimension n with a positive Kähler-Einstein metric, methods from differential geometry give

$$
\operatorname{vol}\left(Q^{\vee}\right) \leq(2 n-1)^{n} \frac{2^{n+1} n!}{(2 n)!} \sim 2(2 e)^{n-1 / 2}
$$

(4) Taking $a_{1}=r_{1}$ and $a_{2}=\cdots=a_{m}=r_{2}=$ $\cdots=r_{m}=1$ in Example (2) above, one gets
a smooth toric Fano variety X of dimension $n=r_{1}+2 m-2$ and Picard number $m+1$ with reductive automorphism group and

$$
\left(-K_{X}\right)^{n} \geq m^{n} r_{1}^{r_{1}}
$$

Taking $m=\left[\frac{n}{2 \log n}\right]$, we get $\left(-K_{X}\right)^{n} \geq\left(\frac{a n^{2}}{\log n}\right)^{n}$ for some positive constant a. In particular, X does not have a Kähler-Einstein metric.
(5) Ewald conjectures that given a smooth Fano polytope Q, there is a basis of N in which the vertices of Q have all their coordinates in $\{0, \pm 1\}$. It holds for all the examples presented here.

Let $\left(e_{1}, \ldots, e_{n}\right)$ be such a basis, let u be a vertex of Q^{\vee}, and let v_{1}, \ldots, v_{n} be the vertices of the face F_{u} of Q. Write

$$
v_{i}=\sum_{j} \alpha_{i j} e_{j}, \alpha_{i j} \in\{0, \pm 1\}, \operatorname{det}\left(\alpha_{i j}\right)= \pm 1
$$

The coordinates $\left\langle u, e_{1}\right\rangle, \ldots,\left\langle u, e_{n}\right\rangle$ of u, solutions of the linear system

$$
1=\left\langle u, v_{i}\right\rangle=\sum_{j=1}^{n} \alpha_{i j}\left\langle u, e_{j}\right\rangle \quad i=1, \ldots, n
$$

are $n \times n$ determinants whose entries are in $\{0, \pm 1\}$. By Hadamard's inequality, their absolute value is bounded by $n^{n / 2}$, hence

$$
\operatorname{vol}\left(Q^{\vee}\right) \leq 2^{n} n^{n^{2} / 2}
$$

The theorem on the volume of the dual of a smooth Fano polytope is a consequence of the following two lemmas.

Lemma Let P be a polytope in \mathbf{R}^{n} whose only integral interior point is the origin. Let b be such that for each vertex u of P and each vertex v of P^{\vee}, we have $-b \leq\langle u, v\rangle \leq 1$. Then

$$
\operatorname{vol}(P) \leq(b+1)^{n}
$$

Proof. The hypothesis implies $-\frac{1}{b} P \subset P$. Assume $\operatorname{vol}(P)>(b+1)^{n}$ and set

$$
P^{\prime}=\frac{1-\varepsilon}{b+1} P
$$

We have $\operatorname{vol}\left(P^{\prime}\right)>1$ for ε positive small enough hence, by a theorem of Blichfeldt, P^{\prime} contains distinct points p and p^{\prime} such that $p-p^{\prime} \in \mathbf{Z}^{n}$. Since P^{\prime} is convex and $-\frac{1}{b} P^{\prime} \subset P^{\prime}$, the point

$$
\frac{p-p^{\prime}}{b+1}=\frac{p+b\left(-\frac{1}{b} p^{\prime}\right)}{b+1}
$$

is in P^{\prime}, hence $p-p^{\prime}$ is in $(b+1) P^{\prime}$, which is contained in the interior of P. This contradicts the fact that the origin is the only integral interior point of P.

Lemma Let Q be a smooth Fano polytope of dimension n with $\rho+n$ vertices, $\rho>1$. For each vertex u of Q^{\vee} and each vertex v of Q, we have

$$
-\frac{n-1}{n-2}\left((n-1)^{\rho}-1\right) \leq\langle u, v\rangle \leq 1
$$

Singular Fano varieties

In many cases, such as in the Minimal Model Program, it is necessary to allow some kind of singularities for Fano varieties. We assume the characteristic of \mathbf{k} is 0 .

Let X be a normal variety such that K_{X} is a Q-Cartier divisor. For any desingularization $f: Y \rightarrow X$, write

$$
K_{Y} \sim f^{*} K_{X}+\sum_{i} a_{i} E_{i}
$$

where the E_{i} are f-exceptional divisors, $a_{i} \in$ Q, and \sim denotes numerical equivalence.

The discrepancy of X is the minimum of the a_{i} for all possible desingularizations f.

It can be computed from any desingularization f whose exceptional locus is a divisor with normal crossings by the formula

$$
\operatorname{discr}(X)= \begin{cases}\min \left(1, a_{i}\right) & \text { if all } a_{i} \text { are } \geq-1 \\ -\infty & \text { otherwise }\end{cases}
$$

It is therefore either $-\infty$ or a rational number in $[-1,1]$, and is 1 if X is smooth. We
say that X has \log terminal singularities if $\operatorname{discr}(X)>-1$.

Definition A Fano variety X is a normal projective variety with log terminal singularities such that $-K_{X}$ is an ample Q-Cartier divisor. Example Let Y be a projectively normal smooth subvariety of \mathbf{P}^{n}, with hyperplane divisor H, such that $K_{Y} \sim q H$ for some rational number q (e.g., Y a smooth curve).

Set $\pi: \tilde{X}=\mathbf{P}\left(\mathscr{O}_{Y} \oplus \mathscr{O}_{Y}(H)\right) \rightarrow Y$ and let Y_{0} be the section such that $\left.Y_{0}\right|_{Y_{0}} \equiv-H$.
The cone X in \mathbf{P}^{n+1} over Y is normal; it is the contraction $f: \tilde{X} \rightarrow X$ of Y_{0}, and

$$
\begin{aligned}
K_{\tilde{X}} & \sim-2 Y_{0}+\pi^{*}\left(K_{Y}-H\right) \\
& \sim-2 Y_{0}+\pi^{*}((q-1) H)
\end{aligned}
$$

hence

$$
K_{X} \sim(q-1) H
$$

(These two Well divisors coincide outside of the vertex of X.) and

$$
-K_{X} \text { ample } \Longleftrightarrow q<1
$$

Writing $K_{\tilde{X}} \sim f^{*} K_{X}+a Y_{0}$, restricting to Y_{0} yields $a=-1-q$, hence
X has log terminal singularities $\Longleftrightarrow q<0$

It follows that X is a Fano variety if and only if Y is a Fano variety.

Toric Fano varieties

We have

Vertices of Q are primitive in $N \Rightarrow X_{Q}$ Fano

Moreover, if $P=Q^{\vee}$ and if, for each vertex u of P, we let σ_{u} be the cone in $N_{\mathbf{R}}$ generated by the facet F_{u} of Q, we have

$$
\operatorname{discr}\left(X_{Q}\right)=-1+\min _{\substack{u \in \mathscr{V}(P) \\ v \in \sigma_{u} \cap N-\mathscr{V}(Q)-\{0\}}}\langle u, v\rangle
$$

The polytope P has rational vertices and

Vertices of $m P$ are in M
$\Longleftrightarrow m K_{X}$ Cartier

In particular, X is a Gorenstein variety if and only if P has integral vertices (a polytope Q with this property is called reflexive; its dual has the same property)

Example The projective cone in \mathbf{P}^{a+1} over the rational normal curve in \mathbf{P}^{a} is the toric surface associated with the polytope

with dual

It is a Fano surface (this is a particular case of the example above, with $q=-2 / a$). We recover

$$
\operatorname{discr}(X)=-1+\langle u, v\rangle=-1+\frac{2}{a}
$$

Also, the smallest positive integer m such that $m K_{X}$ is a Cartier divisor is a if a is odd, $a / 2$ otherwise.

This shows that there are, in each dimension at least 2 , infinitely many isomorphism classes of toric Fano varieties. However, by bounding the discrepancy away from -1 , we get finitely many isomorphism types: since the vertices of a Fano polytope are primitive, we have for any $r>0$

$$
\begin{aligned}
\operatorname{discr}\left(X_{Q}\right) \geq-1+\frac{1}{r} & \Longleftrightarrow \\
& \langle u, v\rangle \geq \frac{1}{r} \quad \text { for all } v \in \sigma_{u} \cap N
\end{aligned}
$$

This implies

$$
\operatorname{Int}(Q) \cap r N=\{0\}
$$

Corollary Given positive integers n and r, there are only finitely many isomorphism types of toric Fano varieties of dimension n and discrepancy $\geq-1+\frac{1}{r}$ defined over \mathbf{k}.

This is due to Borisov \& Borisov (1993), who appear to have been unaware of an earlier article of Hensley (1983), which gives the finiteness of the number of isomorphism classes of polytopes $Q \subset \mathbf{R}^{n}$ such that $\operatorname{Int}(Q) \cap r \mathbf{Z}^{n}=$ $\{0\}$ under the action of $\mathrm{GL}\left(\mathrm{Z}^{n}\right)$. It also provides explicit (large) bounds in terms of n and r for the smallest integer m such that $m K_{X}$ is Cartier and for the degree $\left(-K_{X}\right)^{n}$.

It is conjectured that for each positive integer n and r, there are only finitely many deformation types of Fano varieties of dimension n with discrepancy $\geq-1+1 / r$. The point is to bound $\left(-K_{X}\right)^{n}$ and an integer m such that $m K_{X}$ is a Cartier divisor. M^{C} Kernan claims in the preprint Boundedness of log terminal Fano pairs of bounded index (matn.AG/0205214) that given integers n and m, there are only finitely many deformation types of complex Fano varieties X of dimension n such that $m K_{X}$ is a Cartier divisor.

