LINES ON SMOOTH HYPERSURFACES

OLIVIER DEBARRE

Let **k** be an algebraically closed field of characteristic p. If X is a subvariety of $\mathbf{P}_{\mathbf{k}}^{n}$ and x a point on X, we denote by $\mathbf{T}_{x}X$ the projective closure of the embedded Zariski tangent space to X at x.

It is known that the family of lines on a general hypersurface of degree d in \mathbf{P}^n is smooth of dimension 2n - 3 - d. When n is very large with respect to d, any smooth hypersurface of degree d in \mathbf{P}^n has this property ([HMP]). However, the bound in [HMP] is very large, whereas

- the family of lines on a smooth cubic in \mathbf{P}^n , with $n \ge 3$, is smooth of the expected dimension 2n 6.
- the family of lines on a smooth quartic in \mathbf{P}^n , with $n \ge 4$, has the expected dimension 2n 7 for $p \ne 2, 3$ (Collino). However, it may be reducible and non-reduced.

Conjecture 1. Assume p = 0 or $p \ge d$. The family of lines on a smooth hypersurface of degree d in \mathbf{P}^n has the expected dimension 2n-3-d for $n \ge d$.

These bounds are the best possible: the family of lines contained in a Fermat hypersurface in \mathbf{P}^n has dimension at least n-3, which is larger than the expected dimension for n < d. Also, when p > 0, the family of lines contained in a Fermat hypersurface of degree p + 1 in \mathbf{P}^n has dimension 2n-4, which is larger than the expected dimension.

Note that by taking general hyperplane sections,¹ it is enough to prove Conjecture 1 in the case n = d. In this case, X cannot be covered by lines (at least in characteristic zero): the normal bundle to a generic line must be generated by its global sections hence be nonnegative, but its total degree is n - 1 - d < 0. Conjecture 1 would therefore follow from the following conjecture.

Date: November 2003.

¹A family of lines meets the set of lines contained in a given hyperplane in codimension 2, except if they all pass through the same point. Lines contained in X and passing through the same point x are contained in $X \cap \mathbf{T}_x X$ hence form a family of dimension at most n-2 with equality if and only if $X = \mathbf{T}_x X$. Since $n-3 \leq 2n-d-3$ for $d \leq n$, the conjecture is proved in this case.

OLIVIER DEBARRE

Conjecture 2. An (n-2)-dimensional family of lines contained in a smooth hypersurface X of degree $\geq n-2$ in \mathbf{P}^n must cover X.

In other words, a subvariety of \mathbf{P}^n of codimension $c \ge 2$ that contains ∞^{n-2} lines (i.e., ∞^{c-1} lines through a general point) is not contained in a smooth hypersurface of degree $\ge n-2$.

The assumption on the degree is necessary: a smooth quadric Xin \mathbf{P}^5 contains a 2-dimensional family of 2-planes. A subfamily of dimension 1 of these 2-planes sweeps out a hypersurface in X with a 3-dimensional family of lines on it. Also, if X is a smooth hypersurface of degree n-3, the family of lines contained in a general hyperplane section has dimension n-2. More generally, a general complete intersection of multidegree (d_0, \ldots, d_s) in \mathbf{P}^n contains $\infty^{2n-2-\sum(d_j+1)}$ lines; if $\sum (d_j+1) \leq n$, it contains an (n-2)-dimensional family of lines and is at the same time contained in smooth hypersurfaces of degrees d_0, \ldots, d_s .

We prove below Conjecture 2 for $n \leq 5$, hence Conjecture 1 for $d \leq 5$. Note that all present proofs for bounding the dimension of the family of lines contained in a hypersurface are based on an estimate of $h^0(\ell, N_{\ell/P})$ (and even of $h^0(\ell, N_{\ell/P}(-1))$). In our case however, it may well happen that $h^0(\ell, N_{\ell/P}) > 2n - 3 - d$ everywhere, so that the family is non-reduced.

1. The results

We begin with a preliminary result.

Lemma 3. Let P be an r-plane contained in a the smooth locus of a hypersurface X of degree d in \mathbf{P}^n .

- We have $r \leq \frac{n-1}{2}$ unless X is a hyperplane.
- If $r = \frac{n-1}{2}$, we have

$$H^0(P, N_{P/X}(d-3)) = 0$$

In particular, X contains at most finitely many such planes when $d \ge 3$.

Proof. Let F be a homogeneous polynomial of degree d defining X and let $x_{r+1} = \cdots = x_n = 0$ be linear equations defining P. We may write

$$F = x_{r+1}F_{r+1} + \dots + x_nF_n$$

Any common zero of the n - r polynomials F_{r+1}, \ldots, F_n on P is a singular point of X hence $n - r \ge r + 1$ if these polynomials are non-constant.

2

If $r = \frac{n-1}{2}$, these polynomials form a regular sequence and the Koszul complex

$$0 \to \mathcal{O}_P(-(r+1)(d-1)) \longrightarrow \cdots \longrightarrow \mathcal{O}_P(-2(d-1))^{\binom{n-r}{2}} \longrightarrow \mathcal{O}_P(-(d-1))^{n-r} \xrightarrow{\cdot (F_{r+1},\dots,F_n)} \mathcal{O}_P \to 0$$

is exact. On the other hand, the normal bundle to P in X fits in an exact sequence

$$0 \to N_{P/X} \longrightarrow \mathcal{O}_P(1)^{n-r} \xrightarrow{\cdot (F_{r+1}, \dots, F_n)} \mathcal{O}_P(d) \longrightarrow 0$$

hence we get a long exact sequence

$$0 \to \mathcal{O}_P(d - (r+1)(d-1)) \longrightarrow \cdots \longrightarrow \mathcal{O}_P(d - 2(d-1))^{\binom{n-r}{2}} \longrightarrow N_{P/X} \to 0$$

Since the sheaves in this free resolution with r terms have only non-zero H^0 and H^r , the associated spaces of sections form an exact sequence and this still holds after tensoring by $\mathcal{O}_P(d-3)$.

From now on, we assume that the smooth hypersurface X of degree $d \ge 2$ in \mathbf{P}^n contains an (n-2)-dimensional irreducible family of lines which covers an integral subvariety S of X of dimension k = n - 1 - s. Varieties with many lines have been studied extensively ([S], [R]). The results are as follows.

Theorem 4. A k-dimensional irreducible subvariety S of \mathbf{P}^n contains at most ∞^{2k-2} lines.

- If S contains ∞^{2k-2} lines, it is a k-plane.
- If S contains ∞^{2k-3} lines,
 - a) either S contains ∞^{1} (k-1)-planes;
 - b) or S is a quadric.
- If S contains ∞^{2k-4} lines,
 - a) either S contains ∞^2 (k-2)-planes;
 - b) or S contains ∞^1 (k-1)-dimensional quadrics;
 - c) or S is a section of $G(1,4) \subset \mathbf{P}^9$ by 6-k hyperplanes;
 - d) or the linear span of S has dimension $\leq k+2$.

Corollary 5. If $d \ge 3$, we have

$$s \le \frac{1}{2}(n-4)$$

Proof. The first item of the theorem yields

$$s \le \frac{1}{2}(n-2)$$

and if there is equality, X contains an $\frac{n}{2}$ -plane, which contradicts Lemma 3.

OLIVIER DEBARRE

If $s = \frac{1}{2}(n-3)$, either X contains $\infty^1 \frac{1}{2}(n-1)$ -planes, which contradicts Lemma 3, or X contains a $\frac{1}{2}(n+1)$ -dimensional quadric, which contradicts the following lemma.

Lemma 6. If X contains a q-dimensional hypersurface of degree δ , either $d = \delta$ or $q \leq \frac{n-1}{2}$.

Proof. Let L be the linear span of the hypersurface Y contained in X. We may assume, by lemma 3, that L is not contained in X. Since the Gauss map of X is finite, the inverse image of the (n - q - 2)-plane $\{H \in \mathbf{P}^{n*} \mid H \supset L\}$ has dimension at most n - q - 2. If $n - q - 2 \leq q - 2$, the hypersurface $X \cap L$ in L is non-singular in codimension 1 hence integral hence equal to Y, and $d = \delta$.

This proves Conjecture 2 for $n \leq 5^{2}$.

References

- [C] Collino, A., Lines on quartic threefolds, J. London Math. Soc. 19 (1979), 257–267.
- [HMP] Harris, J., Mazur, B., Pandharipande, R., Hypersurfaces of low degree, Duke Math. J. 95 (1998), 125–160.
- [R] Rogora, E., Varieties with many lines, Manuscr. Math. 82 (1994), 207–26.
- [S] Segre, B., Sulle V_n contenenti più di $\infty^{n-k} S_k$, I and II. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. 5 (1948), 193–197 and 275–280.

²Added in 2006: in the article "Lines on projective hypersurfaces", by R. Beheshti (*J. Reine Angew. Math.* **592** (2006), 1–21), Conjecture 1 is proved for $d \le 6$ and p = 0.