Let \(k \) be an algebraically closed field of characteristic \(p \). If \(X \) is a subvariety of \(\mathbb{P}_k^n \) and \(x \) a point on \(X \), we denote by \(T_x X \) the projective closure of the embedded Zariski tangent space to \(X \) at \(x \).

It is known that the family of lines on a general hypersurface of degree \(d \) in \(\mathbb{P}^n \) is smooth of dimension \(2n - 3 - d \). When \(n \) is very large with respect to \(d \), any smooth hypersurface of degree \(d \) in \(\mathbb{P}^n \) has this property ([HMP]). However, the bound in [HMP] is very large, whereas

- the family of lines on a smooth cubic in \(\mathbb{P}^n \), with \(n \geq 3 \), is smooth of the expected dimension \(2n - 6 \).
- the family of lines on a smooth quartic in \(\mathbb{P}^n \), with \(n \geq 4 \), has the expected dimension \(2n - 7 \) for \(p \neq 2, 3 \) (Collino). However, it may be reducible and non-reduced.

Conjecture 1. Assume \(p = 0 \) or \(p \geq d \). The family of lines on a smooth hypersurface of degree \(d \) in \(\mathbb{P}^n \) has the expected dimension \(2n - 3 - d \) for \(n \geq d \).

These bounds are the best possible: the family of lines contained in a Fermat hypersurface in \(\mathbb{P}^n \) has dimension at least \(n - 3 \), which is larger than the expected dimension for \(n < d \). Also, when \(p > 0 \), the family of lines contained in a Fermat hypersurface of degree \(p + 1 \) in \(\mathbb{P}^n \) has dimension \(2n - 4 \), which is larger than the expected dimension.

Note that by taking general hyperplane sections,\(^1\) it is enough to prove Conjecture 1 in the case \(n = d \). In this case, \(X \) cannot be covered by lines (at least in characteristic zero): the normal bundle to a generic line must be generated by its global sections hence be non-negative, but its total degree is \(n - 1 - d < 0 \). Conjecture 1 would therefore follow from the following conjecture.

1 A family of lines meets the set of lines contained in a given hyperplane in codimension 2, except if they all pass through the same point. Lines contained in \(X \) and passing through the same point \(x \) are contained in \(X \cap T_x X \) hence form a family of dimension at most \(n - 2 \) with equality if and only if \(X = T_x X \). Since \(n - 3 \leq 2n - d - 3 \) for \(d \leq n \), the conjecture is proved in this case.

Date: November 2003.
Conjecture 2. An \((n - 2)\)-dimensional family of lines contained in a smooth hypersurface \(X\) of degree \(\geq n - 2\) in \(\mathbb{P}^n\) must cover \(X\).

In other words, a subvariety of \(\mathbb{P}^n\) of codimension \(\geq 2\) that contains \(\infty^{n-2}\) lines (i.e., \(\infty^{c-1}\) lines through a general point) is not contained in a smooth hypersurface of degree \(\geq n - 2\).

The assumption on the degree is necessary: a smooth quadric \(X\) in \(\mathbb{P}^5\) contains a 2-dimensional family of 2-planes. A subfamily of dimension 1 of these 2-planes sweeps out a hypersurface in \(X\) with a 3-dimensional family of lines on it. Also, if \(X\) is a smooth hypersurface of degree \(n - 3\), the family of lines contained in a general hyperplane section has dimension \(n - 2\). More generally, a general complete intersection of multidegree \((d_0, \ldots, d_s)\) in \(\mathbb{P}^n\) contains \(\infty^{2n-2-\sum(d_j+1)}\) lines; if \(\sum(d_j + 1) \leq n\), it contains an \((n - 2)\)-dimensional family of lines and is at the same time contained in smooth hypersurfaces of degrees \(d_0, \ldots, d_s\).

We prove below Conjecture 2 for \(n \leq 5\), hence Conjecture 1 for \(d \leq 5\). Note that all present proofs for bounding the dimension of the family of lines contained in a hypersurface are based on an estimate of \(h^0(\ell, N_{\ell/P})\) (and even of \(h^0(\ell, N_{\ell/P}(-1))\)). In our case however, it may well happen that \(h^0(\ell, N_{\ell/P}) > 2n - 3 - d\) everywhere, so that the family is non-reduced.

1. The results

We begin with a preliminary result.

Lemma 3. Let \(P\) be an \(r\)-plane contained in the smooth locus of a hypersurface \(X\) of degree \(d\) in \(\mathbb{P}^n\).

- We have \(r \leq \frac{n - 1}{2}\) unless \(X\) is a hyperplane.
- If \(r = \frac{n - 1}{2}\), we have

\[H^0(P, N_{P/X}(d - 3)) = 0\]

In particular, \(X\) contains at most finitely many such planes when \(d \geq 3\).

Proof. Let \(F\) be a homogeneous polynomial of degree \(d\) defining \(X\) and let \(x_{r+1} = \cdots = x_n = 0\) be linear equations defining \(P\). We may write

\[F = x_{r+1}F_{r+1} + \cdots + x_nF_n\]

Any common zero of the \(n - r\) polynomials \(F_{r+1}, \ldots, F_n\) on \(P\) is a singular point of \(X\) hence \(n - r \geq r + 1\) if these polynomials are non-constant.
If \(r = \frac{n-1}{2} \), these polynomials form a regular sequence and the Koszul complex

\[
0 \to \mathcal{O}_P(-(r+1)(d-1)) \to \cdots \to \mathcal{O}_P(-2(d-1))^{n-r} \to \mathcal{O}_P(-d) \to \cdots
\]

is exact. On the other hand, the normal bundle to \(P \) in \(X \) fits in an exact sequence

\[
0 \to \mathcal{N}_{P/X} \to \mathcal{O}_P(1)^{n-r} \to \mathcal{O}_P(d) \to 0
\]

hence we get a long exact sequence

\[
0 \to \mathcal{O}_P(d-(r+1)(d-1)) \to \cdots \to \mathcal{O}_P(d-2(d-1))^{n-r} \to \mathcal{N}_{P/X} \to 0
\]

Since the sheaves in this free resolution with \(r \) terms have only non-zero \(H^0 \) and \(H^r \), the associated spaces of sections form an exact sequence and this still holds after tensoring by \(\mathcal{O}_P(d-3) \). \(\square \)

From now on, we assume that the smooth hypersurface \(X \) of degree \(d \geq 2 \) in \(\mathbb{P}^n \) contains an \((n-2) \)-dimensional irreducible family of lines which covers an integral subvariety \(S \) of \(X \) of dimension \(k = n-1-s \). Varieties with many lines have been studied extensively ([S], [R]). The results are as follows.

Theorem 4. A \(k \)-dimensional irreducible subvariety \(S \) of \(\mathbb{P}^n \) contains at most \(\infty^{2k-2} \) lines.

- If \(S \) contains \(\infty^{2k-2} \) lines, it is a \(k \)-plane.
- If \(S \) contains \(\infty^{2k-3} \) lines,
 - a) either \(S \) contains \(\infty^1 \) \((k-1)\)-planes;
 - b) or \(S \) is a quadric.
- If \(S \) contains \(\infty^{2k-4} \) lines,
 - a) either \(S \) contains \(\infty^2 \) \((k-2)\)-planes;
 - b) or \(S \) contains \(\infty^1 \) \((k-1)\)-dimensional quadrics;
 - c) or \(S \) is a section of \(G(1,4) \subset \mathbb{P}^9 \) by \(6-k \) hyperplanes;
 - d) or the linear span of \(S \) has dimension \(\leq k+2 \).

Corollary 5. If \(d \geq 3 \), we have

\[
s \leq \frac{1}{2}(n-4)
\]

Proof. The first item of the theorem yields

\[
s \leq \frac{1}{2}(n-2)
\]

and if there is equality, \(X \) contains an \(\frac{n}{2} \)-plane, which contradicts Lemma 3.
If $s = \frac{1}{2}(n - 3)$, either X contains $\infty^1 \frac{1}{2}(n - 1)$-planes, which contradicts Lemma 3, or X contains a $\frac{1}{2}(n + 1)$-dimensional quadric, which contradicts the following lemma. \hfill \Box

Lemma 6. If X contains a q-dimensional hypersurface of degree δ, either $d = \delta$ or $q \leq \frac{n - 1}{2}$.

Proof. Let L be the linear span of the hypersurface Y contained in X. We may assume, by lemma 3, that L is not contained in X. Since the Gauss map of X is finite, the inverse image of the $(n - q - 2)$-plane $\{H \in \mathbb{P}^{n*} \mid H \supset L\}$ has dimension at most $n - q - 2$. If $n - q - 2 \leq q - 2$, the hypersurface $X \cap L$ in L is non-singular in codimension 1 hence integral hence equal to Y, and $d = \delta$. \hfill \Box

This proves Conjecture 2 for $n \leq 5$.\footnote{Added in 2006: in the article “Lines on projective hypersurfaces”, by R. Beheshti (J. Reine Angew. Math. 592 (2006), 1–21), Conjecture 1 is proved for $d \leq 6$ and $p = 0$.}

References

