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Chapter 1

Rational curves

1.1 Exceptional locus of a morphism

A wariety is an integral and separated scheme of finite type over a field k. If Y
and X are varieties, a morphism f : Y — X is birational if there exists a dense
open subset U C X such that f induces an isomorphism between f~1(U) and
U. The exceptional locus Exc(f) of fis Y = f~1(U), where U is the largest such
open subset of X. If X is normal, Zariski’s Main Theorem says that the fibers
of the induced morphism Y = f~1(U) — X =U are connected and everywhere
positive-dimensional. In particular, X —U has codimension > 2 in X. If X is
smooth (or more generally normal and locally Q-factorial), every component of
Exc(f) has codimension 1 in Y.

1.2 Rational curves and birational morphisms

A lot of the birational geometry of a smooth projective variety depends on how
many rational curves it contains (later on, we will give several definitions to
quantify what we mean by “ how many”). Many tools have been introduced to
study varieties with many rational curves, and they have had several striking
consequences in algebraic and arithmetic geometry (see Chapter 4). We begin
with a classical result which illustrates this principle.

Proposition 1.1 Let X and Y be projective varieties, with X smooth, and let
f Y — X be a birational morphism which is not an isomorphism. Through
a general point of each component of Exc(f), there exists a rational curve con-
tracted by f.



When X and Y are surfaces, the proposition follows immediately from the
classical fact that (upon replacing Y with a desingularization) f is a composition
of blow-ups of points.

PrOOF. Set E = Exc(f). Upon replacing Y with its normalization, we may
assume that Y is smooth in codimension 1.

Each component of E has codimension 1 (§1.1) hence, by shrinking Y, we
may assume that Y and E are smooth and irreducible. Set Uy = X —Sing(f(E)),
so that the closure in Uy of the image of EN f~1(Up) is smooth, of codimension
at least 2. Let 1 : X1 — Uy be its blow-up; by the universal property of
blow-ups ([H1], Proposition I1.7.14), there exists a factorization

f|v1:V1£>X1i>U0CX

where the complement of V; = f~1(Up) in Y has codimension at least 2 and
f1(ENVy) is contained in the support of the exceptional divisor of ;. If the
codimension of f1(F N V7) in X; is at least 2, the divisor EN V] is contained in
the exceptional locus of f; and, upon replacing Vi by the complement V5 of a
closed subset of codimension at least 2 and X; by an open subset U;, we may
repeat the construction. After ¢ steps, we get a factorization

Fvidux, LU e X T g e X LUy X

as long as the codimension of f;_1(ENV;_1) in X;_; is at least 2, where V; is
the complement in Y of a closed subset of codimension at least 2. Let E; C X
be the exceptional divisor of ;. We have

Kx, = & Ky,_, +cakE;
= (g10--0g)'Kx+c¢E+ci1Ei i1+ +akFEi,

where E; ; is the inverse image of E; in X; and
C; = Codimxifl(fi,l(E N Vvi,l)) —1>0.

Since f; is birational, fOx,(Kx,) is a subsheaf of Oy, (Ky;). Moreover, since
f;(ENVj) is contained in the support of Ej, the divisor f; E; — Ely; is effective,
hence sois E; ; — F

V-

It follows that Oy (f*Kx + (¢; + -+ ¢1)E)|v, is a subsheaf of Oy, (Ky,) =
Oy (Ky)|v,. Since Y is normal and the complement of V; in Y has codimension
at least 2, Oy (f*Kx + (¢; + -+ + ¢1)E) is also a subsheaf of 0y (Ky). Since
there are no infinite ascending sequences of subsheaves of a coherent sheaf on a
Noetherian scheme, the process must terminate at some point: f;(ENV;) is a
divisor in X; for some 7, hence ENYV; is not contained in the exceptional locus of
fi (by §1.1 again). The morphism f; then induces a birational isomorphism be-
tween ENYV; and E;, and the latter is ruled: more precisely, through every point
of F; there is a rational curve contracted by ¢;. This proves the proposition. [J



Corollary 1.2 Let Y and X be projective varieties. Assume that X is smooth
and that Y contains no rational curves. Any rational map X --+Y is defined
everywhere.

Proor. Let X’ € X x Y be the graph of a rational map u : X --» Y.
The first projection induces a birational morphism f : X’ — X. Assume its
exceptional locus Exc(f) is nonempty. By Proposition 1.1, there exists a rational
curve on Exc(f) which is contracted by p. Since Y contains no rational curves,
it must also be contracted by the second projection, which is absurd since it is
contained in X x Y. Hence Exc(f) is empty and u is defined everywhere. [

Corollary 1.3 Let X be a smooth projective variety which contains no rational
curve. Any birational automorphism of X is an automorphism of X.

1.3 Parametrizing rational curves

Let k be a field. Any k-morphism f from P to P{ can be written as

flu,v) = (Fo(u,v),..., Fn(u,v)) (1.1)

where Fp, ..., Fn are homogeneous polynomials in two variables, of the same
degree d, with no nonconstant common factor in k[U, V] (or, equivalently, with
no nonconstant common factor in k[U, V], where k is an algebraic closure of k).

We are going to show that there exist universal integral polynomials in the
coefficients of Fy, ..., Fiy which vanish if and only if they have a nonconstant
common factor in f{[U, V], i.e., a nontrivial common zero in P%{. By the Null-
stellensatz, the opposite holds if and only if the ideal generated by Fy,..., Fn
in k[U, V] contains some power of the maximal ideal (U, V). This in turn means
that for some m, the map

(E[U’V}m*d)NJrl - E[Uav}m
(Go,....GN)  +— Y FG,

is surjective, hence of rank m + 1 (here k[U, V], is the vector space of homoge-
neous polynomials of degree m). This map being linear and defined over k, we
conclude that Fp,..., Fy have a nonconstant common factor in k[U, V] if and
only if, for all m, all (m + 1)-minors of some universal matrix whose entries are
linear integral combinations of the coefficients of the F; vanish. This defines a
Zariski closed subset of the projective space P((Sym? k?)N+1), defined over Z.

Therefore, morphisms of degree d from Pll( to Pfj are parametrized by a
Zariski open set of the projective space P((Sym®k?)¥+1): we denote this quasi-
projective variety Mord(Pll(, Pf(v ). Note that these morphisms fit together into



a universal morphism

fuive Pl x Morg(PL,PY) — Py
((u,v), f) — (Fo(u,v), ..., Fy(u,v)).

Finally, morphisms from P to P{ are parametrized by the disjoint union

Mor(Py, PY) = || Morg(Py, PY)
d>0

of quasi-projective k-schemes.

Let now X be a (closed) subscheme of Pi¥ defined by homogeneous equations
Gi,...,Gy. Morphisms of degree d from PL to X are parametrized by the
subscheme Mory(PL, X) of Mory(PL,PY) defined by the equations

Gj(Fo,...7FN):O for all jE{l,,m}
Again, morphisms from Pll( to X are parametrized by the disjoint union

Mor(Py, X) = | | Mora(Py, X)
d>0

of quasi-projective k-schemes. The same conclusion holds for any quasi-projective
k-variety X: embed X into some projective variety X; there is a universal mor-
phism ‘
UV P x Mor(Py, X) — X

and Mor(Py, X) is the complement in Mor(Pj, X) of the image by the (proper)
second projection of the closed subscheme (f"V)~!(X -X).

If now X can be defined by homogeneous equations G, ..., G, with coeffi-
cients in a subring R of k, the scheme Mory(Py, X) has the same property. If

m is a maximal ideal of R, one may consider the reduction X, of X modulo
m: this is the subscheme of Pg/m defined by the reductions of the G; mod-

ulo m. Because the equations defining the complement of Mory(Py,PY) in
P((Sym? k2)N+1) are defined over Z and the same for all fields, Mory(PL, Xo)
is the reduction of the R-scheme Mory(P*!, X) modulo m. In fancy terms, one
may express this as follows: if 2 is a scheme over Spec R, the R-morphisms
P}, — 2 are parametrized by (the R-points of) a locally Noetherian scheme

Mor(Pk, 2°) — Spec R

and the fiber of a closed point m is the space Mor(P}%/m, Zn)-

1.4 Parametrizing morphisms

1.4. The space Mor(Y, X). If X and Y are varieties defined over a field k,
with X quasi-projective and Y projective, Grothendieck showed ([G1], 4.c) that



k-morphisms from Y to X are parametrized by a locally Noetherian k-scheme
Mor(Y, X). As we saw in the case Y = P and X = Py, this scheme will in
general have countably many components. One way to remedy that is to fix
an ample divisor H on X and a polynomial P with rational coefficients: the
subscheme Morp (Y, X) of Mor(Y, X) which parametrizes morphisms f : Y — X
with fixed Hilbert polynomial

P(m) = x(Y,mf*H)

is now quasi-projective over k, and Mor (Y, X) is the disjoint (countable) union
of the Morp(Y, X), for all polynomials P. Note that when Y is a curve, fixing
the Hilbert polynomial amounts to fixing the degree of the 1-cycle f,Y for the
embedding of X defined by some multiple of H.

Let us make more precise this notion of parameter space. We ask as above
that there be a universal morphism (also called evaluation map)

fUY Y x Mor(Y, X) — X
such that for any k-scheme T', the correspondance between
e morphisms ¢ : T'— Mor(Y, X) and

e morphisms f:Y xT — X

obtained by sending ¢ to
Fly,t) = f" (g, o(t))

is one-to-one.

1.5. The tangent space to Mor(Y, X). We will use the universal property to
determine the Zariski tangent space to Mor(Y, X) at a k-point [f]. This vector
space parametrizes morphisms from Speck[e]/(¢?) to Mor(Y, X) with image [f],
hence extensions of f to morphisms

fo: Y x Speckle]/(e?) — X

which should be thought of as first-order infinitesimal deformations of f.

Proposition 1.6 Let X andY be varieties defined over a field k, with X quasi-
projective and Y projective, let f :' Y — X be a k-morphism, and let [f] be the
corresponding k-point of Mor(Y, X). One has

Trtor(v,x),1f) = H (Y, Hom(f*Qx, Oy)).

In particular, when X is smooth along the image of f,

Tator (v, x),() = HO(Y, f*Tx).



PrROOF. Assume first that ¥ and X are affine and write ¥ = Spec(B)
and X = Spec(A) (where A and B are finitely generated k-algebras). Let
f%: A — B be the morphism corresponding to f, making B into an A-algebra;
we are looking for k-algebra homomorphisms f# : A — Ble] of the type

Vae A fia)= f(a) +egla).
The equality f(aa’) = ff(a)ff(a’) is equivalent to
Va,a' € A glaa) = fH(a)g(a’) + f*(a')g(a).

In other words, g : A — B is a k-derivation of the A-module B, hence factors
as g: A — Q4 — B ([H1], §IL.8). Such extensions are therefore parametrized
by Hom4(Q4, B) = Homp (4 ®4 B, B).

In general, cover X by affine open subsets U; = Spec(4;) and Y by affine
open subsets V; = Spec(B;) such that f(V;) is contained in U;. First-order
extensions of fly, : V; — U; are parametrized by

g; € HomBi(QAi ®a,; Bi,Bi) = HO(W,%OTn(f*Qx, ﬁy))
To glue these, we need the compatibility condition

gilvinv, = gjlvinv;,

which is exactly saying that the g; define a global section on Y. O

1.7. Parametrizing morphisms vs. parametrizing subvarieties. Grothen-
dieck’s construction of the scheme Mor(Y, X) is a consequence of his construc-
tion of the Hilbert scheme Hilb(Z) which parametrizes subschemes of a fixed
projective scheme Z (a morphism Y — X is identified with its graph in Y x X).

Let Y be a projective subscheme of a k-scheme Z, with ideal sheaf %y,
and let Ny, z := S om(Fy /3, Oy) be the normal sheaf to Y in Z. One can
show as above that the Zariski tangent space to Hilb(Z) at [Y] is isomorphic to
H°(Y, Ny, 7).

The canonical exact sequence
fy/fﬁ — Q7 - Qy —0
dualizes to
0 — Hom(Qy,Oy) — Hom(f*Qgz,Oy) — Ny,z,
which yields

0 — H(Y, #om(Qy, Oy)) — HO(Y, #om(f*Qz, Oy)) — H°(Y, Ny, 7).



By Proposition 1.6, the Zariski tangent space to Aut(Y) at [Idy] is isomorphic
to the leftmost space in this sequence, and the maps in the sequence are the
tangent maps to the natural maps

Aut(Y) — Mor(Y,Z) — Hilb(Z)
g = fog, h +— h(Y).

1.8. The local structures of Mor(Y, X) and Hilb(Z). Our next result pro-
vides a lower bound for the dimension of Mor(Y, X) at a point [f], thereby
allowing us in certain situations to produce many deformations of f. This lower

bound is very accessible, via the Riemann-Roch theorem, when Y is a curve
(see 1.11).

Theorem 1.9 Let X andY be varieties defined over a field k, with' Y projective
and X quasi-projective, and let f :' Y — X be a k-morphism such that X is
smooth along f(Y). Locally around [f], the scheme Mor(Y, X) can be defined
by hX(Y, f*Tx) equations in a smooth scheme of dimension h°(Y, f*Tx). In
particular, any (geometric) irreducible component of Mor(Y, X) through [f] has
dimension at least

h’O(Ya f*TX) - hl(Y7 f*TX)

In particular, under the hypotheses of the theorem, a sufficient condition for
Mor(Y, X) to be smooth at [f] is HY(Y, f*Tx) = 0. We will give in 1.13 an
example that shows that this condition is not necessary.

For the proof of the theorem, I refer to [D], Theorem 2.6. There is a similar
result for the Hilbert scheme: if Y is a locally complete intersection subscheme
of a smooth projective k-variety Z, with (locally free) normal sheaf Ny 7, locally
around [Y], the scheme Hilb(Z) can be defined by h' (Y, Ny,z) equations in a
smooth scheme of dimension h®(Y,Ny,z) ([S], Theorem 4.3.5).

1.5 Parametrizing morphisms with extra struc-
ture

1.10. Morphisms with fixed points. We will need a slightly more general
situation: fix a finite subset B = {y1,...,y,} of Y and points z1,...,z, of
X; then morphisms f : Y — X which map each y; to x; are parametrized
by a subscheme Mor(Y, X;y; — z;) of Mor(Y, X) which is just the fiber over
(z1,...,z,) of the map

p:Mor(Y,X) — X7
1 — (Fw)s--s fyr)



By Theorem 1.9, its irreducible components at [f] are therefore all of dimension
at least
hO(Y, f*Tx) — ' (Y, f*Tx) — r dim(X).

The tangent map to p at [f] is the evaluation

r

HO(Y, f*Tx) — @P(f*Tx)y, ~ P Tx.a,-
i=1

i=1

The tangent space to Mor(Y, X;y; — ;) at [f] is therefore isomorphic to
HO(Y, f*Tx ® #,.. 4.) One can show that if X is smooth along f(Y), the
scheme Mor(Y, X;y; — x;) can be defined by h* (Y, f*Tx ® Iy, ..4.) equations
in a smooth scheme of dimension h°(Y, f*Tx ® Sy, 4.

1.11. Morphisms from a curve. Everything takes a particularly simple
form when Y is a curve C: for any f: C — X and ¢1,...,¢, € C, one has by
Riemann-Roch

dim ) Mor(C, X;¢; — f(c;))

v

x(C, f*Tx) —rdim(X) (1.2)
= (-Kx- f.C)+ (1 —-g(C)—r)dim(X),

where g(C) =1— x(C, O¢).

1.12. Relative situation. All this can be done over an irreducible Noetherian
base scheme S ([M]; [K1], Theorem I1.1.7): if Y — S is a projective flat S-
scheme, with a subscheme B C Y finite and flat over S, and X — S is a
quasi-projective S-scheme with an S-morphism g : B — X, the S-morphisms
from Y to X that restrict to g on B can be parametrized by a locally Noetherian
S-scheme Morg(Y, X;g). The universal property implies in particular that for
any point s of S, one has

Morg(Y, X; g)s =~ Mor(Y;, Xs; gs)-

In other words, the schemes Mor(Y;, X5; gs) fit together to form a scheme over
S ([M], Proposition 1, and [K1], Proposition II.1.5).

When moreover Y is a relative reduced curve C' over S, with geometrically
reduced fibers, and X is smooth over S, given a point s of S and a morphism
f: Cs — X, which coincides with g; on By, we have

dim(s) Mors(C, X;9) > x(Cs, f*Tx, ® Ip,) + dim(S)
= (—Kx, - [.Cs) + (1 = g(C) — 1g(Bs)) dim(X) + dim(S). (1.3)

Furthermore, if H!(Cs, f*Tx, ® .#p,) vanishes, Morg(C, X; g) is smooth over S
at [f] ([K1], Theorem II.1.7).

The situation is similar for Hilbert schemes (and as in the absolute situation,
the morphism case reduces to this case by considering graphs): if Z — S is a

10



projective morphism, subschemes of Z which are proper and flat over S can be
parametrized by a locally Noetherian projective S-scheme Hilbg(Z). For any
point s of .S, one has

Hilbg(Z)s ~ Hilb(Zy).

In other words, the schemes Hilb(Z) fit together to form a scheme over S.

1.6 Lines on a subvariety of a projective space

We will describe lines on complete intersections in a projective space over an
algebraically closed field k to illustrate the concepts developed above.

Let X be a subvariety of PV of dimension n. By associating its image to a
rational curve, we define a morphism

Mor; (Pg, X) — G(1,PY),

where G(1,P¥) is the Grassmannian of lines in PV (this is a particular case
of 1.7). Its image parametrizes lines in X; it has a natural scheme structure
and we will denote it by F(X). By 1.7, the tangent space to F(X) at [{] is
HO(, Ny x)-

Similarly, given a point z on X, we let F(X,z) be the subscheme of F(X)
consisting of lines passing through = and contained in X. Lines through x are
parametrized by a hyperplane in PV of which F(X,z) is a subscheme. The
tangent space to F(X, x) at [¢] is isomorphic to H(¢, Ny x(—1)).

There is an exact sequence of normal bundles
0— Neyx — Op(H)®N =D — (Nypn)e — 0. (1.4)

Since any locally free sheaf on Py is isomorphic to a direct sum of invertible
sheaf, we can write

Nyyx ~ €D Ou(an), (1.5)
=2

where ag > -+ > a,. By (1.4), we have as < 1. In particular, if f: ¢ — X is
the inclusion,

£~ 0,2) & ) ). (16)

If a,, > —1, the scheme Mor(¢, X) is smooth at [f], hence F(X) is smooth at
[¢] (Theorem 1.9). Similarly, if a,, > 0, the scheme F(X, ) is smooth at [¢] for
any point z on £ (see 1.10).

1.13. Fermat hypersurfaces. The Fermat hypersurface X]‘(, is the hypersur-
face in PV defined by the equation

24t 0.

11



It is smooth if and only if the characteristic p of k does not divide d. Assume
p >0 and d =p" 4+ 1 for some r > 0. The line joining two points = and y is
contained in X% if and only if

(xj + tyj)p +1

I
M=

<
I
o

(¥ —i—tpryf )z + ty;)

|
.MZ

<
I
o

i1 . . . . 41
(a8 7ty P a7 Hyf )

I
] =

<.
I
o

for all t € k. It follows that the scheme
{(,y) € X x X [ (z,y) C X}

is defined by the two equations

n+1 n+1 P
0= 2Py = 2y
= i Y= i Y5
j=0 j=0

in X x X, hence has everywhere dimension > 2N —4. Since this scheme (minus
the diagonal of X x X) is fibered over F(X¢) with fibers P x PL (minus the
diagonal), it follows that F(X%) has everywhere dimension > 2N — 6. With
the notation of (1.5), this implies

2N — 6 < dim(Tr(xq) 1q) = (6, Nyyxg ) = dim Y (a; + 1), (1.7)

a; >0

Since a; <1 and a1 +---+any—2 = N — 1 —d by (1.4), the only possibility is,
when d > 4,
NE/XZ‘i, ~ ﬁg(l)eB(Nig) (&) ﬁg(2 - d)

and there is equality in (1.7). It follows that F(X%) is everywhere smooth of
dimension 2N —6, although H* (¢, Nz/xg’v) is nonzero. Considering parametriza-

tions of these lines, we get an example of a scheme Morl(Pll(7 XJ‘{,) smooth at all
points [f] although H' (P, [*Txa ) never vanishes.
The scheme
{(z,[0) € X x F(X{) |z € £}

is therefore smooth of dimension 2N — 5, hence the fiber F(X%,z) of the first
projection has dimension N — 4 for = general in X.! On the other hand, the

IThis is actually true for all z € X.

12



calculation above shows that the scheme F(X¢, ) is defined (in some fixed
hyperplane not containing x) by the three equations

n+1 n+1

) . r n+1 .
0= = (2 w) =3
3=0 3=0 j=0

It is clear from these equations that the tangent space to F(X$&,x) at every
point has dimension > N — 3. For N > 4, it follows that for x general in X,
the scheme F(X¢&, ) is nowhere reduced and similarly, Mory (PL, X%;0 — z) is
nowhere reduced.

1.7 Bend-and-break

The title of this section refers to a series of results (originated by Mori; [M],
Theorems 5 and 6) that say that a curve deforming nontrivially while keeping
some points fixed must break into an effective 1-cycle with a rational component
passing through one of the fixed points. We only present the here the strongest
of these results.

Proposition 1.14 Let X be a projective variety and let H be an ample Cartier
divisor on X. Let f : C — X be a smooth curve and let B be a finite nonempty
subset of C' such that

dims) Mor(C, X; B +— f(B)) > 1.
There exists a rational curve T' on X which meets f(B) and such that

2<H ) f*C)
(H-T) < (@)

According to (1.2), when X is smooth along f(C), the hypothesis is fulfilled
whenever

(-Kx - f.C)+ (1 — g(C) — Card(B)) dim(X) > 1.

The proof actually shows that there exist a morphism f’ : C — X and a
nonzero effective rational 1-cycle Z on X such that

f*C ~num f;C+Z,

one component of which meets f(B) and satisfies the degree condition above.

PrROOF. Set B = {c1,...,¢}. Let C’" be the normalization of f(C). If C’
is rational and f has degree > b/2 onto its image, just take I' = C’. From now
on, we will assume that if C’ is rational, f has degree < b/2 onto its image.

13



By 1.10, the dimension of the space of morphisms from C' to f(C) that send
B to f(B) is at most h°(C, f*Ter @ #5). When C’ is irrational, f*Tor ® Ip
has negative degree, and, under our assumption, this remains true when C’
is rational. In both cases, the space is therefore O-dimensional, hence any 1-
dimensional subvariety of Mor(C, X; B — f(B)) through [f] corresponds to
morphisms with varying images.

Let T be the normalization of such a subvariety and let T be a smooth
compactification of T'. The possible indeterminacies of the rational map

v:COxT--+X

coming from the morphism T — Mor(C, X; B — f(B)) can be resolved by
blowing up points to get a morphism

e — ev
e:S—CxT--+X
whose image is a surface.

For i =1,...,b, we denote by E; 1,..., E; ,, the inverse images on S of the
(—1)-exceptional curves that appear every time some point lying on the strict
transform of {c¢;} x T is blown up.

By Eip - Eip,

i/xﬂ%{
75}, /cc @

-
i

C2

C

Co

T

The 1-cycle f.C bends and breaks keeping c1, ..., cp fized.

We have
(Eij - Eij) = =605
Write the strict transform T of {¢;} x T on S as

n;
-
T’i ~num € T — § Ei,ja

14



Write also

b n,;
e"H ~num ag*C + de*T — Z Z ai,jEi,j + (;’7

i=1 j=1
where G is orthogonal to the R-vector subspace of N L(S)r generated by £*C,
e*T" and the F; ;. Note that e*H is nef, hence

a=(e*H - e*T)>0 , a;;=(e"H-E;;)>0.

Since T; is contracted by e to f(c;), we have for each 4

T
0= (e*H . Tl) =a— Zam.
j=1

Summing up over i, we get

ba = Zaihj. (18)
(2]

Moreover, since (e*C' - G) = 0 = ((¢*C)?) and £*C is nonzero, the Hodge Index
Theorem implies (G2) < 0, hence (using (1.8))

(€H)?) = 2ad— a?;+(G?)
irj
< 2ad-— Z aij
irj
2d )
= ?Zah] _Zaivj
irj irj
2d
= Zam‘(j = @i)-
irj

Since e(.S) is a surface, this number is positive, hence there exist indices i¢ and
Jo such that 0 < a;, 5, < %.

But d = (e*H - ¢*C) = (H - C), and (e*H - E;, j,) = @iy, is the H-degree
of the rational 1-cycle e.(F, ;,). The latter is nonzero since a;, j, > 0, and it
passes through f(c;,) since E;, ;, meets T;, (their intersection number is 1) and
the latter is contracted by e to f(c;,). This proves the proposition: take for I'
a component of e, F;, j, which passes through f(c;,). O

Remark 1.15 The stuation is different on compact complex manifolds. Let F
be an elliptic curve, let L be a line bundle on E, and let s and s’ be sections
of L that generate it at each point. The sections (s, s'), (is, —is’), (s’,—s) and
(is',is) of L@ L are independent over R in each fiber. They generate a discrete
subgroup of the total space of L & L and the quotient X is a compact complex
threefold with a morphism 7 : X — E whose fibers are 2-dimensional complex
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tori. There is a 1-dimensional family of sections o; : E — X of 7 defined by
oi(x) = (ts(x),0), for t € C, and they all pass through the points of the zero
section where s vanishes. However, X contains no rational curves, because they
would have to be contained in a fiber of 7, and complex tori contain no rational
curves. The variety X is not algebraic, and not even bimeromorphic to a Kéhler
manifold.

1.8 Rational curves on varieties whose canonical
divisor is not nef

Let X be a smooth projective variety defined over an algebraically closed, with
a curve f : C — X such that (Kx - f«C) < 0. We want to use Proposition
1.14 to show that X contains rational curves. For that, we would like to show,
using the estimate (1.2), that C' deforms nontrivially while keeping points fixed.
We only know how to do that in positive characteristic, where the Frobenius
morphism allows to increase the degree of f without changing the genus of C.
This gives in that case the required rational curve, with a bound on its degree.

Standard arguments then prove that the results still holds over any algebr-
aically closed. They goes roughly as follows. Assume for a moment that X,
C, f, H and a point x of C are defined over Z; for almost all prime numbers
p, the reduction of X modulo p is a smooth variety hence there is a rational
curve (defined over the algebraic closure of Z/pZ) through x. This means that
the scheme Mor(Py, X;0 — =), which is defined over Z, has a geometric point
modulo almost all primes p. Since we can moreover bound the degree of the
curve by a constant independent of p, we are in fact dealing with a quasi-
projective scheme, and this implies that it has a point over Q, hence over k.
In general, X and = are defined over some finitely generated ring and a similar
reasoning yields the existence of a k-point of Mor(Pg, X;0 — z), ie., of a
rational curve on X through x.

It is important to remark that the “universal” bound on the degree of the
rational curve is essential for the proof.

Note that there is no known proof of this theorem that uses only transcen-
dental methods.

Theorem 1.16 (Miyaoka-Mori) Let X be a projective variety, let H be an
ample divisor on X, and let f : C — X be a smooth curve such that X is
smooth along f(C) and (Kx - fxC) < 0. Given any point x on f(C), there
exists a rational curve I' on X through x with

(H - £.0)

(7)< 2dim(X) o

It is useful to allow X to be singular. It implies for example that a normal
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projective variety X with ample (Q-Cartier) anticanonical divisor is covered by
rational curves of (—Kx)-degree at most 2dim(X): it is uniruled in the sense
of Definition 2.3.

Also, a simple corollary of this theorem is that the canonical divisor of a
smooth projective variety which contains no rational curves is nef.

ProOOF. The idea is to take b as big as possible in Proposition 1.14, in order
to get the lowest possible degree for the rational curve. We first assume that the
characteristic of the ground field k is positive, and use the Frobenius morphism
to construct sufficiently many morphisms from C' to X.

Assume then that the characteristic of the base field is p > 0. Consider the
(k-linear) Frobenius morphism C; — C;? it has degree p, but C; and C being
isomorphic as abstract schemes have the same genus. Iterating the construction,
we get a morphism F,, : C;, — C of degree p™ between curves of the same
genera. Composing f with F,,, we get a morphism f,, : C), — X of degree
p"™ deg(f) onto its image. For any subset B,, of C,, with b, elements, we have
by 1.11

dimpy, . Mor(Cyp, X5 By = fm(Bm)) = p™ (= Kx - f.C)+(1—g(C)—by,) dim(X),
which is positive if we take

p"(—Kx - f.C)

b = dim(X)

which is positive for m sufficiently large. This is what we need to apply Propo-

sition 1.14. It follows that there exists a rational curve I'), through some point
of fi(Bm), such that

2(H - (fm)*cm) _ 2p™

H-T,) <
( = bm bm

(H - f.0).
As m goes to infinity, p™ /b, goes to dim(X)/(—Kx - f+C). Since the left-hand

side is an integer, we get

2 dim(X)
H-Ty) < —F
( ) (=Kx - f.C)
for m > 0. By the lemma below, the set of points of f(C) through which passes
a rational curve of degree at most M is closed (it is the intersection of f(C') and

(H-f.C):=M

2If F : k — k is the Frobenius morphism, the k-scheme C; fits into the Cartesian diagram

F
¢ ———C

L

Speck 4F) Speck.

In other words, C is the scheme C, but k acts on 0¢, via pth powers.
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the image of the evaluation map); it cannot be finite since we could then take
B,, such that f,,(B,,) lies outside of that locus, hence it is equal to f(C). This
finishes the proof when the characteristic is positive.

This proves the theorem in positive characteristic. Assume now that k has
characteristic 0. Embed X in some projective space by some multiple of H,
where it is defined by finite sets of equations, and let R be the (finitely generated)
subring of k generated by the coefficients of these equations and the coordinates
of a point « of C'. There is a projective scheme 2 — Spec(R) with an R-point
TR, such that X is obtained from its generic fiber by base change from the
quotient field K(R) of R to k.

Consider now (§1.3) the quasi-projective scheme
p:Morcp/(Ph, 2750 — 2r) — Spec(R)

which parametrizes nonconstant morphisms of H-degree at most M. Let m be
a maximal ideal of R. It is known from commutative algebra that the field R/m
is finite, hence of positive characteristic. What we just saw therefore implies
that the (geometric) fiber of p over a closed point of the dense open subset U
of Spec(R) over which 2 is smooth is nonempty. It follows that the image
of p, which is a constructible® subset of Spec(R) by Chevalley’s theorem ([H1],
Exercise I1.3.19), contains all closed points of U, which are dense in Spec(R) (this
also follows from commutative algebra). It is therefore dense, hence contains the
generic point ([H1], Exercise I1.3.18.(b)). This implies that the generic fiber of p
is nonempty; it has therefore a geometric point, which corresponds to a rational
curve on X through x, of H-degree at most M, defined over an algebraic closure
of the quotient field of R, hence over k. O

Lemma 1.17 Let X be a projective variety and let d be a positive integer.
Let My be the quasi-projective scheme that parametrizes morphisms Pi. — X of
degree at most d with respect to some ample divisor. The image of the evaluation
map

evy : Pll( X Mg — X

is closed in X.

The image of evy is the set of points of X through which passes a rational
curve of degree at most d.

ProoF. The idea is that a rational curve can only degenerate into a union
of rational curves of lower degrees.

Let z be a point in evq(PL x My). Since M, is a quasi-projective scheme,
there exists an irreducible component M of My such that = € evy(PL x M) and
a projective compactification PL x M such that evy extends to Pi x M and

3A constructible subset is a finite union of locally closed subsets.
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z € evg(PL x M). Let T be the normalization of a curve in PL x M passing
through a preimage of z and meeting P{ x M.

Consider the rational map ¢ : T --» PL x M — M — M,. If it is constant
with value [f] € My, the point z is in the image of the corresponding morphism
f:PL — X. Otherwise, the image of the rational map

ev:PLxT -5 X

associated with ¢ is a surface and the indeterminacies of ev can be resolved by
blowing up a finite number of points to get a morphism

6:Si>P11(><T—e—V->X.

The surface e(S) contains z; it is covered by the images of the fibers of the
projection S — T, which are unions of rational curves of degree at most d. This
proves the lemma. O

Our next result shows that varieties with nef but not numerically trivial
anticanonical divisor are covered by rational curves.

Theorem 1.18 If X is a smooth projective variety with —K x nef,

e cither Kx s numerically trivial,

e or there is a rational curve through any point of X.

More precisely, in the second case, there exists an ample divisor H on X
such that, through any point = of X, there exists a rational curve of H-degree

< 2n(7K(H$: X is uniruled in the sense of Definition 2.3.
X )

PrOOF. Let n = dim(X). If (Kx - H""') = 0 for all ample divisors H, it
follows from the Hodge Index Theorem that Kx is numerically trivial.

Assume therefore (Kx - H"™1) < 0 for some very ample divisor H. Let x be
a point of X and let C be the (smooth) intersection of n — 1 general hyperplane

sections through z. Since (Kx -C) = (Kx - H"!) < 0, by Theorem 1.16, there
is a rational curve on X which passes through z. O

Note that the canonical divisor of an abelian variety X is trivial, and that
X contains no rational curves.
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Chapter 2

Varieties with many
rational curves

2.1 Rational varieties

Let k be a field. A k-variety X of dimension n is k-rational if it is birationally
isomorphic to Py. It is rational if, for some algebraically closed extension K of
k, the variety Xk is K-rational.

One can also say that a variety is k-rational if its function field is a purely
transcendental extension of k.

A geometrically integral projective curve is rational if and only if it has genus
0. It is k-rational if and only if it has genus 0 and has a k-point.

2.2 Unirational and separably unirational vari-
eties

Definition 2.1 A k-variety X of dimension n is

o k-unirational if there exists a dominant rational map Py --» X;

o k-separably unirational if there exists a dominant and separable! rational
map Py --» X.

IWe say that a dominant rational map f : Y --» X between integral schemes is separable
if the field extension K(Y)/K(X) is separable. Equivalently, f is smooth on a dense open
subset of Y.
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In characteristic zero, both definitions are equivalent. We say that X is
(separably) unirational if for some algebraically closed extension K of k, the
variety Xx is K-(separably) unirational (it is then true for all algebraically
closed extensions of k).

A variety is k-(separably) unirational if its function field has a purely tran-
scendental (separable) extension.

Rational points are Zariski-dense in a k-unirational variety, hence any conic
with no rational points is rational but not k-unirational.

Example 2.2 (Fermat hypersurfaces) Recall from 1.13 that the Fermat hy-
persurface X4 is the hypersurface in PY defined by the equation

xg+-~-+x‘]j\,:0.

Assume that the field k has characteristic p > 0 and contains an element w
such that w? +' = —1 for some r > 0. One can show ([D], Exercise 2.5.1) that
when N > 3, the hypersurface X g,r 1 has a purely inseparable k-rational cover
of degree p".

In particular, X§; is unirational whenever N > 3 and e divides p” + 1 for
some positive integer . However, when e > N + 1, the canonical class of X§;
is nef, hence X§ is not separably unirational (not even separably uniruled; see
Example 2.14).

Any unirational curve is rational (Liiroth theorem) and any separably uni-
rational surface is rational. However, any smooth cubic hypersurface X C Pg
is unirational but not rational.

I will explain the classical construction of a double cover of X which is
rational. Let ¢ be a line contained in X and consider the map ¢ : P(Tx|¢) --+ X
defined as follows:2 let L be a tangent line to X at a point z; € ¢; the divisor
X|r can be written as 2z; + =, and we set ¢(L) = z. Given a general point
z € X, the intersection of the 2-plane (¢, z) with X is the union of the line ¢
and a conic C,. The points of ¢~ (z) are the two points of intersection of £ and
C,, hence ¢ is dominant of degree 2.

Now Tx|¢ is a sum of invertible sheaves which are all trivial on the com-
plement (° ~ A} of any point of £. It follows that P(Tx|s,) is isomorphic to
¢ x P hence is rational. This shows that X is unirational. The fact that it is
not rational is a difficult theorem of Clemens-Griffiths and Artin-Mumford.

2Here we do not follow Grothendieck’s convention: P(Tx|,) is the set of tangent directions
to X at points of £.
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2.3 Uniruled and separably uniruled varieties

We want to make a formal definition for varieties that are “covered by rational
curves”. The most reasonable approach is to make it a “geometric” property by
defining it over an algebraic closure of the base field: contrary to what happens
with unirationality, it makes no difference being k-uniruled or k-uniruled. Spe-
cial attention has to be paid to the positive characteristic case, hence the two
variants of the definition.

Definition 2.3 Let k be a field and let K be an algebraically closed extension
of k. A variety X of dimension n defined over a field k is

o uniruled if there exist a K-variety M of dimension n — 1 and a dominant
rational map Py x M --» Xk;

o separably uniruled if there exist a K-variety M of dimension n — 1 and a
dominant and separable rational map Py x M --» Xk.

These definitions do not depend on the choice of K, and in characteristic
zero, both definitions are equivalent.

In the same way that a “unirational” variety is dominated by a rational vari-
ety, a “uniruled” variety is dominated by a ruled variety; hence the terminology.

Of course, (separably) unirational varieties of positive dimension are (separa-
bly) uniruled. For the converse, uniruled curves are rational; separably uniruled
surfaces are birationally isomorphic to a ruled surface. As explained in Example
2.2, in positive characteristic, some Fermat hypersurfaces are unirational (hence
uniruled), but not separably uniruled.

Also, smooth projective varieties X with —Kx nef and not numerically
trivial are uniruled (Theorem 1.18), but there are Fano varieties that are not
separably uniruled ([K2]).

Here are various other characterizations and properties of (separably) unir-
uled varieties.

Remark 2.4 A point is not uniruled. Any variety birationally isomorphic to a
(separably) uniruled variety is (separably) uniruled. The product of a (separa-
bly) uniruled variety with any variety is (separably) uniruled.

Remark 2.5 A variety X of dimension n is (separably) uniruled if and only
if there exist a a K-variety M, an open subset U of Pk x M and a dominant
(and separable) morphism e : U — Xk such that for some point m in M, the
set U N (Px X m) is nonempty and not contracted by e.
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Remark 2.6 Let X be a proper (separably) uniruled variety, with a rational
map e : P x M --» Xk as in the definition. We may compactify M then
normalize it. The map e is then defined outside of a subvariety of P4, x M of
codimension at least 2, which therefore projects onto a proper closed subset of
M. By shrinking M, we may therefore assume that e is a morphism.

Remark 2.7 Assume k is algebraically closed. It follows from Remark 2.6 that
there is a rational curve through a general point of a proper uniruled variety
(actually, by Lemma 1.17, there is even a rational curve through every point).
The converse holds if k is uncountable. Therefore, in the definition, it is often
useful to choose an uncountable algebraically closed extension K.

Indeed, we may, after shrinking and compactifying X, assume that it is
projective. There is still a rational curve through a general point, and this is
exactly saying that the evaluation map ev : PL x Morso(Pg, X) — X is domi-
nant. Since Morso (P, X) has at most countably many irreducible components
and X is not the union of countably many proper subvarieties, the restriction of
ev to at least one of these components must be surjective, hence X is uniruled
by Remark 2.5.

Remark 2.8 Let X — T be a proper and equidimensional morphism with
irreducible fibers. The set {t € T' | X; is uniruled} is closed ([K1], Theorem
1.8.2).

Remark 2.9 A connected finite étale cover of a proper (separably) uniruled
variety is (separably) uniruled.

Let X be a proper uniruled variety, let e : PL x M — Xk be a dominant (and
separable) morphism (Remark 2.6), and let 7 : X — X be a connected finite
étale cover. Since Py is simply connected, the pull-back by e of Tk is an étale
morphism of the form Pg, x M — Pk x M and the morphism P x M — Xk
is dominant (and separable).

2.4 Free rational curves and separably uniruled
varieties

Let X be a k-variety of dimension n and let f : PL — X be a nonconstant
k-morphism whose image is contained in the smooth locus of X. Since any
locally free sheaf on Py, is isomorphic to a direct sum of invertible sheaf, we can
write

f*TX = ﬁpi(al)ea"'@ﬁpi(an)v (21)
with a1 > -+ > a,. If f is separable, f*Tx contains Tp: ~ Opi(2) and a1 > 2.

In general, decompose f as PL I PL 2, X where g is separable and h is a
composition of 7 Frobenius morphisms. Then a1 (f) = p"ai(g) > 2.
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If H (P, f*Tx) vanishes, the space Mor(Py, X) is smooth at [f] (Theorem
1.9). This happens exactly when a,, > —1.

Definition 2.10 A k-rational curve f : PL — X is free if its image is a curve
contained in the smooth locus of X and f*Tx is generated by its global sections.

With our notation, this means a,, > 0.

Examples 2.11 1) For any morphism f : PL — X whose image is contained
in the smooth locus of X, we have deg(f*Tx) = —(Kx - f.PL): there are no
free rational curves on a smooth variety whose canonical divisor is nef.

2) A rational curve with image C' on a smooth surface is free if and only if

(c* >o0.
Let f:PL — C C X be the normalization and assume that f is free. Since
(KX : C) + (02) = 2h1(03 ﬁC) - 27
we have, with the notation (2.1),

(C?) = ay 4 ag +2h1(C, 0c) —2 > (a1 —2) + ap > ap > 0.

Conversely, assume a := (C?) > 0. Since the ideal sheaf of C' in X is
invertible, there is an exact sequence

0— Oc(-C) = Qx|c = Qc —0
of locally free sheaves on C which pulls back to Py and dualizes to
0 — Hom(f*Qc, Opr) — [ Tx — [*Ox(C) — 0. (2.2)

There is also a morphism f*Qc — QP}( which is an isomorphism on a dense
open subset of PL, hence dualizes to an injection TPII( — Hom(f*Qe, ﬁP‘l().
In particular, the invertible sheaf J#om(f*Qc, Op1) has degree b > 2, and we
have an exact sequence

0— Opi(b) = ["Tx — Opy(a) = 0.

If az < 0, the injection Op:(b) — f*Tx lands in Opi(ar), and we have an
isomorphism
(Gp1(a1)/ Opy (1) @ Opy (a2) = Opy (a),

which implies a1 = b and a = as < 0, a contradiction. So we have as > 0 and
f is free.

3) One can show ([D], 2.15) that the Fermat hypersurface (see 1.13) X% of
dimension at least 3 and degree d = p” + 1 over a field of characteristic p is
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uniruled by lines, none of which are free (in fact, when d > N, there are no free
rational curves on X by Example 2.11.1)). Moreover, Mor; (PL, X) is smooth,
but the evaluation map

ev: PL x Mor; (P, X) — X

is mot separable.

Proposition 2.12 Let X be a smooth quasi-projective variety defined over a
field k and let f : PL — X be a k-rational curve.

a) If f is free, the evaluation map
ev: PL x Mor(PL, X) — X
is smooth at all points of Py x {[f]}.

b) If there is a scheme M with a k-point m and a morphism e : P11( XM — X
such that 6|P11‘><m = f and the tangent map to e is surjective at some point

of PL x m, the curve f is free.

Geometrically speaking, item a) implies that the deformations of a free ra-
tional curve cover X. In b), the hypothesis that the tangent map to e is surjec-
tive is weaker than the smoothness of e, and does not assume anything on the
smoothness, or even reducedness, of the scheme M.

The proposition implies that the set of free rational curves on a quasi-
projective k-variety X is a smooth open subset Morfree(Pll(, X) of Mor(PL, X),
possibly empty.

Finally, when char(k) = 0, and there is an irreducible k-scheme M and a
dominant morphism e : PL x M — X which does not contract one P} x m,
the rational curves corresponding to points in some nonempty open subset of
M are free (by generic smoothness, the tangent map to e is surjective on some
nonempty open subset of Py x M).

PROOF. The tangent map to ev at (¢,[f]) is the map

TPll(,t D HO(Pllca ffTx) — TX,f(t) ~ (f*"Tx):
(w,0) +—— Tif(u)+o(t).

If f is free, it is surjective because the evaluation map
HO(Py, f*Tx) — (f*Tx):

is. Moreover, since H!(PL, f*Tx) vanishes, Mor(P{, X) is smooth at [f] (1.10).
This implies that ev is smooth at (¢, [f]) and proves a).
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Conversely, the morphism e factors through ev, whose tangent map at (¢, [f])
is therefore surjective. This implies that the map

H°(Py, f*Tx) — (f*Tx)e/ Im(T3f) (2.3)
is surjective. There is a commutative diagram
HOPy, f*Tx) —— (f*Tx):

w Jns

’

HO(Py,Tpy) —— Tpy,

Since @’ is surjective, the image of a contains Im(7;f). Since the map (2.3) is
surjective, a is surjective. Hence f*T'x is generated by global sections at one
point. It is therefore generated by global sections and f is free. O

Corollary 2.13 Let X be a variety defined over an algebraically closed field.

a) If X contains a free rational curve, X is separably uniruled.

b) Conversely, if X is separably uniruled, smooth, and proper, there exists a
free rational curve through a general point of X.

PrOOF. By shrinking X, we may assume that it is quasi-projective and we
may consider the scheme Mor(Py, X). If f : PL — X is free, the evaluation map
ev is smooth at (0, [f]) by Proposition 2.12.a). It follows that the restriction of
ev to the unique component of Morso(Py, X) that contains [f] is separable and
dominant and X is separably uniruled.

Assume conversely that X is separably uniruled, smooth, and proper. By
Remark 2.6, there exists a k-variety M and a dominant and separable, hence
generically smooth, morphism Pllc X M — X. The rational curve corresponding
to a general point of M passes through a general point of X and is free by
Proposition 2.12.b). O

Example 2.14 By Example 2.11 and Corollary 2.13.b), a smooth proper vari-
ety whose canonical class is nef is not separably uniruled.

On the other hand, we proved in Theorem 1.18 that smooth projective vari-
eties X with —Kx nef and not numerically trivial are uniruled. However, Kollar
constructed Fano varieties that are not separably uniruled ([K2]).

Corollary 2.15 Let X — T be a smooth and proper morphism. The set {t €
T | X; is separably uniruled} is open.
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Recall (Remark 2.8) that in characteristic zero, this set is also closed.

PrOOF. Consider the T-scheme Mory(PL, X x T) defined in 1.12. The
subset parametrizing free morphisms is open and smooth over T', hence its
image in T is open. O

Corollary 2.16 If X is a smooth proper separably uniruled variety, the pluri-
genera p,,(X) := h%(X, Ox(mKx)) vanish for all positive integers m.

The converse is conjectured to hold: for curves, it is obvious since p;(X) is
the genus of X; for surfaces, we have the more precise Castelnuovo criterion;
p12(X) = 0 if and only if X is birationally isomorphic to a ruled surface; in
dimension three, it is known in characteristic zero.

PRrROOF. We may assume that the base field is algebraically closed. By Corol-
lary 2.13.b), there is a free rational curve f: Pi — X through a general point
of X. Since f*Kx has negative degree, any section of &x(mKx) must vanish
on f(PL), hence on a dense subset of X, hence on X. O

The next results says that a rational curve through a very general point (i.e.,
outside the union of a countable number of proper subvarieties) of a smooth
variety is free (in characteristic zero).

Proposition 2.17 Let X be a smooth quasi-projective variety defined over a
field of characteristic zero. There exists a subset X™°° of X which is the inter-
section of countably many dense open subsets of X, such that any rational curve
on X whose image meets X is free.

PrOOF. The space Mor(Py, X) has at most countably many irreducible
components, which we denote by (M;);en. Let e; : PL x (M;);eqa — X be the
morphisms induced by the evaluation maps.

By generic smoothness, there exists a dense open subset U; of X such that
the tangent map to e; is surjective at each point of e L(U;) (if e; is not dominant,
one may simply take for U; the complement of the closure of the image of e;).
We let X°® be the intersection [, .n Us-

Let f : PL — X be a curve whose image meets Xfree and let M; be an
irreducible component of Mor(Py, X) that contains [f]. By construction, the
tangent map to e; is surjective at some point of PL x {[f]}, hence f is free by
Proposition 2.12.b). O

The proposition is interesting only when X is uniruled (otherwise, the set

Xfree is more or less the complement of the union of all rational curves on X); it
is also useless when the ground field is countable, because X°® may be empty.
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Examples 2.18 1) If ¢ : P2 — P2 is the blow-up of one point, (P2)fre is
the complement of the exceptional divisor E: for any rational curve C other
than F, write C' ~y;, dH — mE, where H is the inverse image of a line; we
have m = (C - E) > 0. The intersection of C' with the strict transform of a
line through the blown-up point, which has class H — F, is nonnegative, hence
d > m. Tt implies (C?) = d? — m? > 0, hence C is free by Example 2.11.2).

2) On the blow-up X of PZ at nine general points, there are countably many
rational curves with self-intersection —1 ([H1], Exercise V.4.15.(e)) hence X e
is not open.

The proposition will often be used together with the following remark. Let

¢ L . x

|

be a flat family of curves on X parametrized by a variety T. If the base field
is uncountable (and of characteristic zero) and one of these curves meets X'ree,
the same is true for a very general curve in the family.

Indeed, X is the intersection of a countable nonincreasing family (U;)ien
of open subsets of X. Let € be the curve 7—1(). The curve F(%;) meets Xfree
if and only if €; meets ;o F~1(U;). We have

([N F7H ) = () =7 ().

Let us prove this equality. The right-hand side contains the left-hand side.
If ¢ is in the right-hand side, the %; N F~!(U;) form a nonincreasing family
of nonempty open subsets of %;. Since the base field is uncountable, their
intersection is nonempty. This means exactly that ¢ is in the left-hand side.

Since 7, being flat, is open ([G2], th. 2.4.6), this proves that the set of ¢ such
that f;(Py) meets X free i3 the intersection of a countable family of open subsets
of T.

This is expressed by the following principle:

2.19. A very general deformation of a curve which meets X has the same
property.

2.5 Rationally connected and separably ratio-
nally connected varieties

We now want to make a formal definition for varieties for which there exists
a rational curve through two general points. Again, this will be a geometric
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property.

Definition 2.20 Let k be a field and let K be an algebraically closed extension
of k. A k-variety X is rationally connected (resp. separably rationally connected)
if it is proper and if there exist a K-variety M and a rational map e : P x M --»
Xk such that the rational map

GVQZP%XP%{XM -3 XKXXK
(t,t',2) —  (e(t,2),e(t', 2))

is dominant (resp. dominant and separable).

Again, this definition does not depend on the choice of the algebraically
closed extension K, and in characteristic zero, both definitions are equivalent.
Moreover, the rational map e may be assumed to be a morphism (proceed as in
Remark 2.6).

Of course, (separably) rationally connected varieties are (separably) unir-
uled, and (separably) unirational varieties are (separably) rationally connected.
For the converse, rationally connected curves are rational, and separably ratio-
nally connected surfaces are rational. One does not expect, in dimension > 3,
rational connectedness to imply unirationality, but no examples are known!

It can be shown that Fano varieties are rationally connected in characteris-
tic zero,® although they are in general not even separably uniruled in positive
characteristic (Example 2.2).

Remark 2.21 A point is separably rationally connected. (Separable) rational
connectedness is a birational property (for proper varieties!); better, if X is a
(separably) rationally connected variety and X --+ Y a (separable) dominant
rational map, with Y proper, Y is (separably) rationally connected. A (finite)
product of (separably) rationally connected varieties is (separably) rationally
connected. A (separably) rationally connected variety is (separably) uniruled.

Remark 2.22 In the definition, one may replace the condition that evy be
dominant (resp. dominant and separable) by the condition that the map

M --» XK X XK
z > (e(0,2),e(c0,2))

be dominant (resp. dominant and separable).

Indeed, upon shrinking and compactifying X, we may assume that X is
projective. The morphism e then factors through an evaluation map ev : Pj x
Mor; (P, X) — Xk for some d > 0 and the image of

evy : Pk x Pk x Morg(Pr, X) — Xk x Xk

3This is a result due independently to Campana and Kolldr-Miyaoka-Mori; see for example
[D], Proposition 5.16.
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is then the same as the image of

Mord(P%O X) — XK X XK
z —  (e(0, 2),e(00,2))

(This is because Mor (P4, X) is stable by reparametrizations, i.e., by the action
of Aut(PLk); for separable rational connectedness, there are some details to
check.)

Remark 2.23 Assume k is algebraically closed. On a rationally connected
variety, a general pair of points can be joined by a rational curve.* The converse
holds if k is uncountable (with the same proof as in Remark 2.7).

Remark 2.24 Any proper variety which is an étale cover of a (separably) ra-
tionally connected variety is (separably) rationally connected (proceed as in
Remark 2.9). We will see in Corollary 3.7 that any such a cover of a smooth
proper separably rationally connected variety is in fact trivial.

2.6 Very free rational curves and separably ra-
tionally connected varieties

Definition 2.25 Let X be a k-variety. A k-rational curve f : PL — X is
r-free if its image is contained in the smooth locus of X and f*Tx ® ﬁpi(—r)
is generated by its global sections.

In particular, O-free curves are free curves. We will say “very free” instead
of “l-free”. For easier statements, we will also agree that a constant morphism
P;. — X is very free if and only if X is a point. Note that given a very free
rational curve, its composition with a (ramified) finite map Py — P of degree
r is r-free.

Examples 2.26 1) Any k-rational curve f : Py — P is very free. This is
because Tpy is a quotient of ﬁpﬁ(l)@(”ﬂ), hence its inverse image by f is a
quotient of ﬁpll((d)@(”ﬂ), where d > 0 is the degree of f*Opy(1). With the
notation of (2.1), each Opi (a;) is a quotient of ﬁ’pll((d)@(”"’l) hence a; > d.

2) A rational curve with image C' on a smooth surface is very free if and
only if (C?) > 0 (proceed as in Example 2.11.2)).

Informally speaking, the freer a rational curve is, the more it can move
while keeping points fixed. The precise result is the following. It generalizes
Proposition 2.12 and its proof is similar.

4In characteristic zero, we will prove in Theorem 2.49 that any two points of a smooth
projective rationally connected variety can be joined by a rational curve.
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Proposition 2.27 Let X be a smooth quasi-projective k-variety, let r be a non-
negative integer, let f : Pl — X be a k-rational curve and let B be a finite subset
of Pi. of cardinality b.

a) If f is r-free, for any integer s such that 0 < s <r+1—0b, the evaluation
map

evs: (PL)* x Mor(PL, X; flg) — Xs
(t1,...,ts,[g]) — (g(tl)v"'7g(ts))

is smooth at all points (t1,...,ts,[f]) such that {t1,...,ts} N B =@.

b) If there is a k-scheme M with a k-point m and a morphism ¢ : M —
Mor (P, X; flg) such that p(m) = [f] and the tangent map to the corre-
sponding evaluation map

evy: (PL)* x M — X°

is surjective at some point of (PL)* x m for some s > 0, the rational curve
f is min(2,b+ s — 1)-free.

Geometrically speaking, item a) implies that the deformations of an r-free
rational curve keeping b points fixed (b < r) pass through r+1—b general points
of X.

The proposition implies that the set of very free rational curves on X is a
smooth open subset 1\/Iorvfree(P11(7 X) of Mor (P4, X), possibly empty.

In §2.4, we studied the relationships between separable uniruledness and the
existence of free rational curves on a smooth projective variety. We show here
that there is an analogous relationship between separable rational connectedness
and the existence of very free rational curves.

Corollary 2.28 Let X be a proper variety defined over an algebraically closed
field.

a) If X contains a very free rational curve, there is a very free rational curve
through a general finite subset of X. In particular, X is separably ratio-
nally connected.

b) Conversely, if X is separably rationally connected and smooth, there exists
a very free rational curve through a general point of X.

The result will be strengthened in Theorem 2.49 where it is proved that in
characteristic zero, there is on a smooth projective rationally connected variety
a very free rational curve through any given finite subset.

PROOF. Assume there is a very free rational curve f : PL — X. By
composing f with a finite map P — P of degree r, we get an r-free curve. By
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Proposition 2.12.a) (applied with B = &), there is a deformation of this curve
that passes through r + 1 general points of X. The rest of the proof is the same
as in Corollary 2.13. O

Corollary 2.29 Let X — T be a smooth and proper morphism. The set {t €
T | X; is separably rationally connected} is open.

PRrROOF. Proceed as in the proof of Corollary 2.15. O

In characteristic zero, this set is also closed (Theorem 2.49 and Remark 2.48).

Exercise 2.30 Construct a projective flat family X — A] for which all the
fibers but one are separably rationally connected. (Hint: consider a degeneration
of a smooth cubic surface to a cone over a plane section.)

Corollary 2.31 If X is a smooth proper separably rationally connected variety,
HO(X, (25)®™) vanishes for all positive integers m and p. In particular, in
characteristic zero, x(X,0x) = 1.

A converse is conjectured to hold (at least in characteristic zero): if
HO(X, (Q%)®™) vanishes for all positive integers m, the variety X should be
rationally connected. This is proved in dimensions at most 3 in [KMM], Theo-
rem (3.2).

Note that the conclusion of the corollary does not hold in general for unira-
tional varieties: some Fermat hypersurfaces X are unirational with H°(X, Kx) #
0 (see Example 2.2).

PrOOF OF THE COROLLARY. For the first part, proceed as in the proof of
Corollary 2.16. For the second part, H?(X, Ox) then vanishes for p > 0 by
Hodge theory,® hence x (X, Ox) = 1. O

Corollary 2.32 Let X be a proper normal rationally connected variety defined
over an algebraically closed field k.

a) The algebraic fundamental group of X is finite.

b) If k = C and X is smooth, X is topologically simply connected.

When X is smooth and separably rationally connected, Kollar proved that
X is in fact algebraically simply connected (Corollary 3.7).

5For a smooth separably rationally connected variety X, the vanishing of H™ (X, ) for
m > 0 is not known in general.
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PrROOF OF THE COROLLARY. By Remark 2.22, there exist a variety M and a
point z of X such that the evaluation map

ev:PLx M — X

is dominant and satisfies ev(0 x M) = x. The composition of ev with the
injection ¢ : 0 x M — Pll( X M 1is then constant, hence

mi(ev)omi(t) =0.

Since Py is simply connected, 71 (¢) is bijective, hence m(ev) = 0. Since ev is
dominant, the following lemma implies that the image of 71 (ev) has finite index.
This proves a).

Lemma 2.33 Let X and Y be k-varieties, with Y normal, and let f : X —Y
be a dominant morphism. For any geometric point x of X, the image of the
morphism m (f) : 78 (X, 2) — 728(Y, f(2)) has finite index.

When k = C, the same statement holds with topological fundamental groups.

SKETCH OF PROOF. The lemma is proved in [De] (lemme 4.4.17) when X
and Y are smooth. The same proof applies in our case ([CL]).

We will sketch the proof when k = C. The first remark is that if A is an
irreducible analytic space and B a proper closed analytic subspace, A— B is con-
nected. The second remark is that the universal cover 7 : Y — Y is irreducible;
indeed, Y being normal is locally irreducible in the classical topology, hence so
is Y. Since it is connected, it is irreducible.

Now if Z is a proper subvariety of Y, its inverse image 7~1(Z) is a proper
subvariety of Y, hence 7' (Y = Z) is connected by the two remarks above. This
means exactly that the map m (Y =Z) — 71 (Y) is surjective. So we may replace
Y with any dense open subset, and assume that Y is smooth.

We may also shrink X and assume that it is smooth and quasi-projective.
Let X be a compactification of X. We may replace X with a desingularization

X of the closure in X XY of the graph of f and assume that f is proper. Since

the map 71 (X) — m1(X) is surjective by the remark above, this does not change
the cokernel of 71 (f).

Finally, we may, by generic smoothness, upon shrinking Y again, assume
that f is smooth. The finite morphism in the Stein factorization of f is then
étale; we may therefore assume that the fibers of f are connected. It is then
classical that f is locally & °°-trivial with fiber F', and the long exact homotopy
sequence

= m((F) = m(X) = m((Y) = m(F) — 0

of a fibration gives the result. O
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If k = C and X is smooth, we have x(X,Ox) = 1 by Corollary 2.31. Let
7 : X — X be a connected finite étale cover; X is rationally connected by
Remark 2.24, hence x(X,0%) = 1. But x(X,0%) = deg(n) x(X, Ox) ([L],
Proposition 1.1.28) hence 7 is an isomorphism. This proves b). O

We finish this section with an analog of Proposition 2.17: on a smooth pro-
jective variety defined over an algebraically closed field of characteristic zero, a
rational curve through a fixed point and a very general point is very free.

Proposition 2.34 Let X be a smooth quasi-projective variety defined over an
algebraically closed field of characteristic zero and let x be a point in X. There
exists a subset X' of X ={x} which is the intersection of countably many
dense open subsets of X, such that any rational curve on X passing through x
and whose image meets X is very free.

PrOOF. The space Mor(Py, X;0 — z) has at most countably many irre-
ducible components, which we will denote by (M;);en. Let €; : PL X (M;)ed —
X be the morphisms induced by the evaluation maps.

Denote by U; a dense open subset of X —{z} over which e; is smooth and
let XYree be the intersection of the U;. Let f : PL — X be a curve with
f(0) = x whose image meets XY and let M; be an irreducible component of
Mor (P, X;0 — x) that contains [f]. By construction, the tangent map to e;
is surjective at some point of Py x {[f]}, hence so is the tangent map to ev; it
follows from Proposition 2.27 that f is very free. O

Again, this proposition is interesting only when X is rationally connected
and the ground field is uncountable.

2.7 Smoothing trees of rational curves

2.7.1 Trees

As promised, we are now on our way to prove that rational chain connectedness
implies rational connectedness for smooth varieties in characteristic zero (this
will be proved in Theorem 2.49). For that, we will need to smooth a chain of
rational curves connecting two points, and this can be done when the links of
the chain are free.

We assume now that the field k is algebraically closed.

Definition 2.35 A rational k-tree is a connected projective nodal k-curve C'
such that x(C, 0¢) = 1.
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Equivalently, the irreducible components of a tree are smooth rational curves
and they can be numbered as Cy,...,Cy, in such a way that Cy is any given
component and, for each 0 < i < m—1, the curve C; 11 meets CyU- - -UC; trans-
versely in a single smooth point. We will always assume that the components
of a rational tree are numbered in this fashion.

It is easy to comstruct a smoothing of a rational k-tree C: let T = P}
and blow up the smooth surface Cy x T at the point (Co N Cy) x 0, then at
((Co U C1) NC3) x 0 and so on. The resulting flat projective T-curve ¢ — T
has fiber C' above 0 and P elsewhere. Given a smooth k-variety X and a
rational k-tree C, any morphism f : C' — X defines a k-point [f] of the T-
scheme Morr (¢, X x T) above 0 € T(k). By 1.12, if HY(C, f*Tx) = 0, this
T-scheme is smooth at [f]. This means that f can be smoothed to a rational
curve Pl — Xy.

It will often be useful to be able to fix points in this deformation. If p,...,p,
are smooth points of C, one can construct sections o1, ..., 0, of the smoothing
¢ — T such that o;(0) = p;;® upon shrinking 7', we may assume that they are
disjoint. Let

g: |_|O'i(T)—>XXT
i=1
be the morphism o;(t) — (f(p;),t). Now, T-morphisms from € to X x T
extending g are parametrized by the T-scheme Morr (%, X x T'; g) whose fiber
at 0 is Mor(C, X;p; — f(pi)), and this scheme is smooth over T at [f] when
HYC,(f*Tx)(—p1 — -+ — p,)) vanishes.

It is therefore useful to have a criterion which ensures that this group vanish.
Lemma 2.36 Let C = CyU---UC,, be a rational k-tree. Let & be a locally free

sheaf on C such that (&|c,)(1) is nef fori = 0 and ample for eachi € {1,...,m}.
We have HY(C,&) = 0.

PrOOF. We show this by induction on m, the result being obvious for
m=0. Set C' = CyU---UCy,—1 and C'NCy, = {q}. There are exact sequences
0= (€le,)(=q) = & = &ler — 0

and
HY(C, (8le,,)(—q)) — HY(C,&) — HY(C', &er).

By hypothesis and induction, the spaces on both ends vanish, hence the lemma.
O

6Given a smooth point p of C, let Ci be the component of C' that contains p. Each con-
nected component of C'=C] is a rational tree hence can be blown-down, yielding a birational
T-morphism € : ¥ — €', where ¢’ is a ruled smooth surface over T, with fiber of 0 the curve
e(C1). Take a section of ¥’ — T that passes through e(p); its strict transform on ¥ is a
section of ¥ — T that passes through p.
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2.7.2 Smoothing trees with free components

Proposition 2.37 Let X be a smooth projective variety, let C' be a rational
tree, both defined over an algebraically closed field, and let f : C — X be a
morphism whose restriction to each component of C is free.

a) The morphism f is smoothable, keeping any smooth point of C fized, into
a free rational curve.

b) If moreover f is r-free on one component Coy (r > 0), f is smoothable,
keeping fixed any r points of Cy smooth on C and any smooth point of
C=CYy, into an r-free rational curve.

PROOF. Item a) is a particular case of item b) (case r = 0). Let py,...,p, be
smooth points of C' on Cy and let ¢ be a smooth point of C', on the component C},
with i # 0. The locally free sheaf ((f*Tx)(—p1—--—pr—4q))|c, (1) is nef for j =
i and ample for j # i. The lemma implies H(C, (f*Tx)(=p1—-—pr—q)) = 0,
hence, by the discussion in §2.7.1,

e f is smoothable, keeping f(po),..., f(pr), f(q) fixed, to a rational curve

h:PL — X;
e by semi-continuity, we may assume H'(PL, (h*Tx)(—r—1)) =0, hence h
is r-free.
This proves the proposition. O

2.7.3 Smoothing combs

Definition 2.38 A k-comb is a rational k-tree with a distinguished irreducible
component Cy (the handle) such that all the other irreducible components (the
teeth) meet Cy (transversely in a single point).

Proposition 2.37 tells us that a morphism f from a comb C' to a smooth
variety can be smoothed when the restriction of f to each component of C is
free. When C' is a comb, we can relax this assumption: we only assume that
the restriction of f to each tooth is free, and we get a smoothing of a subcomb
if there are enough teeth.

Theorem 2.39 Let C be a rational comb with m teeth and let pq,...,p, be
points on its handle Cy which are smooth on C. Let X be a smooth projective
variety and let f : C'— X be a morphism.
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a) Assume that the restriction of f to each tooth of C is free, and that
m > (Kx - f.Co) + (r — 1) dim(X) + dimg|, | Mor(Py, X; fl(p,.... p.})-

There ezists a subcomb C' of C with at least one tooth such that f|c is
smoothable, keeping f(p1), ..., f(pr) fized.

b) Let s be a nonnegative integer such that ((f*Tx)|c,)(s) is nef. Assume
that the restriction of f to each tooth of C is very free and that

m > s+ (Kx - f.Co) + (r— 1) dim(X) + dimyg| . | Mor(Pi, X; flip,....p.})-

There exists a subcomb C' of C with at least one tooth such that f|cr is
smoothable, keeping f(p1),..., f(pr) fixed, to a very free curve.

PROOF. We construct a “universal” smoothing of the comb C as follows.
Let €, — Co x A} be the blow-up of the (disjoint) union of the subvarieties
{¢;} x {y; = 0}, where y1,...,yn are coordinates on A}’. Fibers of 7 : €, —
A} are subcombs of C, the number of teeth being the number of coordinates
y; that vanish at the point. Note that 7 is projective and flat, because its fibers
are curves of the same genus 0. Let m’ be a positive integer smaller than m,
and consider AZLI as embedded in A} as the subspace defined by the equations
y; = 0 for m’ < ¢ < m. The inverse image W‘l(A{(”/) splits as the union of %,/
and m —m/ disjoint copies of P x Aﬁll. We set € = 6.

Let o; be the constant section of 7 equal to p;, and let

g:| |oi(AY) = X x AP

-

1=1

be the morphism o;(y) — (f(p:),y). Since 7 is projective and flat, there is an
Ap'-scheme (1.12)

p: Moram (4, X x A';g) — Ay

We will show that a neighborhood of [f] in that scheme is not contracted by p
to a point. Since the fiber of p at 0 is Mor(C, X; f|(;,,....p,1), it is enough to
show

dims) Mor(C, X f|(p,.....p,}) < dimpsy Moram (¢, X x Ay'; g). (2.4)
By the estimate (1.3), the right-hand side of (2.4) is at least

(—Kx - f.C)+ (1 —r)dim(X) + m.

The fiber of the restriction

MOI"(C,X; fl{Pl,...,pr}) - MOF(CO>X; f|{P1,..,,pr})
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is [T%; Mor(Ci, X; flg;1), so the left-hand side of (2.4) is at most

dim[ﬂco] Mor(Cy, X; fl{pl,...,pr}) + Z dimm Mor(C;, X; f|{qi})
=1

= dimyio, ) Mor(Co, X flip..py) + Y (—Kx - f.C5)
=1

< m—(Kx - f.C)—(r—1)dim(X),

where we used first the local description of Mor(Cj, X; f|;4,1) given in 1.10 and
the fact that f|c, being free, H'(C;, f*Tx(—¢q:)|c,) vanishes, and second the
hypothesis. So (2.4) is proved.

Let T' be the normalization of a 1-dimensional subvariety of Moram (¢, X x
A}; g) passing through [f] and not contracted by p. The morphism from T to
Morap (¢, X x Af'; g) corresponds to a morphism

%XAZLTHX.

After renumbering the coordinates, we may assume that {m’ + 1,...,m} is
the set of indices ¢ such that y; vanishes on the image of 7" — Aj’, where
m' is a positive integer. As we saw above, € X ap T splits as the union of
C' = G X A/ T, which is flat over T', and some other “constant” components
Py xT. The general fiber of €’ — T is Py, its central fiber is the subcomb C” of
C with teeth attached at the points ¢; with 1 < i < m/, and f|¢ is smoothable
keeping f(p1),. .., f(p,) fixed. This proves a).

Under the hypotheses of b), the proof of a) shows that there is a smoothing
%' — T of a subcomb C’ of C' with teeth Cf,...,C! ,, where m’ > s, a section
o' : T — %' passing through a point of Cy, and a morphism F : ¢’ — X.
Assume for simplicity that %’ is smooth” and consider the locally free sheaf

s+1
&= (F"Tx)(D)_Cl —20'(T))

=1

on ¢’. Forie€ {l,...,s+ 1}, we have ((C!)?) = —1, hence the restriction of &
to C! is nef, and so is &|¢, ~ (f*Tx|c,)(s — 1). Using the exact sequences

’

0= EP(Ele)(-1) = &l — Ela, — 0
i=1
and
0= H'(C],(Elc)(-1)) — HY(C', &|er) — H' (Co, &) = 0,
=1

"For the general case, one needs to analyze precisely the singularities of ¥ and proceed
similarly, replacing C| by a suitable Cartier multiple.
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we obtain H'(C',&|c/) = 0. By semi-continuity, this implies that a nearby
smoothing h : PL — X (keeping f(p1),...,f(pr) fixed) of flc
satisfies H' (P, (h*Tx)(—2)) = 0, hence h is very free. O

We saw in Corollary 2.28 that on a smooth separably rationally connected
projective variety X, there is a very free rational curve through a general finite
subset of X. We now show that we can do better.

Theorem 2.40 Let X be a smooth separably rationally connected projective
variety defined over an algebraically closed field. There is a very free rational
curve through any finite subset of X.

PrOOF. We first prove that there is a very free rational curve through any
point of X. Proceed by contradiction and assume that the set Y of points of
X through which there are no very free rational curves is nonempty. Since X
is separably rationally connected, by Corollary 2.28, its complement U is dense
in X, and, since it is the image of the smooth morphism

Mor'*(PL X) — X
[l = f(0),

it is also open in X. By Remark 2.47, any point of Y can be connected by a
chain of rational curves to a point of U, hence there is a rational curve fy :
P;. — X whose image meets U and a point y of Y. Choose distinct points
t1,...,tm € PL such that fo(t;) € U and, for each i € {1,...,m}, choose a
very free rational curve Pl — X passing through fy(¢;). We can then assemble
a rational comb with handle f; and m very free teeth. By choosing m large
enough, this comb can by Theorem 2.39.b) be smoothed to a very free rational
curve passing through y. This contradicts the definition of Y.

Let now x1,...,x, be points of X. We proceed by induction on r to show
the existence of a very free rational curve through z1,...,x,. Assume r > 2
and consider such a curve passing through zq,...,z,_1. We can assume that

it is (r — 1)-free and, by Proposition 2.27.a), that it passes through a general
point of X. Similarly, there is a very free rational curve through x, and any
general point of X. These two curves form a chain that can be smoothed to an
(r — 1)-free rational curve passing through 1, ..., 2, by Proposition 2.37.b). O

Remark 2.41 By composing it with a morphism PL — Pl of degree s, this
very free rational curve can be made s-free, with s greater than the number of
points. One can then prove that a general deformation of that curve keeping the
points fixed is an immersion if dim(X) > 2 and an embedding if dim(X) > 3
([K1], Theorem II.1.8).

With a little more work, one can also find, on a smooth projective separably

rationally connected variety, a very free rational curve passing through given
points with prescribed tangents.
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Theorem 2.42 Let X be a smooth separably rationally connected projective va-
riety defined over an algebraically closed field k. Given distincts points p1,. .., Dy
of X and tangent directions {1,...,L,. at each of these points, there exists an
unramified very free rational curve Py — X with tangent ¢; at p;.

2.7.4 Another smoothing result for combs

We present here another approach to smoothing combs that was discovered in
[GHS]. Instead of allowing loss of teeth as in §2.7.3, which is not convenient for
certain applications, we assume that the teeth are general. The trick is to not
deform the morphism from the comb to X, but to deform the corresponding
subscheme of X.

Let C = CoUCLU---UC), be a comb (with possible nonrational handle Cp)
embedded in a smooth variety X. The tangent space to Hilb(X) at [C] is isomor-
phic to H°(C,N¢/x) (1.7) and Hilb(X) is smooth at [C] if H'(C,N¢yx) =0
(1.8).

Theorem 2.43 Let X be a smooth projective variety defined over an algebr-
aically closed field, let my be an integer, and let C C X be a comb with handle
Co and m teeth. If m > 0 and the teeth of C are very free and attached
to general points of Cy with general tangents, the comb C C X deforms to a
smooth projective curve C' C X such that

H'(C', Newjx (~D') = 0

for all divisors D' on C' of degree < my.

ProOF. Let CoNC; ={¢} and set Q@ = g1 + - + ¢ A local calculation
gives an exact sequence

0— NCO/X - (NC/X)|C0 - @TC«MH —0
i=1

and the first-order deformation of C' C X corresponding to an element of
HO(C, N¢yx) smoothes the double point ¢; of C' if and only if its image in
Tc, .q; is nonzero.

Let L be the union of the teeth of C' and consider the exact sequence
0— Npyx — (Neyx)le — @D Tepq, — 0.
i=1

Since Ny/x(—Q) is nef on each tooth, we obtain H'(L,(N¢,/x)|L(—Q)) = 0.
Using the exact sequence

OHﬁL(—Q)—)ﬁc—)ﬁCO — 0
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tensored with N¢,x, we obtain that the restriction
H°(C,Neyx) — H(Co, (Neyx)ley)

is surjective and
H'(C,Ngyx) — H'(Co, (Neyx)lo,) (2.5)

is bijective. We also have a diagramm

0 — (NC/X)|CO(_pi) — (NC/X)|CO — Neoyxg — 0

~ Y

TCi,lIi

For m > 0, we have H*(Co, (N¢/x)|c,(—¢:)) = 0 by the lemma below. All in
all, we obtain that the composition

HO(C, Nc/x) - HO(COa (NC/X)|C'0) — Tcyq

is surjective: a general section of (N¢,x)|c, has nonzero image in each T¢, 4,,
hence a general first-order deformation of C in X is smooth.

Lemma 2.44 Let mqg be an integer. For m > 0, we have
H'(Cy, (Neyx)lc,(=D)) =0
for all divisors D on Cy of degree < my.
Granting the lemma for a moment, and using the bijectivity of (2.5), we

obtain H*(C, N¢yx) = 0, so that deformations of C' in X are unobstructed,
and a general deformation C’ is therefore smooth (of same genus g as C).

Apply again the lemma with a divisor of degree g+mg on Co={q1,...,qm}-
We have by semicontinuity

H'(C', Nevyx(—=Dg)) = 0
for some divisor D{, on C” of degree g+ mg. Let D’ be a divisor on C’ of degree
< myg. By Riemann-Roch, we can write D} ~y, D' 4+ E’, where E’ is effective,
and the exact sequence

0 — NC’/X(_DE)) — NC//X(—DI> — NC’/X(_D/)|E' - 0

implies H'(C’, N¢v/x (—D’)) = 0, which proves the proposition. O
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PROOF OF THE LEMMA. There is a commutative diagram of exact sequences

0 — NCO/X(_D) — (NC/X)|C'0(_D) O @Tcmfh — 0

i=1
m

0 — Neyx(—=D) — Ngyx(Q-D) — P Neyxa — 0

i=1

For m not smaller than some integer my, we have
H'(Co, N¢yyx(Q — D)) =0

for all divisors D on Cj of degree < myg, so that

O @NCO/X;CH - H1(007NCO/X(_D))

i=1

is surjective. Consider preimages (t1;,. .., tm, j)1<j<h by Om, of a basis (w;)1<j<n
of H'(Co, N¢,/x(—D)). The restriction of 6,,,, 5 to @, ; Cti ; is surjective, hence
also, for m > mqh, the restriction of 6,, to @;-, Tc,,q since the points ¢; and
the directions T¢, 4, are general. We obtain H*(Co, (N¢yx)|c, (—D)) = 0, hence
the lemma. O

2.8 Rationally chain connected varieties

We know study varieties for which two general points can be connected by a
chain of rational curves (so this is a property weaker than rational connected-
ness). For the same reasons as in §2.3, we have to modify slightly this geometric
definition. We will eventually show that rational chain connectedness implies
rational connectedness for smooth varieties in characteristic zero (this will be
proved in Theorem 2.49).

Definition 2.45 Let k be a field and let K be an algebraically closed extension
of k. A k-variety X is rationally chain connected if it is proper and if there exist
a K-variety M and a closed subscheme % of M x Xk such that:

e the fibers of the projection € — M are connected proper curves with only
rational components;

e the projection ¥ Xy ¥ — Xk X Xk is dominant.
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This definition does not depend on the choice of the algebraically closed
extension K.

Remark 2.46 Rational chain connectedness is not a birational property: the
projective cone over an elliptic curve E is rationally chain connected (pass
through the vertex to connect any two points by a rational chain of length
2), but its canonical desingularization (a Pi-bundle over E) is not. However, it
is a birational property among smooth projective varieties in characteristic zero,
because it is then equivalent to rational connectedness (Theorem 2.49).

Remark 2.47 If X is a rationally chain connected variety, two general points
of Xk can be connected by a chain of rational curves (and the converse is
true when K is uncountable); actually any two points of Xk can be connected
by a chain of rational curves (this follows from “general principles”; see [K1],
Corollary 3.5.1).

Remark 2.48 Let X — T be a proper and equidimensional morphism with
normal fibers defined over a field of characteristic zero. The set

{t € T | X, is rationally chain connected}

is closed (this is difficult; see [K1], Theorem 3.5.3). If the morphism is moreover
smooth, this set is also open (Theorem 2.49 and Corollary 2.29).

We now prove that in characteristic zero, a smooth rationally chain connected
variety is rationally connected (recall that this is false for singular varieties by
Remark 2.46). The basic idea of the proof is to use Proposition 2.37 to smooth
a rational chain connecting two points. The problem is to make each link free;
this is achieved by adding lots of free teeth to each link and by deforming the
resulting comb into a free rational curve, keeping the two endpoints fixed, in
order not to lose connectedness of the chain.

Theorem 2.49 A smooth rationally chain connected projective variety defined
over a field of characteristic zero is rationally connected.

PROOF. Let X be a smooth rationally chain connected projective variety
defined over a field k of characteristic zero. We may assume that k is alg-
ebraically closed and uncountable. We will prove that X contains a very free
rational curve. Let x7 and zo be points of X. There exists a rational chain
connecting x, and x5, which can be described as the union of rational curves
fi : Pllc — C; C X, fori € {1,...78}, with fl(O) = T, fl(OO) = fi+1(0);
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The rational chain connecting x1 and xo

Assume that z; is in the subset X of X defined in Proposition 2.17, so
that fy is free. We will construct by induction on i rational curves g; : P — X
with g;(0) = f;(0) and g;(00) = fi(oc), whose image meets X 'ree,

When ¢ = 1, take g1 = f1. Assume that g; is constructed with the required
properties; it is free, so the evaluation map

ev: Mor(Pi,X) — X
9 — g(o0)

is smooth at [g;] (this is not exactly Proposition 2.12, but follows from its proof).
Let T be an irreducible component of ev=(C;,1) that passes through [g;]; it
dominates Cjy1.

We want to apply principle 2.19 to the family of rational curves on X
parametrized by T: since the curve g; meets X so do very general mem-
bers of the family T'. Since they also meet C; ;1 by construction, it follows that
given a very general point ¢ of C;;1, there exists a deformation h, : P — X of
g; which meets Xf°¢ and z.

Replacing a link with a free link

Picking distinct very general points q1,...,¢m in Civ1—{p:, pit1}, we get
free rational curves hy,, ..., hq,, which, together with the handle Cj 1, form a
rational comb C with m teeth (as defined in Definition 2.38) with a morphism
f : C — X whose restriction to the teeth is free. By Theorem 2.39.a), for m
large enough, there exists a subcomb C’ C C with at least one tooth such that
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flcr can be smoothed leaving p; and p;,; fixed. Since C’ meets X° so does
a very general smooth deformation by principle 2.19 again. So we managed to
construct a rational curve g;1 : PL — X through fi11(0) and fi11(cc) which
meets X e,

In the end, we get a chain of free rational curves connecting x; and x. By
Proposition 2.37, this chain can be smoothed leaving x5 fixed. This means that
1 is in the closure of the image of the evaluation map ev : Pi. x Mor(Py., X;0 —
r3) — X. Since x; is any point in X°° and the latter is dense in X because
the ground field is uncountable, ev is dominant. In particular, its image meets
the dense subset X;;ree defined in Proposition 2.34, hence there is a very free

rational curve on X, which is therefore rationally connected (Corollary 2.28.a)).
U

Corollary 2.50 A smooth projective rationally chain connected complex variety
s simply connected.

PROOF. A smooth projective rationally chain connected complex vari-
ety is rationally connected by the theorem, hence simply connected by Corol-
lary 2.32.b). O
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Chapter 3

Sections of families of
separably rationally
connected varieties

3.1 (C) fields

Definition 3.1 (Artin-Lang) A field k is (C;) if any hypersurface of P} of
degree < n has a k-rational point.

It is a classical theorem of Chevalley-Warning that any finite field is (Cq).
The following is also classical ([T]).

Theorem 3.2 (Tsen) The function field of a curve defined over an algebraic-
ally closed field is (Cy).

PRrROOF. Let B be a smooth projective curve defined over an algebraically
closed field k, with function field K, and let X C Py be a hypersurface defined
by a homogeneous polynomial F'(x) = Z|m|= 4 amX™ of degree d. The elements
am of K can be viewed as sections of the same &g (D) for some effective nonzero
divisor D on B. We consider, for any positive integer ¢, the map

fq: H(B,gD)""'  — H°(B,D +dgD)

X +— E amX™.

|m|=d
For ¢ > 0, the dimension of the k-vector space on the left-hand-side is

ag = (n+1)(gdeg(D) +1 - g(B)),
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whereas the dimension of the k-vector space on the right-hand-side is
by = (dg+1)deg(D) + 1 — g(B).

If d < n, we have a; > b, for ¢ > 0. Since k is algebraically closed, there exists
then a point x € P(H?(B,¢D)""!)(k) in the intersection of the b, hypersurfaces
given by the components of f;. This x defines a K-point in X. O

Corollary 3.3 Let X be a projective surface with a morphism w : X — B onto
a smooth projective curve B, defined over an algebraically closed field k. Assume
that the generic fiber is a geometrically integral curve of genus 0. Then w has a
section and X is birational over B to B x PL.

PRrROOF. Any geometrically integral projective curve of genus 0 over any
field K is isomorphic to a nondegenerate conic in P%. By Tsen’s theorem, this
conic has a K-point when K = k(B). O

Corollary 3.4 Let X be a projective surface with a morphism w : X — B onto
a smooth projective curve B, defined over an algebraically closed field k. Assume
that fibers over closed points are all isomorphic to Py.. There exists a locally
free rank-2 sheaf & on B such that X is isomorphic over B to P(&).

PROOF. The sheaf 7,0x is a locally free on B. For all closed points b € B,
we have HY(X,, Ox,) = 1, where X}, is the fiber of b. Since 7 is flat, the base
change theorem ([H1], Theorem I11.12.11) implies that 7, &x has rank 1 hence is
isomorphic to &p. In particular, the generic fiber of 7 is geometrically integral.

Similarly, since H'(X}, Ox,) = 0 for all closed points ¢ € B, the base change
theorem again implies that the sheaf R'7,Ox is zero and that the generic fiber
also has genus 0. By Corollary 3.3, 7 has a section B — X whose image we
denote by C. We then have (C- X.) = 1 for all ¢ € B, hence, by the base change
theorem again, & = 7, (Ox (B)) is a locally free rank-2 sheaf on B. Furthermore,
the canonical morphism

" (m(Ox (B))) — Ox(B)

is surjective, hence there exists, by the universal property of P(&") ([H1], Propo-
sition I1.7.12), a morphism f : X — P(&) over B such that f*Opg)(1) =
Ox(B). Since Ox(B) is very ample on each fiber, one checks that f is an
isomorphism. O

3.2 Sections of families of separably rationally

connected varieties

Since smooth hypersurfaces of degree < n in P} are rationally connected vari-
eties, the following question seems a natural extension of Tsen’s theorem.
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Question 3.5 Let X be a smooth proper separably rationally connected variety
defined over a (C;) field k. Is X (k) nonempty?

The answer is affirmative when k is a finite field ([Es]) and, by the following
theorem, when k is the function field of a curve defined over an algebraically
closed field.

Theorem 3.6 (de Jong-Graber-Harris-Starr) A proper morphism from a
variety onto a smooth curve, defined over an algebraically closed field, whose
generic fiber is smooth and separably rationally connected, has a section.

This theorem generalizes Corollary 3.3. It was first proved over C in [GHS],
then in general in [dJS]. Here is one consequence of this fundamental theorem.
It complements Corollary 2.32.

Corollary 3.7 (Kollar) A smooth proper separably rationally connected vari-
ety defined over an algebraically closed field is algebraically simply connected.

PROOF. Let X be such a variety, defined over an algebraically closed field
k which we can assume, by Corollary 2.32.b), to be of positive characteristic
p. We need to show that any connected Galois covering ¥ — X is trivial.
If this is not the case, there exists a factorization Y — X’ — X, where u is
Galois with Galois group of prime order £. In this situation, X’ is also proper,
smooth, and separably rationally connected (Remark 2.24). The classification
of cyclic coverings tells us (Kummer and Artin-Schreier theories) that there
exist a covering of X’ by affine open subsets U; and

o if ¢ # p, regular maps h; : U; — k* and e;; : U; N U; — k* such that
e;jejrer: = 1 on U; NU; NUj, and efj = hihj_l on U; NUj, the affine open
subset u~1(U;) being defined by the equation h; = tf in U; x A, and the
glueings by t; = e;;t;;

o if { = p, regular maps h; : U; — k and e;; : U; N U; — k such that
€ij + €jk + ek = 0 on UiﬂUjﬂUk and 6% — € = hi—hj on UiﬂUj, the
affine open subset u~1(U;) being defined by the equation h; = t¥ —¢; in
U; x A, and the glueings by t; = e;; + t;.

Letting A = Speck][t], we construct a subvariety % of X’ x A as the union of
the affine varieties defined in U; x AL x A as follows:

e if ¢ # p, by the equation th; = t{, and the glueings t; = e;;t;;

e if /= p, by the equation h; = t¥ — t?P~1¢, and the glueings t; = te;; + ;.

48



The fibers % — A outside of 0 are isomorphic to Y, hence are separably ratio-
nally connected. The fiber at 0 is isomorphic to X’, with multiplicity ¢. This
morphism has a section by Theorem 3.6, hence ¢ = 1. O

Corollary 3.8 Let u : X — Y be a surjective morphism of proper varieties
defined over a field of characteristic zero. Assume that'Y is rationally connected
and that a general fiber of u is rationally connected. Then X is rationally
connected.

PROOF. We may assume that the base field k is algebraically closed and
uncountable, and that X and Y are smooth. Let x and z’ be closed general
points of X which are on smooth fibers of u, and let PL — Y be a rational curve
joining u(z) and u(z’). Let X’ = X xy PL. A general fiber of v/ : X’ — PL
is smooth and rationally connected (Corollary 2.29), hence there is a section
o:PL — X' of ' (Theorem 3.6). The fibers X/ = w' " (z) and X, = ' ()
are smooth and rationally connected, hence there are by Theorem 2.40 rational
curves, one in X/ joining x and o(v/(x)), and one in X, joining 2’ and o(u'(z")).
Together with the section o, we obtain a chain of three rational curves joining
x and 2’ in X’. Tt follows that X is rationally chain connected, hence rationally
connected by Theorem 2.49. O

3.2.1 Strategy of the proof of the theorem

Let X be a proper separably rationally connected variety and let u : X — B
be a surjective morphism onto a smooth curve. Assume that the generic fiber
is smooth and separably rationally connected. We want to prove that v has a
section. If all fibers of u are reduced, and if X is projective of dimension > 3,
our strategy is the following:

e construct a multisection C' C X of u, where C' is a smooth projective curve
contained in the smooth locus of w;

e in this case, by attaching to C' sufficiently many general vertical rational
curves and deforming the resulting comb as a subscheme of X, we may
assume that the normal bundle to C in X, even after twisting by any
divisor of degree bounded by some fixed constant, has vanishing higher
cohomology;

e upon attaching to C sufficiently many vertical bisecant rational curves
and deforming the resulting subscheme of X, we obtain a section.

More details are given below (§3.2.2). One reduces the general case to this
special by a clever argument (§3.2.3).
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3.2.2 Case where all fibers are reduced

Upon replacing X with X x Pi, we can always assume dim(X) > 3. The first
step of the strategy outlined above follows from a count of parameters and the
Bertini theorem. Let g be the genus of C' and let b be the genus of B. If d is the
degree of u|¢, its ramification R has degree mg = 29—2—d(2b—2). By Theorem
2.42, we can attach to C' many vertical rational curves at general points with
general tangents, and the resulting comb can be deformed as a subscheme of X
by Theorem 2.43 to a smooth multisection C’ C X such that

H'(C', Newjx (~D')) = 0

for all divisors D’ on C’ of degree < mg. The genus of C” is still g, the morphism
u|cr still has degree d hence the degree of its ramification R’ is still mgy. In
particular, H*(C’, Nc//x(—R’)) = 0 and can then conclude with the following
theorem.

Theorem 3.9 Let X be a proper variety, let B be a smooth projective curve,
let uw: X — B be a morphism with smooth rationally connected general fibers,
and let C' C X be a smooth projective curve contained in the smooth locus of u.
Let R be the ramification divisor of u|lc : C'— B. If H'(C,N¢/x(—R)) = 0,
the morphism u has a section.

PrOOF. We start from a finite separable morphism f : C — B of degree
d between smooth projective curves and a finite subset S C B which contains
the branching locus of f. The following lemma shows that, upon identifying
in C sufficiently many suitable pairs of points in fibers outside of f~1(S), one
can deform the resulting (singular) covering ¥, — B to a (reducible) covering
%~ — B with a section.

Lemma 3.10 There exist a projective irreducible surface € and surjective mor-
phisms
¢ £ . B

7|
Py
such that,
(1) fort € PL general, the curve 6; := p~1(t) is smooth;

(2) 6o is an integral nodal curve with normalization C, on which F restricts

to f;

(8) € has an irreducible component B’ which F sends isomorphically onto
B.

)
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(4) € is smooth along 6y and at a general point of B', and F(Sing(%p))NS =
@ .

)

(5) for each s € S and all t # oo, the local formal structure of the coverings
F,: 6, — B and f : C — B in a neighborhood of the fiber of s are the
same: there are isomorphisms

€ XB Specé’\]g’S ~(C xp Specﬁgﬁs

of Spec @"AB7S—schemes.

Only item (5) is not elementary and it will not be used until the next section.
Granting the lemma for the time being, we continue with the proof of Theorem
3.9.

Let T'— PL be a double cover ramified at 0 and let C — € Xp1 T be the
blow-up of the blngular points that appear above the nodes of ©y. We denote
again by 0 € T the only point above 0. The fiber of 5 : € — T at 0 is reduced
and is the union of C' and of rational curves meeting each C' transversely in
two points. Let F: 4 — %€ — B be the composed morphism. If we join in X
the pairs of points in C' which are identified in %, by very free rational curves
contained in fibers of u (Theorem 2.42) and avoiding its singular locus, we may
define a morphism f %o — X. We then have the following diagram:

B/
¢ %o %oo)( 7 #g—()(
\

B’ u
& % G F B

—

T Ol 00

Consider, in MorT(% X x T), the subscheme Mory (%, X x T; B) that con-
sists of T-morphisms ¢’ — X x T whose composition with uop; is F. In other
words, we are looking at the fiber at [F' ] F| of the morphism

MorT(%,X xT)— MorT(‘K7 BxT)
induced by composition by u. One checks that MorT(%Z,X x T; B) is smooth
at [f] if H* (%o, f*Tx /B) vanishes, where T'x,p is the relative tangent bundle,
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defined as the kernel of the tangent map Tw : Tx — f*Tp (it is locally free on
f (%y)). By construction, the restriction of this sheaf to the rational components
of %y is ample. On the component C, it restricts to No/x(—R). One then
shows as in Lemma 2.36 that the hypothesis H!(C, N¢yx(—R)) = 0 implies

HY(%o, f*Tx/p) = 0.

The morphism Mory (%, X xT; B) — T is then smooth at [f], hence contains

a curve smooth at [f] which dominates T. Let 7" be a smooth compactification
of that curve. There is a rational map

GZ?XTTI——-)X

which coincides with f on % and such that uwo G = F. It is defined in the
complement of a finite subset in the normal locus of € xp T , hence at the
generic point of B’. The resulting rational map G|p: : B’ --» X gives the
desired section of u, and this proves Theorem 3.9. (]

Let us go back now to the proof of Lemma 3.10.

PROOF OF LEMMA 3.10. Let m be a large integer and let g : C — P be the
morphism defined by two general sections of O (mf*S). One checks that

e the morphism (f,g) : C — B x Py is birational onto its image Co;

e the singularities of the curve Cj are nodes which are not in S x Py.;

e the curve Cp is in the linear system |pjOc(dmS) ® p;0py (d)|.

This linear system also contains the divisor
Coo = (dmS x PL) + (B x {us,...,uq}),
where w1, ..., uq are general points of P;.. Consider the rational map
B xPL --»PL

defined by the pencil (Cp, Cw). If € — B x P is the blow-up of the scheme
CoNCx,and p: ¢ — B x Py --» Py and F : ¢ — B x P, — B are the
composed morphisms, one easily checks items (1), (2), (3), and (4) of the lemma.

Let s be a point of S and let m be a uniformizing parameter in the discrete
valuation ring Op 5. In Spec Op s x PL, the curve Cj is a defined by one equation
oo (with o¢(s,u;) # 0 for each i), the curve Co, by the equation 7™ [](u — u;),
hence the curve %; by oo + ta™¢](u — u;). Modulo 7™¢, the fibers at s of
the morphisms 4 — B induced by F' are therefore isomorphic for ¢t # oc.
Since these morphisms are finite (this follows from the explicit equation of é; in
B x P}), the following lemma implies item (5) of Lemma 3.10 and this finishes
its proof. [l

92



Lemma 3.11 Let A be a complete discrete valuation ring with uniformizing
parameter ™ and fraction field K. Let K' be a separable extension of K and let
A’ be the integral closure of A in K'. There exists a positive integer mg such
that, for any discrete valuation ring A" finite over A, the following conditions
are equivalent:

(i) the A-algebras A’ and A" are isomorphic;

(i1) there exists an integer m > mq such that the A-algebras A'/n™A’ and
A" [m™m A" are isomorphic.

ProoOF. Since K’ is a separable extension of K, there exists a’ € A’
such that K/ = K(a’). Its minimal polynomial P has coefficients in A and
satisfies P’'(a’) # 0. There exists a positive integer m; such that P’(a’) €
7™M A =gt A Let mg = 2my.

Let us show (ii) = (i). Since A” is the integral closure of A in the fraction
field K" of A”, it is enough to show that the K-extensions K’ and K" are
isomorphic. The A-modules A’ and A” are free, of same rank since A’/7A’ ~
A" /mA”. The K-extensions K’ and K" therefore have same degree and it is
enough to show that there exists a K-homomorphism from K’ to K”.

Let a” be an element of A” representing the image of @’ by the projection
A — A g™ A~ A" /7™ A”. We have

P(a”) c 7TmA// and P/(a//) c 7Tm1AH—7Tm1+1AH.

The discrete valuation ring A” is complete for the m-adic topology. By Hensel’s
lemma ([Bo], chap. III, §4, n°5, cor. 1), there exists " € A” such that P(d") =0
and b” = a” (mod 7™~"™1). This defines a morphism A[X]/(P) — A" which
induces the K-homomorphism K’ — K" we were looking for. O

3.2.3 Reduction to the case where the fibers are reduced

Following de Jong and Starr, we now prove that, in order to find a section of
u: X — B, it is enough to find one after any base change on B such that the
fibers of the induced morphism are all reduced.

Proposition 3.12 Let X be a proper normal variety, let B be a smooth projec-
tive curve, and let u : X — B be a morphism with reduced general fibers, defined
over an uncountable algebraically closed field. Then,

1) there exist a smooth projective curve C' and a separable finite morphism
C — B such that the fibers of the induced morphism

R (C X5 X)norm = C

are reduced;
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2) if, for all separable finite morphisms C — B of smooth projective curves
such that the fibers of uc are reduced, uc has a section, u has a section.

PROOF. Item 1) can be found in [E] and [BLR], th. 2.1’, p. 368.

Consider a morphism f : C — B satisfying the properties in item 1) and
apply Lemma 3.10, taking for S the set of branching points of f and of points
of B whose u-fiber is not reduced. It yields a diagram

%XBX — X

! [

¢ — B

|

T := Pll(.

Consider the fibres of ug, : (6; xp X)*™ — % for t # oco. Outside of S5,
they are reduced because the u-fiber is reduced. At a point of S, the formal
fibers are reduced because they are isomorphic to the uc-fiber. Hence all fibers
of ue, are reduced. For t general, €; is smooth hence there is by hypothesis a
section oy : 61 — (6 x g X)™°™ of ug,. Since the base field is uncountable and
the scheme Mory (%, X x T; B) defined on page 51 only has countably many
irreducible components, at least one of them contains almost all the points
corresponding to the morphisms 4; — X induced by oy, hence contains a smooth
irreducible curve that dominates Pj.. Considering a smooth compactification 7"
of that curve, we obtain as on page 52 a rational map € xr T’ --» X whose
composition with F o p; is w and again, this gives the desired section of u. [
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Chapter 4

Separably rationally
connected varieties over non
algebraically closed fields

4.1 Very free rational curves on separably ratio-
nally connected varieties over large fields

Let k be a field, let k be an algebraic closure of k, and let X be a smooth
projective separably rationally connected k-variety. Given any point of the k-
variety Xi, there is a very free rational curve f : Pll( — Xk passing through
that point (Theorem 2.40). One can ask about the existence of such a curve
defined over k, passing through a given k-point of X. The answer is unknown
in general, but Kollar proved that such a curve does exist over certain fields

([K3]).

Definition 4.1 A field k is large if for all smooth connected k-variety X such
that X (k) # @, the set X (k) is Zariski-dense in X.

The field k is large if and only if, for all smooth k-curve C' such that C'(k) #
&, the set C(k) is infinite.

Examples 4.2 1) Local fields such as Qp, F,((¢)), R, and their finite exten-
sions, are large (because the implicit function theorem holds for analytic varieties
over these fields).

2) For any field k, the field k((z1,...,z,)) is large for n > 1.

3) In the other direction, number fields are not large, nor are, for any field
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k, the fields k(z1,...,z,) for n > 1, because (most) smooth curves of genus > 2
have only finitely many rational points (theorems of Faltings and Manin).

Theorem 4.3 (Kollar) Let k be a large field, let X be a smooth projective
separably rationally connected k-variety, and let x € X (k). There exists a very
free k-rational curve f : P — X such that f(0) = .

PROOF. The k-scheme Moerree(Pllc,X;O — ) is smooth and nonempty
(because, by Corollary 2.28, it has a point in k). It therefore has a point in
a finite separable extension ¢ of k, which corresponds to a very free ¢-rational
curve fo : P} — X,. Let M € Al be a closed point with residual field ¢. The
curve

C=(0xPL)U(PL x M) CPLxPL
is a comb over k with handle Cy = 0x P, and Gal(¢/k) acts simply transitively
on the set of teeth of Cf.

The constant morphism 0 x PL — z and f; : PL x M — X coincide on
0 x M hence define a k-morphism f:C — X.

Asin §2.7.1, let T = P, let ¢ be the smooth k-surface obtained by blowing-
up the closed point M x 0 in Py x T, and let m : 4 — T be the first projection,
so that the curve 45 = 7 1(0) is isomorphic to C. We let 2" = X x T and
xp = x xT C Z, and we consider the inverse image cor in € of the curve
0o X T. The morphism f then defines fy : 65 — Zo, hence a k-point of the
T-scheme Morp (¢, Z7; cor — xr) above 0 € T'(k).

Lemma 4.4 The T-scheme Morr (€, Z'; 0o — x) is smooth at [fo].

PROOF. It is enough to check H(C, (f*Tx)(—00)) = 0. The restriction
of (f*Tx)(—o0) to the handle Cy is isomorphic to @, (—1)®4™X) and its
restriction to the teeth is f;7T’x,, hence is ample. We conclude with Lemma
2.36. U

This lemma already implies, since k is large, that Mory (¢, Z"; cor — x7)
has a k-point whose image in 7T is not 0. It corresponds to a k-rational curve
P, — X sending co to z. However, there is no reason why this curve should be
very free, and we will need to work a little bit more for that. By Lemma 4.4,
there exists a smooth connected k-curve

T' C Mory (€, Z ;001 +— 27)
passing through [fp] and dominating 7. It induces a k-morphism
F:% XT T, — X

such that F(oor x7 T") = {«}. Since T’(k) is nonempty (it contains [fy]), it is
dense in T' because k is large. Let Tj) = (T -{0}) x7 T" and let t € Tjj(k). The
restriction of F' to C' xp t is a k-rational curve Fj : Pll( — X sending oo to x.
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For F; to be very free, we need to check H'(PL, (F;Tx)(-2)) = 0. By
semi-continuity and density of Tj(k), it is enough to find an effective relative
divisor D C €, of degree > 2 on the fibers of 7, such that

HY(E x1 [fo], (F*Tx)(—=D")|gxris]) = 0,

where D' = D xp T'. Take for D C % the union of cor and of the strict
transform of M x T in €. The divisor (Dg)g on the comb (€ X [fo])x has
degree 1 on the handle and 1 on each tooth. We conclude with Lemma 2.36
again. U

4.2 R-equivalence

Definition 4.5 Let X be a proper variety defined over a field k. Two points x
and y in X (k) are directly R-equivalent if there exists a morphism f : Pll( — X
such that f(0) =z and f(oc0) = y.

They are R-equivalent if there are points x, . . ., € X (k) such that zo = z
and x,, = y, and z; and x;; are directly R-equivalent for all ¢ € {0,...,m—1}.
This is an equivalence relation on X (k) called R-equivalence.

The following result is [K3], Corollary 1.8 ([K3], Corollary 1.5 is a more
general analog for all local fields).

Theorem 4.6 (Kollar) Let X be a smooth projective rationally connected real
variety. The R-equivalence classes are the connected components of X (R).

PrOOF. Let z € X(R) and let f : PL — X be a very free R-rational curve
such that f(0) = z (Theorem 4.3). The R-scheme M = Mor*™*(PL, X; 00 —
f(0)) is locally of finite type and the evaluation morphism M x P — X is
smooth on M x Ak (Proposition 2.27.a)). By the local inversion theorem, the
induced map M(R) x A'(R) — X (R) is therefore open. Its image contains x,
hence a neighborhood of x, which is contained in the R-equivalence class of x
(any point in the image is directly R-equivalent to f(oco), hence R-equivalent to

It follows that R-equivalence classes are open and connected in X (R). Since
they form a partition of this topological space, they are its connected compo-
nents. O

Let X be a smooth projective separably rationally connected k-variety.
When k is large, there is a very free curve through any point of X (k) (Theorem
4.3). When k is algebraically closed, there is such a curve through any finite
subset of X (k) (Theorem 2.40). This cannot hold in general, even when k is
large (when k = R, two points belonging to different connected components of
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X (R) cannot be on the same rational curve defined over R). Kollar proved that
over a large field, this is the only obstruction (see [K4]).

Lemma 4.7 (Kollar) Let X be a smooth projective separably rationally con-
nected variety over a large field k and let x and y € X (k) be directly R-equivalent
points. There exists a very free k-rational curve f : Pi — X such that f(0) = x
and f(o0) = y.

SKETCH OF PROOF. Since x and y are directly R-equivalent, there exists a
k-rational curve g : PL — X such that g(0) = z and g(c0) = y. We want to
make this rational curve very free. Using Theorem 4.3, we can form a comb C'
defined over k, with handle Cy = g(Py.), by adding as many very free k-rational
teeth as we want.

However, the argument of the proof of Theorem 2.49 does not work in our
situation: it is based on the smoothing result Theorem 2.39, which uses a di-
mension count to prove that a nontrivial subcomb deforms (over an algebraically
closed field). In our case, there is no way to make sure that this subcomb, or
its deformation, will still be defined over k.

Kolldr’s idea is to use instead (an analog of) Theorem 2.43 to deform the
full comb C as a k-subscheme of X. There are several conditions that need to
be met at the same time:

e (C needs to be embedded in X so its teeth need to meet Cy in distinct
points, and they should be mutually disjoint;

e we need a family of combs such that the tangents to the teeth at the points
where they meet the handle Cy span the normal bundle to Cjy in X at that
point (this replaces the hypothesis that the tangent directions to the teeth
have to be general in Theorem 2.43).

Kollar constructs a cone over k in such a way that it satisfies these two conditions
and, upon adding all the conjugates of its teeth, the resulting comb still satisfies
them ([K4], Lemma 14 and Theorem 15). All in all, we obtain a k-comb C' C X
such that x and y are smooth points of C' and

H'(C,Ngyx(—z —y)) = 0.

We can then follow the arguments of the proof of Theorem 4.3: the Hilbert
scheme Hilb(X;x,y) parametrizing subschemes of X passing through = and y
is smooth at [C] and one checks by a local calculation that it contains defor-
mations of [C] that are smooth (rational curves). By semi-continuity, these
rational curves are very free. Finally, since k is large, k-points are dense in any
neighborhood of [C] in Hilb(X;z,y), and we can find a very free rational curve
through x and y which is defined over k. O
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Theorem 4.8 (Kollar) Let X be a smooth projective separably rationally con-
nected variety defined over a large fieldk. Let x1,...,x, € X(k) be R-equivalent
points. There exists a very free k-rational curve f : Py — X and distinct points
ty,...,t. € k such that f(t;) = x; for all i.

In particular, x4, ..., x, are all mutually directly R-equivalent. This theorem
generalizes both Theorem 4.3 and Theorem 2.40.

SKETCH OF PROOF. First, we prove that direct R-equivalence is the same as
R-equivalence on X (k). Fix z, y, 2 € X (k) such that x is directly R-equivalent
to y and y is directly R-equivalent to z. By Lemma 4.7, there exist very free
rational k-rational curves f : PL — X and g : PL — X such that f(0) = z,
f(0) = y, g(0) = y, and g(oco) = z. Using the arguments of the proof of
Proposition 2.37, and the fact that k is large, one shows that the one-toothed
comb obtained by glueing f and g deforms, fixing z and z, to a very free k-
rational curve h : P{ — X joining z and z.

Let now z1,...,2, € X (k) be R-equivalent points. Fix a point y € X (k)
belonging to the R-equivalence class of the ;. By what we just saw, the exist
very free rational k-rational curves f; : PL — X such that f;(0) = y and
fi(0o) = z;. One can form a k-comb C with r teeth and define a morphism
C — X, using the f; on the teeth and contracting the handle to y. Reasoning
as in the proof of Theorem 4.3, one shows that this morphism can be smoothed,
fixing the points z1,...,,, to a very free k-rational curve f : PL — X that
satisfies the conditions in the theorem. O
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