On the geometry of certain Fano threefolds

Olivier DEBARRE

Institut de Recherche Mathématique Avancée (IRMA)

Pisa, June 1, 2007
Olivier DEBARRE
On the geometry of certain Fano threefolds
A Fano manifold is a complex projective manifold X with $\det(T_X)$ ample, i.e., $\det(T_X)$ has a Hermitian metric with positive curvature.

\footnote{Gino Fano (Mantova, 1871 – Verona, 1952).}
A *Fano*\(^1\) manifold is a complex projective manifold \(X\) with \(\text{det}(T_X)\) ample, i.e., \(\text{det}(T_X)\) has a Hermitian metric with positive curvature.

- Dimension 1: \(\mathbb{P}^1\) (1 family).

\(^1\)Gino Fano (Mantova, 1871 – Verona, 1952).
A Fano\(^1\) manifold is a complex projective manifold \(X\) with \(\det(T_X)\) ample, i.e., \(\det(T_X)\) has a Hermitian metric with positive curvature.

- Dimension 1: \(\mathbb{P}^1\) (1 family).
- Dimension 2 (\textit{del Pezzo}\(^2\) surfaces): \(\mathbb{P}^2\) blown-up in at most 8 points, or \(\mathbb{P}^1 \times \mathbb{P}^1\) (10 families).

\(^1\)Gino Fano (Mantova, 1871 – Verona, 1952).
\(^2\)Pasquale del Pezzo, Duca di Cajanello (Berlin, 1859 – Napoli, 1936), “il più napoletano dei matematici napoletani.”
A Fano\(^1\) manifold is a complex projective manifold \(X\) with \(\det(T_X)\) ample, i.e., \(\det(T_X)\) has a Hermitian metric with positive curvature.

- Dimension 1: \(\mathbb{P}^1\) (1 family).
- Dimension 2 (\textit{del Pezzo}\(^2\) surfaces): \(\mathbb{P}^2\) blown-up in at most 8 points, or \(\mathbb{P}^1 \times \mathbb{P}^1\) (10 families).
- Dimension 3: all classified (17 + 88 families).

\(^1\)Gino Fano (Mantova, 1871 – Verona, 1952).

\(^2\)Pasquale del Pezzo, Duca di Cajanello (Berlin, 1859 – Napoli, 1936), “il più napoletano dei matematici napoletani.”
A Fano1 manifold is a complex projective manifold X with $\det(T_X)$ ample, i.e., $\det(T_X)$ has a Hermitian metric with positive curvature.

- Dimension 1: \mathbb{P}^1 (1 family).
- Dimension 2 (del Pezzo2 surfaces): \mathbb{P}^2 blown-up in at most 8 points, or $\mathbb{P}^1 \times \mathbb{P}^1$ (10 families).
- Dimension 3: all classified ($17 + 88$ families).
- Dimension n: finitely many families.

1Gino Fano (Mantova, 1871 – Verona, 1952).
2Pasquale del Pezzo, Duca di Cajanello (Berlin, 1859 – Napoli, 1936), “il più napoletano dei matematici napoletani.”
Examples

The projective space \mathbb{P}^n. Submanifolds in $\mathbb{P}^n + s$ defined by (general) homogeneous equations of degrees $d_1, \ldots, d_s > 1$ with $d_1 + \cdots + d_s \leq n + s$, such as a cubic surface $X_3 \subset \mathbb{P}^3$; a cubic threefold $X_3 \subset \mathbb{P}^4$.

The threefold X_{10} intersection in $\mathbb{P}(\wedge^2 C_5) = \mathbb{P}^9$ of the Grassmannian $G(2,5)$, a quadric, and a \mathbb{P}^7.
Examples

- The projective space \mathbb{P}^n.

- Submanifolds in $\mathbb{P}^n + s$ defined by (general) homogeneous equations of degrees $d_1, \ldots, d_s > 1$ with $d_1 + \cdots + d_s \leq n + s$, such as a cubic surface $X_3 \subset \mathbb{P}^3$; a cubic threefold $X_3 \subset \mathbb{P}^4$.

- The threefold X_{10} intersection in $\mathbb{P}(\wedge^2 C_5) = \mathbb{P}^9$ of the Grassmannian $G(2, 5)$, a quadric, and a \mathbb{P}^7.

Olivier DEBARRE

On the geometry of certain Fano threefolds
Examples

- The projective space \(\mathbb{P}^n \).
- Submanifolds in \(\mathbb{P}^{n+s} \) defined by (general) homogeneous equations of degrees \(d_1, \ldots, d_s > 1 \) with \(d_1 + \cdots + d_s \leq n + s \), such as

 - A cubic surface \(X_3 \subset \mathbb{P}^3 \);
 - A cubic threefold \(X_3 \subset \mathbb{P}^4 \);
 - The threefold \(X_{10} \) intersection in \(\mathbb{P}(\bigwedge^2 \mathbb{C}^5) = \mathbb{P}^9 \) of the Grassmannian \(G(2,5) \), a quadric, and a \(\mathbb{P}^7 \).
Examples

- The projective space \mathbb{P}^n.
- Submanifolds in \mathbb{P}^{n+s} defined by (general) homogeneous equations of degrees $d_1, \ldots, d_s > 1$ with $d_1 + \cdots + d_s \leq n + s$, such as
 - a cubic surface $X_3 \subset \mathbb{P}^3$.

Olivier DEBARRE
On the geometry of certain Fano threefolds
The projective space \mathbb{P}^n.

Submanifolds in \mathbb{P}^{n+s} defined by (general) homogeneous equations of degrees $d_1, \ldots, d_s > 1$ with $d_1 + \cdots + d_s \leq n + s$, such as

- a cubic surface $X_3 \subset \mathbb{P}^3$;
- a cubic threefold $X_3 \subset \mathbb{P}^4$.
Examples

- The projective space \mathbb{P}^n.
- Submanifolds in \mathbb{P}^{n+s} defined by (general) homogeneous equations of degrees $d_1, \ldots, d_s > 1$ with $d_1 + \cdots + d_s \leq n + s$, such as
 - a cubic surface $X_3 \subset \mathbb{P}^3$;
 - a cubic threefold $X_3 \subset \mathbb{P}^4$.
- The threefold X_{10} intersection in $\mathbb{P}(\wedge^2 \mathbb{C}^5) = \mathbb{P}^9$ of the Grassmannian $G(2, 5)$, a quadric, and a \mathbb{P}^7.
Rationality

X is rational if a (Zariski) open subset of X is isomorphic to an open subset of a \(\mathbb{P}^n \), i.e., there exists a birational isomorphism \(\mathbb{P}^n \cong X \).

Equivalently, the field \(\mathbb{C}(X) \) of rational functions on X is a purely transcendental extension \(\mathbb{C}(t_1, \ldots, t_n) \) of \(\mathbb{C} \).

Or, (a dense open subset of) X can be parametrized in a one-to-one way by rational functions in \(t_1, \ldots, t_n \).
X is *rational* if a (Zariski) open subset of X is isomorphic to an open subset of a \mathbb{P}^n, i.e., there exists a birational isomorphism $\mathbb{P}^n \dasharrow X$.

Equivalently, the field $\mathbb{C}(X)$ of rational functions on X is a purely transcendental extension $\mathbb{C}(t_1, \ldots, t_n)$ of \mathbb{C}.

Or, (a dense open subset of) X can be parametrized in a one-to-one way by rational functions in t_1, \ldots, t_n.

Olivier DEBARRE

On the geometry of certain Fano threefolds
X is *rational* if a (Zariski) open subset of X is isomorphic to an open subset of a \mathbb{P}^n, i.e., there exists a birational isomorphism $\mathbb{P}^n \sim X$.

Equivalently, the field $\mathbb{C}(X)$ of rational functions on X is a purely transcendental extension $\mathbb{C}(t_1, \ldots, t_n)$ of \mathbb{C}.
X is *rational* if a (Zariski) open subset of X is isomorphic to an open subset of a \mathbb{P}^n, i.e., there exists a birational isomorphism $\mathbb{P}^n \sim X$.

Equivalently, the field $\mathbb{C}(X)$ of rational functions on X is a purely transcendental extension $\mathbb{C}(t_1, \ldots, t_n)$ of \mathbb{C}.

Or, (a dense open subset of) X can be parametrized in a one-to-one way by rational functions in t_1, \ldots, t_n.

Olivier DEBARRE

On the geometry of certain Fano threefolds
Rationality of cubic surfaces

A (smooth) cubic surface in \mathbb{P}^3 is rational.\(^\text{2}\)

\(^\text{2}\)Rudolf Friedrich Alfred Clebsch (Königsberg, Germany (now Kaliningrad, Russia), 1833 – Göttingen, 1872).
Rationality of cubic surfaces

A (smooth) cubic surface in \mathbb{P}^3 is rational.²

²Rudolf Friedrich Alfred Clebsch (Königsberg, Germany (now Kaliningrad, Russia), 1833 – Göttingen, 1872).
Proof. A smooth cubic surface $X \subset \mathbb{P}^3$ contains skew lines ℓ and ℓ'.

The surface X is in fact \mathbb{P}^2 blown-up in 6 points hence rational (as all del Pezzo surfaces).
Proof. A smooth cubic surface $X \subset \mathbb{P}^3$ contains skew lines ℓ and ℓ'. The map

$$\ell \times \ell' \rightarrow X$$
Proof. A smooth cubic surface $X \subset \mathbb{P}^3$ contains skew lines ℓ and ℓ'. The map

$$\ell \times \ell' \longrightarrow X$$

$$(x, x') \longmapsto \text{third point of intersection}$$

of the line $\langle x, x' \rangle$ with X
Proof. A smooth cubic surface $X \subset P^3$ contains skew lines ℓ and ℓ'. The map

$$\ell \times \ell' \longrightarrow X$$

$$(x, x') \longmapsto \text{third point of intersection of the line } \langle x, x' \rangle \text{ with } X$$

is

- dominant and $\ell \times \ell' \simrightarrow P^2$;
Proof. A smooth cubic surface $X \subset \mathbb{P}^3$ contains skew lines ℓ and ℓ'. The map

$$\ell \times \ell' \quad \rightarrow \quad X$$

$$(x, x') \quad \longmapsto \quad \text{third point of intersection}$$

of the line $\langle x, x' \rangle$ with X

is

- dominant and $\ell \times \ell' \sim \mathbb{P}^2$;
- birational: the only preimage of $x'' \in X$ is

$$x = \langle \ell', x'' \rangle \cap \ell, \quad x' = \langle \ell, x'' \rangle \cap \ell'.$$
Proof. A smooth cubic surface $X \subset \mathbb{P}^3$ contains skew lines ℓ and ℓ'. The map

$$
\ell \times \ell' \longrightarrow X \\
(x, x') \longmapsto \text{third point of intersection} \\
\text{of the line } \langle x, x' \rangle \text{ with } X
$$

is

- dominant and $\ell \times \ell' \sim \mathbb{P}^2$;
- birational: the only preimage of $x'' \in X$ is

$$
x = \langle \ell', x'' \rangle \cap \ell, \quad x' = \langle \ell, x'' \rangle \cap \ell'.
$$

The surface X is in fact \mathbb{P}^2 blown-up in 6 points hence rational (as all del Pezzo surfaces).
Unirationality

Unirationality: X is unirational if there exists a dominant rational map $\mathbb{P}^n \rightarrow X$. Equivalently, the field $\mathbb{C}(X)$ is contained in a purely transcendental extension $\mathbb{C}(t_1,\ldots,t_n)$ of \mathbb{C}. Or, (a dense open subset of) X can be parametrized in a finite-to-one way by rational functions in t_1,\ldots,t_n.

Olivier DEBARRE

On the geometry of certain Fano threefolds
X is *unirational* if there exists a dominant rational map $\mathbb{P}^n \to X$.

Olivier DEBARRE
On the geometry of certain Fano threefolds
Unirationality

X is *unirational* if there exists a dominant rational map $\mathbb{P}^n \to X$.

Equivalently, the field $\mathbb{C}(X)$ is *contained* in a purely transcendental extension $\mathbb{C}(t_1, \ldots, t_n)$ of \mathbb{C}.

Olivier DEBARRE
On the geometry of certain Fano threefolds
X is \textit{unirational} if there exists a dominant rational map $\mathbb{P}^n \dashrightarrow X$.

Equivalently, the field $\mathbb{C}(X)$ is \textit{contained} in a purely transcendental extension $\mathbb{C}(t_1, \ldots, t_n)$ of \mathbb{C}.

Or, (a dense open subset of) X can be parametrized in a finite-to-one way by rational functions in t_1, \ldots, t_n.

Olivier DEBARRE

On the geometry of certain Fano threefolds
X is *unirational* if there exists a dominant rational map $\mathbb{P}^n \dasharrow X$.

Equivalently, the field $\mathbb{C}(X)$ is *contained* in a purely transcendental extension $\mathbb{C}(t_1, \ldots, t_n)$ of \mathbb{C}.

Or, (a dense open subset of) X can be parametrized in a finite-to-one way by rational functions in t_1, \ldots, t_n.

- For curves and surfaces, rationality is equivalent to unirationality.\(^1\)

\(^1\)Jacob Lüroth (Mannheim, 1844 – Munich, 1910) for curves in 1876, Guido Castelnuovo (Venezia, 1865 – Roma, 1952) for surfaces in 1893.
X is *unirational* if there exists a dominant rational map $\mathbb{P}^n \dashrightarrow X$.

Equivalently, the field $\mathbb{C}(X)$ is *contained* in a purely transcendental extension $\mathbb{C}(t_1, \ldots, t_n)$ of \mathbb{C}.

Or, (a dense open subset of) X can be parametrized in a finite-to-one way by rational functions in t_1, \ldots, t_n.

- For curves and surfaces, rationality is equivalent to unirationality.\(^1\)
- A (smooth) cubic hypersurface in \mathbb{P}^{n+1} is unirational for $n \geq 2$.\(^2\)

\(^1\) Jacob Lüroth (Mannheim, 1844 – Munich, 1910) for curves in 1876, Guido Castelnuovo (Venezia, 1865 – Roma, 1952) for surfaces in 1893.
\(^2\) Max Noether (Mannheim, 1844 – Erlangen, 1921).
Proof. A smooth cubic hypersurface $X \subset \mathbb{P}^{n+1}$ contains a line ℓ.
Proof. A smooth cubic hypersurface $X \subset \mathbf{P}^{n+1}$ contains a line ℓ. A line ℓ_x tangent to X at a point x of ℓ meets X in a third point.
Proof. A smooth cubic hypersurface $X \subset \mathbb{P}^{n+1}$ contains a line ℓ. A line ℓ_x tangent to X at a point x of ℓ meets X in a third point. The induced map

$$\mathbb{P}(T_x|\ell) \rightarrow X$$

$$\ell_x \subset T_{X,x} \quad \mapsto \quad \text{third point of intersection of } \ell_x \text{ with } X$$

is
Proof. A smooth cubic hypersurface $X \subset \mathbb{P}^{n+1}$ contains a line ℓ. A line ℓ_x tangent to X at a point x of ℓ meets X in a third point. The induced map

$$\mathbb{P}(T_X|_\ell) \rightarrow X$$

$$\ell_x \subset T_{X,x} \mapsto \text{third point of intersection of } \ell_x \text{ with } X$$

is

- dominant and $\mathbb{P}(T_X|_\ell) \sim \mathbb{P}^n$;
Proof. A smooth cubic hypersurface $X \subset \mathbb{P}^{n+1}$ contains a line ℓ. A line ℓ_x tangent to X at a point x of ℓ meets X in a third point. The induced map

$$\mathbb{P}(T_X|\ell) \dashrightarrow X$$

$$\ell_x \subset T_{X,x} \mapsto \text{third point of intersection of } \ell_x \text{ with } X$$

is

- dominant and $\mathbb{P}(T_X|\ell) \sim \mathbb{P}^n$;
- of degree 2:
Proof. A smooth cubic hypersurface $X \subset \mathbb{P}^{n+1}$ contains a line ℓ. A line ℓ_x tangent to X at a point x of ℓ meets X in a third point. The induced map

$$\mathbb{P}(T_X|_\ell) \dashrightarrow X$$

$\ell_x \subset T_{X,x} \mapsto$ third point of intersection of ℓ_x with X

is

- dominant and $\mathbb{P}(T_X|_\ell) \sim \mathbb{P}^n$;
- of degree 2: if $x' \in X$, the intersection of X with the plane $\langle \ell, x' \rangle$ is the union of ℓ and a conic c.
Proof. A smooth cubic hypersurface $X \subset \mathbb{P}^{n+1}$ contains a line ℓ. A line ℓ_x tangent to X at a point x of ℓ meets X in a third point. The induced map

$\mathbb{P}(T_{X, x}) \longrightarrow X$

$\ell_x \subset T_{X, x} \longmapsto$ third point of intersection

of ℓ_x with X

is

- dominant and $\mathbb{P}(T_{X, \ell}) \sim \mathbb{P}^n$;
- of degree 2: if $x' \in X$, the intersection of X with the plane $\langle \ell, x' \rangle$ is the union of ℓ and a conic c. The two preimages of x' are the two points of $\ell \cap c$.

Olivier DEBARRE
On the geometry of certain Fano threefolds
Most Fano threefolds are unirational...
Most Fano threefolds are unirational...

...but smooth cubic hypersurfaces in \mathbb{P}^4 are not rational (Clemens–Griffiths, 1972).
Most Fano threefolds are unirational...

...but smooth cubic hypersurfaces in \mathbb{P}^4 are not rational (Clemens–Griffiths, 1972).

Some (smooth) cubic hypersurfaces in \mathbb{P}^n, $n \geq 5$, such as

$$(x_0^3 + \cdots + x_{2m+1}^3 = 0) \subset \mathbb{P}^{2m+1}$$

are rational (odd-dimensional examples were constructed by M. Mella)...
Most Fano threefolds are unirational...

...but smooth cubic hypersurfaces in \mathbb{P}^4 are not rational (Clemens–Griffiths, 1972).

Some (smooth) cubic hypersurfaces in \mathbb{P}^n, $n \geq 5$, such as

$$(x_0^3 + \cdots + x_{2m+1}^3 = 0) \subset \mathbb{P}^{2m+1}$$

are rational (odd-dimensional examples were constructed by M. Mella)...

...but the rationality of general cubics is unknown!
Jacobians

This is the abelian variety $J(C) = \mathbb{H}^1(C, \mathbb{Z}) = (\text{g-dim'l vector space}) / (\text{lattice})$.

Natural target for integrating:
Jacobian of a curve C.

This is the abelian variety $J(C) = H^1_{\text{dR}}(C)^\vee/\text{Im } H^1(C,\mathbb{Z}) = (g\text{-dim'l vector space)}/(lattice)$.

Natural target for integrating:
Jacobian of a curve C. This is the abelian variety

$$J(C) = H^{1,0}(C)^\vee / \text{Im } H_1(C, \mathbb{Z}) = (g\text{-dim}'l \text{ vector space})/(\text{lattice})$$
Jacobian of a curve C. This is the abelian variety

$$J(C) = H^{1,0}(C)^\vee / \text{Im } H_1(C, \mathbb{Z}) = (g\text{-dim' l vector space})/(\text{lattice})$$

Natural target for integrating:
Jacobian of a curve C. This is the abelian variety

\[J(C) = H^{1,0}(C)\vee / \text{Im } H_1(C, \mathbb{Z}) = (g\text{-dim}’l \text{ vector space})/(\text{lattice}) \]

Natural target for integrating:

\[C \rightarrow J(C) \quad \text{Abel–Jacobi}^1 \text{ map} \]

\(^1\)Niels Henrik Abel (Frindoe, Norway, 1802 – Froland, 1829); Carl Jacobi (Potsdam, Prussia (now Germany), 1804 – Berlin, 1851).
Jacobian of a curve C. This is the abelian variety

$$J(C) = H^{1,0}(C)^\vee / \text{Im} \; H_1(C, \mathbb{Z}) = (g\text{-dim}'l \text{ vector space})/(\text{lattice})$$

Natural target for integrating:

$$C \rightarrow J(C) \quad \text{Abel–Jacobi}^1 \text{ map}$$

$$x \mapsto \left(\omega \mapsto \int_{x_0}^x \omega \right) \quad (\text{well-defined modulo } H_1(C, \mathbb{Z}))$$

1Niels Henrik Abel (Frindoe, Norway, 1802 – Froland, 1829); Carl Jacobi (Potsdam, Prussia (now Germany), 1804 – Berlin, 1851).
Jacobian of a curve C. This is the abelian variety

$$J(C) = \frac{H^{1,0}(C)^\vee}{\text{Im} \, H_1(C, \Z)} = (g\text{-dim'} \text{ vector space})/(\text{lattice})$$

Natural target for integrating:

$$C \longrightarrow J(C)$$

$$x \longmapsto \left(\omega \longmapsto \int_{x_0}^x \omega\right)$$

(well-defined modulo $H_1(C, \Z)$)

(x_0 fixed point of C.)

\footnote{Niels Henrik Abel (Frindoe, Norway, 1802 – Froland, 1829); Carl Jacobi (Potsdam, Prussia (now Germany), 1804 – Berlin, 1851).}
Intermediate Jacobians

Intermediate Jacobian of a Fano threefold X:

$$J(X) = H^2,1(X) \vee \text{Im} H^3(X, Z)$$

These are principally polarized abelian varieties: they contain a hypersurface Θ uniquely defined up to translation. The pair $(J(X), \Theta)$ carries information about X.

Olivier DEBARRE
On the geometry of certain Fano threefolds
Intermediate Jacobian of a Fano threefold X: $J(X) = H^2,1(X) \cap \text{Im} H^3(X,\mathbb{Z})$. These are principally polarized abelian varieties: they contain a hypersurface Θ uniquely defined up to translation. The pair $(J(X), \Theta)$ carries information about X.

Olivier DEBARRE
On the geometry of certain Fano threefolds
Intermediate Jacobian of a Fano threefold X:

$$J(X) = H^{2,1}(X)^\vee / \text{Im } H_3(X, \mathbb{Z})$$
Intermediate Jacobians

Intermediate Jacobian of a Fano threefold X:

$$J(X) = H^{2,1}(X) / \text{Im } H^3(X, \mathbb{Z})$$

These are *principally polarized* abelian varieties: they contain a hypersurface Θ uniquely defined up to translation.
Intermediate Jacobian of a Fano threefold X:

$$J(X) = H^{2,1}(X)^\vee / \text{Im} H_3(X, \mathbb{Z})$$

These are \textit{principally polarized} abelian varieties: they contain a hypersurface Θ uniquely defined up to translation.

The pair $(J(X), \Theta)$ carries information about X.
If X is rational, we get, by Hironaka's resolution of indeterminacies, \tilde{P}^3 composition of blow-ups of points and of smooth curves C_1, \ldots, C_r.

\[\tilde{P}^3 \rightarrow \right}
If X is rational, we get, by Hironaka’s resolution of indeterminacies,
If X is rational, we get, by Hironaka’s resolution of indeterminacies,

$$\widetilde{\mathbb{P}^3} \xrightarrow{\text{composition of blow-ups of points and of smooth curves } C_1, \ldots, C_r} \mathbb{P}^3 \rightarrow X$$
If X is rational, we get, by Hironaka’s resolution of indeterminacies,

$\tilde{\mathbb{P}}^3 \xrightarrow{\text{composition of blow-ups of points and of smooth curves } C_1, \ldots, C_r} \mathbb{P}^3 \xrightarrow{\text{}} X$

$J(\tilde{\mathbb{P}}^3) \simeq J(C_1) \times \cdots \times J(C_r)$;
If X is rational, we get, by Hironaka's resolution of indeterminacies,

\[\widetilde{\mathbb{P}^3} \leftarrow \mathbb{P}^3 \leftarrow X \]

composition of blow-ups of points and of smooth curves C_1, \ldots, C_r

- $J(\widetilde{\mathbb{P}^3}) \simeq J(C_1) \times \cdots \times J(C_r)$;
- $J(X)$ is also a product of Jacobians of smooth curves;
If X is rational, we get, by Hironaka’s resolution of indeterminacies,

$$
\begin{array}{c}
\widetilde{\mathbb{P}}^3 \\
\downarrow \\
\mathbb{P}^3 \rightarrow X
\end{array}
$$

composition of blow-ups of points and of smooth curves C_1, \ldots, C_r

- $J(\widetilde{\mathbb{P}}^3) \simeq J(C_1) \times \cdots \times J(C_r)$;
- $J(X)$ is also a product of Jacobians of smooth curves;
- hence

$$
codim_{J(X)} \text{Sing}(\Theta) \leq 4
$$
Back to a cubic threefold $X_3 \subset \mathbb{P}^4$.
Back to a cubic threefold $X_3 \subset \mathbb{P}^4$. Projection from a line $\ell \subset X_3$ yields
Back to a cubic threefold $X_3 \subset P^4$. Projection from a line $\ell \subset X_3$ yields

\[\xymatrix{ X_3 \ar@{-->}[r] & P^2 \ar[d] \ar[r] & \tilde{C} \ar[d] \ar[r] & \tilde{X}_3 \ar@{-->}[ld] \ar[d] & \tilde{X}_3 \ar@{-->}[l] \ar@{-->}[d] \ar@{-->}[r] & \tilde{X}_3 \ar@{-->}[ld] } \]

- \tilde{C} double étale cover
- \tilde{C} discriminant curve
- $J(X_3)$ has dimension 5;
Back to a cubic threefold $X_3 \subset \mathbb{P}^4$. Projection from a line $\ell \subset X_3$ yields

- Blow-up of ℓ
- Conic bundle
- Double étale cover
- Discriminant curve

$J(X_3)$ has dimension 5;
$J(X_3)$ is isomorphic to the Prym1 variety of the cover $\tilde{C} \rightarrow C$;

1Friedrich Emil Prym (Düren, Germany, 1841 – Bonn, 1915).
Back to a cubic threefold $X_3 \subset \mathbb{P}^4$. Projection from a line $\ell \subset X_3$ yields

$$\xymatrix{ X_3 \ar[r] \ar@{-->}[dr] & \mathbb{P}^2 \ar[d] \ar[dl] \ar[r] & \tilde{C} \ar[d] \ar@{-->}[dl] \\
& \text{conic bundle} & \text{double \ étale \ cover} \\
\text{blow-up of } \ell & \tilde{X}_3 & C \text{ discriminant curve}
}$$

- $J(X_3)$ has dimension 5;
- $J(X_3)$ is isomorphic to the Prym\(^1\) variety of the cover $\tilde{C} \rightarrow C$;
- Θ has a unique singular point o, which is a triple point (Beauville);

\(^1\)Friedrich Emil Prym (Düren, Germany, 1841 – Bonn, 1915).
Nonrationality of cubic threefolds

Back to a cubic threefold $X_3 \subset \mathbb{P}^4$. Projection from a line $\ell \subset X_3$ yields

- $J(X_3)$ has dimension 5;
- $J(X_3)$ is isomorphic to the Prym\(^1\) variety of the cover $\tilde{C} \to C$;
- Θ has a unique singular point o, which is a triple point (Beauville);
- X_3 is \underline{not} rational (because $\text{codim} J(X_3) \text{Sing}(\Theta) = 5$).

\(^1\)Friedrich Emil Prym (Düren, Germany, 1841 – Bonn, 1915).
The Abel–Jacobi map

X Fano threefold.
X Fano threefold.
Geometric information about $(J(X), \Theta)$ is in general hard to get, in particular when X is *not* a conic bundle as before.
The Abel–Jacobi map

X Fano threefold.
Geometric information about $(J(X), \Theta)$ is in general hard to get, in particular when X is not a conic bundle as before.
Some information can be obtained from families of curves on X:
The Abel–Jacobi map

X Fano threefold.

Geometric information about $(J(X), \Theta)$ is in general hard to get, in particular when X is not a conic bundle as before.

Some information can be obtained from families of curves on X:

- $(C_t)_{t \in T}$ (connected) family of curves on X, base-point $0 \in T$;
The Abel–Jacobi map

\(\mathcal{X} \) Fano threefold.

Geometric information about \((J(\mathcal{X}), \Theta)\) is in general hard to get, in particular when \(\mathcal{X} \) is not a conic bundle as before.

Some information can be obtained from families of curves on \(\mathcal{X} \):

- \((C_t)_{t \in T} \) (connected) family of curves on \(\mathcal{X} \), base-point \(0 \in T \);
- \(C_t \) is algebraically, hence homologically, equivalent to \(C_0 \).
The Abel–Jacobi map

X Fano threefold.

Geometric information about $(J(X), \Theta)$ is in general hard to get, in particular when X is *not* a conic bundle as before. Some information can be obtained from families of curves on X:

- $(C_t)_{t \in T}$ (connected) family of curves on X, base-point $0 \in T$;
- C_t is algebraically, hence homologically, equivalent to C_0, so $C_t - C_0$ is the boundary of a (real) 3-chain Γ_t, defined modulo $H_3(X, \mathbb{Z})$;
X Fano threefold.

Geometric information about $(J(X), \Theta)$ is in general hard to get, in particular when X is not a conic bundle as before.

Some information can be obtained from families of curves on X:

- $(C_t)_{t \in T}$ (connected) family of curves on X, base-point $0 \in T$;
- C_t is algebraically, hence homologically, equivalent to C_0, so $C_t - C_0$ is the boundary of a (real) 3-chain Γ_t, defined modulo $H_3(X, \mathbb{Z})$;
- define the *Abel–Jacobi map*
X Fano threefold. Geometric information about \((J(X), \Theta)\) is in general hard to get, in particular when \(X\) is not a conic bundle as before. Some information can be obtained from families of curves on \(X\):

- \((C_t)_{t \in T}\) (connected) family of curves on \(X\), base-point \(0 \in T\);
- \(C_t\) is algebraically, hence homologically, equivalent to \(C_0\), so \(C_t - C_0\) is the boundary of a (real) 3-chain \(\Gamma_t\), defined modulo \(H_3(X, \mathbb{Z})\);
- define the *Abel–Jacobi map*

\[
T \longrightarrow J(X) = H^{2,1}(X)^{\vee} / H_3(X, \mathbb{Z})
\]

\[
t \longmapsto \left(\omega \longmapsto \int_{\Gamma_t} \omega \right)
\]
The Torelli problem

Lines on a cubic threefold $X^3 \subset P^4$ are parametrized by a smooth surface F. The Abel–Jacobi map $F \to J(X^3)$ is an embedding, and $\Theta = F - F$. We recover Beauville's result: o is a singular point of Θ. Moreover, the projectified tangent cone to Θ at o is isomorphic to X^3: $X^3 \cong P(TC_\Theta, o) \subset P(TJ(X^3), o) \cong P^4$. In particular, X^3 can be reconstructed from its intermediate Jacobian. This is the Torelli theorem for cubic threefolds.
The Torelli problem

Lines on a cubic threefold $X_3 \subset \mathbb{P}^4$ are parametrized by a smooth surface F. The Abel–Jacobi map $F \to J(X_3)$ is an embedding, and $\Theta = F - F$. We recover Beauville's result: o is a singular point of Θ. Moreover, the projectified tangent cone to Θ at o is isomorphic to X_3: $X_3 \cong \mathbb{P}(TC\Theta, o) \subset \mathbb{P}(TJ(X_3), o) \cong \mathbb{P}^4$. In particular, X_3 can be reconstructed from its intermediate Jacobian. This is the Torelli theorem for cubic threefolds.
Lines on a cubic threefold $X_3 \subset \mathbf{P}^4$ are parametrized by a smooth surface F.
The Abel–Jacobi map $F \to J(X_3)$ is an embedding, and $
abla = F - F$.

We recover Beauville's result: o is a singular point of ∇.
Moreover, the projectified tangent cone to ∇ at o is isomorphic to X_3: $X_3 \cong \mathbf{P}(\text{TC}_\Theta, o) \subset \mathbf{P}(T J(X_3), o) \cong \mathbf{P}^4$.

In particular, X_3 can be reconstructed from its intermediate Jacobian.
This is the Torelli theorem for cubic threefolds.
Lines on a cubic threefold $X_3 \subset \mathbb{P}^4$ are parametrized by a smooth surface F.
The Abel–Jacobi map $F \to J(X_3)$ is an embedding, and $\Theta = F - F$.
We recover Beauville’s result: o is a singular point of Θ.
Lines on a cubic threefold $X_3 \subset \mathbb{P}^4$ are parametrized by a smooth surface F.

The Abel–Jacobi map $F \rightarrow J(X_3)$ is an embedding, and $\Theta = F - F$.

We recover Beauville’s result: o is a singular point of Θ.

Moreover, the projectified tangent cone to Θ at o is isomorphic to X_3:

$$X_3 \cong \mathbb{P}(TC_{\Theta, o}) \subset \mathbb{P}(T_{J(X_3), o}) \cong \mathbb{P}^4$$
Lines on a cubic threefold $X_3 \subset \mathbb{P}^4$ are parametrized by a smooth surface F.

The Abel–Jacobi map $F \rightarrow J(X_3)$ is an embedding, and

$\Theta = F - F$.

We recover Beauville’s result: o is a singular point of Θ.

Moreover, the projectified tangent cone to Θ at o is isomorphic to X_3:

$$X_3 \cong \mathbb{P}(TC_{\Theta,o}) \subset \mathbb{P}(TJ(X_3),o) \cong \mathbb{P}^4$$

In particular, X_3 can be reconstructed from its intermediate Jacobian.

This is the Torelli theorem for cubic threefolds.
The Torelli problem

Lines on a cubic threefold $X_3 \subset \mathbb{P}^4$ are parametrized by a smooth surface F. The Abel–Jacobi map $F \to J(X_3)$ is an embedding, and $\Theta = F - F$.

We recover Beauville’s result: o is a singular point of Θ. Moreover, the projectified tangent cone to Θ at o is isomorphic to X_3:

$$X_3 \cong \mathbb{P}(TC_{\Theta}, o) \subset \mathbb{P}(T_{J(X_3)}, o) \cong \mathbb{P}^4$$

In particular, X_3 can be reconstructed from its intermediate Jacobian.

This is the Torelli theorem for cubic threefolds.1

1Ruggiero Torelli (Napoli 1884 – Isonzo, 1915) showed that a curve C is uniquely determined by its Jacobian $(J(C), \Theta)$.

Olivier DEBARRE | On the geometry of certain Fano threefolds
Joint work in progress with A. Iliev (Sofia) and L. Manivel (Grenoble).
Joint work in progress with A. Iliev (Sofia) and L. Manivel (Grenoble).

Most Fano threefolds of the first kind of degree $c_1^3 = 10$ are obtained as follows:
Joint work in progress with A. Iliev (Sofia) and L. Manivel (Grenoble).

Most Fano threefolds of the first kind of degree $c_1^3 = 10$ are obtained as follows:

- V 5-dimensional complex vector space;
Joint work in progress with A. Iliev (Sofia) and L. Manivel (Grenoble).

Most Fano threefolds of the first kind of degree $c_1^3 = 10$ are obtained as follows:

- \mathcal{V} 5-dimensional complex vector space;
- $G(2, \mathcal{V}) \subset \mathbb{P}(\wedge^2 \mathcal{V}) = \mathbb{P}^9$ the Plücker embedding;

\footnote{Julius Plücker (Elberfeld, 1801 – Bonn, 1868).}
Joint work in progress with A. Iliev (Sofia) and L. Manivel (Grenoble).

Most Fano threefolds of the first kind of degree $c_1^3 = 10$ are obtained as follows:

- V 5-dimensional complex vector space;
- $G(2, V) \subset \mathbb{P}(\wedge^2 V) = \mathbb{P}^9$ the Plücker\(^3\) embedding;
- $\mathbb{P}^7 \subset \mathbb{P}(\wedge^2 V)$ general codimension-2 linear space;

\(^3\)Julius Plücker (Elberfeld, 1801 – Bonn, 1868).
Joint work in progress with A. Iliev (Sofia) and L. Manivel (Grenoble).

Most Fano threefolds of the first kind of degree $c_1^3 = 10$ are obtained as follows:

- V 5-dimensional complex vector space;
- $G(2, V) \subset P(\wedge^2 V) = P^9$ the Plücker embedding;
- $P^7 \subset P(\wedge^2 V)$ general codimension-2 linear space;
- $G(2, V) \cap P^7$ is a smooth 4-fold of degree 5 (independent, modulo the action of $PGL(V)$, of the choice of P^7);

\[^3\]Julius Plücker (Elberfeld, 1801 – Bonn, 1868).
Joint work in progress with A. Iliev (Sofia) and L. Manivel (Grenoble).

Most Fano threefolds of the first kind of degree $c_1^3 = 10$ are obtained as follows:

- V 5-dimensional complex vector space;
- $G(2, V) \subset \mathbb{P}(\wedge^2 V) = \mathbb{P}^9$ the Plücker\(^3\) embedding;
- $\mathbb{P}^7 \subset \mathbb{P}(\wedge^2 V)$ general codimension-2 linear space;
- $G(2, V) \cap \mathbb{P}^7$ is a smooth 4-fold of degree 5 (independent, modulo the action of PGL(V), of the choice of \mathbb{P}^7);
- $X_{10} = G(2, V) \cap \mathbb{P}^7 \cap \Omega$, where Ω is a (general) quadric.

\(^3\)Julius Plücker (Elberfeld, 1801 – Bonn, 1868).
All X_{10} are *unirational*.
All X_{10} are *unirational*.

Some (smooth) degenerations X' of X_{10} are conic bundles.
All X_{10} are unirational.

Some (smooth) degenerations X' of X_{10} are conic bundles for which (by Prym theory) $\text{codim}_{J(X')} \text{Sing}(\Theta) > 4$.
All X_{10} are unirational.

Some (smooth) degenerations X' of X_{10} are conic bundles for which (by Prym theory) $\dim J(X') \text{Sing}(\Theta) > 4$.

This implies the same for a general X_{10}, which is therefore not rational.
For a cubic threefold $X_3 \subset \mathbb{P}^4$, we used lines to parametrize (via the Abel–Jacobi map) the theta divisor of $J(X_3)$. Conics on X_{10} are parametrized by a smooth connected surface $F(X)$. The surface $F(X)$ is the blow-up at one point of a minimal surface of general type $F_m(X)$.
For a cubic threefold $X_3 \subset \mathbb{P}^4$, we used lines to parametrize (via the Abel–Jacobi map) the theta divisor of $J(X_3)$.

For X_{10}, we will use conics to disprove the Torelli theorem.
For a cubic threefold $X_3 \subset \mathbb{P}^4$, we used lines to parametrize (via the Abel–Jacobi map) the theta divisor of $J(X_3)$.

For X_{10}, we will use conics to disprove the Torelli theorem.

Conics on X_{10} are parametrized by a smooth connected surface $F(X)$ (Logachev).
For a cubic threefold $X_3 \subset \mathbb{P}^4$, we used lines to parametrize (via the Abel–Jacobi map) the theta divisor of $J(X_3)$.

For X_{10}, we will use conics to disprove the Torelli theorem.

Conics on X_{10} are parametrized by a smooth connected surface $F(X)$ (Logachev).

The surface $F(X)$ is the blow-up at one point of a minimal surface of general type $F_m(X)$.
Elementary transformation along a conic

Let c be a general conic contained in X.
Let c be a general conic contained in X. Consider

\[Y \xrightarrow{\varphi} \bar{Y} \quad \text{quadric in } \mathbb{P}^4 \]

\[c \leftrightarrow \text{projection from } \langle c \rangle \]

\[\text{blow-up of } c \quad \varepsilon \]

\[X \]
Let c be a general conic contained in X. Consider

The only curves contracted by φ are:

- the (strict transforms of the 20) lines in X that meet c;
- (the strict transform of) a conic $\iota(c)$ that meets c in 2 points.

It is a small contraction that can be flopped: $\chi: Y \xrightarrow{\varphi} \bar{Y}$ quartic in \mathbb{P}^4, projection from $\langle c \rangle$.
Let c be a general conic contained in X. Consider

The only curves contracted by φ are:
- the (strict transforms of the 20) lines in X that meet c;
Elementary transformation along a conic

Let c be a general conic contained in X. Consider

\[
\begin{array}{c}
\text{Y} \\
\downarrow \\
\text{X}
\end{array}
\xrightarrow{\varepsilon} \begin{array}{c}
\text{blow-up of } c \\
\downarrow \\
\text{X}
\end{array}
\xrightarrow{\varphi} \begin{array}{c}
\bar{Y} \\
\downarrow \\
\text{quartic in } \mathbb{P}^4
\end{array}
\xrightarrow{\pi_c} \begin{array}{c}
\text{projection from } \langle c \rangle
\end{array}
\]

The only curves contracted by φ are:

- the (strict transforms of the 20) lines in X that meet c;
- (the strict transform of) a conic $\iota(c)$ that meets c in 2 points.
Elementary transformation along a conic

Let c be a general conic contained in X. Consider

The only curves contracted by φ are:

- the (strict transforms of the 20) lines in X that meet c;
- (the strict transform of) a conic $\iota(c)$ that meets c in 2 points.

It is a small contraction that can be flopped:
Elementary transformation along a conic

Let c be a general conic contained in X. Consider

The only curves contracted by φ are:
- the (strict transforms of the 20) lines in X that meet c;
- (the strict transform of) a conic $\iota(c)$ that meets c in 2 points.

It is a *small contraction* that can be *flopped*:

$$\chi : Y \xrightarrow{\varphi} \bar{Y} \xleftarrow{\varphi'} Y'$$ smooth projective threefold

(isomorphism outside curves contracted by φ or φ').
Elementary transformation along a conic

We obtain:

\[Y \xrightarrow{\varphi} \bar{Y} \xrightarrow{\psi_c} X \xrightarrow{\pi_c} X' = X_c \]

where

\[Y' \xrightarrow{\varphi'} \bar{Y} \xrightarrow{\psi_c} X \xrightarrow{\pi_c} X' = X_c \]

\[\varepsilon \xrightarrow{} \varepsilon' \]

\[Y' \xrightarrow{\varphi'} \bar{Y} \xrightarrow{\psi_c} X \xrightarrow{\pi_c} X' = X_c \]

where

\[X' \text{ is again a smooth Fano threefold of degree } 10 \text{ in } P^7; \]

\[\varepsilon' \text{ is the blow-up of a smooth conic } c' \text{ in } X'; \]

the picture is symmetric:

\[\psi_c' = \psi_c - 1 \]

\[X' = X_c \]

Are \(X \) and \(X' \) isomorphic?
Elementary transformation along a conic

We obtain:

\[
\begin{array}{c}
Y \\ \downarrow \varphi \\ \downarrow \varepsilon \\
\rightarrow \bar{Y} \\
X \\
\end{array} \quad \chi \quad \begin{array}{c}
Y' \\ \downarrow \varphi' \\ \downarrow \varepsilon' \\
\rightarrow \bar{Y} \\
X' = X_c \\
\end{array}
\]

where

- \(X' \) is again a smooth Fano threefold of degree 10 in \(\mathbb{P}^7 \);
Elementary transformation along a conic

We obtain:

\[
\begin{array}{ccc}
Y & \xrightarrow{\chi} & Y' \\
\downarrow^{\varepsilon} & & \downarrow^{\varepsilon'} \\
\bar{Y} & \xleftarrow{\psi_c} & X' = X_c \\
\uparrow^{\varphi} & & \uparrow^{\varphi'} \\
X & \xrightarrow{\pi_c} & \bar{Y} & \xleftarrow{\pi_{c'}} \downarrow & X' = X_c \\
\end{array}
\]

where

- \(X'\) is again a smooth Fano threefold of degree 10 in \(\mathbb{P}^7\);
- \(\varepsilon'\) is the blow-up of a smooth conic \(c'\) in \(X'\);
Elementary transformation along a conic

We obtain:

\[
\begin{array}{c}
Y \xrightarrow{\varphi} \bar{Y} \xleftarrow{\pi_c} X \\
\epsilon \downarrow \quad \epsilon' \downarrow \\
Y' \xrightarrow{\varphi'} \bar{Y} \xleftarrow{\pi_{c'}} X' = X_c
\end{array}
\]

where

- \(X'\) is again a smooth Fano threefold of degree 10 in \(\mathbb{P}^7\);
- \(\epsilon'\) is the blow-up of a smooth conic \(c'\) in \(X'\);
- the picture is symmetric: \(\psi_{c'} = \psi_c^{-1} : X' \to X\);
Elementary transformation along a conic

We obtain:

\[
\begin{array}{ccccccccc}
Y & \xrightarrow{\chi} & Y' \\
\downarrow & & \uparrow \\
\varepsilon & & \phi & & \psi & & \chi & & \varepsilon' \\
\downarrow & & \downarrow & & \uparrow & & \downarrow & & \uparrow \\
X & \xrightarrow{\pi_c} & \bar{Y} & \xleftarrow{\pi_{c'}} & X' = X_c
\end{array}
\]

where

- \(X'\) is again a smooth Fano threefold of degree 10 in \(\mathbf{P}^7\);
- \(\varepsilon'\) is the blow-up of a smooth conic \(c'\) in \(X'\);
- the picture is symmetric: \(\psi_{c'} = \psi_c^{-1} : X' \rightarrow X\);
- the intermediate Jacobians of \(X\) and \(X'\) are isomorphic.
Elementary transformation along a conic

We obtain:

\[
\begin{array}{c}
Y \xrightarrow{\varphi} \tilde{Y} \xrightarrow{\pi_{c'}} \bar{X} \xrightarrow{\psi_c} X' = X_c \\
\downarrow \varepsilon \quad \downarrow \varepsilon' \\
\end{array}
\]

where

- \(X'\) is again a smooth Fano threefold of degree 10 in \(\mathbb{P}^7\);
- \(\varepsilon'\) is the blow-up of a smooth conic \(c'\) in \(X'\);
- the picture is symmetric: \(\psi_{c'} = \psi_{c}^{-1} : X' \rightarrow X\);
- the intermediate Jacobians of \(X\) and \(X'\) are isomorphic.

Are \(X\) and \(X'\) isomorphic?
To answer this question (negatively), we study $F(X')$.

Since the automorphism group of a minimal surface of general type is finite, we have a 2-dim'l family of X_{10} with isomorphic intermediate Jacobians.
To answer this question (negatively), we study $F(X')$. We construct

$$\varphi_c : F(X) \simrightarrow F(X')$$
The Torelli problem for X_{10}

To answer this question (negatively), we study $F(X')$. We construct

$$\varphi_c : F(X) \sim \to F(X')$$

- for $\bar{c} \in F(X)$ general, $\langle c, \bar{c} \rangle$ is a 5-plane in \mathbb{P}^7;
To answer this question (negatively), we study $F(X')$. We construct

$$\varphi_c : F(X) \sim \rightarrow F(X')$$

- for $\bar{c} \in F(X)$ general, $\langle c, \bar{c} \rangle$ is a 5-plane in \mathbb{P}^7;
- $X \cap \langle c, \bar{c} \rangle$ is a canonically embedded genus-6 curve $c + \bar{c} + \Gamma_{c,\bar{c}}$;
The Torelli problem for X_{10}

To answer this question (negatively), we study $F(X')$. We construct

$$\varphi_c : F(X) \sim F(X')$$

- for $\bar{c} \in F(X)$ general, $\langle c, \bar{c} \rangle$ is a 5-plane in \mathbb{P}^7;
- $X \cap \langle c, \bar{c} \rangle$ is a canonically embedded genus-6 curve $c + \bar{c} + \Gamma_{c,\bar{c}}$;
- $\Gamma_{c,\bar{c}}$ is a rational sextic meeting c and \bar{c} in 4 points each;
The Torelli problem for X_{10}

To answer this question (negatively), we study $F(X')$. We construct

$$\varphi_c : F(X) \rightarrow F(X')$$

- for $\bar{c} \in F(X)$ general, $\langle c, \bar{c} \rangle$ is a 5-plane in \mathbb{P}^7;
- $X \cap \langle c, \bar{c} \rangle$ is a canonically embedded genus-6 curve $c + \bar{c} + \Gamma_{c,\bar{c}}$;
- $\Gamma_{c,\bar{c}}$ is a rational sextic meeting c and \bar{c} in 4 points each;
- set $\varphi_c(\bar{c}) = \psi_c(\Gamma_{c,\bar{c}})$.

The Torelli problem for X_{10}

To answer this question (negatively), we study $F(X')$. We construct

$$\varphi_c : F(X) \rightarrow F(X')$$

- for $\bar{c} \in F(X)$ general, $\langle c, \bar{c} \rangle$ is a 5-plane in \mathbb{P}^7;
- $X \cap \langle c, \bar{c} \rangle$ is a canonically embedded genus-6 curve $c + \bar{c} + \Gamma_{c,\bar{c}}$;
- $\Gamma_{c,\bar{c}}$ is a rational sextic meeting c and \bar{c} in 4 points each;
- set $\varphi_c(\bar{c}) = \psi_c(\Gamma_{c,\bar{c}})$.

The map φ_c induces an isomorphism

$$\varphi_c : F_m(X) \rightarrow F_m(X')$$
The Torelli problem for X_{10}

To answer this question (negatively), we study $F(X')$. We construct

$$\varphi_c : F(X) \overset{\sim}{\longrightarrow} F(X')$$

- for $\bar{c} \in F(X)$ general, $\langle c, \bar{c} \rangle$ is a 5-plane in \mathbb{P}^7;
- $X \cap \langle c, \bar{c} \rangle$ is a canonically embedded genus-6 curve $c + \bar{c} + \Gamma_{c,\bar{c}}$;
- $\Gamma_{c,\bar{c}}$ is a rational sextic meeting c and \bar{c} in 4 points each;
- set $\varphi_c(\bar{c}) = \psi_c(\Gamma_{c,\bar{c}})$.

The map φ_c induces an isomorphism

$$\varphi_c : F_m(X) \overset{\sim}{\longrightarrow} F_m(X')$$

and $F(X')$ is isomorphic to the surface $F_m(X)$ blown up at the point c.

Olivier DEBARRE | On the geometry of certain Fano threefolds
To answer this question (negatively), we study $F(X')$. We construct

$$\varphi_c : F(X) \overset{\sim}{\longrightarrow} F(X')$$

- for $\bar{c} \in F(X)$ general, $\langle c, \bar{c} \rangle$ is a 5-plane in \mathbb{P}^7;
- $X \cap \langle c, \bar{c} \rangle$ is a canonically embedded genus-6 curve $c + \bar{c} + \Gamma_{c,\bar{c}}$;
- $\Gamma_{c,\bar{c}}$ is a rational sextic meeting c and \bar{c} in 4 points each;
- set $\varphi_c(\bar{c}) = \psi_c(\Gamma_{c,\bar{c}})$.

The map φ_c induces an isomorphism

$$\varphi_c : F_m(X) \overset{\sim}{\longrightarrow} F_m(X')$$

and $F(X')$ is isomorphic to the surface $F_m(X)$ blown up at the point c. Since the automorphism group of a minimal surface of general type is finite, we have a 2-dim’l family of X_{10} with isomorphic intermediate Jacobians.
Analogous constructions can be done by projecting from a line ℓ contained in X.
Analogous constructions can be done by projecting from a line ℓ contained in X.

- We get a birational isomorphism $\psi_\ell : X \simrightarrow X_\ell$;
Analogous constructions can be done by projecting from a line ℓ contained in X.

- We get a birational isomorphism $\psi_\ell : X \twoheadrightarrow X_\ell$;
- X_ℓ is again a smooth Fano threefold of degree 10 in \mathbb{P}^7.
Analogous constructions can be done by projecting from a line ℓ contained in X.

- We get a birational isomorphism $\psi_\ell : X \simrightarrow X_\ell$;
- X_ℓ is again a smooth Fano threefold of degree 10 in \mathbb{P}^7;
- $J(X) \simeq J(X_\ell)$;
Analogous constructions can be done by projecting from a line ℓ contained in X.

- We get a birational isomorphism $\psi_\ell : X \simrightarrow X_\ell$;
- X_ℓ is again a smooth Fano threefold of degree 10 in \mathbb{P}^7;
- $J(X) \simeq J(X_\ell)$;
- $F_m(X_\ell) \simeq F_m(X_\ell')$.
Analogous constructions can be done by projecting from a line ℓ contained in X.

- We get a birational isomorphism $\psi_\ell : X \xrightarrow{\sim} X_\ell$;
- X_ℓ is again a smooth Fano threefold of degree 10 in \mathbb{P}^7;
- $J(X) \cong J(X_\ell)$;
- $F_m(X_\ell) \cong F_m(X_\ell')$.

The transforms $(X_\ell)_c$, for $c \in F(X_\ell)$, again form a 2-dimensional family of Fano threefolds with same intermediate Jacobian as X.

The Torelli problem for X_{10}

We expect this family to be distinct from the first family obtained earlier, and that these two families should yield all Fano threefolds with the same intermediate Jacobians as X_{10}, thereby describing the (general) fibers of the period map $\{22\text{-dim'l family of Fano threefolds } X_{10}\} \to \{55\text{-dim'l family of p.p.a.v. of dimension 10}\}$. (General) fibers should be the union of two surfaces.
We expect this family to be distinct from the first family obtained earlier, and that these two families should yield all Fano threefolds with same intermediate Jacobians as X.
We expect this family to be distinct from the first family obtained earlier, and that these two families should yield all Fano threefolds with same intermediate Jacobians as X, thereby describing the (general) fibers of the period map
We expect this family to be distinct from the first family obtained earlier, and that these two families should yield all Fano threefolds with same intermediate Jacobians as X, thereby describing the (general) fibers of the period map

\[
\begin{array}{c}
\{ & 22\text{-dim’l family of Fano} \\
& \text{threefolds } X_{10} \}
\end{array}
\]
We expect this family to be distinct from the first family obtained earlier, and that these two families should yield all Fano threefolds with same intermediate Jacobians as X, thereby describing the (general) fibers of the period map

\[
\begin{align*}
\left\{ \text{22-dim'}l \text{ family of Fano threefolds } X_{10} \right\} & \rightarrow \left\{ \text{55-dim'}l \text{ family of p.p.a.v. of dimension } 10 \right\}
\end{align*}
\]
We expect this family to be distinct from the first family obtained earlier, and that these two families should yield \textit{all} Fano threefolds with same intermediate Jacobians as X, thereby describing the (general) fibers of the period map

\[
\begin{align*}
\begin{cases}
\text{22-dim’l family of Fano threefolds } X_{10} \\
\end{cases}& \longrightarrow \begin{cases}
\text{55-dim’l family of p.p.a.v. of dimension 10}
\end{cases}
\end{align*}
\]

(General) fibers should be the union of two surfaces.
Related problems

Hopeless to classify all Fano varieties of dimension ≥ 4. For Mori's program, need Fano varieties with mild singularities. Full classification is harder, but many interesting examples occur and other problems such as smoothing are also interesting.

Relax condition $\det(T_X)$ ample to $\det(T_X)$ big and nef (not all are degenerations of Fano varieties).

Olivier DEBARRE

On the geometry of certain Fano threefolds
Hopeless to classify *all* Fano varieties of dimension ≥ 4.
Related problems

- Hopeless to classify *all* Fano varieties of dimension ≥ 4.
- For Mori’s program, need Fano varieties with mild singularities. Full classification is harder, but many interesting examples occur and other problems such as smoothing are also interesting.
- Hopeless to classify *all* Fano varieties of dimension ≥ 4.
- For Mori’s program, need Fano varieties with mild singularities. Full classification is harder, but many interesting examples occur and other problems such as smoothing are also interesting.
- Relax condition $\det(T_X)$ ample to $\det(T_X)$ big and nef (not all are degenerations of Fano varieties).