Group actions and the effective YTD conjecture

KMS Spring meeting 2022 Special session Group actions on varieties

Thibaut Delcroix

Université de Montpellier

Introduction

Central problem in Kähler geometry

Find and study "good" Kähler metrics on a (compact) Kähler manifold X

Historical major results:

Riemann Uniformization Theorem

Each compact complex curve admits a metric with constant curvature.

Calabi-Yau Theorem

Yau's solution to Calabi conjecture \Rightarrow every compact Kähler manifold with first Chern class $c_1(X) \leq 0$ admits a Kähler metric with constant Ricci curvature.

Extremal Kähler metrics

Definition [Calabi 1982]

A Kähler metric in a given Kähler class α is *extremal* if it is a minimizer of the L^2 norm of the scalar curvature :

$$\omega \in \alpha \mapsto \int_X S(\omega)^2 \omega^n \in \mathbb{R}$$

Scalar curvature function $S(\omega): X \to \mathbb{R}$ defined in local coordinates by

$$S(\omega) = \frac{-n \partial \bar{\partial} \ln \frac{\omega^n}{i dz \wedge d\bar{z}} \wedge \omega^{n-1}}{\omega^n}$$

Theorem [Calabi 1982-1985]

ω is extremal iff S(ω) is the potential function of a holomorphic vector field.
 In particular a cscK metric (S(ω) constant) is extremal.

• If ω extremal then Isom (ω) is a maximal compact subgroup of Aut(X).

Yau-Tian-Donaldson conjecture

Inspired by GIT stability and Kobayashi-Hitchin correspondence:

YTD conjecture

Existence of an extremal Kähler metric on $(X, c_1(L))$ is equivalent to an algebro-geometric condition of K-stability.

Informal definition of K-stability: To (X, L) associate *test configurations* $(\mathcal{X}, \mathcal{L})$, (degenerations of X with some added conditions, see next slide). To each test configuration $(\mathcal{X}, \mathcal{L})$ associate a number $DF(\mathcal{X}, \mathcal{L})$.

K-stability

 $G \curvearrowleft (X, L)$ is

- ► (G-equivariantly) K-stable if DF(X, L) ≥ 0 for all (G-equivariant) test configurations except those arising from a C*-action on X
- G-uniformly K-stable if DF(X, L) ≥ ε ||(X, L)|| for a certain norm on G-equivariant test configurations

Test configurations

A G-equivariant test configuration for $G \curvearrowleft (X, L)$ consists of the data of

1 a normal $G \times \mathbb{C}^*$ -variety \mathcal{X} ,

2 a flat, projective, \mathbb{C}^* -equivariant morphism $\pi: \mathcal{X} \to \mathbb{C}$,

3 a π -ample line bundle \mathcal{L} on \mathcal{X} ,

such that

•
$$(\mathcal{X}_1, \mathcal{L}_1) \simeq (X, L^r)$$
 for some $r \in \mathbb{Z}_{>0}$,

where $(\mathcal{X}_1, \mathcal{L}_1)$ denotes the (scheme-theoretic) fiber of π above $1 \in \mathbb{C}$, equipped with the restriction of \mathcal{L} .

The central fiber $(\mathcal{X}_0, \mathcal{L}_0)$ has more symmetries than X (equipped with an additional action of \mathbb{C}^*), may acquire singularities, e.g. non-reduced, several irreducible components, other singularities.

A family of examples

Degeneration of a quadric to the cone over a lower-dimensional quadric.

- ▶ \mathbb{P}^1 degenerates to two intersecting lines (several irreducible components) $\mathcal{X} = \{([x : y : z], t); xy - tz^2 = 0\}$
- ▶ P¹ degenerates to a double line (non-reduced)
 X = {([x : y : z], t); txy z² = 0}
- \blacktriangleright $\mathbb{P}^1 imes \mathbb{P}^1$ degenerates to a weighted projective space (normal, but singular)

Panorama of (some) key results

[Futaki 1983] obstruction when degeneration to X itself induced by \mathbb{C}^* action [Ding-Tian 1992] obstruction from degenerations to smooth manifolds [Wang-Zhu 2004] Fano toric manifolds, non-existence KE ⇔ Futaki's obstruction [Donaldson 2009] YTD conjecture for cscK metrics on toric surfaces [Chen-Donaldson-Sun, Tian, 2015] YTD for Fano Kähler-Einstein metrics [Berman-Darvas-Lu 2020] existence extremal \Rightarrow uniform K-stability [Chen-Cheng 2021] From the analytical point of view, proved that coercivity (modulo automorphisms) of the Mabuchi functional implies existence of cscK

metrics

[Chi Li 2021] some algebraic notion close to uniform K-stability \Rightarrow existence cscK

Towards a more effective version of K-stability?

Effective YTD conjecture

To check (uniform) K-stability of (X, L), it is enough to consider test configurations whose central fiber has at most dim(X) irreducible components.

Example

- ▶ [Donaldson 02] cscK on toric surfaces, 2 irred comp are enough (but not 1)
- [Wang-Zhu 2004] (X, K_X^{-1}) toric Fano manifold, 1 irred comp is enough
- ► [Apostolov,Calderbank,Gauduchon,Tonnesen-Friedman 2008] 2 irred comp are enough for certain "admissible" P¹-bundles (but not 1)
- [Li-Xu 2011] (X, K_X^{-1}) Fano, 1 irred comp is enough
- ▶ [D. 2020] for cohomogeneity one manifolds, 1 is enough

Upshot:

- under additional conditions can hope for finite dimensional space of conditions
- in Fano case, basis upon which the delta invariant and subsequent Abban-Zhuang strategy were built.

Manifolds with large symmetry: spherical varieties

Definition

Let G complex connected linear reductive group. A normal G-variety X is spherical if a Borel subgroup B of G acts with an open dense orbit in X.

Upshot: open *G*-orbit + **moment polytope** classify spherical varieties [Losev]

There is also a combinatorial classification of possible open orbits. Important for us: **valuation cone**, inside dual of direction of moment polytope.

Theorem [D. 2020 and appendix by Odaka]

- G-spherical manifold (X, L) admits a cscK metric iff G-uniformly K-stable.
- convex geometric translation on the moment polytope of G-uniform K-stability.

Theorem [D. 2020]

- G-equivariant test configurations of (X, L) are in 1:1 correspondence with negative rational piecewise linear convex functions on the moment polytope Δ, whose slopes are in the opposite valuation cone -V of X.
- ► irreducible components of central fiber correspond to linearity domains of that function. In particular, for such varieties, the space of test configurations whose central fiber has ≤ dim(X) components is finite dimensional.

Set
$$\Phi_X^+ = \{ \alpha \in \Phi^+(G) \mid \alpha \mid_\Delta \neq 0 \}$$
 and $\varpi_X = \sum_{\alpha \in \Phi_X^+} \alpha$
Let $P(\bullet) = \prod_{\alpha \in \Phi_X^+} \frac{\langle \bullet, \alpha \rangle}{\langle \varpi_X, \alpha \rangle}$ and $Q(\bullet) = \sum_{\alpha \in \Phi_X^+} \frac{\langle \varpi_X, \alpha \rangle}{\langle \bullet, \alpha \rangle} P(\bullet)$

Uniform K-stability criterion [D. 2020]

(X, L) is G-uniformly K-stable if and only if there exists $\varepsilon > 0$ such that for all convex PL function f on Δ with slopes in $-\mathcal{V}$,

$$\int_{\partial \Delta} f P d\sigma + \int_{\Delta} f 2(Q - aP) d\mu \geq \varepsilon \inf_{l \in \mathsf{Lin}(\mathcal{V})} \int_{\Delta} (f + l - \min(f + l)) P d\mu$$

Applications

Theorem [D. 2020]

A rank 1 polarized *G*-spherical manifold (X, L) admits a cscK metric if and only if it is K-stable with respect to *G*-equivariant test configurations with an irreducible central fiber.

The latter translates into a very simple single combinatorial condition \sim sign of a polynomial evaluated at one single point.

Rank 2: was mentionned in Yan Li's talk

Theorem [D.2020]

Combinatorial sufficient condition for uniform K-stability of spherical varieties. Applies particularly well for close to Fano spherical manifolds.

Examples

Consider the SL₂ × \mathbb{C}^* -spherical variety Bl_{Q1} Q³. Let α be the unique positive root and f generating character of \mathbb{C}^* . Up to scaling, the moment polytope of an ample line bundle is as on the right

By the sufficient condition, the associated Kähler class admits a cscK metric if

 $\frac{1683}{1000} < s < 3$

Theorem [D. 2019]

If $2 \le k \le n-3$, $(X = Bl_{Q^k} Q^n, K_X^{-1})$ is K-unstable and does not admit any Kähler-Ricci soliton.

Hidden symmetries : fiber bundles

- (X, ω_X) *T*-toric manifold with moment polytope Δ
- $B = \prod (B_a, \omega_a)$ product of cscK Hodge manifolds
- ▶ (Q, θ) principal *T*-bundle with connection and $d\theta = \sum_a p_a \otimes \omega_a$

Semisimple principal toric bundle: Kähler manifold (Y, ω_Y) where

$$Y = Q imes X/T$$
 and $\omega_Y = \omega_X + \sum_a c_a \omega_a + d \langle \mu, \theta \rangle$

Theorem [Jubert 2021]

A uniform YTD conjecture holds for semisimple principal toric bundles

 (analogue of Matsushima's theorem) An extremal metric must behave well with respect to the bundle structure

Applications

Theorem [D.-Jubert 2022]

Simple combinatorial sufficient condition when the fiber is a Fano toric manifold, can run a computer program to check existence of extremal Kähler metric.

Example

- ► $X = \mathbb{P}^2$
- ▶ B Kähler-Einstein Fano threefold, H is the smallest integral divisor of $c_1(B)$
- $Y = \mathbb{P}_B(O \oplus H^{-p_1} \oplus H^{-p_2})$ with $1 \le p_1 \le p_2$

There exists extremal Kähler metric in Kähler class $c_1(X) + \lambda c_1(B)$ for $\lambda \ge 7p_2$.

Here slight abuse of notations:

 $c_1(X)$ relative first Chern class $c_1(B)$ identified with its pull-back