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Today

Differential geometric aspects of the study of canonical Kähler metrics on
horosymmetric manifolds.

I Focus on a subclass of spherical varieties: horosymmetric manifolds

I Proof of KE criterion in that case

I What if there are no KE metrics?

I candidates for alternative canonical Kähler metrics on Fano manifolds

I criterion and proof for these

Hard but fundamental problem

understand the differential geometry of all spherical varieties as well as that of
horosymmetric manifolds.
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Alternative canonical Kähler metrics on Fano manifolds 1

Recall that ω ∈ c1(X ) is KE iff h is constant, where Ric(ω)− ω = i ∂∂̄ h

Kähler-Ricci solitons

X admits a Kähler-Ricci soliton (KRS) if there exists a holomorphic vector field
ξ ∈ aut(X ) and a Kähler form ω such that

Ric(ω)− Lξω = ω

In general, for ξ holomorphic vector field on X , there exists θω,ξ function st
Lξω =

√
−1∂∂̄θω,ξ (unique up to additive constant)

Hence ω is a KRS iff h = θω,ξ

Mabuchi metrics
Solutions to the equation

Ric(ω)−
√
−1∂∂̄ ln(Aθω,ξ + B) = ω

for some constants A, B, and some holomorphic vector field ξ
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Alternative canonical Kähler metrics on Fano manifolds 2

Coupled KE metrics [Witt Nyström+Hultgren]

α1, . . . , αk Kähler classes such that α1 + · · ·+ αk = c1(X )
(ω1, . . . , ωk) ∈ α1 × · · · × αk are coupled KE metrics if

Ric(ω1) = · · · = Ric(ωk) = ω1 + · · ·+ ωk

Can focus on the case of two classes: Ric(ω1) = Ric(ω2) = ω1 + ω2.

Coupled multiplier Hermitian structures [D+Hultgren]

g1, . . . , gk : R→ R smooth concave functions
ξ1, . . . , ξk holomorphic vector fields
(ω1, . . . , ωk) ∈ α1 × · · · × αk st

Ric(ω1)−
√
−1∂∂̄g1(θω1,ξ1 ) = ω1 + · · ·+ ωk

· · · = · · ·
Ric(ωk)−

√
−1∂∂̄gk(θωk ,ξk ) = ω1 + · · ·+ ωk
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Horosymmetric manifolds
Definition: X x G , X complex manifold, G connected complex linear reductive
group, st

I ∃x ∈ X ,

I ∃P parabolic subgroup of G , with Levi decomposition P = SU

I ∃σ group involution of S

and

I G · x dense in X

I H := StabG (x) ⊂ P

I P/H ' S/Sσ under S-action

G/H

G/P

←↩ P/H = S/Sσ

More generally, should allow H ∩ S with (H ∩ S)0 = (Sσ)0, not just Sσ.
Condition on H reads on the Lie algebra: h = u⊕ sσ
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Examples

1 Generalized flag manifolds G/P: take σ = idS , then H = P.

2 Toric manifolds: G = (C∗)n = P = S , σ : g 7→ g−1 group involution since G
is abelian, {1} = (Sσ)0.

Note: s = [s, s]⊕ z(s) and any Lie algebra involution preserves this
decomposition. Group level: S = [S ,S ]Z (S).

3 [S ,S ] ⊂ Sσ −→ horospherical manifolds, G/H is a homogeneous fiber bundle
in tori P/H ' (C∗)r over a generalized flag manifold G/P.
I e.g. H = Ker(χ), χ : P → C∗ character
I e.g. X = homogeneous toric bundles
I e.g. P2, Bl1ptP2 as SL2-varieties as seen yesterday.

4 P = G −→ symmetric manifolds
I e.g. SLn /SOn (σ(g) = (gT )−1)
I e.g. G = R × R, G/H = R (σ(g1, g2) = (g2, g1)) group compactifications
I e.g. X = wonderful compactification [De Concini-Procesi 1983]
I e.g. variety of complete quadrics
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A family of (toric and) horospherical manifolds

Cn = Cp ⊕ Cq x GLp ×GLq ⊂ GLn

induces horospherical structure:

Pn−1 x GLp ×GLq

BlPp−1 (Pn−1) x GLp ×GLq

BlPp−1,Pq−1 (Pn−1) x GLp ×GLq

The examples above are all Fano manifolds.
Only the latter is a homogeneous toric bundle.

Important remark
I The above are toric, but the horospherical structure takes into account more

information from automorphisms

I In general, a toric manifold is horospherical under the action of a maximal
reductive group of automorphisms
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A variant: a family of symmetric manifolds

Cn = Cp ⊕ Cq x GLp ×GLq ⊂ GLn

standard quadratic form:

Qn :=
n∑

i=1

z2
i =

p∑
i=1

z2
i +

n∑
i=p+1

z2
i = Qp +Qq

n − 2-dimensional quadric in Pn−1:

Qn−2 = {Qn = 0}x SOp × SOq ⊂ SOn

is a symmetric, Fano manifold, as well as:

BlQp−2 (Qn−2) x SOp × SOq

Have BlQp−2,Qq−2 (Qn−2) as well, but it is not Fano
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Parabolic induction/homogeneous fiber bundle

General construction
G is a reductive group, P a parabolic subgroup, π : P → S Levi quotient of P, Y
S-variety,

X := G×Y
P where p · (g , y) = (gp−1, π(g) · y)

is said to be obtained by parabolic induction from Y . It is a G -homogeneous fiber
bundle over G/P with fiber Y .

I Horosymmetric homogeneous spaces are those homogeneous space obtained
by parabolic induction from a reductive symmetric space.

I Horospherical homogeneous spaces are those homogeneous space obtained by
parabolic induction from tori.

Beware: the word horosymmetric is horospherical glued to symmetric, it is not to
symmetric what horospherical is to spherical...
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Horosymmetric manifolds as spherical manifolds

G ,H,P,U,S , σ data associated to a horosymmetric manifold

Let Ts torus in S , maximal for the property that σ acts on Ts by the inverse.
Ts ⊂ T σ-stable maximal torus of S

Weight lattice M = X∗(T/T ∩ H)

ΦG resp ΦS root system of G resp S
Q Borel subgroup opposite to P, Qu its unipotent radical, ΦQu the roots of Qu

B Borel subgroup such that T ⊂ B ⊂ G , with corresponding positive roots Φ+, st
∀β ∈ Φ+

S := ΦS ∩ Φ+, either σ(β) = β or −σ(β) ∈ Φ+
S .

Let Φs := ΦS \ Φσ
S .

Restricted root system Φ̄ := {β̄ := β − σ(β) | β ∈ Φs} ⊂ X∗(T/T ∩ H)

with multiplicities mα = Card{β ∈ Φs | β̄ = α}.
Positive restricted roots: Φ̄+ = {β̄ | β ∈ Φ+

s }
Valuation cone V = {v ∈ N ⊗ R | ∀β̄ ∈ Φ̄+, α(v) ≤ 0}
Note: weight lattice, restricted root system and valuation cone essentially
determined by symmetric fiber S/S ∩ H (as expected by parabolic induction)
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Color map

Definition

Consider the (finite) set C(G/H) of B-stable prime divisors of G/H (irreducible
components of the complement of the open B-orbit). Identify C(G/H) with a set
of valuations of C(G/H) (to a function f , associate its order of vanishing along
the divisor). The color map is the restriction of ρ to C(G/H), seen as an abstract
map from a finite set to N ⊗ R.

A spherical homogeneous space is fully determined by: weight lattice + valuation
cone + color map.

For horosymmetric homogeneous space G/H, with P = SU and π : G/H → G/P,

I C(G/H)” = ”C(S/S ∩ H) ∪ C(G/P)

I For C(G/P): elements are indexed by the simple roots α that are roots of Qu

and sent to the restriction of the coroot α∨ to M ⊗ R. (the coroot is the

unique element in t ∩ [g, g] st ∀x ∈ t, α(x) = 2〈x,α∨〉
〈α∨,α∨〉 )

I For C(S/S ∩ H): the image of the color map is the set of simple restricted
coroots. The color map is furthermore injective if the symmetric space is not
Hermitian.
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Small rank symmetric spaces

Type A1 • m

Type BC1 •
m2m1

parameter Φ̄ multiplicities Hermitian

SOm+2 /S(O1 × Om+1) m ≥ 1 A1 m only for m = 1
SLn+1 /S(GL1×GLn) n ≥ 2 BC1 (2n − 2, 1) yes
Sp2n /(Sp2×Sp2n−2) n ≥ 3 BC1 (4n − 8, 3) no

F4/B4 BC1 (8, 7) no

m2
m3

m1
m2

m3

m1

Type BC2 or B2

m

mm

Type A2

m

mm

m

mm

Type G2
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Parameter One Representant Φ̄ multiplicities Hermitian?

SL3 / SO3 A2 1 no
PGL3×PGL3 /PGL3 − 2 no

SL6 / Sp6 − 4 no
E6/F4 − 8 no

r ≥ 5 SLr /S(GL2×GLr−2) BC2 (2, 2r − 8, 1) yes
r ≥ 5 Sp2r /Sp4×Sp2r−4 − (4, 4r − 16, 3) no

SO10 /GL5 − (4, 4, 1) yes
E6/ SO10×SO2 − (6, 8, 1) no

r ≥ 5 SOr /S(O2 × Or−2) B2 (1, r − 4, 0) yes
SO5×SO5 / SO5 − (2, 2, 0) no

r = 4 Sp8 / Sp4×Sp4 − (3, 4, 0) no

G2/ SO4 G2 1 no
G2 × G2/G2 − 2 no

Thibaut Delcroix (Montpellier) Ensemble of Algebra and Geometry 13 / 34



The toric submanifold

Fix θ a Cartan involution of G commuting with σ, and K = G θ corresponding
maximal compact subgroup. as := ik ∩ ts is naturally identified with X∗(Ts)⊗ R,
hence also with N ⊗ R since Ts → T/T ∩ H is an isogeny. Can see V ⊂ as .

Key remark: V, identified with exp(V)H/H, is a fundamental domain for the
action of K on G/H

The toric submanifold

Consider Z := TsH/H. It is a Ts toric submanifold, which intersects any K -orbit
in X along an orbit of the semidirect product of the compact subtorus of Ts and
the restricted Weyl group.

Upshot: can try to translate everything on Z and use toric geometry / convex
geometry!

Kähler metrics / ample line bundles / moment polytopes...
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Isotropy character, special polytope

Let L G -linearized ample line bundle on X horosymmetric, fix ξ ∈ LH .
L is fully determined by the data of:

1 the isotropy character χL : t→ C defined by

exp((t + σ(t))/2) · ξ = eχL(t)ξ

2 the special divisor Ds defined as the Q-divisor equal to 1
k times the divisor of

the B-semi-invariant meromorphic section of Lk whose B-weight vanishes on
Ts (which exists and is unique up to constant for large enough k).

To the special (B-stable) divisor Ds =
∑

D nDD where the sum runs over B-stable
prime divisors is associated a convex special polytope defined by

∆s = {x ∈ M ⊗ R | ρ(D)(x) + nD ≥ 0}

One recovers the moment polytope ∆ of L as ∆ = χL + ∆s

Conversely, ∆s = projection of ∆ under X∗(T )⊗ R→ X∗(Ts)⊗ R.
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Moment polytope of the restricted line bundle

Define the toric polytope ∆tor of L as the moment polytope of (Z , L|Z ).

One can always recover ∆tor from ∆: it is the convex hull of the images of ∆s

under the restricted Weyl group.

In full generality, one cannot recover L from χL and ∆tor. However, it is very
often the case that:

∆s = ∆tor ∩ C̄+

where C̄+ is the positive restricted Weyl chamber in M ⊗ R.
For example:

1 it is the case for all line bundles if the symmetric fiber is not Hermitian

2 it is always the case for the anticanonical line bundle

3 in general it is equivalent to ∆ ∩ X∗(T/T ∩ [S ,S ])⊗ R 6= 0.
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Example for horospherical manifolds

•
0

∆

∆

C+ positive Weyl chamber

∆tor

∆tor

χL

M ⊗ R

BlPp−1,Pq−1Pn−1

BlPp−1Pn−1
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Example for horospherical manifolds
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∆

∆
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Example for symmetric manifolds

•
∆tor

C̄+

M ⊗ R

Qn
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Example for symmetric manifolds

•
∆tor

C̄+

M ⊗ R

BlQkQn
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Example for symmetric manifolds

•
∆tor

C̄+

∆tor ∩ C̄+

= ∆

M ⊗ R

BlQkQn
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Discrepancy in Hermitian case

Consider P1 × P1 equipped with diagonal SL2 action.

It is a rank 1 Hermitian symmetric manifold! Open orbit is SL2 /T where T
maximal torus (take base point ([1 : 0], [0 : 1]).

The line bundles on P1 × P1 are the O(k ,m), ample if k , m > 0.

Note that ∆tor must be a polytope of the form [−a, a] by invariance under the
restricted Weyl group: only one parameter!

More precisely, one can show that the moment polytope and toric polytope for
O(k ,m) are:

α
•

− k+m
2 α |k−m|

2 α k+m
2 α
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Combinatorial criterion of existence: KE metrics

X horosymmetric Fano −→ ∆tor
ac and χac for K−1

X

2ρH :=
∑
α∈ΦQu∪Φ+

s
α− χac

Barac :=

∫
∆tor

ac ∩C̄+

p
∏

α∈ΦQu∪Φ+
s

〈α, p + χac〉
dp

Volac

Theorem [D-Hultgren]

1 X is Kähler-Einstein iff Barac − 2ρH ∈ Int((C̄+)∨)

2 The greatest Ricci lower bound GRLB(X ) is

sup

{
t ∈]0, 1[ ; 2ρH +

t

1− t
(2ρH − Barac) ∈ Int(∆tor

ac − (C̄+)∨)

}
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Criterion for Kähler-Ricci solitons
Barac,ξ :=

∫
∆tor

ac ∩C̄+

pe〈ξ,p〉
∏

α∈ΦQu∪Φ+
s

〈α, p + χac〉
dp

Volac

Theorem [D-Hultgren]

1 X admit a KRS iff one can find ξ ∈ X(T/(T ∩ H ∩ [G ,G ]))⊗ R st

Barac,ξ − 2ρH ∈ Int((C̄+)∨)

2 The greatest Bakry-Emery-Ricci lower bound for the holom v.f. ξ is

sup

{
t ∈]0, 1[ ; 2ρH +

t

1− t
(2ρH − Barac,ξ) ∈ Int(∆tor

ac − (C̄+)∨)

}
Note: in all cases, ∃!ξ such that Barac,ξ − 2ρH ∈ (C̄+ ∩ −C̄+)∨

Examples

1 For 2 ≤ k ≤ n − 3, BlQk (Qn) does not admit any KRS
(X(T/(T ∩ [G ,G ]))⊗ R = {0} in this case)
BlQk (Qn) has reductive automorphism group, vanishing Futaki invariant, but
it is not K-semistable (GRLB(X ) < 1)

2 Any horospherical Fano manifold admits a KRS

Thibaut Delcroix (Montpellier) Ensemble of Algebra and Geometry 21 / 34



Criterion for coupled Kähler-Einstein metrics

BarL :=

∫
∆tor

L ∩C̄+

p
∏

α∈ΦQu∪Φ+
s

〈α, p + χL〉
dp

VolL

Theorem [D-Hultgren]

∃ coupled KEs for c1(X ) = c1(L1) + · · ·+ c1(Lk) iff∑
i

BarLi − 2ρH ∈ Int((C̄+)∨)

Examples

1 BlP1,P2 (P4) admits coupled KEs but no KEs

2 More generally, BlPk−1,Pk (P2k+1) admits coupled KEs but no KE for k large
enough

3 another example: P(OP1×P2 ⊕OP1×P2 (−1, 2))
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General statement

BarL,g ,ξ :=

∫
∆tor

L ∩C̄+

peg(〈ξ,p〉)
∏

α∈ΦQu∪Φ+
s

〈α, p + χL〉
dp

VolL

Theorem [D-Hultgren]

The system of equations

Ric(ωj)−
√
−1∂∂̄gj(θωj ,ξj ) = ω1 + · · ·+ ωk + δ ∀j

admits a solution in c1(L1)× · · · × c1(Lk) iff∑
BarLj ,gj ,ξj − 2ρH ∈ Int

(
∆tor

[δ] + (C̄+)∨
)

introduce a smooth semi-positive (1, 1)-form δ in the right hand side
−→ allow twisted canonical metrics
(moment polytope ∆tor

[δ] makes sense as well)
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General setting for old and recent results

Recover for example:

1 [Wang+Zhu 2004] KRS on toric manifolds

2 [Podestà+Spiro 2010] KRS on homogeneous toric bundles

3 [Chi Li 2011] greatest Ricci lower bound on toric manifolds

4 [D 2017] KE metrics and greatest Ricci lower bound on group
compactifications

5 [Yi Yao 2017] greatest Ricci lower bound on homogeneous toric bundles

6 [Hultgren 2017] coupled KRS on toric manifolds

7 [Li+Zhou 2017] Mabuchi metrics on group compactifications
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Interpolating between KE and KRS

ex = lim
n→∞

(
1 +

x

n

)n
Definition

1 k ∈ Z≥0, call ω a Mabk -metric if ∃A,B, ξ,

Ric(ω)−
√
−1∂∂̄ ln

(
(Aθω,ξ + B)k

)
= ω

2 P(X ) := inf{k ∈ Z≥0;X admits a Mabk -metric}

Open Question: P(X ) is finite iff X admits a KRS?
(e.g. for toric and horospherical manifolds)
Does it reflect other (algebro-)geometric information on the manifold?

Examples: P
(
P1
)

= 0, P
(
BlP0P2

)
= 1, P

(
P(OP2 ⊕OP2 (2))

)
= 2,

P
(
BlQ3 (Q2)

)
= +∞
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Other open questions

1 ∃? Fano manifold with reductive Aut(X ) and no coupled KE metrics?
Conjecturally: BlQk (Qn) How to prove such a non-exitence result?

2 ∃? non KE Fano horosymmetric manifold X with GRLB(X ) = 1? spherical?

3 Alternative canonical Kähler metrics on Fano manifolds with unipotent
Aut(X )?

4 ∃ Fano 3fold X with no KRS, reductive Aut(X ), GRLB(X ) 6= 1?
a Fano 4fold? horosymmetric? spherical?
for 5fold, BlQ2 (Q5) is an example
there are no horosymmetric Fano 3fold example

5 ∃? Picard rank one Fano manifold with no KRS, not K-semistable?

6 ∃? Fano manifold with KRS and irrational soliton vector field ξ?

7 Does BlPk ,Pn−k−1Pn always admit coupled KEs?
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Proof

I Step 1: Reduce to C 0 estimates

I a variation on Yau’s proof and [Hultgren 2017] for coupled KRS

I valid for all Fano manifolds

I (but assumption of concavity of gi added here)

I Step 2: Translate the equations into real Monge-Ampère equations

I for horosymetric Fano manifolds

I follows essentially from [D., Crelle 2019]

I Step 3: Prove C 0 estimates

I for more general real Monge-Ampère equations on cones

I wide generalization of [Wang-Zhu 2004, D. 2017, Hultgren 2017]
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Step 1: reduction to C 0 estimates

I Use the following continuity method

Ric(ωj,t)−
√
−1∂∂̄gj(θωj,t ,ξj ) = t

∑
l

ωl,t + (1− t)
∑
l

ωl,ref + δ ∀j

I adapt arguments of Yau to this setting

I get

Theorem [D-Hultgren]

Assume a priori C 0-estimates hold on normalized potentials of ωl,s − ωl,ref for
s ∈ [0, t] ⊂ [0, 1], then there exists a solution for all s ∈ [0, t].

I Note that X horosymmetric is not required here
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Step 2: CMA eqns on horosymmetric manifolds

Toric potential

To a K -invariant Hermitian metric h on K−1
X (generally L) associate: its toric

potential u : as → R defined by

u(a) = −2 ln|exp(a) · ξ|

for some fixed ξ ∈ LH .

I Recall that exp(V)H/H is a fundamental domain for the action of K , so u|V
fully determines the Hermitian metric, and u is invariant under the restricted
Weyl group action.

I If h is positively curved, then u is a (strictly) convex function

I Furthermore, {dau | a ∈ as} = Int(−2∆tor) (follows from toric case).
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Monge-Ampère operator

At exp(a)H/H, have

ωn
h

n!
= det(d2

a u)

∏
α∈ΦQu∪Φ+

s
〈α, 2χ− dau〉∏

α∈ΦQu e−2α(a)
∏
β∈Φ+

s
sinh(−2β(a))

|exp(a) · ξac ∧ exp(a) · ξac |

In fact, compute ωh itself in coordinates, using the local coordinates:

g exp(
∑
j

zj lj +
∑
α∈ΦQu

zαeα +
∑
β∈Φ+

s

zβτβ)H

near gH, where eα root vector and τβ = eβ − σ(eβ).
To compute, reduce to a function: if G/H symmetric non-Hermitian, then L|G/H
is trivial, there is a global potential φ for the curvature ωh: ωh|G/H = i ∂∂̄ φ.

Compute ∂2

∂zβ1
∂ ¯zβ2

∣∣∣
0
φ(exp(a) exp(zβ1eτ1 + zβ2eτ2 ) etc, by using: K -invariance,

Baker-Campbell-Hausdorff formula, Lie algebra bracket computations...

Thibaut Delcroix (Montpellier) Ensemble of Algebra and Geometry 30 / 34



If parabolic induction, pullback to G via π : G → G/H, work with the
quasipotential φ : G → R, g 7→ −2 ln|g · ξ| which has equivariance properties with
respect to H involving the isotropy character, then π∗ωh = i ∂∂̄ φ

If symmetric fiber is Hermitian, the computation works, but get a more
complicated expression unless L|S/S∩H is trivial.

⇒ can express the Kähler forms and their Ricci forms in terms of convex function!

Up to considering an additional torus factor in G , and making the action effective,
any holomorphic vector field ξ commuting with the action of G is induced by the
action of the center of G ξ ∈ z(g) ⊂ t, θξ,ωh

is K -invariant, determined by
θξ,ωh

(exp(a)H/H) = −dau(ξ) for a ∈ as .

Thibaut Delcroix (Montpellier) Ensemble of Algebra and Geometry 31 / 34



Step 3: C 0 estimates for RMA eqns

We actually derive C 0 estimates for a larger family of (paths of) systems of RMA
equations on some convex polyedral cone C ⊂ Rr :

det(d2ui,t)Gi (dui,t) = J
k∏

l=1

e−tul,t−(1−t)uj,ref on C ⊂ Rr

where

I unknown ui,t are smooth convex functions on Rr st

{dxui,t | x ∈ C} = ∆i ⊂ (Rr )∗ fixed convex polytopes

I Gi continuous functions on ∆i , smooth and positive on Int(∆i ),
∫

∆i
Gi = 1,

G−εi integrable for some ε > 0

I J continuous, positive on Int(C ), vanishing on ∂C

I j = − ln J is smooth and convex on Int(C )

I its recession function j∞ : ξ ∈ C 7→ limt→∞ j(x + tξ)/t
satisfies some technical conditions
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Crucial condition

det(d2ui,t)Gi (dui,t) = J
k∏

l=1

e−tul,t−(1−t)uj,ref on C ⊂ Rr

Let ∆ = Minkowski sum of all ∆i , v∆ support function of ∆,
Bari =

∫
∆i

pGi (p)dp ∈ (Rr )∗

Condition (†t)
(t
∑

i Bari + (1− t)v∆ + j∞)(ξ) ≥ 0 for ξ ∈ C ,
= 0 iff t = 1, −ξ ∈ C , j∞(−ξ) = −j∞(ξ).

Theorem [D+Hultgren]

Let t0 > 0 and t ∈ (t0, 1].

1 If (†t) is true then there are C 0 estimates on [t0, t]

2 If (†t) is not true then there are no smooth solutions at t.
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Basic idea
Consider the simple equation on R

g(u′(t))u′′(t) = sinh(t)e−u(t)

Assume that u is even, strictly convex and u(t)− a|t| = O(1), then
u′(R) =]− a, a[ and u′(R∗+) =]0, a[.
Multiply the equation bu u′(t), integrate over R∗+, use change of variable
p = u′(t).
Get ∫ a

0

pg(p)dp =

∫
R∗+

u′(t) sinh(t)e−u(t)

Write j(t) = − ln sinh(t), then
∫
R∗+

(j ′ + u′)e−j−u = 0, hence∫ a

0

pg(p)dp +

∫
R∗+

j ′(t) sinh(t)e−u(t) = 0

But j ′ ≤ −1 hence ∫ a

0

pg(p)dp − 1 ≤ 0

Thibaut Delcroix (Montpellier) Ensemble of Algebra and Geometry 34 / 34


