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Introduction



How do we decompose variability ?

Research in Image Processing :

• Signal analysis : compression, denoising, etc.
• Classification : Google image, etc.
• Population Analysis : clinical studies, etc.

We need appropriate representations.
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JPEG2000, JPEG : Wavelets, Blockwise (high + low) frequencies

(a) Original image. (b) JPEG2000, 20 : 1. (c) JPEG, 20 : 1.

Figure 1: Taken from www.photozone.de.
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Convolutional Neural Networks : Texture + Structure

Figure 2: Reference image.
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Convolutional Neural Networks : Texture + Structure

Figure 2: With a transferred texture component. [3]
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How do we handle intra-class variability ?

Figure 3: Silhouettes segmented from a fishing net. [2]
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Procustes Analysis



Position, Scale and Orientation

Figure 4: Matching the blue wing on the red one. (Wikipedia)
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From images to labeled point clouds

Figure 5: Anatomical landmarks on a tuna fish. [1]
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Mathematical formulation

Let X, Y ∈ RM×D be two labeled point clouds.
Let Sτ,υ denote the rigid-body transformation of parameters
τ (translation) and υ (rotation + scaling).
Then, try to find

τ0, υ0 = argmin
τ,υ

‖ Sτ,υ(X)− Y ‖22 (1)

= argmin
τ,υ

M∑
m=1
| υ · xm + τ − ym |2 . (2)
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Typical run on polygons

Figure 6: Matching a kitesurf on a square. (Wikipedia, Linschn)

10



Typical run on polygons

Figure 6: Matching a kitesurf on a square. (Wikipedia, Linschn)

10



Typical run on polygons

Figure 6: Matching a kitesurf on a square. (Wikipedia, Linschn)

10



Typical run on polygons

Figure 6: Matching a kitesurf on a square. (Wikipedia, Linschn)

10



Typical run on polygons

Figure 6: Matching a kitesurf on a square. (Wikipedia, Linschn)

10



Typical run on polygons

Figure 6: Matching a kitesurf on a square. (Wikipedia, Linschn)

10



Typical run on polygons

Figure 6: Matching a kitesurf on a square. (Wikipedia, Linschn)

10



Typical run on polygons

Figure 6: Matching a kitesurf on a square. (Wikipedia, Linschn)

10



Typical run on polygons

Figure 6: Matching a kitesurf on a square. (Wikipedia, Linschn)

10



Pros and cons of Procustes analysis

Pros :

• Simple and robust
• Parameters make sense
• Miracle results for populations of triangles (Kendall, 1984)

Cons :

• Max. number of 2 · D explicative parameters
• Unable to capture subtle shape deformations

This model is a standard pre-processing tool.
However, it is too limited to allow in-detail analysis.
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Optimal Transport



Image matching as a mass-carrying problem

Figure 7: Optimal transport between two curves seen as mass
distributions : from a déblai to a remblai.
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Dynamic formulation

Let : (x1, . . . , xI) and (y1, . . . , yJ) be two point clouds
and (µ1, . . . , µI), (ν1, . . . , νJ) the associated (integer) weights,
such that

∑
µi = M =

∑
νj.

Then, find a collection of paths γm : t ∈ [0, 1] 7→ γmt minimizing

`2(γ) =
M∑
m=1

∫ 1

t=0
‖γ̇mt ‖

2 dt, (3)

under the constraint that for all indices i and j,

#
{
m ∈ [[1,M]] , γm0 = xi

}
= µi, (4)

#
{
m ∈ [[1,M]] , γm1 = yj

}
= νj. (5)

γ is the optimal transport path between the two measures
I∑
i=1

µiδxi = µ
γ−−−→ ν =

J∑
j=1

νjδyj . (6)
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Static formulation : transport plan

Independent particles should always go in straight lines :
If we denote ci,j =

∥∥xi − yj∥∥2, find an optimal transport plan
Γ = (γi,j)(i,j)∈[[1,I]]×[[1,J]] minimizing

CX,Y(Γ) =
∑
i,j

γi,j ci,j (7)

under the constraints :

∀ i, j, γi,j > 0, ∀ i,
∑
j

γi,j = µi, ∀ j,
∑
i

γi,j = νj. (8)
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Static formulation : permutation

If we relabel the unit masses (x1, . . . , xM) and (y1, . . . , yM),
find a permutation σ : [[1,M]]→ [[1,M]] minimizing

CX,Y(σ) =
M∑
m=1

∥∥∥xm − yσ(m)
∥∥∥2 . (9)

σ is an optimal labeling.

15



The Sinkhorn algorithm : an efficient iterative solver

Figure 8: Measures to match.
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The Sinkhorn algorithm : an efficient iterative solver

Figure 8: Monge transport,
√
ε = 0.
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The Sinkhorn algorithm : an efficient iterative solver

Figure 8: Diffuse transport,
√
ε = .01.
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The Sinkhorn algorithm : an efficient iterative solver

Figure 8: Diffuse transport,
√
ε = .03.
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Pros and cons of Optimal Transport

Pros :

• Well-posed, convex problem
• Global and precise matchings
• Light-speed numerical solvers at hand (Cuturi, 2013)

Cons :

• Discards topology : tears shapes apart

This model is mathematically and numerically appealing.
However, it does not provide any smoothness guarantee.
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Can we build a rich and practical model for
smooth deformations ?
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The LDDMM framework



Spoiler alert : yes indeed, but it won’t be convex anymore

Figure 9: Source.
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Spoiler alert : yes indeed, but it won’t be convex anymore

Figure 9: Target.
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Spoiler alert : yes indeed, but it won’t be convex anymore

Figure 9: OT matching.
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The LDDMM framework

Regularized transport : a Riemannian
problem



Static regularization : a first attempt

A naive way to regularize transport :
Find σ : [[1,M]]→ [[1,M]] minimizing

CX,Yk (σ) =
∑
m

∥∥∥xm − yσ(m)
∥∥∥2︸ ︷︷ ︸

Displacement cost

+
∑
m,m′

k(xm, xm′
) ·
∥∥∥yσ(m) − yσ(m′)

∥∥∥2︸ ︷︷ ︸
Regularization cost

,

(10)

with k(x, y) a kernel neighborhood function.

19



An appropriate cost should give rise to a distance

If CX,Yk ( · ) is a cost on matchings, we define

dk(X, Y) = min
σ

CX,Yk (σ). (11)

It’d better be :

• Null iff X and Y stand for the same shape
• Symmetric
• Compatible with the triangle inequality
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Static regularization : symmetry without continuity

Find a permutation σ : [[1,M]]→ [[1,M]] minimizing

CX,Yk,sym(σ) =
∑
m

∥∥∥xm − yσ(m)
∥∥∥2︸ ︷︷ ︸

Displacement cost

+
1
2
∑
m,m′

k(xm, xm′
) ·
∥∥∥yσ(m) − yσ(m′)

∥∥∥2︸ ︷︷ ︸
X → Y regularization cost

+
1
2
∑
m,m′

k(ym, ym′
) ·
∥∥∥xσ−1(m) − xσ−1(m′)

∥∥∥2︸ ︷︷ ︸
Y → X regularization cost

.

This cost is symmetric, but does not handle properly the
shapes between X and Y .
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Going back to the kinematic transportation

Find a collection of paths γm from X to Y minimizing

Ck(γ) =
∫ 1

0

[ ∑
m
‖γ̇mt ‖

2

︸ ︷︷ ︸
Displacement cost

+
∑
m,m′

k(γmt , γm
′

t ) ·
∥∥∥γ̇mt − γ̇m

′
t

∥∥∥2︸ ︷︷ ︸
Regularization cost

]
dt.

Particles will move optimally if they are :

• lazy
• gregarious wrt. their k-neighbors

22



Geodesic path-finding on a Riemannianmanifold of point clouds

With γt = (γ1t , . . . , γ
M
t ) ∈ RM×D, we can write

Ck(γ) =
∫ 1

0
γ̇Tt gγt γ̇tdt. (12)

Optimal deformations are geodesics on the space of
landmarks RM×D endowed with a Riemannian metric gq :(

dg(q→ q+ v · dt)
)2

dt
=
∑
m
‖vm‖2 +

∑
m,m′

k(qm,qm′
) ·
∥∥∥vm − vm′

∥∥∥2
= vTgqv = ‖v‖2gq (13)
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The LDDMM framework

Geodesic shooting on a Riemannian
manifold



Riemann : conveniently working with arbitrary geometries

(a) As a deformed square. (b) Embedded in R3.

Figure 10: The donut-shaped torus.
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Sometimes, we can compute geodesics explicitly...

a

b

(1− t) · a+ t · b

(a) The Euclidean plane. (b) The Poincaré disk.

Figure 11: Explicit geodesics on homogeneous manifolds.
(b) is adapted from www.pitt.edu/~jdnorton/.
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But this is not the case in general

Figure 12: Geodesics on the Duhem’s bull, embedded in R3.
Taken from www.chaos-math.org.
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A first result : the geodesic equation

Geodesic =⇒ locally “straight” =⇒ second order ODE,
the geodesic equation satisfied by γt = (γ1t , . . . , γ

D
t ) :

∀ d ∈ [[1,D]] , γ̈dt = −
∑

16i,j6D

Γdij(γt) · γ̇
i
t γ̇

j
t, (14)

where the Christoffel symbols Γdij(q) are given by :

Γdij(q) =
1
2

D∑
l=1

gdl(q) ·
(
∂igjl(q) + ∂jgil(q)− ∂lgij(q)

)
, (15)

with gij the metric tensor and gdl its inverse, the cometric.
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From celerity to momentum

The “Christoffel” equation is an ODE in the tangent bundle :

(qt, vt) = (γt, γ̇t). (16)

Hamilton : one should work in the cotangent bundle :

(qt,pt) = (qt,gqtvt). (17)

We denote Kq = g−1q and H(q,p) = 1
2p

TKqp, so that

1
2
vTt gqtvt =

1
2
‖γ̇t‖2γt︸ ︷︷ ︸

Kinetic energy

= H(qt,pt). (18)
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Hamiltonian geodesic equations

Hamilton, 1833
γt is a geodesic if and only if the lifted cotangent trajectory
(qt,pt) follows the Hamiltonian equation :{

q̇t = +∂H
∂p (qt,pt) = +Kqtpt

ṗt = −∂H
∂q (qt,pt) = −∂q(pt, Kqpt)(qt)

. (19)

In the cotangent phase space, we flow along the symplectic
gradient :

X(q,p) =
(
+∂H

∂p (q,p)
−∂H

∂q (q,p)

)
= “R−90◦”

(
∇H(q,p)

)
. (20)
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Quick physical “justification”

Consider a free-falling particle of mass m :

q = z, v = ż, (21)
q̇ = v, v̇ = −g. (22)

Now, we can write p = mv so that

H(q,p) = “Ecin”(q,p) + “Epp”(q,p) =
1
2
p2

m
+mgq. (23)

We find : {
q̇ = +∂H

∂p = +p/m
ṗ = −∂H

∂q = −mg
. (24)
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The geodesic shooting algorithm

A geodesic path γt is characterized by (q0,p0).
To compute any geodesic starting from a source q0, we simply
need a shooting momentum p0 and a simplistic Euler scheme :{

qt+0.1 = qt + 0.1 · Kqtpt
pt+0.1 = pt − 0.1 · ∂q(pt, Kqpt)(qt)

. (25)

Exponential map :

Expq0 : p0 ∈ T
?
q0M 7→ q1 ∈M (26)
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It works !

(a) 2D parametrization. (b) Embedded in R3.

Figure 13: Geodesics on the donut-shaped torus.
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Lessons taught by the Hamiltonian theory of geodesics

We are looking for :

• Tearing-adverse metrics on the space of landmarks
• Efficient ways to compute geodesics (deformations)

Hamilton has taught us that :

• Geodesics are “simple” iff the cometric Kq = g−1q is simple
• The Exponential map can be computed efficiently
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The LDDMM framework

Kernel cometrics and Diffeomorphic
trajectories



Parallelism is the way forward

Figure 14: Highly-parallel MoKaMachine (Mokaplan Inria team). 34



GPUs in action

Figure 15: Mythbusters Demo GPU versus CPU, taken from the Nvidia
YouTube channel. 35



Kernel cometrics, full isotropic tensor

Use a blockwise kernel matrix :

Kq =


k(q1,q1)ID k(q1,q2)ID · · · k(q1,qM)ID
k(q2,q1)ID k(q2,q2)ID · · · k(q2,qM)ID

...
... . . . ...

k(qM,q1)ID k(qM,q2)ID · · · k(qM,qM)ID

 (27)

with k(x, y) a kernel function (Gaussian, Cauchy, etc.).
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Kernel cometrics, reduced tensor

That is, use a reduced correlation matrix

kq =


k(q1,q1) k(q1,q2) · · · k(q1,qM)
k(q2,q1) k(q2,q2) · · · k(q2,qM)

...
... . . . ...

k(qM,q1) k(qM,q2) · · · k(qM,qM)

 (28)

so that

H(q,p) =
1
2
pTKqp =

1
2

M∑
i,j=1

k(qi,qj) · (pi)T pj. (29)
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Translation-invariant kernels and convolution

In practice, we take

k(x, y) = k(‖x − y‖) (30)

so that
M∑
i,j=1

k(qi,qj) · (pi)T pj =
M∑
i,j=1

k(qi − qj) ·
〈
pi,pj

〉
(31)

= 〈p, k ? p〉 (32)

with

p =
M∑
i=1

piδqi . (33)

In a computational sense, this is the simplest family of
cometrics on the space of landmarks.
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Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 16: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.
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Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 17: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.
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Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 18: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.
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Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 19: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..
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RKHS norms on velocity vector fields

Let k be a smooth enough kernel function, with k̂(ω) ∈ R?
+.

If v : RD → RD is a vector field on the ambient space, define

‖v‖2k =

∫
ω∈RD

1
k̂(ω)

|v̂(ω)|2 dω. (34)

• Vk ={v | ‖v‖k <∞} is a Hilbert space of k-smooth vector
fields

• We assume k is smooth enough, so that δx : v 7→ v(x)
belongs to the dual space (Vk)? : we link with the theory
of Reproducing Kernel Hilbert Spaces.
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Integration of k-smooth vector flows

Assume that (vt) is a time-varying vector field such that

`k(v)2 =

∫ 1

0
‖vt‖2k dt < ∞. (35)

According to Picard-Lindelöf theorem, we can integrate the
flow, find a unique trajectory φt of diffeomorphisms such that
for every point x ∈ RD and time t ∈ [0, 1] :

φ0(x) = x and d
dt

[φt(x)] = vt ◦ φt(x),

i.e. φ0 = IdRD and φt =

∫ t

s=0
vs ◦ φs ds.
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An infinite-dimensional matching problem

We define Gk ={φ1 | · · ·} the set of diffeomorphisms obtained
by integrating finite-cost vector flows (vt) ∈ L2(Vk).

Gk is an infinite-dimensional Riemannian manifold modeled
on Vk. As diffeomorphisms carry around images and measures,
we try to minimize

C2(φ1) = `k(v)2 =

∫ 1

0
‖vt‖2k dt < ∞ (36)

under the constraint that

X φ1−−−−→ Y. (37)

45



An infinite-dimensional matching problem

We define Gk ={φ1 | · · ·} the set of diffeomorphisms obtained
by integrating finite-cost vector flows (vt) ∈ L2(Vk).

Gk is an infinite-dimensional Riemannian manifold modeled
on Vk.

As diffeomorphisms carry around images and measures,
we try to minimize

C2(φ1) = `k(v)2 =

∫ 1

0
‖vt‖2k dt < ∞ (36)

under the constraint that

X φ1−−−−→ Y. (37)

45



An infinite-dimensional matching problem

We define Gk ={φ1 | · · ·} the set of diffeomorphisms obtained
by integrating finite-cost vector flows (vt) ∈ L2(Vk).

Gk is an infinite-dimensional Riemannian manifold modeled
on Vk. As diffeomorphisms carry around images and measures,
we try to minimize

C2(φ1) = `k(v)2 =

∫ 1

0
‖vt‖2k dt < ∞ (36)

under the constraint that

X φ1−−−−→ Y. (37)

45



The kernel and diffeomorphic geodesics coincide

Reduction Principle
Let qt be a time-dependent point cloud, k a kernel function.
Then, the two propositions below are equivalent :

i) qt is a geodesic for the kernel cometric Kq, with
momentum pt associated to the Hamiltonian

H(q,p) =
1
2
pTKqp. (38)

ii) qt is carried around by a locally optimal diffeomorphic
trajectory φt, and we have

vt = k ? pt i.e. vt(x) =
M∑
m=1

k(qmt , x)pmt . (39)
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Hand-waving proof of the reduction principle, part 1

At any time t,

vt = argmin{‖v‖k | ∀ m, v(qmt ) = vt(qmt ) } . (40)

Hence, as vt does not have any superfluous component,

vt ∈{ v | ∀ m, v(qmt ) = 0 }⊥k (41)

i.e. vt ∈
( M⋂
m=1

{
v |
〈
δqmt , v

〉
= 0

})⊥k

. (42)

But we also know that :〈
k ? δqmt , v

〉
k
=

∫
ω∈RD

1
k̂(ω)

k̂ ? δqmt (ω) · v̂(ω) dω (43)

=

∫
ω∈RD

δ̂qmt (ω) · v̂(ω) dω (44)

=
〈
δqmt , v

〉
= v(qmt ). (45)
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Hand-waving proof of the reduction principle, part 2

Hence why, at any time t,

vt ∈
( M⋂
m=1

{
v |
〈
k ? δqmt , v

〉
k
= 0

})⊥k

(46)

=
M⋃
m=1

(
k ? δqmt

)⊥k⊥k
(47)

= Vect
(
k ? δqmt , m ∈ [[1,M]]

)
. (48)

So, one can write

vt = k ?
( M∑
m=1

pmt δqmt

)
= k ? pt, (49)

and

‖vt‖2k =
〈
k ? pt, k(−1) ? k ? pt

〉
= 〈k ? pt,pt〉 = pTtKqtpt. (50)
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Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 20: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.
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Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 21: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.
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Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 22: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.
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Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 22: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.
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Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 22: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.
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Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 22: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.
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Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 23: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..
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Conclusion

We have now presented the Large Deformation Diffeomorphic
Metric Mapping, or LDDMM setting :

• OT (σ = 0) σ++−−−−−−→ Gk
σ++−−−−−−→ (σ = +∞) Translations

• Deformations computed through geodesic shooting

The (basic) framework relies on three pillars :

• Hamilton’s theorem (gq −→ Kq)
• The current availability of GPUs (parallelism)
• The Reduction Principle ((qt,pt)←→ φt)

53



Conclusion

We have now presented the Large Deformation Diffeomorphic
Metric Mapping, or LDDMM setting :

• OT (σ = 0) σ++−−−−−−→ Gk
σ++−−−−−−→ (σ = +∞) Translations

• Deformations computed through geodesic shooting

The (basic) framework relies on three pillars :

• Hamilton’s theorem (gq −→ Kq)
• The current availability of GPUs (parallelism)
• The Reduction Principle ((qt,pt)←→ φt)

53



The LDDMM framework

An iterative matching algorithm



Variability decomposition

Let X and Y be two shapes, we are looking for a k-deformation
f ∈ Gk such that :

X f−→ f (X) � Y with minimal dissimilarity “‖f (X)− Y‖2”.

As dissimilarity, one can use generic kernel or wasserstein
distances between measures, such as :

‖f (X)− Y‖2s = ‖µ− ν‖2s = ‖Bs ? (µ− ν)‖2L2(RD) . (51)

Ideally, we are looking for

p⊥s (Y → Gk · X) = argmin
f∈Gk
‖f (X)− Y‖2s. (52)
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Regularized matching problem

However, in practice :

• Gk is not well understood
• We want dk(X, f (X)) = dGk(IdRD , f ) 6 C < +∞

We settle for the minimization over the deformation f of :

Cost(f ) = γreg · d2k(X, f (X)) + γatt ·‖f (X)− Y‖2s. (53)

That is, minimize over the shooting momentum p0 :

Cost(p0) = γreg · pT0Kq0p0 + γatt ·‖q1 − Y‖2s. (54)

If γreg << γatt, q1 should be good enough.
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Gradient descent on finite-dimensional manifolds

Figure 24: Matching from the source X to the target Y, constrained to
the golden sphere Gk · X .
Here, γreg << γatt : the geodesic length d2k(X, f (X)) is much less
constrained than the dissimilarity‖f (X)− Y‖2s . 56
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Gradient descent on finite-dimensional manifolds

Figure 25: Matching from the source X to the target Y, constrained to
the golden torus Gk · X .
Here, γreg << γatt : the geodesic length d2k(X, f (X)) is much less
constrained than the dissimilarity‖f (X)− Y‖2s . 57
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The LDDMM framework

Let’s read some code



The theano library

1 # Import the relevant tools
2 import time # to measure performance
3 import numpy as np # standard array library
4 import theano # Autodiff & symbolic calculus library :
5 import theano.tensor as T # - mathematical tools;
6 from theano import config, printing # - printing of the Sinkhorn error.

theano :

• Is a python library
• Symbolic computations =⇒ efficient CPU/GPU binaries
• Auto-differentiates expressions

• It changed my life... Let’s see why.
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The Hamiltonian

230 # Part 1 : kinetic energy on the phase space (Hamiltonian) =========================
231
232
233 def _squared_distances(x, y) :
234 "Returns the matrix of |x_i-y_j|^2."
235 x_col = x.dimshuffle(0, 'x', 1)
236 y_lin = y.dimshuffle('x', 0, 1)
237 return T.sum( (x_col - y_lin)**2 , 2 )
238
239 def _k(x, y, s) :
240 "Returns the matrix of k(x_i,y_j)= 1/(1+|x_i-y_j|^2)^{1/4}, with a heavy tail."
241 sq = _squared_distances(x, y) / (s**2)
242 return T.pow( 1. / ( 1. + sq ), .25 )
243
244 def _cross_kernels(q, x, s) :
245 "Returns the full k-correlation matrices between two point clouds q and x."
246 K_qq = _k(q, q, s)
247 K_qx = _k(q, x, s)
248 K_xx = _k(x, x, s)
249 return (K_qq, K_qx, K_xx)
250
251 def _Hqp(q, p, sigma) :
252 "The hamiltonian, or kinetic energy of the shape q with momenta p."
253 pKqp = _k(q, q, sigma) * (p.dot(p.T))# Use a simple isotropic kernel
254 return .5 * T.sum(pKqp) # H(q, p) = 1

2 ·
∑

i,j k(xi, xj)pi.pj
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Geodesic shooting

255 # Part 2 : Geodesic shooting =======================================================
256
257
258 # The partial derivatives of the Hamiltonian are automatically computed !
259 def _dq_Hqp(q,p,sigma) :
260 return T.grad(_Hqp(q,p,sigma), q)
261 def _dp_Hqp(q,p,sigma) :
262 return T.grad(_Hqp(q,p,sigma), p)
263
264 def _hamiltonian_step(q,p, sigma) :
265 "Simplistic euler scheme step with dt = .1."
266 return [q + .1 * _dp_Hqp(q,p,sigma) ,
267 p - .1 * _dq_Hqp(q,p,sigma) ]
268
269 def _HamiltonianShooting(q, p, sigma) :
270 "Shoots to time 1 a k-geodesic starting (at time 0) from q with momentum p."
271 # We use the "scan" theano routine, which can be understood as a "for" loop
272 result, updates = theano.scan(fn = _hamiltonian_step,
273 outputs_info = [q,p],
274 non_sequences = sigma,
275 n_steps = 10 ) # hardcode the "dt = .1"
276 # We do not store the intermediate results,
277 # and only return the final state + momentum :
278 final_result = [result[0][-1], result[1][-1]]
279 return final_result
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OT fidelity, part 1

298 # Part 3 : Data attachment ========================================================
299
300 def _ot_matching(q1_x, q1_mu, xt_x, xt_mu, radius) :
301 """
302 Given two measures q1 and xt represented by locations/weights arrays,
303 outputs an optimal transport fidelity term and the transport plan.
304 """
305 # The Sinkhorn algorithm takes as input three Theano variables :
306 c = _squared_distances(q1_x, xt_x) # Wasserstein cost function
307 mu = q1_mu ; nu = xt_mu
308
309 # Parameters of the Sinkhorn algorithm.
310 epsilon = (.02)**2 # regularization parameter
311 rho = (.5) **2 # unbalanced transport (Lenaic Chizat)
312 niter = 10000 # max niter in the sinkhorn loop
313 tau = -.8 # Nesterov-like acceleration
314 lam = rho / (rho + epsilon) # Update exponent
315 # Elementary operations ........................................................
316 def ave(u,u1) :
317 "Barycenter subroutine, used by kinetic acceleration through extrapolation."
318 return tau * u + (1-tau) * u1
319 def M(u,v) :
320 "M_{ij} = (-c_{ij} + u_i + v_j) / \epsilon"
321 return (-c + u.dimshuffle(0,'x') + v.dimshuffle('x',0)) / epsilon
322 lse = lambda A : T.log(T.sum( T.exp(A), axis=1 ) + 1e-6) # prevents NaN
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OT fidelity, part 2

326 # Actual Sinkhorn loop ..........................................................
327 # Iteration step :
328 def sinkhorn_step(u, v, foo) :
329 u1=u # useful to check the update
330 u = ave( u, lam * ( epsilon * ( T.log(mu) - lse(M(u,v)) ) + u ) )
331 v = ave( v, lam * ( epsilon * ( T.log(nu) - lse(M(u,v).T) ) + v ) )
332 err = T.sum(abs(u - u1))
333 # "break" the loop if error < tol
334 return (u,v,err), theano.scan_module.until(err < 1e-4)
335
336 # Scan = "For loop" :
337 err0 = np.arange(1, dtype=config.floatX)[0]
338 result, updates = theano.scan( fn = sinkhorn_step, # Iterated routine
339 outputs_info = [(0.*mu), (0.*nu), err0], # Start
340 n_steps = niter # Number of iters
341 )
342 U, V = result[0][-1], result[1][-1] # We only keep the final dual variables
343 Gamma = T.exp( M(U,V) ) # Transport plan g = diag(a)*K*diag(b)
344 cost = T.sum( Gamma * c ) # Simplistic cost, chosen for readability
345 if True : # Shameful hack to prevent the pruning of the error-printing node...
346 print_err_shape = printing.Print('error : ', attrs=['shape'])
347 errors = print_err_shape(result[2])
348 print_err = printing.Print('error : ') ; err_fin = print_err(errors[-1])
349 cost += .00000001 * err_fin
350 return [cost, Gamma]
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Kernel fidelity, Data attachment term

351 def _kernel_matching(q1_x, q1_mu, xt_x, xt_mu, radius) :
352 """
353 Given two measures q1 and xt represented by locations/weights arrays,
354 outputs a kernel-fidelity term and an empty 'info' array.
355 """
356 K_qq, K_qx, K_xx = _cross_kernels(q1_x, xt_x, radius)
357 q1_mu = q1_mu.dimshuffle(0,'x') # column
358 xt_mu = xt_mu.dimshuffle(0,'x') # column
359 cost = .5 * ( T.sum(K_qq * q1_mu.dot(q1_mu.T)) \
360 + T.sum(K_xx * xt_mu.dot(xt_mu.T)) \
361 -2*T.sum(K_qx * q1_mu.dot(xt_mu.T)) )
362
363 [...] # error-tracking stuff
364 return [cost , ... ]
365
366 def _data_attachment(q1_measure, xt_measure, radius) :
367 "Given two measures and a radius, returns a cost (Theano symbolic variable)."
368 if radius == 0 : # Convenient way to allow the choice of a method
369 return _ot_matching(q1_measure[0], q1_measure[1],
370 xt_measure[0], xt_measure[1],
371 radius)
372 else :
373 return _kernel_matching(q1_measure[0], q1_measure[1],
374 xt_measure[0], xt_measure[1],
375 radius)
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Actual cost function

383 # Part 4 : Cost function and derivatives ============================================
384
385
386 def _cost( q,p, xt_measure, connec, params ) :
387 """
388 Returns a total cost, sum of a small regularization term and the data attachment.
389 .. math ::
390
391 C(q_0, p_0) = .01 * H(q0,p0) + 1 * A(q_1, x_t)
392
393 Needless to say, the weights can be tuned according to the signal-to-noise ratio.
394 """
395 s,r = params # Deformation scale, Attachment scale
396 q1 = _HamiltonianShooting(q,p,s)[0] # Geodesic shooting from q0 to q1
397 # Convert the set of vertices 'q1' into a measure.
398 q1_measure = Curve._vertices_to_measure( q1, connec )
399 attach_info = _data_attachment( q1_measure, xt_measure, r )
400 return [ .1* _Hqp(q, p, s) + 1.* attach_info[0] , attach_info[1] ] # [cost, info]
401
402
403 # The discrete backward scheme is automatically computed :
404 def _dcost_p( q,p, xt_measure, connec, params ) :
405 "The gradients of C wrt. p_0 is automatically computed."
406 return T.grad( _cost(q,p, xt_measure, connec, params)[0] , p)
407
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Minimization script, part 1

421 def perform_matching( Q0, Xt, params, scale_momentum = 1, scale_attach = 1) :
422 """ Performs a matching from the source Q0 to the target Xt,
423 returns the optimal momentum P0. """
424 (Xt_x, Xt_mu) = Xt.to_measure() # Transform the target into a measure
425 q0 = Q0.points ; p0 = np.zeros(q0.shape) # Null initialization for the momentum
426
427 # Compilation -------------------------------------------------------------------
428 print('Compiling the energy functional.')
429 time1 = time.time()
430 # Cost is a function of 6 parameters :
431 # The source 'q', the starting momentum 'p',
432 # the target points 'xt_x', the target weights 'xt_mu',
433 # the deformation scale 'sigma_def', the attachment scale 'sigma_att'.
434 q, p, xt_x = T.matrices('q', 'p', 'xt_x') ; xt_mu = T.vector('xt_mu') # types
435
436 # Compilation. Depending on settings specified in the ~/.theanorc file or
437 # given at execution time, this will produce CPU or GPU code under the hood.
438 Cost = theano.function([q,p, xt_x,xt_mu ],
439 [ _cost( q,p, (xt_x,xt_mu), Q0.connectivity, params )[0],
440 _dcost_p( q,p, (xt_x,xt_mu), Q0.connectivity, params ) ,
441 _cost( q,p, (xt_x,xt_mu), Q0.connectivity, params )[1] ],
442 allow_input_downcast=True)
443 time2 = time.time()
444 print('Compiled in : ', '{0:.2f}'.format(time2 - time1), 's')
445
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Minimization script, part 2

445 # Display pre-computing ---------------------------------------------------------
446 connec = Q0.connectivity ; q0 = Q0.points ;
447 g0,cgrid = GridData() ; G0 = Curve(g0, cgrid )
448 # Given q0, p0 and grid points grid0 , outputs (q1,p1,grid1) after the flow
449 # of the geodesic equations from t=0 to t=1 :
450 ShootingVisualization = VisualizationRoutine(q0, params)
451 # L-BFGS minimization -----------------------------------------------------------
452 from scipy.optimize import minimize
453 def matching_problem(p0_vec) :
454 "Energy minimized in the variable 'p0'."
455 p0 = p0_vec.reshape(q0.shape)
456 [c, dp_c, info] = Cost(q0, p0, Xt_x, Xt_mu)
457 matching_problem.Info = info
458 if (matching_problem.it % 1 == 0) and (c < matching_problem.bestc) :
459 matching_problem.bestc = c
460 q1,p1,g1 = ShootingVisualization(q0, p0, np.array(g0))
461 Q1 = Curve(q1, connec) ; G1 = Curve(g1, cgrid )
462 DisplayShoot( Q0, G0, p0, Q1, G1, Xt, info,
463 matching_problem.it, scale_momentum, scale_attach)
464 print('Iteration : ',matching_problem.it,', cost : ',c,' info : ',info.shape)
465 matching_problem.it += 1
466 # The fortran routines used by scipy.optimize expect float64 vectors
467 # instead of gpu-friendly float32 matrices: we need a slight conversion
468 return (c, dp_c.ravel().astype('float64'))
469 matching_problem.bestc=np.inf ; matching_problem.it=0 ; matching_problem.Info=None
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Minimization script, part 3

473 time1 = time.time()
474 res = minimize( matching_problem, # function to minimize
475 p0.ravel(), # starting estimate
476 method = 'L-BFGS-B', # an order 2 method
477 jac = True, # matching_problems returns the gradient
478 options = dict(
479 maxiter = 1000, # max number of iterations
480 ftol = .000001,# Don't bother fitting to float precision
481 maxcor = 10 # Prev. grads. used to approx. the Hessian
482 ))
483 time2 = time.time()
484
485 p0 = res.x.reshape(q0.shape)
486 print('Convergence success : ', res.success, ', status = ', res.status)
487 print('Optimization message : ', res.message.decode('UTF-8'))
488 print('Final cost after ', res.nit, ' iterations : ', res.fun)
489 print('Elapsed time after ', res.nit, ' iterations : ',
490 '{0:.2f}'.format(time2 - time1), 's')
491 return p0, matching_problem.Info
492
493 def matching_demo(source_file, target_file, params, scale_mom = 1, scale_att = 1) :
494 Q0 = Curve.from_file(source_file) # Load source...
495 Xt = Curve.from_file(target_file) # and target.
496 # Compute the optimal shooting momentum :
497 p0, info = perform_matching( Q0, Xt, params, scale_mom, scale_att)
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The LDDMM framework

Results



Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 0.
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Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 3.
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Figure 26: Iteration 4.
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(a) Momentum p0. (b) Shooted model q1.
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Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 6.
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(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 7.

68



Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 8.
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Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 9.
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Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 10.
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Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 11.
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(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 12.
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Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 14.
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Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 15.
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Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 16.
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Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 17.
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(a) Momentum p0. (b) Shooted model q1.
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(a) Momentum p0. (b) Shooted model q1.
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(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 90.
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(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 0.
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(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 3.
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(a) Momentum p0. (b) Shooted model q1.
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(a) Momentum p0. (b) Shooted model q1.
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(a) Momentum p0. (b) Shooted model q1.
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(a) Momentum p0. (b) Shooted model q1.
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(a) Momentum p0. (b) Shooted model q1.
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(a) Momentum p0. (b) Shooted model q1.
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Figure 27: Iteration 15.

69



Typical run with kernel fidelity
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(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 31.

69



Typical run with kernel fidelity
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(a) Momentum p0. (b) Shooted model q1.
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Figure 27: Iteration 44.

69



Typical run with kernel fidelity
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(a) Momentum p0. (b) Shooted model q1.
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Figure 27: Iteration 90.
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(a) Momentum p0. (b) Shooted model q1.
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(a) Momentum p0. (b) Shooted model q1.
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(a) Momentum p0. (b) Shooted model q1.
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(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 170.
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(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 200.

69



Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 240.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .01.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .02.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .03.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .04.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .05.

70
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .06.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .07.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .08.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .09.

70



Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .1.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .11.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .12.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .13.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .14.

70



Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .15.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .16.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .17.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .18.

70
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .19.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .2.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .21.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .22.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .23.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .24.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .25.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .26.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .27.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .28.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .29.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .3.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .31.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .32.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .33.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .34.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .35.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .36.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .37.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .38.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .39.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .4.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .41.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .42.

70



Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .43.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .44.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .45.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .46.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .47.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .48.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .49.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .5.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .51.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .52.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .53.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .54.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .55.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .56.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .57.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .58.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .59.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .6.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .61.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .62.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .63.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .64.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .65.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .66.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .67.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .68.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .69.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .70.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .71.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .72.
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(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .73.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .74.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .75.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .76.

70



Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .77.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .78.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .79.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .8.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .81.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .82.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .83.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .84.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .85.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .86.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .87.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .88.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .89.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .9.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .91.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .92.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .93.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .94.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .95.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .96.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .97.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .98.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .99.
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Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = 1.0.
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Conclusion



We can now emulate D’Arcy Thompson’s work

Figure 29: Excerpt from the seminal book of D’Arcy Wentworth
Thompson (1860-1948), On Growth and Forms. 71



Transfer of anatomical data

Figure 30: Video presentation of the (non-LDDMM) paper Anatomy
Transfer Fast Forward, Siggraph Asia 2013 by Ali-Hamadi, Liu, Gilles et
al.

72



Statistics on a Riemannian manifold

Biologists, Neurologists and Physicians would like to conduct
statistical surveys such as :

• Linear regression
• Mean computation + Principal Component Analysis
• Transport of tangential information

Problem : no meaningful algebraic structure (+,×) on shapes.

Given a mere Riemannian distance, we provide :

• Geodesic regression
• Fréchet Mean + PCA on shooting momentums
• Parallel transport
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Construction of anatomical atlases

Figure 31: Taken from the personal web page of Benjamin Charlier.
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A continuum of professions

Figure 32: A (very) schematic view of the fields related to
Computational Anatomy. 75



A continuum of professions

Figure 32: The people behind the labels.
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Matchings of partially observed shapes

(a) X and Y . (b) Target Y , view 1. (c) Target Y , view 2.

(d) Source X. (e) f (X), view 1. (f ) f (X), view 2.

Figure 33: Matching artifacts for the retina dataset.
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Questions?
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