
Presenting the LDDMM framework
A Riemannian setting, linking Procustes to Monge.

Jean Feydy
June 1, 2017

Écoles Normales Supérieures de Paris et Paris-Saclay

Table of contents

1. Introduction
2. Procustes Analysis
3. Optimal Transport
4. The LDDMM framework

Regularized transport : a Riemannian problem

Geodesic shooting on a Riemannian manifold

Kernel cometrics and Diffeomorphic trajectories

An iterative matching algorithm

Let’s read some code

Results
5. Conclusion

1

Some information

Jean Feydy (2016-2019) :

• PhD student under the supervision of Alain Trouvé.
• Caïman at the ENS.

Notes for this talk available online (in French) :

www.math.ens.fr/~feydy/Teaching/

• Culture Mathématique, chap. 9-10.
• Introduction à la Géométrie Riemannienne par l’Étude des
Espaces de Formes.

2

www.math.ens.fr/~feydy/Teaching/

Some information

Jean Feydy (2016-2019) :

• PhD student under the supervision of Alain Trouvé.
• Caïman at the ENS.

Notes for this talk available online (in French) :

www.math.ens.fr/~feydy/Teaching/

• Culture Mathématique, chap. 9-10.
• Introduction à la Géométrie Riemannienne par l’Étude des
Espaces de Formes.

2

www.math.ens.fr/~feydy/Teaching/

Introduction

How do we decompose variability ?

Research in Image Processing :

• Signal analysis : compression, denoising, etc.
• Classification : Google image, etc.
• Population Analysis : clinical studies, etc.

We need appropriate representations.

3

How do we decompose variability ?

Research in Image Processing :

• Signal analysis : compression, denoising, etc.
• Classification : Google image, etc.
• Population Analysis : clinical studies, etc.

We need appropriate representations.

3

JPEG2000, JPEG : Wavelets, Blockwise (high + low) frequencies

(a) Original image. (b) JPEG2000, 20 : 1. (c) JPEG, 20 : 1.

Figure 1: Taken from www.photozone.de.

4

Convolutional Neural Networks : Texture + Structure

Figure 2: Reference image.

5

Convolutional Neural Networks : Texture + Structure

Figure 2: With a transferred texture component. [3]

5

Convolutional Neural Networks : Texture + Structure

Figure 2: With a transferred texture component. [3]

5

Convolutional Neural Networks : Texture + Structure

Figure 2: With a transferred texture component. [3]

5

Convolutional Neural Networks : Texture + Structure

Figure 2: With a transferred texture component. [3]

5

Convolutional Neural Networks : Texture + Structure

Figure 2: With a transferred texture component. [3]

5

How do we handle intra-class variability ?

Figure 3: Silhouettes segmented from a fishing net. [2]

6

Procustes Analysis

Position, Scale and Orientation

Figure 4: Matching the blue wing on the red one. (Wikipedia)

7

From images to labeled point clouds

Figure 5: Anatomical landmarks on a tuna fish. [1]

8

Mathematical formulation

Let X, Y ∈ RM×D be two labeled point clouds.
Let Sτ,υ denote the rigid-body transformation of parameters
τ (translation) and υ (rotation + scaling).
Then, try to find

τ0, υ0 = argmin
τ,υ

‖ Sτ,υ(X)− Y ‖22 (1)

= argmin
τ,υ

M∑
m=1
| υ · xm + τ − ym |2 . (2)

9

Typical run on polygons

Figure 6: Matching a kitesurf on a square. (Wikipedia, Linschn)

10

Typical run on polygons

Figure 6: Matching a kitesurf on a square. (Wikipedia, Linschn)

10

Typical run on polygons

Figure 6: Matching a kitesurf on a square. (Wikipedia, Linschn)

10

Typical run on polygons

Figure 6: Matching a kitesurf on a square. (Wikipedia, Linschn)

10

Typical run on polygons

Figure 6: Matching a kitesurf on a square. (Wikipedia, Linschn)

10

Typical run on polygons

Figure 6: Matching a kitesurf on a square. (Wikipedia, Linschn)

10

Typical run on polygons

Figure 6: Matching a kitesurf on a square. (Wikipedia, Linschn)

10

Typical run on polygons

Figure 6: Matching a kitesurf on a square. (Wikipedia, Linschn)

10

Typical run on polygons

Figure 6: Matching a kitesurf on a square. (Wikipedia, Linschn)

10

Pros and cons of Procustes analysis

Pros :

• Simple and robust
• Parameters make sense
• Miracle results for populations of triangles (Kendall, 1984)

Cons :

• Max. number of 2 · D explicative parameters
• Unable to capture subtle shape deformations

This model is a standard pre-processing tool.
However, it is too limited to allow in-detail analysis.

11

Pros and cons of Procustes analysis

Pros :

• Simple and robust
• Parameters make sense
• Miracle results for populations of triangles (Kendall, 1984)

Cons :

• Max. number of 2 · D explicative parameters
• Unable to capture subtle shape deformations

This model is a standard pre-processing tool.
However, it is too limited to allow in-detail analysis.

11

Pros and cons of Procustes analysis

Pros :

• Simple and robust
• Parameters make sense
• Miracle results for populations of triangles (Kendall, 1984)

Cons :

• Max. number of 2 · D explicative parameters
• Unable to capture subtle shape deformations

This model is a standard pre-processing tool.
However, it is too limited to allow in-detail analysis.

11

Optimal Transport

Image matching as a mass-carrying problem

Figure 7: Optimal transport between two curves seen as mass
distributions : from a déblai to a remblai.

12

Image matching as a mass-carrying problem

Figure 7: Optimal transport between two curves seen as mass
distributions : from a déblai to a remblai.

12

Image matching as a mass-carrying problem

Figure 7: Optimal transport between two curves seen as mass
distributions : from a déblai to a remblai.

12

Dynamic formulation

Let : (x1, . . . , xI) and (y1, . . . , yJ) be two point clouds
and (µ1, . . . , µI), (ν1, . . . , νJ) the associated (integer) weights,
such that

∑
µi = M =

∑
νj.

Then, find a collection of paths γm : t ∈ [0, 1] 7→ γmt minimizing

`2(γ) =
M∑
m=1

∫ 1

t=0
‖γ̇mt ‖

2 dt, (3)

under the constraint that for all indices i and j,

#
{
m ∈ [[1,M]] , γm0 = xi

}
= µi, (4)

#
{
m ∈ [[1,M]] , γm1 = yj

}
= νj. (5)

γ is the optimal transport path between the two measures
I∑
i=1

µiδxi = µ
γ−−−→ ν =

J∑
j=1

νjδyj . (6)

13

Dynamic formulation

Let : (x1, . . . , xI) and (y1, . . . , yJ) be two point clouds
and (µ1, . . . , µI), (ν1, . . . , νJ) the associated (integer) weights,
such that

∑
µi = M =

∑
νj.

Then, find a collection of paths γm : t ∈ [0, 1] 7→ γmt minimizing

`2(γ) =
M∑
m=1

∫ 1

t=0
‖γ̇mt ‖

2 dt, (3)

under the constraint that for all indices i and j,

#
{
m ∈ [[1,M]] , γm0 = xi

}
= µi, (4)

#
{
m ∈ [[1,M]] , γm1 = yj

}
= νj. (5)

γ is the optimal transport path between the two measures
I∑
i=1

µiδxi = µ
γ−−−→ ν =

J∑
j=1

νjδyj . (6)

13

Dynamic formulation

Let : (x1, . . . , xI) and (y1, . . . , yJ) be two point clouds
and (µ1, . . . , µI), (ν1, . . . , νJ) the associated (integer) weights,
such that

∑
µi = M =

∑
νj.

Then, find a collection of paths γm : t ∈ [0, 1] 7→ γmt minimizing

`2(γ) =
M∑
m=1

∫ 1

t=0
‖γ̇mt ‖

2 dt, (3)

under the constraint that for all indices i and j,

#
{
m ∈ [[1,M]] , γm0 = xi

}
= µi, (4)

#
{
m ∈ [[1,M]] , γm1 = yj

}
= νj. (5)

γ is the optimal transport path between the two measures
I∑
i=1

µiδxi = µ
γ−−−→ ν =

J∑
j=1

νjδyj . (6)
13

Static formulation : transport plan

Independent particles should always go in straight lines :
If we denote ci,j =

∥∥xi − yj∥∥2, find an optimal transport plan
Γ = (γi,j)(i,j)∈[[1,I]]×[[1,J]] minimizing

CX,Y(Γ) =
∑
i,j

γi,j ci,j (7)

under the constraints :

∀ i, j, γi,j > 0, ∀ i,
∑
j

γi,j = µi, ∀ j,
∑
i

γi,j = νj. (8)

14

Static formulation : permutation

If we relabel the unit masses (x1, . . . , xM) and (y1, . . . , yM),
find a permutation σ : [[1,M]]→ [[1,M]] minimizing

CX,Y(σ) =
M∑
m=1

∥∥∥xm − yσ(m)
∥∥∥2 . (9)

σ is an optimal labeling.

15

The Sinkhorn algorithm : an efficient iterative solver

Figure 8: Measures to match.

16

The Sinkhorn algorithm : an efficient iterative solver

Figure 8: Monge transport,
√
ε = 0.

16

The Sinkhorn algorithm : an efficient iterative solver

Figure 8: Diffuse transport,
√
ε = .01.

16

The Sinkhorn algorithm : an efficient iterative solver

Figure 8: Diffuse transport,
√
ε = .03.

16

Pros and cons of Optimal Transport

Pros :

• Well-posed, convex problem
• Global and precise matchings
• Light-speed numerical solvers at hand (Cuturi, 2013)

Cons :

• Discards topology : tears shapes apart

This model is mathematically and numerically appealing.
However, it does not provide any smoothness guarantee.

17

Pros and cons of Optimal Transport

Pros :

• Well-posed, convex problem
• Global and precise matchings
• Light-speed numerical solvers at hand (Cuturi, 2013)

Cons :

• Discards topology : tears shapes apart

This model is mathematically and numerically appealing.
However, it does not provide any smoothness guarantee.

17

Pros and cons of Optimal Transport

Pros :

• Well-posed, convex problem
• Global and precise matchings
• Light-speed numerical solvers at hand (Cuturi, 2013)

Cons :

• Discards topology : tears shapes apart

This model is mathematically and numerically appealing.
However, it does not provide any smoothness guarantee.

17

Can we build a rich and practical model for
smooth deformations ?

17

The LDDMM framework

Spoiler alert : yes indeed, but it won’t be convex anymore

Figure 9: Source.

18

Spoiler alert : yes indeed, but it won’t be convex anymore

Figure 9: Target.

18

Spoiler alert : yes indeed, but it won’t be convex anymore

Figure 9: OT matching.

18

Spoiler alert : yes indeed, but it won’t be convex anymore

Figure 9: LDDMM matching.

18

The LDDMM framework

Regularized transport : a Riemannian
problem

Static regularization : a first attempt

A naive way to regularize transport :
Find σ : [[1,M]]→ [[1,M]] minimizing

CX,Yk (σ) =
∑
m

∥∥∥xm − yσ(m)
∥∥∥2︸ ︷︷ ︸

Displacement cost

+
∑
m,m′

k(xm, xm′
) ·
∥∥∥yσ(m) − yσ(m′)

∥∥∥2︸ ︷︷ ︸
Regularization cost

,

(10)

with k(x, y) a kernel neighborhood function.

19

An appropriate cost should give rise to a distance

If CX,Yk (·) is a cost on matchings, we define

dk(X, Y) = min
σ

CX,Yk (σ). (11)

It’d better be :

• Null iff X and Y stand for the same shape
• Symmetric
• Compatible with the triangle inequality

20

An appropriate cost should give rise to a distance

If CX,Yk (·) is a cost on matchings, we define

dk(X, Y) = min
σ

CX,Yk (σ). (11)

It’d better be :

• Null iff X and Y stand for the same shape
• Symmetric
• Compatible with the triangle inequality

20

Static regularization : symmetry without continuity

Find a permutation σ : [[1,M]]→ [[1,M]] minimizing

CX,Yk,sym(σ) =
∑
m

∥∥∥xm − yσ(m)
∥∥∥2︸ ︷︷ ︸

Displacement cost

+
1
2
∑
m,m′

k(xm, xm′
) ·
∥∥∥yσ(m) − yσ(m′)

∥∥∥2︸ ︷︷ ︸
X → Y regularization cost

+
1
2
∑
m,m′

k(ym, ym′
) ·
∥∥∥xσ−1(m) − xσ−1(m′)

∥∥∥2︸ ︷︷ ︸
Y → X regularization cost

.

This cost is symmetric, but does not handle properly the
shapes between X and Y .

21

Going back to the kinematic transportation

Find a collection of paths γm from X to Y minimizing

Ck(γ) =
∫ 1

0

[∑
m
‖γ̇mt ‖

2

︸ ︷︷ ︸
Displacement cost

+
∑
m,m′

k(γmt , γm
′

t) ·
∥∥∥γ̇mt − γ̇m

′
t

∥∥∥2︸ ︷︷ ︸
Regularization cost

]
dt.

Particles will move optimally if they are :

• lazy
• gregarious wrt. their k-neighbors

22

Geodesic path-finding on a Riemannianmanifold of point clouds

With γt = (γ1t , . . . , γ
M
t) ∈ RM×D, we can write

Ck(γ) =
∫ 1

0
γ̇Tt gγt γ̇tdt. (12)

Optimal deformations are geodesics on the space of
landmarks RM×D endowed with a Riemannian metric gq :(

dg(q→ q+ v · dt)
)2

dt
=
∑
m
‖vm‖2 +

∑
m,m′

k(qm,qm′
) ·
∥∥∥vm − vm′

∥∥∥2
= vTgqv = ‖v‖2gq (13)

23

Geodesic path-finding on a Riemannianmanifold of point clouds

With γt = (γ1t , . . . , γ
M
t) ∈ RM×D, we can write

Ck(γ) =
∫ 1

0
γ̇Tt gγt γ̇tdt. (12)

Optimal deformations are geodesics on the space of
landmarks RM×D endowed with a Riemannian metric gq :(

dg(q→ q+ v · dt)
)2

dt
=
∑
m
‖vm‖2 +

∑
m,m′

k(qm,qm′
) ·
∥∥∥vm − vm′

∥∥∥2
= vTgqv = ‖v‖2gq (13)

23

The LDDMM framework

Geodesic shooting on a Riemannian
manifold

Riemann : conveniently working with arbitrary geometries

(a) As a deformed square. (b) Embedded in R3.

Figure 10: The donut-shaped torus.

24

Sometimes, we can compute geodesics explicitly...

a

b

(1− t) · a+ t · b

(a) The Euclidean plane. (b) The Poincaré disk.

Figure 11: Explicit geodesics on homogeneous manifolds.
(b) is adapted from www.pitt.edu/~jdnorton/.

25

www.pitt.edu/~jdnorton/

But this is not the case in general

Figure 12: Geodesics on the Duhem’s bull, embedded in R3.
Taken from www.chaos-math.org.

26

www.chaos-math.org

A first result : the geodesic equation

Geodesic =⇒ locally “straight” =⇒ second order ODE,
the geodesic equation satisfied by γt = (γ1t , . . . , γ

D
t) :

∀ d ∈ [[1,D]] , γ̈dt = −
∑

16i,j6D

Γdij(γt) · γ̇
i
t γ̇

j
t, (14)

where the Christoffel symbols Γdij(q) are given by :

Γdij(q) =
1
2

D∑
l=1

gdl(q) ·
(
∂igjl(q) + ∂jgil(q)− ∂lgij(q)

)
, (15)

with gij the metric tensor and gdl its inverse, the cometric.

27

From celerity to momentum

The “Christoffel” equation is an ODE in the tangent bundle :

(qt, vt) = (γt, γ̇t). (16)

Hamilton : one should work in the cotangent bundle :

(qt,pt) = (qt,gqtvt). (17)

We denote Kq = g−1q and H(q,p) = 1
2p

TKqp, so that

1
2
vTt gqtvt =

1
2
‖γ̇t‖2γt︸ ︷︷ ︸

Kinetic energy

= H(qt,pt). (18)

28

From celerity to momentum

The “Christoffel” equation is an ODE in the tangent bundle :

(qt, vt) = (γt, γ̇t). (16)

Hamilton : one should work in the cotangent bundle :

(qt,pt) = (qt,gqtvt). (17)

We denote Kq = g−1q and H(q,p) = 1
2p

TKqp, so that

1
2
vTt gqtvt =

1
2
‖γ̇t‖2γt︸ ︷︷ ︸

Kinetic energy

= H(qt,pt). (18)

28

From celerity to momentum

The “Christoffel” equation is an ODE in the tangent bundle :

(qt, vt) = (γt, γ̇t). (16)

Hamilton : one should work in the cotangent bundle :

(qt,pt) = (qt,gqtvt). (17)

We denote Kq = g−1q and H(q,p) = 1
2p

TKqp, so that

1
2
vTt gqtvt =

1
2
‖γ̇t‖2γt︸ ︷︷ ︸

Kinetic energy

= H(qt,pt). (18)

28

Hamiltonian geodesic equations

Hamilton, 1833
γt is a geodesic if and only if the lifted cotangent trajectory
(qt,pt) follows the Hamiltonian equation :{

q̇t = +∂H
∂p (qt,pt) = +Kqtpt

ṗt = −∂H
∂q (qt,pt) = −∂q(pt, Kqpt)(qt)

. (19)

In the cotangent phase space, we flow along the symplectic
gradient :

X(q,p) =
(
+∂H

∂p (q,p)
−∂H

∂q (q,p)

)
= “R−90◦”

(
∇H(q,p)

)
. (20)

29

Hamiltonian geodesic equations

Hamilton, 1833
γt is a geodesic if and only if the lifted cotangent trajectory
(qt,pt) follows the Hamiltonian equation :{

q̇t = +∂H
∂p (qt,pt) = +Kqtpt

ṗt = −∂H
∂q (qt,pt) = −∂q(pt, Kqpt)(qt)

. (19)

In the cotangent phase space, we flow along the symplectic
gradient :

X(q,p) =
(
+∂H

∂p (q,p)
−∂H

∂q (q,p)

)
= “R−90◦”

(
∇H(q,p)

)
. (20)

29

Quick physical “justification”

Consider a free-falling particle of mass m :

q = z, v = ż, (21)
q̇ = v, v̇ = −g. (22)

Now, we can write p = mv so that

H(q,p) = “Ecin”(q,p) + “Epp”(q,p) =
1
2
p2

m
+mgq. (23)

We find : {
q̇ = +∂H

∂p = +p/m
ṗ = −∂H

∂q = −mg
. (24)

30

Quick physical “justification”

Consider a free-falling particle of mass m :

q = z, v = ż, (21)
q̇ = v, v̇ = −g. (22)

Now, we can write p = mv so that

H(q,p) = “Ecin”(q,p) + “Epp”(q,p) =
1
2
p2

m
+mgq. (23)

We find : {
q̇ = +∂H

∂p = +p/m
ṗ = −∂H

∂q = −mg
. (24)

30

Quick physical “justification”

Consider a free-falling particle of mass m :

q = z, v = ż, (21)
q̇ = v, v̇ = −g. (22)

Now, we can write p = mv so that

H(q,p) = “Ecin”(q,p) + “Epp”(q,p) =
1
2
p2

m
+mgq. (23)

We find : {
q̇ = +∂H

∂p = +p/m
ṗ = −∂H

∂q = −mg
. (24)

30

The geodesic shooting algorithm

A geodesic path γt is characterized by (q0,p0).
To compute any geodesic starting from a source q0, we simply
need a shooting momentum p0 and a simplistic Euler scheme :{

qt+0.1 = qt + 0.1 · Kqtpt
pt+0.1 = pt − 0.1 · ∂q(pt, Kqpt)(qt)

. (25)

Exponential map :

Expq0 : p0 ∈ T
?
q0M 7→ q1 ∈M (26)

31

The geodesic shooting algorithm

A geodesic path γt is characterized by (q0,p0).
To compute any geodesic starting from a source q0, we simply
need a shooting momentum p0 and a simplistic Euler scheme :{

qt+0.1 = qt + 0.1 · Kqtpt
pt+0.1 = pt − 0.1 · ∂q(pt, Kqpt)(qt)

. (25)

Exponential map :

Expq0 : p0 ∈ T
?
q0M 7→ q1 ∈M (26)

31

It works !

(a) 2D parametrization. (b) Embedded in R3.

Figure 13: Geodesics on the donut-shaped torus.

32

Lessons taught by the Hamiltonian theory of geodesics

We are looking for :

• Tearing-adverse metrics on the space of landmarks
• Efficient ways to compute geodesics (deformations)

Hamilton has taught us that :

• Geodesics are “simple” iff the cometric Kq = g−1q is simple
• The Exponential map can be computed efficiently

33

Lessons taught by the Hamiltonian theory of geodesics

We are looking for :

• Tearing-adverse metrics on the space of landmarks
• Efficient ways to compute geodesics (deformations)

Hamilton has taught us that :

• Geodesics are “simple” iff the cometric Kq = g−1q is simple
• The Exponential map can be computed efficiently

33

The LDDMM framework

Kernel cometrics and Diffeomorphic
trajectories

Parallelism is the way forward

Figure 14: Highly-parallel MoKaMachine (Mokaplan Inria team). 34

GPUs in action

Figure 15: Mythbusters Demo GPU versus CPU, taken from the Nvidia
YouTube channel. 35

Kernel cometrics, full isotropic tensor

Use a blockwise kernel matrix :

Kq =


k(q1,q1)ID k(q1,q2)ID · · · k(q1,qM)ID
k(q2,q1)ID k(q2,q2)ID · · · k(q2,qM)ID

...
...

k(qM,q1)ID k(qM,q2)ID · · · k(qM,qM)ID

 (27)

with k(x, y) a kernel function (Gaussian, Cauchy, etc.).

36

Kernel cometrics, reduced tensor

That is, use a reduced correlation matrix

kq =


k(q1,q1) k(q1,q2) · · · k(q1,qM)
k(q2,q1) k(q2,q2) · · · k(q2,qM)

...
...

k(qM,q1) k(qM,q2) · · · k(qM,qM)

 (28)

so that

H(q,p) =
1
2
pTKqp =

1
2

M∑
i,j=1

k(qi,qj) · (pi)T pj. (29)

37

Translation-invariant kernels and convolution

In practice, we take

k(x, y) = k(‖x − y‖) (30)

so that
M∑
i,j=1

k(qi,qj) · (pi)T pj =
M∑
i,j=1

k(qi − qj) ·
〈
pi,pj

〉
(31)

= 〈p, k ? p〉 (32)

with

p =
M∑
i=1

piδqi . (33)

In a computational sense, this is the simplest family of
cometrics on the space of landmarks.

38

Translation-invariant kernels and convolution

In practice, we take

k(x, y) = k(‖x − y‖) (30)

so that
M∑
i,j=1

k(qi,qj) · (pi)T pj =
M∑
i,j=1

k(qi − qj) ·
〈
pi,pj

〉
(31)

= 〈p, k ? p〉 (32)

with

p =
M∑
i=1

piδqi . (33)

In a computational sense, this is the simplest family of
cometrics on the space of landmarks.

38

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 16: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

39

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 16: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

39

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 16: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

39

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 16: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

39

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 16: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

39

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 16: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

39

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 16: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

39

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 16: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

39

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 16: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

39

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 16: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

39

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 16: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

39

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 17: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

40

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 17: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

40

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 17: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

40

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 17: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

40

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 17: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

40

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 17: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

40

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 17: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

40

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 17: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

40

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 17: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

40

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 17: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

40

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 17: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

40

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 18: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

41

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 18: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

41

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 18: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

41

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 18: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

41

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 18: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

41

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 18: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

41

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 18: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

41

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 18: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

41

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 18: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

41

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 18: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

41

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 18: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

41

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 19: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

42

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 19: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

42

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 19: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

42

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 19: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

42

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 19: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

42

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 19: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

42

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 19: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

42

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 19: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

42

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 19: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

42

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 19: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

42

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 19: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

42

RKHS norms on velocity vector fields

Let k be a smooth enough kernel function, with k̂(ω) ∈ R?
+.

If v : RD → RD is a vector field on the ambient space, define

‖v‖2k =

∫
ω∈RD

1
k̂(ω)

|v̂(ω)|2 dω. (34)

• Vk ={v | ‖v‖k <∞} is a Hilbert space of k-smooth vector
fields

• We assume k is smooth enough, so that δx : v 7→ v(x)
belongs to the dual space (Vk)? : we link with the theory
of Reproducing Kernel Hilbert Spaces.

43

RKHS norms on velocity vector fields

Let k be a smooth enough kernel function, with k̂(ω) ∈ R?
+.

If v : RD → RD is a vector field on the ambient space, define

‖v‖2k =

∫
ω∈RD

1
k̂(ω)

|v̂(ω)|2 dω. (34)

• Vk ={v | ‖v‖k <∞} is a Hilbert space of k-smooth vector
fields

• We assume k is smooth enough, so that δx : v 7→ v(x)
belongs to the dual space (Vk)? : we link with the theory
of Reproducing Kernel Hilbert Spaces.

43

Integration of k-smooth vector flows

Assume that (vt) is a time-varying vector field such that

`k(v)2 =

∫ 1

0
‖vt‖2k dt < ∞. (35)

According to Picard-Lindelöf theorem, we can integrate the
flow, find a unique trajectory φt of diffeomorphisms such that
for every point x ∈ RD and time t ∈ [0, 1] :

φ0(x) = x and d
dt

[φt(x)] = vt ◦ φt(x),

i.e. φ0 = IdRD and φt =

∫ t

s=0
vs ◦ φs ds.

44

Integration of k-smooth vector flows

Assume that (vt) is a time-varying vector field such that

`k(v)2 =

∫ 1

0
‖vt‖2k dt < ∞. (35)

According to Picard-Lindelöf theorem, we can integrate the
flow, find a unique trajectory φt of diffeomorphisms such that
for every point x ∈ RD and time t ∈ [0, 1] :

φ0(x) = x and d
dt

[φt(x)] = vt ◦ φt(x),

i.e. φ0 = IdRD and φt =

∫ t

s=0
vs ◦ φs ds.

44

An infinite-dimensional matching problem

We define Gk ={φ1 | · · ·} the set of diffeomorphisms obtained
by integrating finite-cost vector flows (vt) ∈ L2(Vk).

Gk is an infinite-dimensional Riemannian manifold modeled
on Vk. As diffeomorphisms carry around images and measures,
we try to minimize

C2(φ1) = `k(v)2 =

∫ 1

0
‖vt‖2k dt < ∞ (36)

under the constraint that

X φ1−−−−→ Y. (37)

45

An infinite-dimensional matching problem

We define Gk ={φ1 | · · ·} the set of diffeomorphisms obtained
by integrating finite-cost vector flows (vt) ∈ L2(Vk).

Gk is an infinite-dimensional Riemannian manifold modeled
on Vk.

As diffeomorphisms carry around images and measures,
we try to minimize

C2(φ1) = `k(v)2 =

∫ 1

0
‖vt‖2k dt < ∞ (36)

under the constraint that

X φ1−−−−→ Y. (37)

45

An infinite-dimensional matching problem

We define Gk ={φ1 | · · ·} the set of diffeomorphisms obtained
by integrating finite-cost vector flows (vt) ∈ L2(Vk).

Gk is an infinite-dimensional Riemannian manifold modeled
on Vk. As diffeomorphisms carry around images and measures,
we try to minimize

C2(φ1) = `k(v)2 =

∫ 1

0
‖vt‖2k dt < ∞ (36)

under the constraint that

X φ1−−−−→ Y. (37)

45

The kernel and diffeomorphic geodesics coincide

Reduction Principle
Let qt be a time-dependent point cloud, k a kernel function.
Then, the two propositions below are equivalent :

i) qt is a geodesic for the kernel cometric Kq, with
momentum pt associated to the Hamiltonian

H(q,p) =
1
2
pTKqp. (38)

ii) qt is carried around by a locally optimal diffeomorphic
trajectory φt, and we have

vt = k ? pt i.e. vt(x) =
M∑
m=1

k(qmt , x)pmt . (39)

46

Hand-waving proof of the reduction principle, part 1

At any time t,

vt = argmin{‖v‖k | ∀ m, v(qmt) = vt(qmt) } . (40)

Hence, as vt does not have any superfluous component,

vt ∈{ v | ∀ m, v(qmt) = 0 }⊥k (41)

i.e. vt ∈
(M⋂
m=1

{
v |
〈
δqmt , v

〉
= 0

})⊥k

. (42)

But we also know that :〈
k ? δqmt , v

〉
k
=

∫
ω∈RD

1
k̂(ω)

k̂ ? δqmt (ω) · v̂(ω) dω (43)

=

∫
ω∈RD

δ̂qmt (ω) · v̂(ω) dω (44)

=
〈
δqmt , v

〉
= v(qmt). (45)

47

Hand-waving proof of the reduction principle, part 1

At any time t,

vt = argmin{‖v‖k | ∀ m, v(qmt) = vt(qmt) } . (40)

Hence, as vt does not have any superfluous component,

vt ∈{ v | ∀ m, v(qmt) = 0 }⊥k (41)

i.e. vt ∈
(M⋂
m=1

{
v |
〈
δqmt , v

〉
= 0

})⊥k

. (42)

But we also know that :〈
k ? δqmt , v

〉
k
=

∫
ω∈RD

1
k̂(ω)

k̂ ? δqmt (ω) · v̂(ω) dω (43)

=

∫
ω∈RD

δ̂qmt (ω) · v̂(ω) dω (44)

=
〈
δqmt , v

〉
= v(qmt). (45)

47

Hand-waving proof of the reduction principle, part 1

At any time t,

vt = argmin{‖v‖k | ∀ m, v(qmt) = vt(qmt) } . (40)

Hence, as vt does not have any superfluous component,

vt ∈{ v | ∀ m, v(qmt) = 0 }⊥k (41)

i.e. vt ∈
(M⋂
m=1

{
v |
〈
δqmt , v

〉
= 0

})⊥k

. (42)

But we also know that :〈
k ? δqmt , v

〉
k
=

∫
ω∈RD

1
k̂(ω)

k̂ ? δqmt (ω) · v̂(ω) dω (43)

=

∫
ω∈RD

δ̂qmt (ω) · v̂(ω) dω (44)

=
〈
δqmt , v

〉
= v(qmt). (45)

47

Hand-waving proof of the reduction principle, part 2

Hence why, at any time t,

vt ∈
(M⋂
m=1

{
v |
〈
k ? δqmt , v

〉
k
= 0

})⊥k

(46)

=
M⋃
m=1

(
k ? δqmt

)⊥k⊥k
(47)

= Vect
(
k ? δqmt , m ∈ [[1,M]]

)
. (48)

So, one can write

vt = k ?
(M∑
m=1

pmt δqmt

)
= k ? pt, (49)

and

‖vt‖2k =
〈
k ? pt, k(−1) ? k ? pt

〉
= 〈k ? pt,pt〉 = pTtKqtpt. (50)

48

Hand-waving proof of the reduction principle, part 2

Hence why, at any time t,

vt ∈
(M⋂
m=1

{
v |
〈
k ? δqmt , v

〉
k
= 0

})⊥k

(46)

=
M⋃
m=1

(
k ? δqmt

)⊥k⊥k
(47)

= Vect
(
k ? δqmt , m ∈ [[1,M]]

)
. (48)

So, one can write

vt = k ?
(M∑
m=1

pmt δqmt

)
= k ? pt, (49)

and

‖vt‖2k =
〈
k ? pt, k(−1) ? k ? pt

〉
= 〈k ? pt,pt〉 = pTtKqtpt. (50)

48

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 20: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

49

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 20: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

49

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 20: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

49

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 20: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

49

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 20: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

49

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 20: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

49

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 20: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

49

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 20: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

49

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 20: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

49

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 20: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

49

Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 20: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .25.

49

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 21: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

50

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 21: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

50

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 21: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

50

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 21: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

50

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 21: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

50

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 21: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

50

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 21: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

50

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 21: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

50

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 21: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

50

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 21: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

50

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 21: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

50

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 22: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

51

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 22: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

51

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 22: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

51

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 22: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

51

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 22: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

51

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 22: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

51

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 22: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

51

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 22: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

51

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 22: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

51

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 22: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

51

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 22: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

51

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 23: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

52

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 23: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

52

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 23: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

52

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 23: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

52

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 23: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

52

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 23: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

52

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 23: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

52

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 23: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

52

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 23: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

52

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 23: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

52

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 23: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

52

Conclusion

We have now presented the Large Deformation Diffeomorphic
Metric Mapping, or LDDMM setting :

• OT (σ = 0) σ++−−−−−−→ Gk
σ++−−−−−−→ (σ = +∞) Translations

• Deformations computed through geodesic shooting

The (basic) framework relies on three pillars :

• Hamilton’s theorem (gq −→ Kq)
• The current availability of GPUs (parallelism)
• The Reduction Principle ((qt,pt)←→ φt)

53

Conclusion

We have now presented the Large Deformation Diffeomorphic
Metric Mapping, or LDDMM setting :

• OT (σ = 0) σ++−−−−−−→ Gk
σ++−−−−−−→ (σ = +∞) Translations

• Deformations computed through geodesic shooting

The (basic) framework relies on three pillars :

• Hamilton’s theorem (gq −→ Kq)
• The current availability of GPUs (parallelism)
• The Reduction Principle ((qt,pt)←→ φt)

53

The LDDMM framework

An iterative matching algorithm

Variability decomposition

Let X and Y be two shapes, we are looking for a k-deformation
f ∈ Gk such that :

X f−→ f (X) � Y with minimal dissimilarity “‖f (X)− Y‖2”.

As dissimilarity, one can use generic kernel or wasserstein
distances between measures, such as :

‖f (X)− Y‖2s = ‖µ− ν‖2s = ‖Bs ? (µ− ν)‖2L2(RD) . (51)

Ideally, we are looking for

p⊥s (Y → Gk · X) = argmin
f∈Gk
‖f (X)− Y‖2s. (52)

54

Variability decomposition

Let X and Y be two shapes, we are looking for a k-deformation
f ∈ Gk such that :

X f−→ f (X) � Y with minimal dissimilarity “‖f (X)− Y‖2”.

As dissimilarity, one can use generic kernel or wasserstein
distances between measures, such as :

‖f (X)− Y‖2s = ‖µ− ν‖2s = ‖Bs ? (µ− ν)‖2L2(RD) . (51)

Ideally, we are looking for

p⊥s (Y → Gk · X) = argmin
f∈Gk
‖f (X)− Y‖2s. (52)

54

Variability decomposition

Let X and Y be two shapes, we are looking for a k-deformation
f ∈ Gk such that :

X f−→ f (X) � Y with minimal dissimilarity “‖f (X)− Y‖2”.

As dissimilarity, one can use generic kernel or wasserstein
distances between measures, such as :

‖f (X)− Y‖2s = ‖µ− ν‖2s = ‖Bs ? (µ− ν)‖2L2(RD) . (51)

Ideally, we are looking for

p⊥s (Y → Gk · X) = argmin
f∈Gk
‖f (X)− Y‖2s. (52)

54

Regularized matching problem

However, in practice :

• Gk is not well understood
• We want dk(X, f (X)) = dGk(IdRD , f) 6 C < +∞

We settle for the minimization over the deformation f of :

Cost(f) = γreg · d2k(X, f (X)) + γatt ·‖f (X)− Y‖2s. (53)

That is, minimize over the shooting momentum p0 :

Cost(p0) = γreg · pT0Kq0p0 + γatt ·‖q1 − Y‖2s. (54)

If γreg << γatt, q1 should be good enough.

55

Regularized matching problem

However, in practice :

• Gk is not well understood
• We want dk(X, f (X)) = dGk(IdRD , f) 6 C < +∞

We settle for the minimization over the deformation f of :

Cost(f) = γreg · d2k(X, f (X)) + γatt ·‖f (X)− Y‖2s. (53)

That is, minimize over the shooting momentum p0 :

Cost(p0) = γreg · pT0Kq0p0 + γatt ·‖q1 − Y‖2s. (54)

If γreg << γatt, q1 should be good enough.

55

Regularized matching problem

However, in practice :

• Gk is not well understood
• We want dk(X, f (X)) = dGk(IdRD , f) 6 C < +∞

We settle for the minimization over the deformation f of :

Cost(f) = γreg · d2k(X, f (X)) + γatt ·‖f (X)− Y‖2s. (53)

That is, minimize over the shooting momentum p0 :

Cost(p0) = γreg · pT0Kq0p0 + γatt ·‖q1 − Y‖2s. (54)

If γreg << γatt, q1 should be good enough.

55

Regularized matching problem

However, in practice :

• Gk is not well understood
• We want dk(X, f (X)) = dGk(IdRD , f) 6 C < +∞

We settle for the minimization over the deformation f of :

Cost(f) = γreg · d2k(X, f (X)) + γatt ·‖f (X)− Y‖2s. (53)

That is, minimize over the shooting momentum p0 :

Cost(p0) = γreg · pT0Kq0p0 + γatt ·‖q1 − Y‖2s. (54)

If γreg << γatt, q1 should be good enough.

55

Gradient descent on finite-dimensional manifolds

Figure 24: Matching from the source X to the target Y, constrained to
the golden sphere Gk · X .
Here, γreg << γatt : the geodesic length d2k(X, f (X)) is much less
constrained than the dissimilarity‖f (X)− Y‖2s . 56

Gradient descent on finite-dimensional manifolds

Figure 24: Matching from the source X to the target Y, constrained to
the golden sphere Gk · X .
Here, γreg << γatt : the geodesic length d2k(X, f (X)) is much less
constrained than the dissimilarity‖f (X)− Y‖2s . 56

Gradient descent on finite-dimensional manifolds

Figure 24: Matching from the source X to the target Y, constrained to
the golden sphere Gk · X .
Here, γreg << γatt : the geodesic length d2k(X, f (X)) is much less
constrained than the dissimilarity‖f (X)− Y‖2s . 56

Gradient descent on finite-dimensional manifolds

Figure 25: Matching from the source X to the target Y, constrained to
the golden torus Gk · X .
Here, γreg << γatt : the geodesic length d2k(X, f (X)) is much less
constrained than the dissimilarity‖f (X)− Y‖2s . 57

Gradient descent on finite-dimensional manifolds

Figure 25: Matching from the source X to the target Y, constrained to
the golden torus Gk · X .
Here, γreg << γatt : the geodesic length d2k(X, f (X)) is much less
constrained than the dissimilarity‖f (X)− Y‖2s . 57

Gradient descent on finite-dimensional manifolds

Figure 25: Matching from the source X to the target Y, constrained to
the golden torus Gk · X .
Here, γreg << γatt : the geodesic length d2k(X, f (X)) is much less
constrained than the dissimilarity‖f (X)− Y‖2s . 57

The LDDMM framework

Let’s read some code

The theano library

1 # Import the relevant tools
2 import time # to measure performance
3 import numpy as np # standard array library
4 import theano # Autodiff & symbolic calculus library :
5 import theano.tensor as T # - mathematical tools;
6 from theano import config, printing # - printing of the Sinkhorn error.

theano :

• Is a python library
• Symbolic computations =⇒ efficient CPU/GPU binaries
• Auto-differentiates expressions

• It changed my life... Let’s see why.

58

The theano library

1 # Import the relevant tools
2 import time # to measure performance
3 import numpy as np # standard array library
4 import theano # Autodiff & symbolic calculus library :
5 import theano.tensor as T # - mathematical tools;
6 from theano import config, printing # - printing of the Sinkhorn error.

theano :

• Is a python library
• Symbolic computations =⇒ efficient CPU/GPU binaries
• Auto-differentiates expressions
• It changed my life... Let’s see why.

58

The Hamiltonian

230 # Part 1 : kinetic energy on the phase space (Hamiltonian) =========================
231
232
233 def _squared_distances(x, y) :
234 "Returns the matrix of |x_i-y_j|^2."
235 x_col = x.dimshuffle(0, 'x', 1)
236 y_lin = y.dimshuffle('x', 0, 1)
237 return T.sum((x_col - y_lin)**2 , 2)
238
239 def _k(x, y, s) :
240 "Returns the matrix of k(x_i,y_j)= 1/(1+|x_i-y_j|^2)^{1/4}, with a heavy tail."
241 sq = _squared_distances(x, y) / (s**2)
242 return T.pow(1. / (1. + sq), .25)
243
244 def _cross_kernels(q, x, s) :
245 "Returns the full k-correlation matrices between two point clouds q and x."
246 K_qq = _k(q, q, s)
247 K_qx = _k(q, x, s)
248 K_xx = _k(x, x, s)
249 return (K_qq, K_qx, K_xx)
250
251 def _Hqp(q, p, sigma) :
252 "The hamiltonian, or kinetic energy of the shape q with momenta p."
253 pKqp = _k(q, q, sigma) * (p.dot(p.T))# Use a simple isotropic kernel
254 return .5 * T.sum(pKqp) # H(q, p) = 1

2 ·
∑

i,j k(xi, xj)pi.pj

59

Geodesic shooting

255 # Part 2 : Geodesic shooting ===
256
257
258 # The partial derivatives of the Hamiltonian are automatically computed !
259 def _dq_Hqp(q,p,sigma) :
260 return T.grad(_Hqp(q,p,sigma), q)
261 def _dp_Hqp(q,p,sigma) :
262 return T.grad(_Hqp(q,p,sigma), p)
263
264 def _hamiltonian_step(q,p, sigma) :
265 "Simplistic euler scheme step with dt = .1."
266 return [q + .1 * _dp_Hqp(q,p,sigma) ,
267 p - .1 * _dq_Hqp(q,p,sigma)]
268
269 def _HamiltonianShooting(q, p, sigma) :
270 "Shoots to time 1 a k-geodesic starting (at time 0) from q with momentum p."
271 # We use the "scan" theano routine, which can be understood as a "for" loop
272 result, updates = theano.scan(fn = _hamiltonian_step,
273 outputs_info = [q,p],
274 non_sequences = sigma,
275 n_steps = 10) # hardcode the "dt = .1"
276 # We do not store the intermediate results,
277 # and only return the final state + momentum :
278 final_result = [result[0][-1], result[1][-1]]
279 return final_result

60

OT fidelity, part 1

298 # Part 3 : Data attachment ==
299
300 def _ot_matching(q1_x, q1_mu, xt_x, xt_mu, radius) :
301 """
302 Given two measures q1 and xt represented by locations/weights arrays,
303 outputs an optimal transport fidelity term and the transport plan.
304 """
305 # The Sinkhorn algorithm takes as input three Theano variables :
306 c = _squared_distances(q1_x, xt_x) # Wasserstein cost function
307 mu = q1_mu ; nu = xt_mu
308
309 # Parameters of the Sinkhorn algorithm.
310 epsilon = (.02)**2 # regularization parameter
311 rho = (.5) **2 # unbalanced transport (Lenaic Chizat)
312 niter = 10000 # max niter in the sinkhorn loop
313 tau = -.8 # Nesterov-like acceleration
314 lam = rho / (rho + epsilon) # Update exponent
315 # Elementary operations ..
316 def ave(u,u1) :
317 "Barycenter subroutine, used by kinetic acceleration through extrapolation."
318 return tau * u + (1-tau) * u1
319 def M(u,v) :
320 "M_{ij} = (-c_{ij} + u_i + v_j) / \epsilon"
321 return (-c + u.dimshuffle(0,'x') + v.dimshuffle('x',0)) / epsilon
322 lse = lambda A : T.log(T.sum(T.exp(A), axis=1) + 1e-6) # prevents NaN

61

OT fidelity, part 2

326 # Actual Sinkhorn loop ..
327 # Iteration step :
328 def sinkhorn_step(u, v, foo) :
329 u1=u # useful to check the update
330 u = ave(u, lam * (epsilon * (T.log(mu) - lse(M(u,v))) + u))
331 v = ave(v, lam * (epsilon * (T.log(nu) - lse(M(u,v).T)) + v))
332 err = T.sum(abs(u - u1))
333 # "break" the loop if error < tol
334 return (u,v,err), theano.scan_module.until(err < 1e-4)
335
336 # Scan = "For loop" :
337 err0 = np.arange(1, dtype=config.floatX)[0]
338 result, updates = theano.scan(fn = sinkhorn_step, # Iterated routine
339 outputs_info = [(0.*mu), (0.*nu), err0], # Start
340 n_steps = niter # Number of iters
341)
342 U, V = result[0][-1], result[1][-1] # We only keep the final dual variables
343 Gamma = T.exp(M(U,V)) # Transport plan g = diag(a)*K*diag(b)
344 cost = T.sum(Gamma * c) # Simplistic cost, chosen for readability
345 if True : # Shameful hack to prevent the pruning of the error-printing node...
346 print_err_shape = printing.Print('error : ', attrs=['shape'])
347 errors = print_err_shape(result[2])
348 print_err = printing.Print('error : ') ; err_fin = print_err(errors[-1])
349 cost += .00000001 * err_fin
350 return [cost, Gamma]

62

Kernel fidelity, Data attachment term

351 def _kernel_matching(q1_x, q1_mu, xt_x, xt_mu, radius) :
352 """
353 Given two measures q1 and xt represented by locations/weights arrays,
354 outputs a kernel-fidelity term and an empty 'info' array.
355 """
356 K_qq, K_qx, K_xx = _cross_kernels(q1_x, xt_x, radius)
357 q1_mu = q1_mu.dimshuffle(0,'x') # column
358 xt_mu = xt_mu.dimshuffle(0,'x') # column
359 cost = .5 * (T.sum(K_qq * q1_mu.dot(q1_mu.T)) \
360 + T.sum(K_xx * xt_mu.dot(xt_mu.T)) \
361 -2*T.sum(K_qx * q1_mu.dot(xt_mu.T)))
362
363 [...] # error-tracking stuff
364 return [cost , ...]
365
366 def _data_attachment(q1_measure, xt_measure, radius) :
367 "Given two measures and a radius, returns a cost (Theano symbolic variable)."
368 if radius == 0 : # Convenient way to allow the choice of a method
369 return _ot_matching(q1_measure[0], q1_measure[1],
370 xt_measure[0], xt_measure[1],
371 radius)
372 else :
373 return _kernel_matching(q1_measure[0], q1_measure[1],
374 xt_measure[0], xt_measure[1],
375 radius)

63

Actual cost function

383 # Part 4 : Cost function and derivatives ==
384
385
386 def _cost(q,p, xt_measure, connec, params) :
387 """
388 Returns a total cost, sum of a small regularization term and the data attachment.
389 .. math ::
390
391 C(q_0, p_0) = .01 * H(q0,p0) + 1 * A(q_1, x_t)
392
393 Needless to say, the weights can be tuned according to the signal-to-noise ratio.
394 """
395 s,r = params # Deformation scale, Attachment scale
396 q1 = _HamiltonianShooting(q,p,s)[0] # Geodesic shooting from q0 to q1
397 # Convert the set of vertices 'q1' into a measure.
398 q1_measure = Curve._vertices_to_measure(q1, connec)
399 attach_info = _data_attachment(q1_measure, xt_measure, r)
400 return [.1* _Hqp(q, p, s) + 1.* attach_info[0] , attach_info[1]] # [cost, info]
401
402
403 # The discrete backward scheme is automatically computed :
404 def _dcost_p(q,p, xt_measure, connec, params) :
405 "The gradients of C wrt. p_0 is automatically computed."
406 return T.grad(_cost(q,p, xt_measure, connec, params)[0] , p)
407

64

Minimization script, part 1

421 def perform_matching(Q0, Xt, params, scale_momentum = 1, scale_attach = 1) :
422 """ Performs a matching from the source Q0 to the target Xt,
423 returns the optimal momentum P0. """
424 (Xt_x, Xt_mu) = Xt.to_measure() # Transform the target into a measure
425 q0 = Q0.points ; p0 = np.zeros(q0.shape) # Null initialization for the momentum
426
427 # Compilation ---
428 print('Compiling the energy functional.')
429 time1 = time.time()
430 # Cost is a function of 6 parameters :
431 # The source 'q', the starting momentum 'p',
432 # the target points 'xt_x', the target weights 'xt_mu',
433 # the deformation scale 'sigma_def', the attachment scale 'sigma_att'.
434 q, p, xt_x = T.matrices('q', 'p', 'xt_x') ; xt_mu = T.vector('xt_mu') # types
435
436 # Compilation. Depending on settings specified in the ~/.theanorc file or
437 # given at execution time, this will produce CPU or GPU code under the hood.
438 Cost = theano.function([q,p, xt_x,xt_mu],
439 [_cost(q,p, (xt_x,xt_mu), Q0.connectivity, params)[0],
440 _dcost_p(q,p, (xt_x,xt_mu), Q0.connectivity, params) ,
441 _cost(q,p, (xt_x,xt_mu), Q0.connectivity, params)[1]],
442 allow_input_downcast=True)
443 time2 = time.time()
444 print('Compiled in : ', '{0:.2f}'.format(time2 - time1), 's')
445

65

Minimization script, part 2

445 # Display pre-computing ---
446 connec = Q0.connectivity ; q0 = Q0.points ;
447 g0,cgrid = GridData() ; G0 = Curve(g0, cgrid)
448 # Given q0, p0 and grid points grid0 , outputs (q1,p1,grid1) after the flow
449 # of the geodesic equations from t=0 to t=1 :
450 ShootingVisualization = VisualizationRoutine(q0, params)
451 # L-BFGS minimization ---
452 from scipy.optimize import minimize
453 def matching_problem(p0_vec) :
454 "Energy minimized in the variable 'p0'."
455 p0 = p0_vec.reshape(q0.shape)
456 [c, dp_c, info] = Cost(q0, p0, Xt_x, Xt_mu)
457 matching_problem.Info = info
458 if (matching_problem.it % 1 == 0) and (c < matching_problem.bestc) :
459 matching_problem.bestc = c
460 q1,p1,g1 = ShootingVisualization(q0, p0, np.array(g0))
461 Q1 = Curve(q1, connec) ; G1 = Curve(g1, cgrid)
462 DisplayShoot(Q0, G0, p0, Q1, G1, Xt, info,
463 matching_problem.it, scale_momentum, scale_attach)
464 print('Iteration : ',matching_problem.it,', cost : ',c,' info : ',info.shape)
465 matching_problem.it += 1
466 # The fortran routines used by scipy.optimize expect float64 vectors
467 # instead of gpu-friendly float32 matrices: we need a slight conversion
468 return (c, dp_c.ravel().astype('float64'))
469 matching_problem.bestc=np.inf ; matching_problem.it=0 ; matching_problem.Info=None

66

Minimization script, part 3

473 time1 = time.time()
474 res = minimize(matching_problem, # function to minimize
475 p0.ravel(), # starting estimate
476 method = 'L-BFGS-B', # an order 2 method
477 jac = True, # matching_problems returns the gradient
478 options = dict(
479 maxiter = 1000, # max number of iterations
480 ftol = .000001,# Don't bother fitting to float precision
481 maxcor = 10 # Prev. grads. used to approx. the Hessian
482))
483 time2 = time.time()
484
485 p0 = res.x.reshape(q0.shape)
486 print('Convergence success : ', res.success, ', status = ', res.status)
487 print('Optimization message : ', res.message.decode('UTF-8'))
488 print('Final cost after ', res.nit, ' iterations : ', res.fun)
489 print('Elapsed time after ', res.nit, ' iterations : ',
490 '{0:.2f}'.format(time2 - time1), 's')
491 return p0, matching_problem.Info
492
493 def matching_demo(source_file, target_file, params, scale_mom = 1, scale_att = 1) :
494 Q0 = Curve.from_file(source_file) # Load source...
495 Xt = Curve.from_file(target_file) # and target.
496 # Compute the optimal shooting momentum :
497 p0, info = perform_matching(Q0, Xt, params, scale_mom, scale_att)

67

The LDDMM framework

Results

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 0.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 3.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 4.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 5.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 6.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 7.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 8.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 9.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 10.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 11.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 12.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 13.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 14.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 15.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 16.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 17.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 18.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 19.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 20.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 21.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 22.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 23.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 24.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 25.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 26.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 27.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 28.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 29.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 30.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 31.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 32.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 33.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 34.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 35.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 36.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 37.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 38.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 39.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 41.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 42.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 43.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 44.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 46.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 47.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 48.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 49.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 50.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 52.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 53.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 54.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 55.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 56.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 57.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 58.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 59.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 60.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 61.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 62.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 64.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 65.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 66.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 67.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 68.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 69.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 70.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 71.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 72.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 73.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 74.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 75.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 77.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 78.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 79.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 80.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 81.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 82.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 83.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 85.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 86.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 87.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 88.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 89.

68

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 26: Iteration 90.

68

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 0.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 3.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 4.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 5.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 6.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 7.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 8.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 9.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 10.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 11.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 12.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 13.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 14.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 15.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 16.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 17.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 19.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 20.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 21.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 22.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 23.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 24.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 25.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 26.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 27.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 28.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 30.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 31.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 32.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 33.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 34.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 36.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 37.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 38.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 39.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 40.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 41.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 42.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 44.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 45.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 46.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 47.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 50.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 70.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 90.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 110.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 130.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 150.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 170.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 200.

69

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 27: Iteration 240.

69

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .01.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .02.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .03.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .04.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .05.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .06.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .07.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .08.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .09.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .1.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .11.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .12.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .13.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .14.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .15.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .16.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .17.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .18.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .19.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .2.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .21.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .22.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .23.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .24.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .25.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .26.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .27.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .28.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .29.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .3.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .31.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .32.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .33.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .34.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .35.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .36.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .37.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .38.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .39.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .4.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .41.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .42.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .43.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .44.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .45.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .46.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .47.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .48.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .49.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .5.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .51.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .52.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .53.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .54.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .55.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .56.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .57.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .58.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .59.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .6.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .61.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .62.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .63.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .64.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .65.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .66.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .67.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .68.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .69.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .70.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .71.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .72.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .73.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .74.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .75.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .76.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .77.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .78.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .79.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .8.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .81.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .82.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .83.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .84.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .85.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .86.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .87.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .88.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .89.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .9.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .91.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .92.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .93.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .94.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .95.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .96.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .97.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .98.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = .99.

70

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 28: Final matching, σ = 1.0.

70

Conclusion

We can now emulate D’Arcy Thompson’s work

Figure 29: Excerpt from the seminal book of D’Arcy Wentworth
Thompson (1860-1948), On Growth and Forms. 71

Transfer of anatomical data

Figure 30: Video presentation of the (non-LDDMM) paper Anatomy
Transfer Fast Forward, Siggraph Asia 2013 by Ali-Hamadi, Liu, Gilles et
al.

72

Statistics on a Riemannian manifold

Biologists, Neurologists and Physicians would like to conduct
statistical surveys such as :

• Linear regression
• Mean computation + Principal Component Analysis
• Transport of tangential information

Problem : no meaningful algebraic structure (+,×) on shapes.

Given a mere Riemannian distance, we provide :

• Geodesic regression
• Fréchet Mean + PCA on shooting momentums
• Parallel transport

73

Statistics on a Riemannian manifold

Biologists, Neurologists and Physicians would like to conduct
statistical surveys such as :

• Linear regression
• Mean computation + Principal Component Analysis
• Transport of tangential information

Problem : no meaningful algebraic structure (+,×) on shapes.

Given a mere Riemannian distance, we provide :

• Geodesic regression
• Fréchet Mean + PCA on shooting momentums
• Parallel transport

73

Construction of anatomical atlases

Figure 31: Taken from the personal web page of Benjamin Charlier.

74

A continuum of professions

Figure 32: A (very) schematic view of the fields related to
Computational Anatomy. 75

A continuum of professions

Figure 32: The people behind the labels.
75

Matchings of partially observed shapes

(a) X and Y . (b) Target Y , view 1. (c) Target Y , view 2.

(d) Source X. (e) f (X), view 1. (f) f (X), view 2.

Figure 33: Matching artifacts for the retina dataset.

76

Questions?

76

References I

P. Addis, P. Melis, R. Cannas, M. S. F. Tinti, C. Piccinetti, and
A. Cau.
A morphometric approach for the analysis of body shape
in bluefin tuna: preliminary results.
Collect. Vol. Sci. Pap. ICCAT, 65(3):982–987, 2010.

S. Clausen, K. Greiner, O. Andersen, K.-A. Lie, H. Schulerud,
and T. Kavli.
Automatic segmentation of overlapping fish using shape
priors.
In Scandinavian conference on Image analysis, pages
11–20. Springer, 2007.

References II

Y. Nikulin and R. Novak.
Exploring the neural algorithm of artistic style.
arXiv preprint arXiv:1602.07188, 2016.

	Introduction
	Procustes Analysis
	Optimal Transport
	The LDDMM framework
	Regularized transport : a Riemannian problem
	Geodesic shooting on a Riemannian manifold
	Kernel cometrics and Diffeomorphic trajectories
	An iterative matching algorithm
	Let's read some code
	Results

	Conclusion
	Appendix

