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Abstract. We give an overview of the results on the cubic Schrödinger-half-wave equa-
tion. This equation serves as a toy model motivated by the study of the long time
behavior of solutions to weakly dispersive equations. Indeed, the linear part of the equa-
tion is anisotropic, with one direction corresponding to the half-wave operator, which is
not dispersive. In particular, the question of local and global well-posedness is a difficult
problem. We present a recent probabilistic local well-posedness result below the energy
space, which is critical for the Cauchy theory of this equation. Due to the absence of
probabilistic smoothing in the second Picard’s iteration that rules out the standard ap-
proach, we rely on a probabilistic quasilinear iteration scheme adapted from Bringmann’s
work on the derivative nonlinear wave equation.
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1. Introduction

We mention in this note some results on the cubic Schrödinger half-wave equation on R2

i∂tu+
(
∂2xx − |Dy|

)
u = µ |u|2 u , (t, x, y) ∈ R× R2 . (NLS-HW)

where |Dy| :=
√
−∂2yy and µ ∈ R. This equation is motivated by a mathematical interest

on the long time behavior and qualitative properties of solutions. It was first introduced
in [43] in the defocusing case (µ > 0) on the wave guide Rx × Ty to evidence weak
turbulence in the growth of Sobolev norms. Then, in the focusing case (µ < 0), the
ground state standing waves and traveling waves on the wave guide Rx × Ty were first
constructed in [2], and the stability properties of some standing waves investigated in [3].
We summarize these results in section 3.

Our main concern is to investigate the local Cauchy problem at low regularity. We
recall in section 2 the known deterministic well-posednesss and ill-posedness properties
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for equation (NLS-HW). The main difficulties are caused by the lack of dispersion in the
second spatial variable y, because equation (NLS-HW) can be decomposed as a coupled
system of two transport equations in this variable. Hence we are led to consider generic
initial data under the form of random initial data. In this setting, the lack of dispersion
causes a lack of probabilistic smoothing of the Duhamel’s iterate, hindering the classical
approach of Bourgain. However, recent developments enable us to overcome this problem
by using a probabilistic quasilinear resolution scheme, which we explain in section 4.

2. Cauchy problem

Due to the anisotropy of the equation, the relevant regularity spaces are anisotropic
Sobolev spaces Hs defined as

Hs := L2
xH

s
y ∩H2s

x L
2
y , Ḣs := L2

xḢ
s
y ∩ Ḣ2s

x L
2
y .

Note that as a consequence, the exponents in the Sobolev embedding are the same as the
ones in R3 even if there are only two variables, because the homogeneous dimension is 3.
Equation (NLS-HW) is a Hamiltonian system, with a formally conserved energy

H(u) =
1

2

∫
R2

|∂xu|2 +
∣∣∣|Dy|

1
2u

∣∣∣2 dx dy +
µ

4

∫
R2

|u|4 dx dy .

The mass ∥u∥2L2 is also formally conserved by the flow. There is no known conservation

law above regularity H
1
2 for equation (NLS-HW). Moreover, a Brezis-Gallouët argument

does not appear to be sufficient in order to control the norm of high-regularity solutions.

Therefore it seems necessary to handle the Cauchy problem below regularity H
1
2 in the

hope to get global well-posedness. However, we will see that the flow map cannot be C3

in Hs when 1
4 ≤ s < 1

2 , and the question of local well-posedness in the energy space

and below turns out to be a challenging problem. At supercritical regularities 0 < s < 1
4

a norm-inflation mechanism occurs as expected. One can summarize the state-of-the-art
Cauchy theory results for (NLS-HW) in the following diagram.

Norm-inflation [30] Flow map is not C3 [10] Local well-posedness [2]

Hs

I
L2

I
H

1
4

I
H

1
2

Figure 1. Deterministic Cauchy theory for equation (NLS-HW).

Let us now detail the properties of the three zones evidenced in this diagram.

2.1. Local well-posedness

When s > 1
2 , semilinear well-posedness is obtained using Strichartz estimates with a

derivative loss in [2].

Proposition 2.1 (Local well-posedness above the energy space, [2] Theorem 1.6). Let s >
1
2 . For every u0 ∈ Hs(R2), there exists T = T (∥u0∥Hs) > 0 such that equation (NLS-HW)
admits a unique local solution in C((−T, T ),Hs) with initial data u0.

It is shown in [2] that local well-posedness actually holds in L2
xH

s
y . The proof follows

from a fixed point argument in L∞
t ([−T , T ];L2

xH
s
y) ∩ L4

t ([−T , T ];L∞
x,y(R2)). Due to the

lack of dispersion in the y-direction, one needs to trade strictly more than 1
2 derivatives

against integrability (by using Sobolev embedding for instance) in order to control the
Strichartz norm L4

t ([−T , T ];L∞
x,y(R2)). Unfortunately the energy can only control the
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H
1
2 -norm of the solution, and we know no conservation law that controls the Hs-norm

when s > 1
2 . For these reasons, global existence for smooth solutions to (NLS-HW) is yet

to be proved, even in the defocusing case or for small data.

2.2. Ill-posedness results

The solutions of equation (NLS-HW) are invariant under the scaling symmetry

u 7→ uλ(t, x, y) = λu(λ2t, λx, λ2y) . (2.1)

This scaling leaves the Ḣ
1
4 -norm invariant. In scaling-supercritical regimes 0 < s < 1

4 the
flow-map, which is well-defined for smooth initial data, does not extend continuously in
Hs due to a norm inflation mechanism that reflects a low-to-high frequency cascade.

Theorem 2.2 (Norm inflation [30]). Let s < 1
4 . For every T > 0, the solution map cannot

be extended as a continuous map from Hs to C([−T, T ],Hs). More precisely, there exist a
sequence (tn)n∈N of positive times tending to zero and a sequence of compactly supported
smooth functions (ψn)n≫1 in C∞(R2) such that the corresponding smooth solutions (un)n
of (NLS-HW) given by Proposition 2.1 exist in Hs on [0, tn] and inflate:

lim
n→+∞

∥ψn∥Hs = 0 ,

lim
n→+∞

∥un(tn)∥Ḣs = +∞ .

In other words, there exist sequences of smooth initial data going to zero in Hs, such
that the corresponding solutions experience an inflation of their Hs-norm in arbitrarily
short time. Such a norm inflation mechanism was originally exhibited in [31, 32, 33] for the
wave equation, then extended to the Schrödinger equation in [18]. Non-uniform continuity
of the flow map for s = 1

4 in equation (NLS-HW) has also been investigated in [30].
To evidence norm inflation in the scaling-supercritical regime, we perform a small dis-

persion analysis. By rescaling an arbitrary compactly supported smooth function, one
generates a sequence of smooth initial data (ψn)n converging to zero in Hs while concen-
trating its mass in one point. Let un be the smooth solution to (NLS-HW) with initial
data ψn. We show that for short times, un stays close to the bubble profile vn, which is
solution of the dispersionless ODE{

i∂tvn = σ|vn|p−1vn ,

vn(0) = ψn .
(2.2)

The profile vn, which is explicit

vn(t, x) = e−it|ψn(x)| ψn(x)

is oscillating and concentrating, and inflates in Hs when 0 < s along a sequence of times
(tn) that goes to zero. Moreover, when 0 < sc, we deduce from a priori energy estimates
up to time tn that the solution un of the whole equation stays close to the profile:

sup
n

∥un(tn)− vn(tn)∥Hs ≲ 1 , (2.3)

so that the oscillations dominate the dispersion and un inflates as un. In this way, the
instability stems from the nonlinear interactions captured by the profile vn.

This proof of Theorem 2.2 was adapted in [42] around any initial data u(0) ∈ Hs and
not just the zero initial data. However, this indicates that allowing for any sequence of
smooth functions (un(0))n to approximate a given initial data u(0) in Hs always lead
to norm inflation. In the following we consider the sequence of initial data (ρεn ∗ u(0))n
regularized by and approximate identity εn → 0, and describe the class of u0 for which
the sequence of regularized solutions experiences norm inflation.
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Using the method developed for Schrödinger-type equations in [14] and inspired from [40]
for wave equation, we show that the regularization of rough initial data by convolution
does not prevent norm inflation in Hs for a dense class of pathological initial data, which
also known to contain a dense Gδ set in cases where the equation is globally well-posed.

More precisely, we fix ρ ∈ C∞
c (R2), valued in [0, 1], such that

∫
R2 ρ(x) dx = 1. Due to

the anisotropy, we define an approximate identity (ρε)ε>0 of the form

ρε(x, y) :=
1

ε3
ρ
(x
ε
,
y

ε2

)
.

Theorem 2.3 (Generic ill-posedness for (NLS-HW) [15]). Let s < 1
4 . There exists a dense

set S ⊂ Hs such that for every f ∈ S, the family of local solutions uε of (NLS-HW) with
initial data ρε ∗ f does not converge as ε → 0. More precisely, there exist εn → 0 and
tn → 0 such that uεn(tn) is well-defined and

lim
n→∞

∥uεn(tn)∥Hs = +∞ .

The idea is to superpose an infinite number of bubble solutions in the dispersionless
ODE (2.2), in other words, we replace the bump initial data ψn by an infinite series of
bumps with different scales. Given one convolution parameter εn, we prove that only the n-
th bubble exhibits norm inflation at time tn. Indeed, the bubbles at larger scale would need
a bigger time than tn to start to inflate, whereas the bubbles at smaller scale are flattened
by the convolution with ρϵ, which is concentrated at large scale. Finally, a perturbative
argument implies that the actual solution to (NLS-HW) still satisfies estimate (2.3).

2.3. Semilinear ill-posedness

We have seen that when s < 1
4 , the equation is scaling-supercritical, so that one can

evidence some norm-inflation mechanisms of the solutions. Yet, semilinear local well-
posedness is only known in Hs when 1

2 < s. We can show that actually, the flow map

cannot be of class C3 when 1
4 < s < 1

2 , meaning that (NLS-HW) is semilinearly ill-posed
for this range of exponents.

Theorem 2.4 (Semilinear ill-posedness [15]). If there exists a local in time flow map
on Hs with regularity C3 at the origin, then s ≥ 1

2 .

To establish this result, we note that as a corollary of Remark 2.12 in [10], if there
exists a C3 local in time flow map at the vicinity of the origin in the space Hs, then the
following Strichartz estimate holds:

∥eit(∂2xx−|Dy |)ϕ∥L4([0,1]×R2) ≲ ∥ϕ∥Ḣ s
2
. (2.4)

In order to invalidate these Strichartz estimates when s < 1
2 , we consider a one-parameter

family of profiles constructed from traveling waves for the one-dimensional Szegő equation.
More precisely, we consider a Gaussian distribution G, a family of traveling waves profiles
for the Szegő equation Kρ(y) =

1
y+iρ for ρ ∈ (0 ,+∞), and set

ϕ(x, y) = G(x)Kρ(y) .

Since Kρ is a traveling wave for the Szegő equation on the line [38], and in particular a
traveling wave for equation (NLS-HW), one can see that for every t, there holds

∥eit|Dy |Kρ∥L4(Ry) = ∥Kρ∥L4(Ry)

implying that as ρ→ 0,

∥eit(∂2xx−|Dy |)ϕ∥L4([0,1]×R2
x,y)

= ∥eit∂xxG∥L4([0,1]×Rx)∥Kρ∥L4(Ry) ∼ Cρ−
3
4 .
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Then we show using the independence of the functions G and Kρ that

∥ϕ∥Ḣs ∼
ρ→0

C ′ρ−
1
2
− s

2 .

By letting ρ go to zero in (2.4), we see that necessarily s ≥ 1
2 for the inequality ρ−

3
4 ≲

ρ−
1
2
−s to hold true.

To conclude this paragraph, let us stress out that it follows from such a lack of regularity
for the flow-map at the origin that one cannot run a contraction mapping argument
to construct solutions in Hs when 1

4 < s < 1
2 , since otherwise the flow-map would be

analytical.

3. Long-time behavior of some special solutions

Given the challenges to overcome in order to get a satisfying global Cauchy theory for
equation (NLS-HW), the results on the long-time dynamics are scarce. We mention the
existing results regarding modified scattering in the defocusing case (µ > 0) and on the
wave guide [43] for a class of smooth and decaying solution, and some stability results [2, 3]
for traveling waves in the focusing case (µ < 0), which are conditional to a Cauchy theory
in the energy space. Then we compare these dynamics with those observed for the one-
dimensional cubic half-wave equation and cubic Schrödinger equation, which are obtained
by considering the variables separately.

3.1. Modified scattering in the defocusing case

Equation (NLS-HW) was originally introduced by Xu [43] in the defocusing case on the
spatial wave guide Rx × Ty to evidence weak turbulence mechanisms in the growth of
Sobolev norms. Global existence and modified scattering are obtained for a class of suf-
ficiently smooth and decaying small initial data on the wave guide Rx × Ty. In addition,
the author shows that the limiting effective dynamics is governed by the Szegő equation
on the torus.

In order to formulate the result, we define two spaces S and S+ of sufficiently smooth
initial data with enough decay in the spatial variable x, mainly, for some fixed N ≥ 13,

∥u0∥S = ∥u0∥HN
x,y

+ ∥xu0∥L2
x,y
, ∥u0∥S+ = ∥u0∥S + ∥xu0∥S + ∥(1− ∂xx)

4u0∥S .

We also denote by Πy the Szegő projector onto nonnegative Fourier frequencies in the
variable y:

Πy :
∑
n∈Z

ûn e
iny ∈ L2

y(T) 7→
∑
n≥0

ûn e
iny .

Theorem 3.1 (Modified scattering [43]). There exists ε = ε(N) > 0 such that if the
initial data u0 ∈ S+ satisfies ∥u0∥S+ ≤ ε, then the corresponding solution u ∈ C(R+, S)
exists globally in S. Moreover, there exists G ∈ C(R+, S) such that

lim
t→+∞

∥u(t)− eit(∂
2
xx−|Dy |)G(π ln(t))∥S = 0 . (3.1)

The profile G is solution to the following resonant system:{
i∂tĜ+ = Πy(|Ĝ+|2Ĝ+)(ξ, y)

i∂tĜ− = (Id−Πy)(|Ĝ−|2Ĝ−)(ξ, y) ,

where G+ = Πy(G) and G− = G − G+. The Fourier transform Ĝ± of G± is the partial
Fourier transform in the variable x only, with corresponding Fourier variable ξ.
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By considering the Fourier variable ξ as a parameter, the equation for Ĝ+ is the cubic
Szegő equation on the torus. As a consequence of the work [26] on the growth of Sobolev
norms for the Szegő equation, this remark implies the existence of arbitrarily small initial
data such that for every s > 1

2 and N ≥ 1, the solution u exhibits weak turbulence. It is
expected that this result actually holds for a dense Gδ set of such initial data.

Corollary 3.2 (Growth of Sobolev norms [43, 26]). For every N ≥ 13, for every ε > 0,
there exists u0 ∈ S+ such that ∥u0∥S+ ≤ ε and the corresponding solution u satisfies:

∀s > 1

2
, lim sup

t→∞

∥u(t)∥L2
xH

s
y

log(t)N
= ∞ , lim inf

t→∞
∥u(t)∥L2

xH
s
y
<∞ .

The strategy employed by Xu on Rx×Ty is adapted from the study for the Schrödinger

equation on the wave guide Rx ×Tdy from Hani, Pausader, Tzvetkov and Visciglia in [28].
On Rx ×Ry, modified scattering should also be expected but it would rely on different

arguments. Xi [17] constructed wave operators in this setting, and deduced a different
type of growth of Sobolev norms in infinite time. Indeed, the resonant behavior is then
linked to the cubic Szegő equation on the line, for which there is a transition towards high
Fourier frequencies [27]. As a consequence, many solutions have a growth of the following
form:

1

C
log(t) ≤ ∥u(t)∥L2

xH
1
y
≤ C log(t) .

In comparison, the defocusing Schrödinger equation

i∂tu+ ∂2xxu = |u|2u , x ∈ R or T

is completely integrable. In particular the conservation laws that control Sobolev norms
of arbitrary high regularity imply that the solutions satisfy

∥u(t)∥Hs ≤ Cs(∥u0∥Hs) ,

for every s ≥ 1 and t ∈ R. However, as noticed in [28], the Schrödinger equation on the
wave guide Rx×Tdy for d ≥ 2 exhibits modified scattering. As a consequence of the analysis
of the resonant system [20], they prove that for every s ≥ 30, for every ε > 0, there exists
a global solution u ∈ C(R+, H

s) satisfying ∥u0∥Hs ≤ ε and

lim sup
t→∞

∥u(t)∥Hs = +∞ .

Concerning the defocusing half-wave equation on the torus (y ∈ T)

i∂tu− |Dy|u = |u|2u , (3.2)

we know that for every s > 1, there exist a sequence (un)n of solutions and a sequence of
times tn → ∞ satisfying

∥un0∥Hs → 0, ∥un(tn)∥Hs → +∞ .

The proof relies on and the growth of Sobolev norms for the Szegő equation [26], and on
the fact that solutions to the half-wave equation initiated from initial with nonnegative
frequencies stay close to the corresponding solution to the Szeő equation, until some large
finite time [25, 39]. However, the existence of an arbitrary small initial data such that
the solution to the half-wave equation satisfies lim supt→∞ ∥u(t)∥Hs = +∞ is an open
problem.
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3.2. Traveling waves in the focusing case

Subsequently, Bahri, Ibrahim and Kikuchi considered in [2, 3] the focusing case µ < 0 for
equation (NLS-HW) on the wave guide Rx×Ty. They constructed ground state standing
waves and traveling waves. Then they obtain orbital stability and transverse instability
results for the family of standing waves. More precisely, on Rx×Ty, the authors introduce
a family of ground state standing wave solutions uω with frequency ω > 0 of the form

uω(x, y, t) = eiωtQω (x, y) .

The ground states are constructed as minimizers of the energy functional

Sω(u) =
1

2
∥∂xu∥2L2 +

1

2
∥|Dy|1/2u∥2L2 +

ω

2
∥u∥2L2 −

1

4
∥u∥4L4

under the constraint Nω(u) = 0 with

Nω(u) = ∥∂xu∥2L2 + ∥|Dy|1/2u∥2L2 + ω∥u∥2L2 − ∥u∥4L4 .

In [3], the authors establish that for small frequencies 0 < ω < ω∗, the ground state Qω
does not depend on the spatial variable y. As a consequence, Qω is equal to the line soliton
for the Schrödinger equation, which is known to be orbitally stable on the line [16]. On
the wave guide for (NLS-HW), however, the Schrödinger line soliton presents transverse
instability properties: it is orbitally stable for small frequencies 0 < ω < ωp whereas it is
orbitally unstable for ω > ωp. After showing that ωp ≥ ω∗, the authors deduce the orbital
stability of ground states for small frequencies.

Theorem 3.3 (Ground state standing waves [3]). There exists ω∗ > 0 such that Qω does
not depend on y when 0 < ω ≤ ω∗, but depends on y when ω > ω∗. Moreover, the ground
state standing wave uω is orbitally stable when 0 < ω ≤ ω∗.

We stress out that the stability results of the grounds states for (NLS-H1) are conditional
to the existence of a good Cauchy theory in the energy space. Unfortunately, such a Cauchy
theory is yet to be addressed, since not much is known about the global existence of smooth
solutions in Sobolev spaces.

Theorem 3.3 is actually true for any nonlinearity of order 1 < p < 5 including the
cubic nonlinearity p = 3. The strategy to study orbital stability relies on the fact that
the standing wave only depends in one of the two variables, transferring the problem to
the Schrödinger equation on the line. It would be interesting to consider other geometries.
For instance one could try to establish some orbital stability or instability property when
the two spatial variables lie in Rx × Ry, so that the ground state has to depend on both
variables, but also on the wave guide Tx ×Ry where the dynamics at small frequencies ω
would be governed by the half-wave equation on the line rather than the Schrödinger
equation.

4. Cauchy problem and random initial data

Given the instabilities that make the equation quasilinear in Hs when 1
4 < s < 1

2 , an alter-
native approach is to study whether well-posedness holds for some initial data distributed
on a full-measure set. Such a probabilistic Cauchy theory goes back to the pioneering
work of Bourgain on T2 to prove the invariance of the Gibbs measure [4] and to the
general framework developed by Burq and Tzvetkov in [12, 13] for initial data in scaling-
supercritical regimes. This approach has been extensively developed since then in many
contexts, and we refer to [9] for a survey on this topic. As mentioned in section 4.4, the
theory has recently been significantly improved to achieve impressive results beyond the
scope of the original semi-linear framework discussed below in section 4.1.
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4.1. Bourgain and Burq, Tzvetkov’s historical approach

In what follows (gn(ω))n is a sequence of normalized independent Gaussian variables
with complex values, defined on a probability space (Ω,F,P). Let sc be a critical threshold
under which instabilities that rule out a deterministic Cauchy theory are known to occur.
When s < sc, one can still develop a statistical approach and construct suitable probability
measures on Hs on the support of which the initial data in Hs has better integrability
properties in Lp spaces. For these generic initial data one can also observe from the
dispersive features of the linear part of the equation a nonlinear smoothing effect in the
Picard’s iterations, which is enhanced by the probabilistic oscillations of the initial data.
For instance, when ϕω is distributed according the Gibbs measure associated to NLS on
T2, which is induced by the random variable

ω ∈ Ω 7→ ϕω(x) =
∑
n∈Z2

gn(ω)

(1 + n2)
1
2

einx . (4.1)

The series defining ϕω converges in L2(Ω;H0−(T2)) and defines the Gaussian free field
on T2. Due to the Galilean symmetries of the equation [18], the flow map cannot be
extended uniformly continuously in Hs(T2) when s < 0 . Nevertheless, Bourgain was able
to solve in [4] the Cauchy problem with data distributed on the support of the Gibbs
measure (4.1). He observed from counting estimates and probabilistic considerations that
the first Picard’s iterate

I(1)(t, ϕω) = −iµ
∫ t

0
ei(t−τ)∆

(
| eiτ∆ ϕω|2 eiτ∆ ϕω

)
dτ

is almost-surely in H
1
2
−(T2). In such a favorable situation, the nonlinear Duhamel term

is smooth enough to fall on critical or subcritical regimes, and it is possible to run a fixed
point argument for the centered solution around the linear evolution of the initial data:

v(t, x) = u(t, x)− eit∆ ϕω(x) . (4.2)

The centered solution v, which is smoother, solves a Schrödinger equation with zero initial
data but with some stochastic source terms that come from eit∆ ϕω(x). The ansatz (4.2)
is sometimes called the Da Prato and Debussche’s trick.

4.2. Randomization procedure for (NLS-HW) on Rd

In compact settings, the relevant probability measures on the phase-space Hs are Gauss-
ian measures constructed from the spectral resolution the Laplace operator, where each
mode is decoupled by independent normalized Gaussian variables with complex values.
This procedure stems from the consideration of invariant Gibbs measure. However, in the
whole Euclidean space Rd there is no spectral resolution of the Laplace operator, nor
nontrivial invariant measure. The standard procedure to generate random initial data ϕω

from a given function ϕ ∈ Hs consists in considering the so-called Wiener unit-scale fre-
quency decomposition (ϕn)n of ϕ in the frequency space, built from Fourier projectors on
translated unit cubes.

To mimic the compact setting, each mode is decoupled by the independent Gaussian
variables (gn):

ω ∈ Ω 7→ ϕω ∼
∑
n

gn(ω)ϕn , where ϕ ∼
∑
n

ϕn ∈ Hs .

Then, for many initial data ϕω in a statistical ensemble Σ ⊂ Hs that has full measure,
one expects to observe a probabilistic smoothing effect for the centered solution around
the linear evolution thanks to the combination of space-time oscillations (dispersion) and

8
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probabilistic oscillations (randomization). Namely, the goal is to show that there exists
ν > 1

2 such that for all ϕω ∈ Σ,

v(t) := u(t)− eit(∂xx−|Dy |) ϕω ∈ C([−T , T ];Hν) . (4.3)

Then v solves the original equation perturbed by stochastic terms stemming from the

linear evolution eit(∂
2
xx−|Dy |) ϕω:

i∂tv + (∂2xx − |Dy|)v = µ|v + eit(∂
2
xx−|Dy |) ϕω|2(v + eit(∂

2
xx−|Dy |) ϕω).

In this case, if ν > 1
2 , the centered solution v is obtained from a fixed point argument at

subcritical regularities in Hν . This strategy has been successful in many contexts for the
Schrödinger equation

i∂tu+∆u = µ|u|2u .

The fixed point argument relies on nonlinear smoothing properties ensured by bilinear
estimates [8, 7] or by local smoothing estimates [34]. Concerning the wave equations,
smoothing properties are obtained directly from the Duhamel’s integral formula that gains
one derivative [12, 13, 35].

In contrast, when we replace the Laplace operator ∆ by the anisotropic Schrödinger
- half wave operator ∂2xx − |Dy|, we will see that the first Picard’s iterate I(1)(t, ϕω)
does not gain any regularity for equation (NLS-HW), so that the probabilistic semilinear
ansatz (4.2) fails.

4.3. Lack of nonlinear smoothing effect for the dispersioneless half-wave
equation

Let us understand why probabilistic smoothing does not occur for (NLS-HW). In order to
observe a probabilistic smoothing effect, we exploit dispersive properties of the equation
to gain decay and Strichartz estimates without trading regularity. Equation (NLS-HW),
however, is constructed so that there is no dispersion in the y-direction. Therefore, in
the low x-frequency regimes, the Strichartz estimates come with a derivative loss so that
we have neither usable bilinear estimates nor local smoothing estimates at our disposal.
A manifestation of this lack of dispersion is that the second Picard iteration of the ran-
domized initial data does not have a better regularity than the initial data: there is no
probabilistic smoothing at the nonlinear level.

Nevertheless, the terms of the equation that prevent probabilistic smoothing are specific,
and come from high-low-low type frequency interactions. For simplicity, we assume that
there is no dependence in the variable x (in practice, we rather restrict the solution to

low x-frequency). In the first Picard iteration I(1)(t, ϕω), the high-low-low type frequency
interactions involve the product of ϕω projected at high y-frequencies |η| ≫ 1 and the
square of ϕω projected at low y-frequencies |η| ≲ 1. These singular contributions read∫ t

0
ei(t−τ)|Dy |

(
e−iτ |Dy |P|η|≫1ϕ

ω
)(

e−iτ |Dy |P|η|≤1ϕω
)(

e−iτ |Dy |P|η|≤1ϕ
ω
)
dτ .

In this case, the linear operator e−iτ |Dy | is not dispersive as it acts as a transport equation
on each term P|η|≫1ϕ

ω and P|η|≤1ϕ
ω after separating between positive and negative fre-

quencies. Hence derivatives of the high-low-low interaction term all fall at the same time
onto the first term P|η|≫1ϕ

ω. This implies that the high-low-low interaction cannot receive
more derivatives than the data. We mention the work of Oh [36] on the Szegő equation

posed on the circle T, who rigorously proved that the first nontrivial Picard’s iterate I(1)

does not gain regularity compared to the initial data.
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In this sense, the equation is not semilinear since the linear evolution is not a good
approximation of the solution. As a consequence, one needs to resort to a refined resolution
scheme that has to be quasilinear.

4.4. A refined probabilistic ansatz

In order to prove that a derivative wave equation is almost-surely well-posed at low regular-
ity, Bringmann [5] developed a refined probabilistic ansatz in a quasilinear setting. In [15],
we adapt this strategy to overcome the obstruction discussed in the previous paragraph,
and show that (NLS-HW) is almost surely well-posed in Hs(R2) below the energy space,
for some s < 1

2 . The main idea is to construct the solution by induction on the frequen-
cies. At each step, the classical probabilistic ansatz (4.3) is refined by replacing the linear

correction eit(∂
2
xx−|Dy |)ϕω with a colored linear evolution, which solves a paracontrolled

linear equation that encapsulate the singular high-low-low type frequency interactions. As
discussed below, the probabilistic independence between the high frequencies and the low
frequencies of the initial is a key probabilistic structure that is exploited in a remarkable
way.

In the periodic case T2, Deng, Nahmod and Yue constructed in breakthrough papers [22,
23] dynamics on the support of the Gibbs measure for NLS with an arbitrary renormalized
nonlinearity, introducing at the same time powerful methods such as the random averaging
operators and the random tensors. More recently, Bringmann, Deng, Nahmod and Yue [6]
pushed even further the paracontrolled approach for dispersive PDE in the probabilistic
setting to solve the ϕ43 problem for the wave equation. The new developments incorporate
tools ranging from random matrix theory to sophisticated counting estimates.

Let us explain how the refined probabilistic ansatz applies to equation (NLS-HW).
We do not need to introduce a randomization along the Schrödinger variable x since the
Schrödinger equation is sufficiently dispersive. Hence, given ϕ ∈ Hs(R2) we decompose it
using partial Fourier projectors (in the half wave direction y) on an interval of length two
centered around k ∈ Z, denoted P1,k:

ϕ =
∑
k∈Z

P1,kϕ, supp(Fy→ηP1,kϕ) ⊆ [k − 1, k + 1] .

We consider a sequence of independent normalized Gaussian variables (gk(ω))k∈Z on a
probability space (Ω,A,P), and define the Wiener randomization of ϕ as

ω ∈ Ω 7→ ϕω :=
∑
k∈Z

gk(ω)P1,kϕ . (4.4)

The relevant probability measure on Hs is the measure induced by this random variable.
For T > 0 and s, σ ∈ R, we establish the convergence of approximate local solutions
towards a local solution to (NLS-HW) in the mixed Lebesgue space

Xs
T0 := Ct

(
[−T0 , T0] ; Hs(R2)

)
∩ L8

t

(
[−T0 , T0] ; L4

xW
σ,∞
y (R2)

)
,

where (8, 4) is a Strichartz admissible pair for the Schrödinger equation on the line:

∥ eit∂2xx u0∥L8
t (R;L4

x(R)) ≲ ∥u0∥L2
x(R) .

We also denote the truncated initial data at y-frequency less than n as

P≤nϕ
ω :=

∑
|k|≤n

gk(ω)P1,kϕ .

The main result from [15] can be stated as follows.
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Theorem 4.1 (Probabilistic local well-posedness [15]). Let s ∈ (13/28, 1/2], ϕ ∈ Hs and
the corresponding random initial data ω 7→ ϕω ∈ L2(Ω;Hs) defined in (4.4). There exist
T0 > 0 and a full measure set Σ ⊂ Hs such that for any ϕω ∈ Σ the following holds.
There exists a uniform random time Tω ∈ (0, T0] such that for all n ∈ N, there exists a
function un ∈ C([−T0, T0],H∞) which is the unique solution on [−Tω, Tω] to (NLS-HW)
with smooth initial data P≤nϕ

ω:{
i∂tun + (∂2xx − |Dy|)un = |un|2un , (t, x, y) ∈ [−Tω , Tω]× R2 ,

un|t=0 = P≤nϕ
ω .

Moreover, the sequence (un)n≥1 converges in L2
ω

(
Ω ;Xs,σ

T0

)
for some 0 < σ < s to a

limiting object u which is solution to (NLS-HW) on [−Tω, Tω] with initial data ϕω.

The idea behind the refined probabilistic ansatz is the following. We first construct the
solution uN for dyadic N ∈ 2N by induction on N . The solution at step N is constructed
from the solution at step N

2 following the ansatz

uN = uN
2
+ FN + wN . (4.5)

On the one hand, the probabilistic term FN isolates the problematic rough high-low-low
frequency interactions, and is called the adapted linear evolution or the colored Gaussian.
On the other hand, the nonlinear remainder term wN exhibits a nonlinear smoothing effect
and lies in a subcritical space Hs(R2), s > 1

2 .
Let 0 < γ < 1 be some parameter to be optimized at the end of the analysis. We see

the cubic term as a trilinear interaction denoted by

N (u) = |u|2u , N (u1, u2, u3) = u1u2u3 + u1u2u3 + u1u2u3 .

The adapted linear evolution FN is solution to the paracontrolled linear equation{
i∂tFN + (∂2xx − |Dy|)FN = N (FN , P≤NγuN

2
, P≤NγuN

2
) ,

FN (0) = PNϕ
ω .

(4.6)

It encapsulates the high-low-low interactions at scale N . The high frequencies are carried
by the solution FN , whose initial data is the projection PNϕ

ω = P≤Nϕ
ω − P≤N

2
ϕω of ϕω

at frequency N , so that we expect this property to stay true at least for small times. The
low frequencies are carried by the projection of the solution uN

2
constructed at step N

2

onto the low frequencies |η| ≤ Nγ , with 0 < γ < 1.
The nonlinear remainder wN is solution to (NLS-HW) with a stochastic forcing terms

and zero initial condition:{
i∂twN + (∂2xx − |Dy|)wN = N

(
uN

)
−N

(
uN

2

)
−N

(
FN , P≤NγuN

2
, P≤NγuN

2

)
,

wN (0) = 0 .

Since we removed the high-low-low interactions from the stochastic forcing term, we expect
that wN exhibits probabilistic nonlinear smoothing.

We then proceed as follows. By definition of the induction scheme (4.5), the solution at
step N can be written as a series

uN = uN0 +

N∑
L=2N0

(wL + FωL ) .

We need to prove that smooth remainder terms (wN )N≥N0 exist on a uniform time interval
[−T0, T0], and that the series with general term wN converges almost-surely in a subcritical
space C([−T0 , T0];Hν(R2)), for some ν > 1

2 . On the other hand, the series with general
term (FN )N≥N0 composed of the probabilistic corrections converges almost-surely in the

11
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space of rough regularity C([−T0 , T0];Hs(R2)). Then, we prove that there exists a random
time Tω > 0 such that the limit of (uN )N solves (NLS-HW) in C

(
[−Tω , Tω];Hs(R2)

)
.

Finally, we use an argument from [41] to show that the result for dyadic frequencies N
extends to the general approximation with arbitrary integer frequencies n.

The local existence of the smooth solution un is guaranteed by the local well-posedness
result from Theorem 1.6 in [2]. However, the time of existence in say Hν , for some ν > 1

2 ,
depends on the Hν-norm of un. In particular it depends on n and on ω in an intricate way.
The strategy is first to truncate the equation for un to show the convergence of (un)n∈N, on
a time interval [−T0, T0] which does not depend on n. In order to get convergence on a fixed
time interval, we follow [5] by making use of the truncation method from De Bouard and
Debussche [21], which consists in truncating the terms involved in the nonlinearity so that
they stay bounded by one in suitable space-time functional spaces. Then, we prove that on
some random time interval [−Tω, Tω], the limit of (un)n solves the equation (NLS-HW)
without truncation in C

(
[−Tω , Tω];Hs(R2)

)
.

To obtain improved Strichartz estimates for the adapted linear evolution FN one has to
decompose it into elementary pieces whose frequency localization and stochastic structure
are well understood. Then, the probabilistic Strichartz estimates for small times follows
from Bernstein estimates and probabilistic decoupling. These estimates control the L∞

norm of FN with a loss N
γ
2
−σ (γ2 − σ + ϵ derivatives) instead of the expected loss N

1
2

(12 + ϵ derivatives).
To conclude this paragraph, we stress out that we only implement the probabilistic

scheme in the half-wave variable y, whereas a traditional deterministic analysis is per-
formed in the Schrödinger variable x, respectively.

We also point out that we used a TT ∗-type argument to control the frequency localiza-
tion of FN , whereas Bringmann implemented in [5] Gronwall inequalities and sophisticated
energy estimates for wave-type equation. For this reason, we think that our analysis in
the context of Schrödinger-type equations is more flexible and adapts to other contexts.

5. Perspectives

To conclude this note, let us mention some possible developments linked to equation (NLS-HW)
and to the probabilistic quasilinear resolution scheme.

(1) Reaching a global well-posedness theory for equation (NLS-HW) in the defocusing
case, whether in the deterministic or the probabilistic case. The first difficulty is
that one cannot use a Yudovich argument to get local existence in the energy

space H
1
2 , because the Lq-norms are not controlled by the energy when q > 6. The

second difficulty is that when s > 1
2 , the Brezis-Gallouët estimate fails to extend

smooth solutions globally in time. The reason is that Hs is not an algebra when

s < 3
4 , and there is no conservation law that controls the H

3
4 -norm. This is in

contrast with the half-wave equation or the Szegő equation on the line.

From the point of view of random initial data, it would be challenging but in-
teresting to understand the long-time behavior of the probabilistic solutions to
equation (NLS-HW) generated by the paracontrolled resolution scheme. Enven if
we constructed in Theorem 4.1 a probabilistic solution in the presence of a con-
served energy, this conservation law is not sufficient to globalize the solutions. The
reason is that the specific probabilistic structure of the initial data is needed to
do a local existence result. To iterate the local existence result, one has to un-
derstand how this information is transported by the flow on longer time scales.
To achieve such a goal, one could try to prove quasi-invariance of the probability
measure. Unfortunately, the current techniques strongly relies on the dispersive
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properties of the equation, and quasi-invariance fails for dispersionless models see
for instance [37].

(2) It would be very relevant to improve the lower bound on the regularity we get in
Theorem 4.1, in order to cover the whole quasilinear regime. Our lower bound on
s is far from being optimal, and new insigths are needed to go all the way down
to sc =

1
4 .

(3) Probabilistic local well-posedness for other non-dispersive PDE on degenerate ge-
ometries.

The refined probabilistic ansatz developed in [15] for equation (NLS-HW) also
applies to the half-wave equation on the line (3.2) and Szegő equation, by removing
the variable x all throughout the paper. We believe that this strategy will also be
successful to investigate other Schrödinger-type equations arising in degenerate
geometries. One example is the Schrödinger equation on the Heisenberg group in
the radial case

i∂tu−∆H1u = |u|2u, (NLS-H1)

where H1 is parameterized by three real coordinates (x, y, s) ∈ H1 for which the
sub-Laplacian for radial functions reads

∆H1 = ∂xx + ∂yy + (x2 + y2)∂ss.

This equation is a totally non dispersive equation [1]. As a consequence, the study
of the Cauchy problem at low regularity is a delicate issue. Properties of the flow
map are similar to equation (NLS-HW), and can be summarized in the following
diagram in the scale of Sobolev spaces associated to the operator ∆H1 .

Norm-inflation Flot map is not C3 Local well-posedness

Hs

I
H1/2

I
H1

I
H3/2

I
H2

Figure 2. Deterministic Cauchy theory for equation (NLS-H1).

(4) Modified scattering for defocusing (NLS-HW) on Rx × Ry, global solutions for
smooth and decaying initial data, following [17].

(5) Growth of Sobolev norms for the defocusing half-wave equation (3.2). In particular
it is open whether there exist a solution satisfying lim supt→∞ ∥u(t)∥Hs = +∞.

(6) Orbital stability or instability property for traveling waves of focusing (NLS-HW)
on different geometries than the wave guide Rx × Ty, for instance when the two
spatial variables lie in Rx × Ry, or in the wave guide Tx × Ry.
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arXiv:2206.11543, 2022.

[28] Z. Hani, B. Pausader, N. Tzvetkov, and N. Visciglia. Modified scattering for the cubic Schrödinger
equation on product spaces and applications. In Forum of mathematics, Pi, volume 3. Cambridge
University Press, 2015.

14
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