

An efficient algorithm for solving elliptic problems on percolation clusters

Chenlin GU

DMA/ENS, PSL Research University

Les probabilités de demain

May 13, 2020

Outline for section 1

Motivation

Preliminary

- Monte-Carlo Markov chain
- Jacobi iterative method
- Multigrid method
- Homogenization

3 Algorithm

- 4 Numerical experience
- Percolation setting

Random conductance model

- (\mathbb{Z}^d, E_d) standard d-dimension lattice, $Q_r := (-\frac{r}{2}, \frac{r}{2})^d \cap \mathbb{Z}^d$.
- $\mathbf{a}: E_d \to [\Lambda^{-1}, \Lambda]$ with $\Lambda > 1$. $\{\mathbf{a}(e)\}_{e \in E_d}$ i.i.d. called random conductances.
- $-\nabla \cdot \mathbf{a} \nabla$ is the discrete divergence operator defined by

$$-\nabla \cdot \mathbf{a} \nabla u(x) := \sum_{y \sim x} \mathbf{a}(x, y)(u(x) - u(y)).$$

• Object: Find an algorithm to solve the elliptic Dirichlet problem quickly for **big** *r*,

$$\begin{cases} -\nabla \cdot \mathbf{a} \nabla u = f & \text{ in } \operatorname{int}(Q_r), \\ u = g & \text{ on } \partial Q_r. \end{cases}$$
(1.1)

• Motivation: Modelisation in disordered medium and heterogeneous material.

Chenlin GU (DMA/ENS)

Random stationary medium

Question: What is the challenge in this problem?

0	Google Scholar Articles Google Scholar		heterogeneous materials	
			Environ 3 950 000 résultats (0,05 s)	
	Articles		Environ 746 000 résultats (0,09 s)	
Google Scholar rand		ran	dom conductance model	
Articles Envi		Envi	ron 326 000 résultats (0,08 s)	

Outline for section 2

1 Motivation

Preliminary

- Monte-Carlo Markov chain
- Jacobi iterative method
- Multigrid method
- Homogenization

3 Algorithm

- 4 Numerical experience
- Percolation setting

Recap of some classical methods

Let us recall some classical method to solve this problem:

- Monte-Carlo Markov chain.
- Jacobi iterative method.
- Multigrid method.
- Homogenization.

Outline

Motivation

Preliminary

• Monte-Carlo Markov chain

- Jacobi iterative method
- Multigrid method
- Homogenization

3 Algorithm

- 4 Numerical experience
- Percolation setting

MCMC

MCMC

For the case f = 0, the solution of Dirichlet problem is $u(x) = \mathbb{E}_x[g(X_{\tau})]$ for $(X_n)_{n \ge 0}$ the Markov chain associated to the operator $-\nabla \cdot \mathbf{a} \nabla$ and τ the hitting time of the boundary.

- Advantages: Dimension free, easy to program.
- Disadvantages: It takes time if we want u(x) for all $x \in int(Q_r)$.

MCMC

MCMC

For the case f = 0, the solution of Dirichlet problem is $u(x) = \mathbb{E}_x[g(X_{\tau})]$ for $(X_n)_{n \ge 0}$ the Markov chain associated to the operator $-\nabla \cdot \mathbf{a} \nabla$ and τ the hitting time of the boundary.

• Advantages: Dimension free, easy to program.

• Disadvantages: It takes time if we want u(x) for all $x \in int(Q_r)$.

MCMC

MCMC

For the case f = 0, the solution of Dirichlet problem is $u(x) = \mathbb{E}_x[g(X_\tau)]$ for $(X_n)_{n \ge 0}$ the Markov chain associated to the operator $-\nabla \cdot \mathbf{a} \nabla$ and τ the hitting time of the boundary.

- Advantages: Dimension free, easy to program.
- Disadvantages: It takes time if we want u(x) for all $x \in int(Q_r)$.

Outline

Motivation

2 Preliminary

- Monte-Carlo Markov chain
- Jacobi iterative method
- Multigrid method
- Homogenization

3 Algorithm

- 4 Numerical experience
- Percolation setting

Jacobi iterative method

Jacobi iteration

• Jacobi iterative method = iteration of semigroup.

•
$$P(x,y) := \frac{\mathbf{a}(x,y)}{\sum_{z \sim x} \mathbf{a}(x,z)}, \tilde{f}(x) = f(x)/(\sum_{z \sim x} \mathbf{a}(x,z)).$$

• We do iteration $u_0 = g$, $u_{n+1} = J(u_n, \tilde{f})$

$$J(u_n, \tilde{f}) := Pu_n + \tilde{f}.$$
(2.1)

• u is the unique solution of the equation $u = Pu + \tilde{f}$, $\lim_{n \to \infty} u_n = u$.

• Advantages: Easy to program and converges exponentially.

• Disadvantages: It takes time when Q_r is big: every iteration is a contraction $(1 - \frac{1}{r^2})$, so at least $O(r^2)$ iterations.

Chenlin GU (DMA/ENS)

Algorithm on percolation cluster

Jacobi iterative method

Jacobi iteration

• Jacobi iterative method = iteration of semigroup.

•
$$P(x,y) := \frac{\mathbf{a}(x,y)}{\sum_{z \sim x} \mathbf{a}(x,z)}, \tilde{f}(x) = f(x)/(\sum_{z \sim x} \mathbf{a}(x,z)).$$

• We do iteration $u_0 = g$, $u_{n+1} = J(u_n, \tilde{f})$

$$J(u_n, \tilde{f}) := Pu_n + \tilde{f}.$$
(2.1)

• u is the unique solution of the equation $u = Pu + \tilde{f}$, $\lim_{n\to\infty} u_n = u$.

• Advantages: Easy to program and converges exponentially.

• Disadvantages: It takes time when Q_r is big: every iteration is a contraction $(1 - \frac{1}{r^2})$, so at least $O(r^2)$ iterations.

Chenlin GU (DMA/ENS)

Algorithm on percolation cluster

Jacobi iterative method

Jacobi iteration

• Jacobi iterative method = iteration of semigroup.

•
$$P(x,y) := \frac{\mathbf{a}(x,y)}{\sum_{z \sim x} \mathbf{a}(x,z)}, \tilde{f}(x) = f(x)/(\sum_{z \sim x} \mathbf{a}(x,z)).$$

• We do iteration $u_0 = g$, $u_{n+1} = J(u_n, \tilde{f})$

$$J(u_n, \tilde{f}) := Pu_n + \tilde{f}.$$
(2.1)

- u is the unique solution of the equation $u = Pu + \tilde{f}$, $\lim_{n\to\infty} u_n = u$.
- Advantages: Easy to program and converges exponentially.
- Disadvantages: It takes time when Q_r is big: every iteration is a contraction $(1 \frac{1}{r^2})$, so at least $O(r^2)$ iterations.

Outline

1 Motivation

Preliminary

- Monte-Carlo Markov chain
- Jacobi iterative method
- Multigrid method
- Homogenization

3 Algorithm

- 4 Numerical experience
- Percolation setting

Multigrid method

Efficient method for $\mathbf{a} \equiv const.$ i.e. for the problem $-\Delta u = f.$

• Try to solve $-\Delta u = f$, we do the Jacobi iteration and $u_1 = J^M(u_0, f)$.

2
$$f_1 = f - (-\Delta u_1)$$
, coarsen the grid by 2, and $u_2 = J^{M/2}(0, f_1)$.

3
$$f_2 = f_1 - (-\Delta u_2)$$
, coarsen the grid by 2, and $u_3 = J^{M/4}(0, f_2)$.

• $\hat{u} = u_1 + u_2 + u_3$. Iterate this procedure.

Multigrid method

Efficient method for $\mathbf{a} \equiv const.$ i.e. for the problem $-\Delta u = f.$

• Try to solve $-\Delta u = f$, we do the Jacobi iteration and $u_1 = J^M(u_0, f)$.

2
$$f_1 = f - (-\Delta u_1)$$
, coarsen the grid by 2, and $u_2 = J^{M/2}(0, f_1)$.

3
$$f_2 = f_1 - (-\Delta u_2)$$
, coarsen the grid by 2, and $u_3 = J^{M/4}(0, f_2)$.

• $\hat{u} = u_1 + u_2 + u_3$. Iterate this procedure.

• Advantages: Only $O(\log(r))$ iterations are required in Q_r .

• Disadvantages: a has to be constant.

Probabilistic interpretation: coarsened grid \approx random walk with big step size.

Multigrid method

Efficient method for $\mathbf{a} \equiv const.$ i.e. for the problem $-\Delta u = f.$

• Try to solve $-\Delta u = f$, we do the Jacobi iteration and $u_1 = J^M(u_0, f)$.

2
$$f_1 = f - (-\Delta u_1)$$
, coarsen the grid by 2, and $u_2 = J^{M/2}(0, f_1)$.

3
$$f_2 = f_1 - (-\Delta u_2)$$
, coarsen the grid by 2, and $u_3 = J^{M/4}(0, f_2)$.

• $\hat{u} = u_1 + u_2 + u_3$. Iterate this procedure.

• Advantages: Only $O(\log(r))$ iterations are required in Q_r .

• Disadvantages: a has to be constant.

Probabilistic interpretation: coarsened grid \approx random walk with big step size.

Multigrid method

Efficient method for $\mathbf{a} \equiv const.$ i.e. for the problem $-\Delta u = f.$

Try to solve
$$-\Delta u = f$$
, we do the Jacobi iteration and $u_1 = J^M(u_0, f)$.

2
$$f_1 = f - (-\Delta u_1)$$
, coarsen the grid by 2, and $u_2 = J^{M/2}(0, f_1)$.

3
$$f_2 = f_1 - (-\Delta u_2)$$
, coarsen the grid by 2, and $u_3 = J^{M/4}(0, f_2)$.

• $\hat{u} = u_1 + u_2 + u_3$. Iterate this procedure.

• Advantages: Only $O(\log(r))$ iterations are required in Q_r .

• Disadvantages: a has to be constant.

Probabilistic interpretation: coarsened grid \approx random walk with big step size.

Chenlin GU (DMA/ENS)

Outline

Preliminary

- Monte-Carlo Markov chain
- Jacobi iterative method
- Multigrid method
- Homogenization

Homogenized solution

• For *r* very big, one can use an effective conductance $\bar{\mathbf{a}}$ which is a constant matrix and the homogenized solution as an approximation

$$\begin{cases} -\nabla \cdot \bar{\mathbf{a}} \nabla \bar{u} = f & \text{ in } \operatorname{int}(Q_r), \\ u = g & \text{ on } \partial Q_r, \end{cases}$$
(2.2)

then we have

$$||u - \bar{u}||_{\underline{L}^2(Q_r)} := \left(\frac{1}{|Q_r|} \sum_{x \in Q_r} |u(x) - \bar{u}(x)|^2\right)^{\frac{1}{2}} \leq o(r).$$

• $\bar{\mathbf{a}} \neq \mathbb{E}[\mathbf{a}]$ and can be solved much more quicker.

- Early work of Kozlov, Papanicolaou, Varadhan, Yurinski etc.
- Advantages: It is as fast as multigrid method.
- Disadvantages:
 - Loss of microscale information: Locally, \bar{u} and u is never similar.
 - Limit of precision: For r fixed, $\frac{1}{r}\,\|u-\bar{u}\|_{\underline{L}^2(Q_r)}\simeq r^{-\frac{1}{2}}$ cannot be better.

- Early work of Kozlov, Papanicolaou, Varadhan, Yurinski etc.
- Advantages: It is as fast as multigrid method.
- Disadvantages:
 - Loss of microscale information: Locally, \bar{u} and u is never similar.
 - Limit of precision: For r fixed, $\frac{1}{r}\,\|u-\bar{u}\|_{\underline{L}^2(Q_r)}\simeq r^{-\frac{1}{2}}$ cannot be better.

- Early work of Kozlov, Papanicolaou, Varadhan, Yurinski etc.
- Advantages: It is as fast as multigrid method.
- Disadvantages:
 - Loss of microscale information: Locally, \bar{u} and u is never similar.
 - Limit of precision: For r fixed, $\frac{1}{r}\,\|u-\bar{u}\|_{\underline{L}^2(Q_r)}\simeq r^{-\frac{1}{2}}$ cannot be better.

Outline for section 3

1 Motivation

2 Preliminary

- Monte-Carlo Markov chain
- Jacobi iterative method
- Multigrid method
- Homogenization

3 Algorithm

- 4 Numerical experience
- Percolation setting

Object of the algorithm

For r big, and for a high precision ???

Small r a naive Jacobi interation. Very very big r beyond the capacity of mesh. homogenized solution + multigrid.

Iterative algorithm

An iterative algorithm

- Initial guess $u_0 := g$.
- Solve the following equations with the null Dirichlet boundary condition:

$$\begin{cases} (\lambda^2 - \nabla \cdot \mathbf{a} \nabla) u_1 &= f + \nabla \cdot \mathbf{a} \nabla u_0 & \text{ in } \operatorname{int}(Q_r), \\ -\nabla \cdot \bar{\mathbf{a}} \nabla \bar{u} &= \lambda^2 u_1 & \text{ in } \operatorname{int}(Q_r), \\ (\lambda^2 - \nabla \cdot \mathbf{a} \nabla) u_2 &= (\lambda^2 - \nabla \cdot \bar{\mathbf{a}} \nabla) \bar{u} & \text{ in } \operatorname{int}(Q_r), \end{cases}$$
(3.1)

• All the three equations are easy to solve. The second one can be handled by the multigrid method, while the first and third one take less time $(O(\frac{1}{\lambda^2})$ iterations) thanks to the regularization.

Chenlin GU (DMA/ENS)

Algorithm on percolation cluster

Algorithm

Main theorem

•
$$\mathcal{Z} = \sup_{u_0, f, g} \frac{\|\nabla(\hat{u}-u)\|_{\underline{L}^2(Q_r)}}{\|\nabla(u_0-u)\|_{\underline{L}^2(Q_r)}}.$$

• $\ell(\lambda) = 1$ for $d \ge 3$ and $\ell(\lambda) = \log^{\frac{1}{2}}(\lambda)$ for $d = 2$.

Theorem ((Armstrong, Hannukainen, Kuusi, Mourrat 18)(Gu 19)) For any $s \in (0, 2)$, there exists a constant $C(\Lambda, s, d)$ such that for any y > 0

$$\mathbb{P}[\mathcal{Z} \ge y] \le \exp\left(-\left(\frac{y}{C\lambda^{\frac{1}{2}}\ell(\lambda)\log^{\frac{1}{s}}(r)}\right)^{s}\right)$$

- It suggests a practical choice of λ that $\frac{1}{r} \ll \lambda \ll \frac{1}{\log^{\frac{1}{2}}(r)}$.
- Complexity $:= O(\log(r))$ iterations, very close to the one of multigrid.

•

Algorithm

Idea of proof

- Combing the first and second step of the iteration and we obtain $-\nabla \cdot \bar{\mathbf{a}} \nabla \bar{u} = -\nabla \cdot \mathbf{a} \nabla (u u_0 u_1).$
- The third equation gives $(\lambda^2 \nabla \cdot \mathbf{a} \nabla) u_2 = (\lambda^2 \nabla \cdot \bar{\mathbf{a}} \nabla) \bar{u}.$
- The first order corrector: $\{\phi_{e_k}\}_{1 \leq k \leq d}$: $-\nabla \cdot \mathbf{a} \nabla (l_{e_k} + \phi_{e_k}) = 0$ in \mathbb{Z}^d .
- Two-scale expansion $w := \bar{u} + \sum_{k=1}^{d} (\mathcal{D}_{e_k} \bar{u}) \phi_{e_k}$.
- Key point: $\|\nabla(w-u)\|_{\underline{L}^2(Q_r)} \leq o(1).$

We have

$$|\hat{u} - u| = |u - (u_0 + u_1 + u_2)| \le |(u - u_0 - u_1) - w| + |w - u_2|,$$

so it suffices to know how close the two-scale expansion can be.

- First rigorous result in periodic homogenization : Allaire.
- Quantitative analysis in stochastic homogenization setting: Armstrong, Kuusi, Mourrat, Smart, Gloria, Neukamm and Otto etc.

Chenlin GU (DMA/ENS)

Outline for section 4

1 Motivation

2 Preliminary

- Monte-Carlo Markov chain
- Jacobi iterative method
- Multigrid method
- Homogenization

3 Algorithm

4 Numerical experience

Percolation setting

Numerical experience

- d = 2, size $= 128 \times 128$, $\mathbf{a} \in \{\frac{1}{\sqrt{2}}, \sqrt{2}\}$ with law Bernoulli $(\frac{1}{2})$.
- f = 1 and g = 0.
- $\lambda = 0.1.$
- The first 22 rounds of iteration give a convergence of errors $\varepsilon_n := \|f (-\nabla \cdot \mathbf{a} \nabla u_n)\|_{\underline{L}^2(Q_r)}.$

 $\{\varepsilon_n\}_{1 \le n \le 22} = \{34.43, 18.56, 9.99, 5.38, 2.89, 1.56, 0.84, \\0.45, 0.24, 0.13, 0.0709, 0.0382, 0.0206, \\0.0111, 0.0059, 0.0032, 0.0017, 0.0009, \\0.0005064, 0.0002730, 0.0001472, 7.94 \times 10^{-5}\}$

<u>_</u>

 Figure: A numerical experience of the algorithm gives a very high precision of the solution.

 Chenlin GU (DMA/ENS)
 Algorithm on percolation cluster
 May 13, 2020
 25/35

Outline for section 5

1 Motivation

2 Preliminary

- Monte-Carlo Markov chain
- Jacobi iterative method
- Multigrid method
- Homogenization

3 Algorithm

4 Numerical experience

6 Percolation setting

Dirichlet problem on percolation cluster

- \bullet Apply the same algorithm on the same problem on percolation setting. (Gu 19+)
 - $\mathbf{a}: E_d \to \{0\} \cup [\Lambda^{-1}, 1].$
 - $\mathbf{a}(e) > 0$ represents an open bond and $\mathbf{a}(e) = 0$ represents a closed bond.
 - Supercritical percolation $\mathbb{P}[\mathbf{a} \neq 0] = \mathbf{p} > \mathbf{p}_c(d)$.
 - Dirichlet problem on the maximal cluster in the cube Q_r .
- More technical: the random conductance also influences the domain of the solution, and the random graph structure is challenging for PDE analysis.

Dirichlet problem on percolation cluster

Figure: Can you tell all the connected components in the graph ?

Chenlin GU (DMA/ENS)

Dirichlet problem on percolation cluster

Figure: The cluster in blue is the maximal cluster in the cube

Chenlin GU (DMA/ENS)

Calderón-Zygmund decomposition on cluster

A technique to decompose the cluster into small cubes so in every cube the behavior is good. See the work Armstrong and Dario (18) for regularity of harmonic function on the cluster, Dario (18+) for the corrector on the cluster, Dario and Gu (19+) for estimate of Green function on the cluster.

- d = 2, size $= 256 \times 256$, p = 0.6, $\mathbf{a} \in \{0\} \cup [0.5, 1]$, $\lambda = 0.1$.
- $-\nabla \cdot \mathbf{a} \nabla \phi_{e_1,L} = \nabla \cdot \mathbf{a} e_1$ with null boundary condition.
- This example cannot be captured by homogenized solution.
- Initial error $\varepsilon_0 = 1.12085310602$.

round	errors
1	0.0282597982969
2	0.0126490361046
3	0.00707540548365
4	0.00435201077274
5	0.00282913420116
6	0.00190945842802
7	0.00132483912845
8	0.000939101476657

Figure: A table of errors

Figure: A simulation of the corrector on the maximal cluster of a cube 256×256 .

Chenlin GU (DMA/ENS)

Figure: A simulation of the corrector on the maximal cluster of a cube 256×256 .Chenlin GU (DMA/ENS)Algorithm on percolation clusterMay 13, 202034/35

Thank you for your attention.