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Motivation

Random conductance model

(Zd, Ed) standard d-dimension lattice, Qr :=
(
− r
2 ,

r
2

)d ∩ Zd.

a : Ed → [Λ−1,Λ] with Λ > 1. {a(e)}e∈Ed i.i.d. called random
conductances.

−∇ · a∇ is the discrete divergence operator defined by

−∇ · a∇u(x) :=
∑
y∼x
a(x, y)(u(x)− u(y)).

Object: Find an algorithm to solve the elliptic Dirichlet problem
quickly for big r, {

−∇ · a∇u = f in int(Qr),
u = g on ∂Qr.

(1.1)

Motivation: Modelisation in disordered medium and heterogeneous
material.
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Motivation

Random stationary medium
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Motivation

Question: What is the challenge in this problem?
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Preliminary

Recap of some classical methods

Let us recall some classical method to solve this problem:

Monte-Carlo Markov chain.

Jacobi iterative method.

Multigrid method.

Homogenization.
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Preliminary Monte-Carlo Markov chain
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Preliminary Monte-Carlo Markov chain

MCMC

MCMC

For the case f = 0, the solution of Dirichlet problem is
u(x) = Ex[g(Xτ )] for (Xn)n>0 the Markov chain associated to the
operator −∇ · a∇ and τ the hitting time of the boundary.

Advantages: Dimension free, easy to program.

Disadvantages: It takes time if we want u(x) for all x ∈ int(Qr).
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Preliminary Jacobi iterative method

Jacobi iterative method

Jacobi iteration

Jacobi iterative method = iteration of semigroup.

P (x, y) := a(x,y)∑
z∼x a(x,z)

, f̃(x) = f(x)/(
∑
z∼x a(x, z)).

We do iteration u0 = g, un+1 = J(un, f̃)

J(un, f̃) := Pun + f̃ . (2.1)

u is the unique solution of the equation u = Pu+ f̃ ,
limn→∞ un = u.

Advantages: Easy to program and converges exponentially.

Disadvantages: It takes time when Qr is big: every iteration is a
contraction (1− 1

r2 ), so at least O(r2) iterations.
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Preliminary Multigrid method

Multigrid method

Multigrid method

Efficient method for a ≡ const. i.e. for the problem −∆u = f .
1 Try to solve −∆u = f , we do the Jacobi iteration and
u1 = JM (u0, f).

2 f1 = f − (−∆u1), coarsen the grid by 2, and
u2 = JM/2(0, f1).

3 f2 = f1 − (−∆u2), coarsen the grid by 2, and
u3 = JM/4(0, f2).

4 û = u1 + u2 + u3. Iterate this procedure.
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Advantages: Only O(log(r)) iterations are required in Qr.
Disadvantages: a has to be constant.

Probabilistic interpretation: coarsened grid ≈ random walk with big step
size.
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Preliminary Homogenization

Homogenized solution

Homogenized solution

For r very big, one can use an effective conductance ā which is
a constant matrix and the homogenized solution as an
approximation {

−∇ · ā∇ū = f in int(Qr),
u = g on ∂Qr,

(2.2)

then we have

‖u− ū‖L2(Qr) :=

 1
|Qr|

∑
x∈Qr

|u(x)− ū(x)|2
 12 6 o(r).

ā 6= E[a] and can be solved much more quicker.
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Preliminary Homogenization

Homogenized solution

Early work of Kozlov, Papanicolaou, Varadhan, Yurinski etc.

Advantages: It is as fast as multigrid method.
Disadvantages:

Loss of microscale information: Locally, ū and u is never similar.
Limit of precision: For r fixed, 1r ‖u− ū‖L2(Qr) ' r

− 12 cannot be
better.
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Algorithm

Object of the algorithm
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Algorithm

Iterative algorithm

An iterative algorithm

Initial guess u0 := g.

Solve the following equations with the null Dirichlet boundary
condition:

(λ2 −∇ · a∇)u1 = f +∇ · a∇u0 in int(Qr),
−∇ · ā∇ū = λ2u1 in int(Qr),
(λ2 −∇ · a∇)u2 = (λ2 −∇ · ā∇)ū in int(Qr),

(3.1)

û := u0 + u1 + u2 and we put û in the place of u0 to restart
the iteration.

All the three equations are easy to solve. The second one can be
handled by the multigrid method, while the first and third one take
less time (O( 1λ2 ) iterations) thanks to the regularization.
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Algorithm

Main theorem

Z = supu0,f,g
‖∇(û−u)‖L2(Qr)
‖∇(u0−u)‖L2(Qr)

.

`(λ) = 1 for d > 3 and `(λ) = log
1
2 (λ) for d = 2.

Theorem ((Armstrong, Hannukainen, Kuusi, Mourrat 18)(Gu 19))

For any s ∈ (0, 2), there exists a constant C(Λ, s, d) such that for any
y > 0

P[Z > y] 6 exp

(
−
(

y

Cλ
1
2 `(λ) log

1
s (r)

)s)
.

It suggests a practical choice of λ that 1r � λ� 1

log
1
2 (r)

.

Complexity := O(log(r)) iterations, very close to the one of multigrid.
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Algorithm

Idea of proof

Combing the first and second step of the iteration and we obtain
−∇ · ā∇ū = −∇ · a∇(u− u0 − u1).

The third equation gives (λ2 −∇ · a∇)u2 = (λ2 −∇ · ā∇)ū.

The first order corrector: {φek}16k6d: −∇ · a∇(lek + φek) = 0 in Zd.

Two-scale expansion w := ū+
∑d
k=1(Dek ū)φek .

Key point: ‖∇(w − u)‖L2(Qr) 6 o(1).

We have

|û− u| = |u− (u0 + u1 + u2)| 6 |(u− u0 − u1)− w|+ |w − u2|,

so it suffices to know how close the two-scale expansion can be.

First rigorous result in periodic homogenization : Allaire.

Quantitative analysis in stochastic homogenization setting:
Armstrong, Kuusi, Mourrat, Smart, Gloria, Neukamm and Otto etc.
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Numerical experience

Numerical experience

d = 2, size = 128× 128, a ∈ { 1√
2
,
√

2} with law Bernoulli(12).

f = 1 and g = 0.

λ = 0.1.

The first 22 rounds of iteration give a convergence of errors
εn := ‖f − (−∇ · a∇un)‖L2(Qr).

{εn}16n622 = {34.43, 18.56, 9.99, 5.38, 2.89, 1.56, 0.84,

0.45, 0.24, 0.13, 0.0709, 0.0382, 0.0206,

0.0111, 0.0059, 0.0032, 0.0017, 0.0009,

0.0005064, 0.0002730, 0.0001472, 7.94× 10−5
}
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Numerical experience

Figure: A numerical experience of the algorithm gives a very high precision of the
solution.
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Percolation setting
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Percolation setting

Dirichlet problem on percolation cluster

Apply the same algorithm on the same problem on percolation
setting. (Gu 19+)
a : Ed → {0} ∪ [Λ−1, 1].
a(e) > 0 represents an open bond and a(e) = 0 represents a closed
bond.
Supercritical percolation P[a 6= 0] = p > pc(d).
Dirichlet problem on the maximal cluster in the cube Qr.

More technical: the random conductance also influences the domain
of the solution, and the random graph structure is challenging for
PDE analysis.
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Percolation setting

Dirichlet problem on percolation cluster

Figure: Can you tell all the connected components in the graph ?
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Percolation setting

Dirichlet problem on percolation cluster

Figure: The cluster in blue is the maximal cluster in the cube
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Percolation setting

Calderón-Zygmund decomposition on cluster

A technique to decompose the cluster into small cubes so in every cube
the behavior is good. See the work Armstrong and Dario (18) for regularity
of harmonic function on the cluster, Dario (18+) for the corrector on the
cluster, Dario and Gu (19+) for estimate of Green function on the cluster.
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Percolation setting

Calculate the corrector in a cube

d = 2, size = 256× 256, p = 0.6, a ∈ {0} ∪ [0.5, 1], λ = 0.1.

−∇ · a∇φe1,L = ∇ · ae1 with null boundary condition.

This example cannot be captured by homogenized solution.

Initial error ε0 = 1.12085310602.
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Percolation setting

Calculate the corrector in a cube

round errors

1 0.0282597982969
2 0.0126490361046
3 0.00707540548365
4 0.00435201077274
5 0.00282913420116
6 0.00190945842802
7 0.00132483912845
8 0.000939101476657

Figure: A table of errors

Chenlin GU (DMA/ENS) Algorithm on percolation cluster May 13, 2020 32 / 35



Percolation setting

Calculate the corrector in a cube

Figure: A simulation of the corrector on the maximal cluster of a cube 256× 256.
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Percolation setting

Calculate the corrector in a cube

Figure: A simulation of the corrector on the maximal cluster of a cube 256× 256.
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Percolation setting

Thank you for your attention.
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