A growth-fragmentation-isolation process on random recursive trees

Chenlin Gu
NYU Shanghai

joint work with Vincent Bansaye and Linglong Yuan

THU-PKU-BNU Probability Webinar
October 21, 2021

Outline for section 1

(1) Model

3 Perron's root

4 Law of large number
(5) Further discussion

Motivation: pandemic since the beginning of 2020

Figure: Various methods are applied to stop the pandemic: social distancing, masks, lockdown, quarantine, vaccine, etc.

Motivation: pandemic since the beginning of 2020

How can the contact tracing help us in controlling the spread of epidemic?

Model: GFI process

- GFI $=$ growth-fragmentation-isolation process.
- Starting from a single active vertex as patient zero.
- Different states:
- vertex: active, inactive;
- edge: open, closed.
- Three operations: infection (growth), information decay (fragmentation), confirmation and contact-tracing (isolation).

Model: GFI process

- GFI $=$ grow-fragmentation-isolation process.
- Starting from a single active vertex as patient zero.
- Growth (Infection): every active vertex v independently attaches a new vertex in an exponential time with parameter β. When a new vertex u is created and attached, it is active and the link between them is open.
- Fragmentation (information decay): every open edge e independently becomes closed in an exponential time with parameter γ.
- Isolation (confirmation and contact-tracing): every active vertex independently gets "confirmed" in an exponential time with parameter θ, then its associated cluster is isolated and every vertex on this cluster becomes inactive.

GFI process: growth

Figure: Growth: starting from vertex 0 , the vertrices are attached one by one, and it forms a recursive tree.

GFI process: fragmentation

Figure: Fragmentation: the information of some links is no longer available after a while, for example the link $\{0,6\},\{1,4\},\{2,8\}$ in the image.

GFI process: isolation

Figure: Isolation: the vertex 2 is confirmed, then all the vertices in the same clusters defined by open edges are isolated. These are the vertices in blue $\{0,1,2,3,5,7\}$ in the image.

GFI process

Figure: The isolated vertices are no longer active, while the other active vertices continue to attach new vertices.

Questions

Notations:

- Decompose the graph into clusters by connectivity.
- $\mathscr{X}_{t}:=\{$ active clusters at time $t\}$,
- $\mathscr{Y}_{t}:=\{$ inactive clusters at time $t\}$,
- $\tau:=\inf \left\{t \mid \mathscr{X}_{t}=\emptyset\right\}$.

Questions:

(1) Is there phase transition?
(2) Is there a limit for the growth rate?
(3) What other mathematical properties can we say from this model?

Challenges: It is quite difficult to write down the transition probability explicitly.

Phase transition

- Extinction $=\{\tau<\infty\}$,
- Survival $=\{\tau=\infty\}$.
- Recall:
- β : growth rate;
- γ : fragmentation rate;
- θ : isolation rate.

Preliminary result

We fix rate of growth $\beta>0$,

- for $\theta \geqslant \beta$, or $\theta \geqslant \gamma$, GFI process extincts almost surely.
- for $\theta<\beta$ and $\gamma \gg \theta$, GFI process has positive probability to survive.

Proof: coupling argument.

Phase transition

Figure: Diagrams of phases

Figure: A simulation with $\beta=0.6, \theta=0.03, \gamma=0.15$ with 247 active vertices and 73 inactive vertices.

Figure: A simulation with $\beta=0.6, \theta=0.03, \gamma=0.1$ with 87 active vertices and 214 inactive vertices.

Outline for section 2

(1) Model
(2) RRT structure
(3) Perron's root

4 Law of large number
(5) Further discussion

Recursive tree

- Recursive tree $=$ labeled tree defined on finite $V \subset \mathbb{R}$, with the minimum label as its root, and for all $v \in V$, the path from root to v is increasing.
- Sometimes it is also called increasing tree.
- Label the vertices in GFI process with the birth time, it is the natural structure in clusters.

Equivalence class of recursive tree

- Equivalence class: t_{1} a recursive tree on V_{1} and t_{2} a recursive tree on V_{2}, then $\mathrm{t}_{1} \sim \mathrm{t}_{2}$ iff there exists an order-preserving function $\psi: V_{1} \rightarrow V_{2}$, such that ψ is also a bijection between the graphs t_{1} and t_{2}.

Equivalence class of recursive tree

- $\mathscr{T}_{n}=$ the set of recursive trees of size n up to the equivalence relation \sim.
- The recursive trees defined on $\{1, \cdots, n\}$ as a representative of the equivalence class.

Figure: All the recursive trees (as representatives of equivalence classes) in \mathscr{T}_{4}.

- $\mathscr{T}:=\bigcup_{n=1}^{\infty} \mathscr{T}_{n}$, the whole space of finite recursive trees.

Random recursive tree

- $\mathrm{RRT}=$ (uniform) random recursive tree.
- T_{n} : uniformly distributed on \mathscr{T}_{n}, i.e.

$$
\forall \mathbf{t} \in \mathscr{T}_{n}, \quad \mathbb{P}\left[T_{n}=\mathbf{t}\right]=\frac{1}{(n-1)!}
$$

- Construction 1: by Yule process.

- Construction 2 : by splitting property.

Splitting property of RRT

Meir and Moon (1974) discovered the following property.
Splitting property of RRT
Let $n \geqslant 2$ and T_{n} the canonical random recursive tree of size n. We choose uniformly one edge in T_{n} and remove it. Then T_{n} is split into two subtrees T_{n}^{0} and T_{n}^{*}, corresponding to two connected components, where T_{n}^{0} contains the root of T_{n} and T_{n}^{*} does not. Then we have

$$
\mathbb{P}\left[\left|T_{n}^{*}\right|=j\right]=\frac{n}{n-1} \frac{1}{j(j+1)}, \quad j=1,2, \cdots, n-1
$$

Furthermore, conditionally on $\left|T_{n}^{*}\right|=j, T_{n}^{0}$ and T_{n}^{*} are two independent RRT's of size respectively $(n-j)$ and j.

Size process

- Empirical measure: let \mathcal{M} be punctual measure on \mathbb{N}_{+},

$$
X_{t}=\sum_{\mathcal{C} \in \mathscr{X}_{t}} \delta_{|\mathcal{C}|}, \quad Y_{t}=\sum_{\mathcal{C} \in \mathscr{Y}_{t}} \delta_{|\mathcal{C}|},
$$

and we call $\left(X_{t}, Y_{t}\right)_{t \geqslant 0}$ size process of GFI process.

- Key observation: for every $t \geqslant 0$, conditioned on the size of clusters, every cluster (active or inactive) is a RRT and they are independent.
- Consequence: $\left(\mathcal{F}_{t}\right)_{t \geqslant 0}$ natural filtration for $\left(X_{t}, Y_{t}\right)_{t \geqslant 0}$, then $\left(X_{t}, Y_{t}\right)_{t \geqslant 0}$ is a \mathcal{M}^{2}-valued Markov process under $\left(\mathcal{M}^{2},\left(\mathcal{F}_{t}\right)_{t \geqslant 0}, \mathbb{P}\right)$.

Branching process

- $\left(X_{t}\right)_{t \geqslant 0}$ is an infinite-type branching process.
- Transitions rates: for a cluster of size n, it
i) becomes an isolated cluster of size n at rate θn;
ii) becomes a RRT of size $(n+1)$ at rate βn;
iii) splits into two RRTs of size $(n-j, j)$ at rate $\gamma n \frac{1}{j(j+1)}$, for

$$
n \geqslant 2,1 \leqslant j \leqslant n-1 .
$$

Generator

Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a bounded Borel function. We set

$$
F_{f, g}:(\mu, \nu) \in \mathcal{M}^{2} \rightarrow F(\langle\mu, f\rangle,\langle\nu, g\rangle) \in \mathbb{R}
$$

then we have

$$
\begin{aligned}
& \mathcal{A} F_{f, g}(\mu, \nu) \\
& =\sum_{n=1}^{\infty} \mu(\{n\}) \beta n\left(F\left(\left\langle\mu+\delta_{n+1}-\delta_{n}, f\right\rangle,\langle\nu, g\rangle\right)-F(\langle\mu, f\rangle,\langle\nu, g\rangle)\right) \\
& \quad+\sum_{n=1}^{\infty} \mu(\{n\}) \theta n\left(F\left(\left\langle\mu-\delta_{n}, f\right\rangle,\left\langle\nu+\delta_{n}, g\right\rangle\right)-F(\langle\mu, f\rangle,\langle\nu, g\rangle)\right) \\
& \quad+\sum_{n=1}^{\infty} \mu(\{n\}) \gamma(n-1) \sum_{j=1}^{n-1}\left(\frac{n}{n-1} \frac{1}{j(j+1)}\right) \times \\
& \quad\left(F\left(\left\langle\mu+\delta_{j}+\delta_{n-j}-\delta_{n}, f\right\rangle,\langle\nu, g\rangle\right)-F(\langle\mu, f\rangle,\langle\nu, g\rangle)\right) .
\end{aligned}
$$

Main result 1: Malthusian exponent

Theorem (Malthusian exponent)
The following limits exist and coincide and are finite

$$
\lambda:=\lim _{t \rightarrow \infty} \frac{1}{t} \log \left(\mathbb{E}\left[\left|\mathscr{X}_{t}\right|\right]\right)=\lim _{t \rightarrow \infty} \frac{1}{t} \log \left(\mathbb{E}\left[\left|\mathscr{Y}_{t}\right|\right]\right) \in(-\infty, \infty) .
$$

Here $\left|\mathscr{X}_{t}\right|$ (resp. $\left.\left|\mathscr{Y}_{t}\right|\right)$ is the number of active (resp. inactive) clusters at time t. If $\lambda \leqslant 0$, then extinction occurs a.s. : $\mathbb{P}[\tau<\infty]=1$. Otherwise, survival occurs with positive probability $\mathbb{P}[\tau=\infty]>0$.

Classification of phases:

- Subcritical phase: $\lambda<0$;
- Critical phase: $\lambda=0$;
- Supercritical phase: $\lambda>0$.

Main result 2: limit of size

Theorem (Law of large numbers for $\left.\left(X_{t}\right)_{t \geqslant 0}\right)$
Assume that $\lambda>0$. Then there exists a probability distribution π on \mathbb{N}_{+} and a random variable $W \geqslant 0$, such that for any function $f: \mathbb{N}_{+} \rightarrow \mathbb{R}$ of at most polynomial growth, we have

$$
e^{-\lambda t}\left\langle X_{t}, f\right\rangle \xrightarrow{t \rightarrow \infty} W\langle\pi, f\rangle, \quad \text { a.s. and in } L^{2} .
$$

Besides, $\{\tau=\infty\}=\{W>0\}$ a.s. and on this event

$$
\frac{\left\langle X_{t}, f\right\rangle}{\left\langle X_{t}, 1\right\rangle} \xrightarrow{t \rightarrow \infty}\langle\pi, f\rangle \quad \text { a.s.. }
$$

Outline for section 3

(1) Model

(2) RRT structure

(3) Perron's root
4. Law of large number
(5) Further discussion

Classical method: Perron-Frobinius theorem

Perron-Frobinius theorem
$(A)_{1 \leqslant i, j \leqslant n}$ positive matrix with $A_{i, j}>0$ for all $1 \leqslant i, j \leqslant n$. Then there exits a leading positive eigenvalue λ called Perron's root, such that

- any other eigenvalue λ_{i} (possibly complex) in absolute value is strictly smaller than λ, i.e. $\left|\lambda_{i}\right|<\lambda$;
- it has associated left and right eigenvectors π, h such that

$$
\pi A=\lambda \pi, \quad A h=\lambda h .
$$

- Consequence: $\mu A^{n}=\lambda^{n} \pi+o\left(\lambda^{n}\right)$.
- Interpretation: in multi-type branching, A as the production matrix and π is the limit distribution of types.
- Question: How can we generalize it to infinite dimension?

First moment semigroup

- $\mathbb{P}_{\delta_{n}}$ and $\mathbb{E}_{\delta_{n}}$ for initial condition $\left(X_{0}, Y_{0}\right)=\left(\delta_{n}, 0\right)$.
- $M_{t} f(n):=\mathbb{E}_{\delta_{n}}\left[\left\langle X_{t}, f\right\rangle\right]$
- Its generator is

$$
\begin{aligned}
& \mathcal{L} f(n) \\
& =\underbrace{\beta n(f(n+1)-f(n))}_{\mathbf{I}} \underbrace{-\theta n f(n)}_{\mathbf{I I}} \\
& \quad+\underbrace{\gamma(n-1) \sum_{j=1}^{n-1} \frac{n}{n-1} \frac{1}{j(j+1)}(f(j)+f(n-j)-f(n)) .}_{\mathbf{I I I}}
\end{aligned}
$$

I, II, III are respectively the growth, the isolation and the fragmentation.

Existence of Perron's root in size process

- Method: Bansaye, Cloez, Gabriel, and Marguet (2019) - a non-conservative Harri's method.
- A sufficient condition: we need to find a couple of functions (ψ, V) and $a<b, \xi>0$ such that
- $\mathcal{L} V \leqslant a V+\zeta \psi$, and $b \psi \leqslant \mathcal{L} \psi \leqslant \xi \psi$.
- for any R large enough, the set $K=\left\{x \in \mathbb{N}_{+}: \psi(x) \geqslant V(x) / R\right\}$ is a non-empty finite set and for any $x, y \in K$ and $t_{0}>0$,

$$
M_{t_{0}}(x, y)>0 .
$$

- It ensures the existence of Perron's root for \mathcal{L} and (ψ, V) also controls the size of (π, h), i.e. $h \lesssim V, \pi \lesssim V^{-1}$.

Existence of Perron's root in size process

Perron's root for $\left(X_{t}\right)_{t \geqslant 0}$
There exists a unique triplet (λ, π, h) where $\lambda \in \mathbb{R}$ and $\pi=(\pi(n))_{n \in \mathbb{N}_{+}}$is a positive vector and $h: \mathbb{N}_{+} \rightarrow(0, \infty)$ is a positive function, s.t. for all $t \geqslant 0$,

$$
\pi M_{t}=e^{\lambda t} \pi, \quad M_{t} h=e^{\lambda t} h, \quad \sum_{n \geqslant 1} \pi(n)=\sum_{n \geqslant 1} \pi(n) h(n)=1
$$

Moreover, we have

- h is bounded: $0<\inf _{n \geqslant 1} h(n) \leqslant \sup _{n \geqslant 1} h(n)<\infty$;
- π decays fast: for all $p>0, \sum_{n \geqslant 1} \pi(n) n^{p}<\infty$;
- for every $p>0$ there exists $C, \omega>0$ s.t. for any $n, m \geqslant 1, t \geqslant 0$,

$$
\left|e^{-\lambda t} M_{t}(n, m)-h(n) \pi(m)\right| \leqslant C n^{p} m^{-p} e^{-\omega t}
$$

Many-to-two formula

- Many-to-two formula:

$$
\begin{aligned}
& \mathbb{E}_{\delta_{x}}\left[\left\langle X_{t}, f\right\rangle^{2}\right]=M_{t}\left(f^{2}\right)(x) \\
+ & 2 \int_{0}^{t} \sum_{n \geqslant 1} M_{s}(x, n)\left(\sum_{1 \leqslant j \leqslant n-1} \kappa(n, j) M_{t-s} f(j) M_{t-s} f(n-j)\right) \mathrm{d} s
\end{aligned}
$$

Idea: write down the genealogy of active clusters and find the common ancestor.

- Application 1: $\mathscr{M}_{t}=e^{-\lambda t}\left\langle X_{t}, h\right\rangle$ is a L^{2} positive martingale converging to r.v. W.
- Application 2: L^{2} bound: define
$\|f\|_{p}:=\sum_{m \geqslant 1}|f(m)| m^{-(p+2)} \in(-\infty, \infty)$, then

$$
\mathbb{E}\left[\left\langle X_{t}, f\right\rangle^{2}\right] \leqslant C_{0} e^{2 \lambda t}\left(|\langle\pi, f\rangle|^{2}+\|f\|_{p} e^{-\sigma t}\right) .
$$

Outline for section 4

(1) Model

(2) RRT structure

(3) Perron's root
4. Law of large number

5 Further discussion

Main result 2: limit of size

Theorem (Law of large numbers for $\left.\left(X_{t}\right)_{t \geqslant 0}\right)$
Assume that $\lambda>0$. Then there exists a probability distribution π on \mathbb{N}_{+} and a random variable $W \geqslant 0$, such that for any function $f: \mathbb{N}_{+} \rightarrow \mathbb{R}$ of at most polynomial growth, we have

$$
e^{-\lambda t}\left\langle X_{t}, f\right\rangle \xrightarrow{t \rightarrow \infty} W\langle\pi, f\rangle, \quad \text { a.s. and in } L^{2} .
$$

Besides, $\{\tau=\infty\}=\{W>0\}$ a.s. and on this event

$$
\frac{\left\langle X_{t}, f\right\rangle}{\left\langle X_{t}, 1\right\rangle} \xrightarrow{t \rightarrow \infty}\langle\pi, f\rangle \quad \text { a.s.. }
$$

Law of large number for $\left(X_{t}\right)_{t \geqslant 0}$

- Martingale $\mathscr{M}_{t}+L^{2}$ estimate + Borel-Cantelli $\Longrightarrow e^{-\lambda t}\left\langle X_{t}, f\right\rangle$ converges in L^{2} and a.s. along any discrete time $\{k \Delta\}_{k \geqslant 1}$.
- Control of fluctuation in interval $[k \Delta,(k+1) \Delta)$.
- Argument of Athreya (1968): same argument applies to both multi-type branching and countable-type branching for the convergence of one type.

Argument of Athreya (1968)

- $X_{t}(n):=$ number of clusters of size n.
- A sufficient and necessary condition:

$$
\underline{\lim }_{t \rightarrow \infty} e^{-\lambda t} X_{t}(n) \geqslant W \pi(n), \quad \text { almost surely for all } n \geqslant 1
$$

$$
\begin{aligned}
& \varlimsup_{t \rightarrow \infty} e^{-\lambda t} X_{t}(n) h(n) \\
& =\lim _{k \rightarrow \infty}\left(\sum_{i \geqslant 1} e^{-\lambda t_{k}} X_{t_{k}}(i) h(i)-\sum_{i \geqslant 1, i \neq n} e^{-\lambda t_{k}} X_{t_{k}}(i) h(i)\right) \\
& \leqslant W-\sum_{i \geqslant 1, i \neq n} \underline{l i m}_{k \rightarrow \infty} e^{-\lambda t_{k}} X_{t_{k}}(i) h(i) \\
& \leqslant W-\sum_{i \geqslant 1, i \neq n} W \pi(i) h(i) \\
& =W \pi(n) h(n) .
\end{aligned}
$$

Argument of Athreya (1968)

- An observation:

$$
\forall t \in[k \Delta,(k+1) \Delta), \quad X_{t}(n) \geqslant X_{k \Delta}(n)-N_{k, \Delta}(n),
$$

where $N_{k, \Delta}(n)$ is the number of active clusters of size n at time $k \Delta$ that will encounter at least one event within $(k \Delta,(k+1) \Delta)$.

- Thus it only involves the jump rate of one type.

Law of large number for $\left(X_{t}\right)_{t \geqslant 0}$

- Martingale $\mathscr{M}_{t}+L^{2}$ estimate + Borel-Cantelli $\Longrightarrow e^{-\lambda t}\left\langle X_{t}, f\right\rangle$ converges in L^{2} and a.s. along any discrete time $\{k \Delta\}_{k \geqslant 1}$.
- Control of fluctuation in interval $[k \Delta,(k+1) \Delta)$.
- Argument of Athreya (1968): applies to the convergence of one type $e^{-\lambda t} X_{t}(n) \rightarrow \pi(n)$.
- Cutoff and coupling argument wit an increasing process $\left(\widetilde{X}_{t}\right)_{t \geqslant 0}$ improve the result to arbitrary f with polynomial increment.

Main result 2: limit of size

Bias of the limit distribution $\widetilde{\pi}(n):=\frac{\pi(n) n}{\sum_{j=1}^{\infty} \pi(j) j}$.
Corollary (Law of large number for $\left.\left(Y_{t}\right)_{t \geqslant 0}\right)$
For any function $f: \mathbb{N}_{+} \rightarrow \mathbb{R}$ of at most polynomial growth, we have that $e^{-\lambda t}\left\langle Y_{t}, f\right\rangle \xrightarrow{t \rightarrow \infty} W\left(\frac{\theta}{\lambda}\right)\left(\sum_{j=1}^{\infty} \pi(j) j\right)\langle\widetilde{\pi}, f\rangle, \quad$ almost surely and in L^{2}, and

$$
\frac{\left\langle Y_{t}, f\right\rangle}{\left\langle Y_{t}, 1\right\rangle} \xrightarrow{t \rightarrow \infty}\langle\widetilde{\pi}, f\rangle, \quad \quad \text { almost surely on }\{\tau=\infty\}
$$

Interpretation: there are unobserved small active clusters.

Law of large number for $\left(Y_{t}\right)_{t \geqslant 0}$

- Heuristic argument:

$$
\lim _{s \backslash t} \frac{\mathbb{E}\left[\left\langle Y_{s}, f\right\rangle-\left\langle Y_{t}, f\right\rangle \mid \mathcal{F}_{t}\right]}{s-t}=\theta\left\langle X_{t},[x] f\right\rangle \sim_{t \rightarrow \infty} \theta e^{\lambda t} W\langle\pi,[x]\rangle\langle\widetilde{\pi}, f\rangle
$$

- Polynomial function $\left[x^{p}\right](n):=n^{p}$.
- Observation: $H_{t}:=\left\langle X_{t}, h\right\rangle-\left(\frac{\lambda}{\theta}\right)\left\langle Y_{t}, h /[x]\right\rangle$ is a martingale.
- General function by decomposition

$$
\begin{aligned}
H_{t}^{f} & :=\left\langle X_{t}, f\right\rangle-\left(\frac{\lambda}{\theta}\right)\left\langle Y_{t}, f /[x]\right\rangle \\
& =\langle\pi, f\rangle H_{t}+A_{t}+B_{t} \\
A_{t} & =\left\langle X_{t}, f-\langle\pi, f\rangle h\right\rangle \\
B_{t} & =\left(\frac{\lambda}{\theta}\right)\left\langle Y_{t},(f-\langle\pi, f\rangle h) /[x]\right\rangle
\end{aligned}
$$

A_{t} and B_{t} are small as they remove the principle eigenvector.

Main result 3: limit on \mathscr{T}

Theorem (Limit of empirical measure of clusters)
Consider any $p>0$ and $f: \mathscr{T} \rightarrow \mathbb{R}$ such that

$$
\sup _{\mathbf{t} \in \mathscr{T}} \frac{|f(\mathbf{t})|}{|\mathbf{t}|^{p}}<\infty .
$$

Then on the event $\{\tau=\infty\}$

$$
\frac{1}{\left|\mathscr{X}_{t}\right|} \sum_{\mathcal{C} \in \mathscr{X}_{t}} f(\mathcal{C}) \xrightarrow{t \rightarrow \infty} \mathbb{E}\left[f\left(T_{\pi}\right)\right], \quad \frac{1}{\left|\mathscr{Y}_{t}\right|} \sum_{\mathcal{C} \in \mathscr{Y}_{t}} f(\mathcal{C}) \xrightarrow{t \rightarrow \infty} \mathbb{E}\left[f\left(T_{\tilde{\pi}}\right)\right] \quad \text { a.s.. }
$$

Law of large number on \mathscr{T}

- Once again: Cutoff argument + argument of Athreya.
- It suffices $\forall n \in \mathbb{N}_{+}, \forall \mathbf{t} \in \mathscr{T}_{n}, \underline{t \rightarrow \infty} \lim ^{-\lambda t} X_{t}(\mathbf{t}) \geqslant W \frac{\pi(n)}{(n-1)!}$, because

$$
\begin{aligned}
\varlimsup_{t \rightarrow \infty} e^{-\lambda t} X_{t}(\mathbf{t}) & =\lim _{k \rightarrow \infty}\left(\sum_{\mathbf{t}^{\prime} \in \mathscr{T}_{n}} e^{-\lambda t_{k}} X_{t_{k}}\left(\mathbf{t}^{\prime}\right)-\sum_{\mathbf{t}^{\prime} \in \mathscr{T}_{n}, \mathbf{t}^{\prime} \neq \mathbf{t}} e^{-\lambda t_{k}} X_{t_{k}}\left(\mathbf{t}^{\prime}\right)\right) \\
& \leqslant W \pi(n)-\sum_{\mathbf{t}^{\prime} \in \mathscr{T}_{n}, \mathbf{t}^{\prime} \neq \mathbf{t}} \varliminf_{k \rightarrow \infty} e^{-\lambda t_{k}} X_{t_{k}}\left(\mathbf{t}^{\prime}\right) \\
& \leqslant W \pi(n)-\sum_{\mathbf{t}^{\prime} \in \mathscr{T}_{n}, \mathbf{t}^{\prime} \neq \mathbf{t}} W \frac{\pi(n)}{(n-1)!} \\
& =W \frac{\pi(n)}{(n-1)!} .
\end{aligned}
$$

- The control of fluctuation is like that of $X_{t}(n)$.

Outline for section 5

(1) Model

(2) RRT structure

(3) Perron's root
(4) Law of large number
(5) Further discussion

Existence of phases

- Continuity of $(\beta, \gamma, \theta) \mapsto \lambda(\beta, \gamma, \theta)$.
- Monotonicity.
- Test function to show the existence of $\mathcal{L} f<0$ and $\mathcal{L} f>0$.

General initial condition

We go back to GFI model. Same results apply to a deterministic initial condition $G_{0}=\left(V_{0}, E_{0}\right)$. We can randomize the initial condition with a RRT $T_{V_{0}}$, and then the absolute continuity helps apply previous results

$$
\mathbb{P}_{G_{0}} \stackrel{d}{=} \mathbb{P}_{T_{V_{0}}}\left[\cdot \mid T_{V_{0}}=G_{0}\right] .
$$

Thank you for your attention.

