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Motivation

Universality of Brownian motion

It is well-known that a centered random walk (Sn)n>1 on Zd with
variance σ̄2 converges to the Brownian motion (σ̄Bt)t>0 after a
scaling.

From different viewpoints: CLT, local CLT, invariance principle.

Question: Do these results also hold for the random walk in suitable
random environment?
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Motivation

Random walk in the labyrinth

Question: What happens for the random walk in the labyrinth ?
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Introduction of the model

Definition

Definition (Bernoulli percolation on Zd)

We denote by (Zd, Ed) the d-dimension lattice graph. A Bernoulli
percolation configuration {a(e)}e∈Ed

is an element of {0, 1}Ed , and its law
is given by

{a(e)}e∈Ed
i.i.d. ,P[a(e) = 1] = 1− P[a(e) = 0] = p.

We say that the edge e is open if a(e) = 1 and the edge e is closed if
a(e) = 0. A connected component given by a will be called cluster.

Chenlin Gu (DMA/ENS) Heat Kernel on Percolation April 27, 2021 7 / 50



Introduction of the model

Example of percolation

Question: Can you feel the difference when we simulate a with different
value of p ?

Figure: percolation in a cube of size 120× 120 with p = 0.4 .
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Introduction of the model

Example of percolation

Question: Can you feel the difference when we simulate a with different
value of p ?

Figure: percolation in a cube of size 120× 120 with p = 0.5 .
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Introduction of the model

Example of percolation

Question: Can you feel the difference when we simulate a with different
value of p ?

Figure: percolation in a cube of size 120× 120 with p = 0.6 .
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Introduction of the model

Example of percolation

Question: Can you feel the difference when we simulate a with different
value of p ?

Figure: percolation colored by cluster in a cube of size 120× 120 with p = 0.4 .
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Introduction of the model

Example of percolation

Question: Can you feel the difference when we simulate a with different
value of p ?

Figure: Percolation colored by clusters in a cube of size 120× 120 with p = 0.5 .
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Introduction of the model

Example of percolation

Question: Can you feel the difference when we simulate a with different
value of p ?

Figure: Percolation colored by clusters in a cube of size 120× 120 with p = 0.6 .
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Introduction of the model

Phase transition

θ(p) := P[0 belongs to an infinite cluster C∞].

It is easy to show that θ(p) is monotone.

pc := inf{p ∈ [0, 1] : θ(p) > 0}.

Theorem

For d > 2, we have 0 < pc < 1.

We call the regime 0 6 p < pc subcritical, p = pc critical and
pc < p 6 1 supercritical.

Furthermore, by ergodicity argument, in subcritical case a.s. there is
no infinite cluster. In supercritical case a.s. there exists a unique
infinite cluster C∞.

Critical case: we conjecture θ(pc) = 0, but it is open for 3 6 d 6 10.
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Introduction of the model

Infinite cluster C∞ in supercritical percolation

Figure: The cluster in blue is the maximal cluster in the cube.
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Introduction of the model

Random walk on the infinite cluster

We focus on the case supercritical percolation.

(Xt) is a continuous-time Markov jump process starting from
y ∈ C∞, with an associated generator

∇ · a∇u(x) :=
∑
z∼x

a({x, z}) (u(z)− u(x)) .

The quenched semigroup is defined as

p (t, x, y) = pa (t, x, y) := Pa
y (Xt = x) ,

which also solves the equation on C∞ that{
∂tp (t, ·, y)−∇ · a∇p (t, ·, y) = 0 ,
p (0, ·, y) = δy(·) .
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Introduction of the model

Random walk on the infinite cluster

Question: for t big, does (Xt)t>0 looks like Brownian motion or is
p(t, x, y) close to a Gaussian distribution ?
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Introduction of the model

Semigroup of random walk on C∞

Figure: An illustration of t
d
2 p(t, ·, 0) for t = 100.
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Introduction of the model

Semigroup of random walk on C∞

Figure: An illustration of t
d
2 p(t, ·, 0) for t = 200.
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Introduction of the model

Semigroup of random walk on C∞

Figure: An illustration of t
d
2 p(t, ·, 0) for t = 300.
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Introduction of the model

Semigroup of random walk on C∞

Figure: An illustration of t
d
2 p(t, ·, 0) for t = 400.
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Introduction of the model

Semigroup of random walk on C∞

Figure: An illustration of t
d
2 p(t, ·, 0) for t = 500.
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Introduction of the model

Semigroup of random walk on C∞

Figure: An illustration of t
d
2 p(t, ·, 0) for t = 500.
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Introduction of the model

Semigroup of random walk on C∞

Figure: An illustration of t
d
2 p(t, ·, 0) for t = 1000.
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Introduction of the model

Semigroup of random walk on C∞

Figure: An illustration of t
d
2 p(t, ·, 0) for t = 2000.
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Introduction of the model

Semigroup of random walk on C∞

Figure: An illustration of t
d
2 p(t, ·, 0) for t = 3000.
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Introduction of the model

Semigroup of random walk on C∞

Figure: An illustration of t
d
2 p(t, ·, 0) for t = 4000.
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Historical results

Historical review: heat kernel bound

The exact Gaussian type bound on graphs and Markov chains are also well
studied for long time.

Davies (1993) proves the Carne-Varopoulos bound for random walk
on any infinite subgraph of Zd

p (t, x, y) 6


C exp

(
−|x− y|

2

Ct

)
if |x− y| 6 t,

C exp

(
−|x− y|

C

(
1 + ln

|x− y|
t

))
if |x− y| > t.

Delmotte (1999) proves the Gaussian bound for Markov chain on
graph satisfying double volume condition and Poincaré inequality.
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Historical results

Challenge

Some elementary inequality is perturbed by the random geometry of the
cluster.
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Historical results

Historical review: heat kernel bound

Barlow (2004) proves the Gaussian bound for the heat kernel p with
big t. That is for t > TNA(y)

p (t, x, y) 6


Ct−d/2 exp

(
−|x− y|

2

Ct

)
|x− y| 6 t,

Ct−d/2 exp

(
−|x− y|

C

(
1 + ln

|x− y|
t

))
|x− y| > t.

Barlow and Hambly (2009) also prove the local CLT: there exists p̄
Gaussian such that for any T > 0

lim sup
n→∞

sup
x∈C∞

sup
t>T
|n

d
2 p (nt, x, y)− θ−1(p)p̄(t, |x− y|)| = 0.
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Historical results

Historical review: convergence in law

Berger and Biskup (2007), Mathieu and Piatnitski (2007) prove that a
almost surely, the random walk on the infinite percolation cluster
converges to the Brownian motion in the Skorokhod topology(

1√
n
Xnt

)
t>0

n→∞
=⇒ (σ̄Bt)t>0 .
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Historical results

Proof: corrector method

1 Tightness of
(

1√
n
Xn·

)
n>1

.

2 Identify the limit: the corrector φei such that −∇ · a(ei +∇φei) = 0.
Then we have

Mt = (Xt · e1 + φe1(Xt), · · · , Xt · ed + φed(Xt)) ,

is a martingale and the martingale convergence theorem applies(
1√
n
Mnt

)
t>0

n→∞
=⇒ (σ̄Bt)t>0 .

3 Corrector is sublinear: lim supx→∞
φei (x)

|x| = 0, |Xnt| '
√
nt implies

1√
n
φei(Xnt)

n→∞−→ 0.
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Main result

Main result: Quantitative local CLT

Theorem (Dario, Gu, AOP 2021)

For each exponent δ > 0, there exist a positive constant C(d, p, δ) <∞
and an exponent s(d, p, δ) > 0, such that for every y ∈ Zd, there exists a
non-negative random time Tpar,δ(y) satisfying the stochastic integrability
estimate

∀T > 0, P (Tpar,δ(y) > T ) 6 C exp

(
−T

s

C

)
,

such that, on the event {y ∈ C∞}, for every x ∈ C∞ and every
t > max (Tpar,δ(y), |x− y|),

∣∣p(t, x, y)− θ(p)−1p̄(t, x− y)
∣∣ 6 Ct− d

2
−( 1

2
−δ) exp

(
−|x− y|

2

Ct

)
.

Remark: θ(p) = P[0 ∈ C∞] is the factor of the density normalization.
(p̄(t, · − y))t>0 is the semigroup of the limit Brownian motion (σ̄Bt)t>0.

Chenlin Gu (DMA/ENS) Heat Kernel on Percolation April 27, 2021 35 / 50



Main result

Errors between the semigroups

Figure: t = 500, the image on the left: t
d
2 p(t, ·, 0);

the image on the right: t
d
2
∣∣p(t, ·, 0)− θ(p)−1p̄(t, ·)

∣∣.
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Main result

Errors between the semigroups

Figure: t = 1000, the image on the left: t
d
2 p(t, ·, 0);

the image on the right: t
d
2
∣∣p(t, ·, 0)− θ(p)−1p̄(t, ·)

∣∣.
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Main result

Errors between the semigroups

Figure: t = 2000, the image on the left: t
d
2 p(t, ·, 0);

the image on the right: t
d
2
∣∣p(t, ·, 0)− θ(p)−1p̄(t, ·)

∣∣.
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Main result

Errors between the semigroups

Figure: t = 3000, the image on the left: t
d
2 p(t, ·, 0);

the image on the right: t
d
2
∣∣p(t, ·, 0)− θ(p)−1p̄(t, ·)

∣∣.
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Main result

Errors between the semigroups

Figure: t = 4000, the image on the left: t
d
2 p(t, ·, 0);

the image on the right: t
d
2
∣∣p(t, ·, 0)− θ(p)−1p̄(t, ·)

∣∣.
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Main result

Ingredient 1: Homogenization theory

Homogenization theory studies the errors between the equation and
its homogenized solution, for example (∂t −∇ · a∇)p = (∂t − σ̄2

2 ∆)p̄,
intuitively we have

p(t, x, y) ' p̄(t, x, y) +

d∑
k=1

∂kp̄(t, x, y)φek(x),

where {φek}16k6d is the collection of corrector.

Early classical work in homogenization: Bensoussan, Lions,
Papanicolaou, Jikov, Kozlov, Oleunik, Yurinskii, Naddaf, Spencer,
Allaire, Kenig, Lin, Shen etc.

Quantitative analysis in stochastic homogenization setting:
Armstrong, Kuusi, Mourrat, Smart, Gloria, Neukamm and Otto etc.
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Main result

Ingredient 2: Calderón-Zygmund decomposition
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Main result

Partition of good cube

Figure: Can you tell all the connected components in the graph ?
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Main result

Partition of good cube

Figure: The cluster in blue is the maximal cluster in the cube.
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Main result

Partition of good cube

Figure: Decomposition of a big cube into of disjoint small cubes with good properties.
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Main result

Partition of good cube

Theorem (Armstrong, Dario 2018)

Let G ⊂ T a sub-collection of triadic cubes satisfying the following: for
every � = z +�n ∈ T , {� /∈ G} ∈ F(z +�n+1), and there exist two
positive constants K, s we have
supz∈3nZd P[z +�n /∈ G] 6 K exp(−K−13ns). Then, P-almost surely
there exists S ⊂ T a partition of Zd with the following properties:

1 Cubes containing elements of S are good.

2 Neighbors of elements of S are comparable.

3 Estimate for the coarseness: we use �S(x) to represent the unique
element in S containing a point x ∈ Zd, then its size has exponential
tail.
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Main result

Ingredient 3: Whitney decomposition

We treat

(∂t −∇ · a∇)u = 0 (0,∞)× C∞,(
∂t −

1

2
σ̄2∆

)
ū = 0 (0,∞)× Rd,

with suitable coherent boundary condition. Here the first equation is
defined on C∞ and −∇ · a∇ is a finite difference operator; the second
equation is defined on Rd and ∆ is the standard Laplace operator. We
also need the Whitney decomposition to overcome some technical
obstacles here.
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Main result
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Main result
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Main result

Thank you for your attention.
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Main result

Easter eggs
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