

Heat Kernel on the Infinite Percolation Cluster

Chenlin Gu

DMA/ENS, PSL Research University

based on a joint work with Paul Dario

Fudan University, April 27, 2021

Outline

Introduction of the model

3 Historical results

Outline

2 Introduction of the model

- 3 Historical results
- 4 Main result

Universality of Brownian motion

• It is well-known that a centered random walk $(S_n)_{n \ge 1}$ on \mathbb{Z}^d with variance $\bar{\sigma}^2$ converges to the Brownian motion $(\bar{\sigma}B_t)_{t \ge 0}$ after a scaling.

- From different viewpoints: CLT, local CLT, invariance principle.
- Question: Do these results also hold for the random walk in suitable random environment?

Random walk in the labyrinth

Question: What happens for the random walk in the labyrinth ?

Outline

Introduction of the model

- 3 Historical results
- 4 Main result

Definition

Definition (Bernoulli percolation on \mathbb{Z}^d)

We denote by (\mathbb{Z}^d, E_d) the *d*-dimension lattice graph. A Bernoulli percolation configuration $\{\mathbf{a}(e)\}_{e \in E_d}$ is an element of $\{0, 1\}^{E_d}$, and its law is given by

$$\{\mathbf{a}(e)\}_{e\in E_d}$$
 i.i.d. $\mathbb{P}[\mathbf{a}(e)=1]=1-\mathbb{P}[\mathbf{a}(e)=0]=\mathfrak{p}.$

We say that the edge e is open if $\mathbf{a}(e) = 1$ and the edge e is closed if $\mathbf{a}(e) = 0$. A connected component given by \mathbf{a} will be called cluster.

Question: Can you feel the difference when we simulate ${\bf a}$ with different value of ${\mathfrak p}$?

Question: Can you feel the difference when we simulate ${\bf a}$ with different value of ${\mathfrak p}$?

Figure: percolation in a cube of size 120×120 with $\mathfrak{p}=0.5$.

Chenlin Gu (DMA/ENS)

Heat Kernel on Percolation

Question: Can you feel the difference when we simulate ${\bf a}$ with different value of ${\mathfrak p}$?

Chenlin Gu (DMA/ENS)

Heat Kernel on Percolation

Question: Can you feel the difference when we simulate ${\bf a}$ with different value of ${\mathfrak p}$?

Figure: percolation colored by cluster in a cube of size 120×120 with $\mathfrak{p}=0.4$.

Question: Can you feel the difference when we simulate ${\bf a}$ with different value of ${\mathfrak p}$?

Figure: Percolation colored by clusters in a cube of size 120×120 with $\mathfrak{p}=0.5$.

Question: Can you feel the difference when we simulate ${\bf a}$ with different value of ${\mathfrak p}$?

Figure: Percolation colored by clusters in a cube of size 120×120 with $\mathfrak{p}=0.6$.

Phase transition

- $\theta(\mathfrak{p}) := \mathbb{P}[0 \text{ belongs to an infinite cluster } \mathscr{C}_{\infty}].$
- It is easy to show that $\theta(\mathfrak{p})$ is monotone.
- $\mathfrak{p}_c := \inf \{ \mathfrak{p} \in [0,1] : \theta(\mathfrak{p}) > 0 \}.$

Theorem

For $d \ge 2$, we have $0 < \mathfrak{p}_c < 1$.

- We call the regime $0 \leq \mathfrak{p} < \mathfrak{p}_c$ subcritical, $\mathfrak{p} = \mathfrak{p}_c$ critical and $\mathfrak{p}_c < \mathfrak{p} \leq 1$ supercritical.
- Furthermore, by ergodicity argument, in subcritical case a.s. there is no infinite cluster. In supercritical case a.s. there exists a unique infinite cluster 𝒞_∞.
- Critical case: we conjecture $\theta(\mathfrak{p}_c) = 0$, but it is open for $3 \leq d \leq 10$.

Infinite cluster \mathscr{C}_{∞} in supercritical percolation

Figure: The cluster in blue is the maximal cluster in the cube.

Random walk on the infinite cluster

- We focus on the case supercritical percolation.
- (X_t) is a continuous-time Markov jump process starting from $y \in \mathscr{C}_{\infty}$, with an associated generator

$$\nabla \cdot \mathbf{a} \nabla u(x) := \sum_{z \sim x} \mathbf{a}(\{x, z\}) \left(u(z) - u(x) \right).$$

• The quenched semigroup is defined as

$$p(t, x, y) = p^{\mathbf{a}}(t, x, y) := \mathbb{P}_{y}^{\mathbf{a}}(X_{t} = x),$$

which also solves the equation on \mathscr{C}_∞ that

$$\begin{cases} \partial_t p(t, \cdot, y) - \nabla \cdot \mathbf{a} \nabla p(t, \cdot, y) = 0 \\ p(0, \cdot, y) = \delta_y(\cdot) \end{cases},$$

Random walk on the infinite cluster

• Question: for t big, does $(X_t)_{t \ge 0}$ looks like Brownian motion or is p(t, x, y) close to a Gaussian distribution ?

Figure: An illustration of $t^{\frac{d}{2}}p(t,\cdot,0)$ for t = 100.

Figure: An illustration of $t^{\frac{d}{2}}p(t,\cdot,0)$ for t=200.

Figure: An illustration of $t^{\frac{d}{2}}p(t,\cdot,0)$ for t = 300.

Figure: An illustration of $t^{\frac{d}{2}}p(t,\cdot,0)$ for t = 400.

Figure: An illustration of $t^{\frac{d}{2}}p(t,\cdot,0)$ for t = 500.

Figure: An illustration of $t^{\frac{d}{2}}p(t,\cdot,0)$ for t = 500.

Figure: An illustration of $t^{\frac{d}{2}}p(t,\cdot,0)$ for t = 1000.

Figure: An illustration of $t^{\frac{d}{2}}p(t,\cdot,0)$ for t=2000.

Figure: An illustration of $t^{\frac{d}{2}}p(t,\cdot,0)$ for t = 3000.

Figure: An illustration of $t^{\frac{d}{2}}p(t,\cdot,0)$ for t = 4000.

Outline

2 Introduction of the model

- 3 Historical results
 - 4 Main result

Historical review: heat kernel bound

The exact Gaussian type bound on graphs and Markov chains are also well studied for long time.

• Davies (1993) proves the Carne-Varopoulos bound for random walk on any infinite subgraph of \mathbb{Z}^d

$$p\left(t, x, y\right) \leqslant \begin{cases} C \exp\left(-\frac{|x-y|^2}{Ct}\right) & \text{if } |x-y| \leqslant t, \\ C \exp\left(-\frac{|x-y|}{C}\left(1+\ln\frac{|x-y|}{t}\right)\right) & \text{if } |x-y| \geqslant t. \end{cases}$$

• Delmotte (1999) proves the Gaussian bound for Markov chain on graph satisfying double volume condition and Poincaré inequality.

Challenge

Some elementary inequality is perturbed by the random geometry of the cluster.

Historical review: heat kernel bound

• Barlow (2004) proves the Gaussian bound for the heat kernel p with big t. That is for $t>\mathcal{T}_{NA}(y)$

$$p\left(t, x, y\right) \leqslant \begin{cases} Ct^{-d/2} \exp\left(-\frac{|x-y|^2}{Ct}\right) & |x-y| \leqslant t, \\ Ct^{-d/2} \exp\left(-\frac{|x-y|}{C} \left(1+\ln\frac{|x-y|}{t}\right)\right) & |x-y| \geqslant t. \end{cases}$$

• Barlow and Hambly (2009) also prove the local CLT: there exists \bar{p} Gaussian such that for any T>0

$$\limsup_{n \to \infty} \sup_{x \in \mathscr{C}_{\infty}} \sup_{t \ge T} |n^{\frac{d}{2}} p(nt, x, y) - \theta^{-1}(\mathfrak{p})\bar{p}(t, |x - y|)| = 0.$$

Historical review: convergence in law

Berger and Biskup (2007), Mathieu and Piatnitski (2007) prove that a almost surely, the random walk on the infinite percolation cluster converges to the Brownian motion in the Skorokhod topology

$$\left(\frac{1}{\sqrt{n}}X_{nt}\right)_{t\geq 0} \stackrel{n\to\infty}{\Longrightarrow} (\bar{\sigma}B_t)_{t\geq 0}.$$

Proof: corrector method

- Tightness of $\left(\frac{1}{\sqrt{n}}X_{n}\right)_{n\geq 1}$.
- 2 Identify the limit: the corrector ϕ_{e_i} such that $-\nabla \cdot \mathbf{a}(e_i + \nabla \phi_{e_i}) = 0$. Then we have

$$M_t = \left(X_t \cdot e_1 + \phi_{e_1}(X_t), \cdots, X_t \cdot e_d + \phi_{e_d}(X_t)\right),$$

is a martingale and the martingale convergence theorem applies

$$\left(\frac{1}{\sqrt{n}}M_{nt}\right)_{t \ge 0} \stackrel{n \to \infty}{\Longrightarrow} (\bar{\sigma}B_t)_{t \ge 0} \,.$$

• Corrector is sublinear: $\limsup_{x\to\infty} \frac{\phi_{e_i}(x)}{|x|} = 0$, $|X_{nt}| \simeq \sqrt{nt}$ implies

$$\frac{1}{\sqrt{n}}\phi_{e_i}(X_{nt}) \stackrel{n \to \infty}{\longrightarrow} 0.$$

Outline

2 Introduction of the model

3 Historical results

Main result: Quantitative local CLT

Theorem (Dario, Gu, AOP 2021)

For each exponent $\delta > 0$, there exist a positive constant $C(d, \mathfrak{p}, \delta) < \infty$ and an exponent $s(d, \mathfrak{p}, \delta) > 0$, such that for every $y \in \mathbb{Z}^d$, there exists a non-negative random time $\mathcal{T}_{\text{par},\delta}(y)$ satisfying the stochastic integrability estimate

$$\forall T \ge 0, \ \mathbb{P}\left(\mathcal{T}_{\mathrm{par},\delta}(y) \ge T\right) \leqslant C \exp\left(-\frac{T^s}{C}\right),$$

such that, on the event $\{y \in \mathscr{C}_{\infty}\}$, for every $x \in \mathscr{C}_{\infty}$ and every $t \ge \max(\mathcal{T}_{\operatorname{par},\delta}(y), |x-y|)$,

$$\left|p(t,x,y) - \theta(\mathfrak{p})^{-1}\bar{p}(t,x-y)\right| \leq Ct^{-\frac{d}{2} - \left(\frac{1}{2} - \delta\right)} \exp\left(-\frac{|x-y|^2}{Ct}\right).$$

Remark: $\theta(\mathfrak{p}) = \mathbb{P}[0 \in \mathscr{C}_{\infty}]$ is the factor of the density normalization. $(\bar{p}(t, \cdot - y))_{t \ge 0}$ is the semigroup of the limit Brownian motion $(\bar{\sigma}B_t)_{t \ge 0}$.

Chenlin Gu (DMA/ENS)

Heat Kernel on Percolation

April 27, 2021 35 / 50

Figure: t = 500, the image on the left: $t^{\frac{d}{2}}p(t,\cdot,0)$; the image on the right: $t^{\frac{d}{2}} |p(t,\cdot,0) - \theta(\mathfrak{p})^{-1}\bar{p}(t,\cdot)|$.

Chenlin Gu (DMA/ENS)

Heat Kernel on Percolation

April 27, 2021 36 / 50

Figure: t = 1000, the image on the left: $t^{\frac{d}{2}}p(t, \cdot, 0)$; the image on the right: $t^{\frac{d}{2}} |p(t, \cdot, 0) - \theta(\mathfrak{p})^{-1}\bar{p}(t, \cdot)|$.

Figure: t = 2000, the image on the left: $t^{\frac{d}{2}}p(t, \cdot, 0)$; the image on the right: $t^{\frac{d}{2}} |p(t, \cdot, 0) - \theta(\mathfrak{p})^{-1}\bar{p}(t, \cdot)|$.

Chenlin Gu (DMA/ENS)

Heat Kernel on Percolation

Figure: t = 3000, the image on the left: $t^{\frac{d}{2}}p(t, \cdot, 0)$; the image on the right: $t^{\frac{d}{2}} |p(t, \cdot, 0) - \theta(\mathfrak{p})^{-1}\bar{p}(t, \cdot)|$.

Chenlin Gu (DMA/ENS)

Heat Kernel on Percolation

Figure: t = 4000, the image on the left: $t^{\frac{d}{2}}p(t, \cdot, 0)$; the image on the right: $t^{\frac{d}{2}} |p(t, \cdot, 0) - \theta(\mathfrak{p})^{-1}\bar{p}(t, \cdot)|$.

Chenlin Gu (DMA/ENS)

Heat Kernel on Percolation

April 27, 2021 40 / 50

Ingredient 1: Homogenization theory

• Homogenization theory studies the errors between the equation and its homogenized solution, for example $(\partial_t - \nabla \cdot \mathbf{a} \nabla)p = (\partial_t - \frac{\bar{\sigma}^2}{2}\Delta)\bar{p}$, intuitively we have

$$p(t, x, y) \simeq \bar{p}(t, x, y) + \sum_{k=1}^{d} \partial_k \bar{p}(t, x, y) \phi_{e_k}(x),$$

where $\{\phi_{e_k}\}_{1 \leq k \leq d}$ is the collection of corrector.

- Early classical work in homogenization: Bensoussan, Lions, Papanicolaou, Jikov, Kozlov, Oleunik, Yurinskii, Naddaf, Spencer, Allaire, Kenig, Lin, Shen etc.
- Quantitative analysis in stochastic homogenization setting: Armstrong, Kuusi, Mourrat, Smart, Gloria, Neukamm and Otto etc.

Ingredient 2: Calderón-Zygmund decomposition

Figure: Can you tell all the connected components in the graph ?

Figure: The cluster in blue is the maximal cluster in the cube.

Figure: Decomposition of a big cube into of disjoint small cubes with good properties.

Theorem (Armstrong, Dario 2018)

Let $\mathcal{G} \subset \mathcal{T}$ a sub-collection of triadic cubes satisfying the following: for every $\Box = z + \Box_n \in \mathcal{T}$, $\{\Box \notin \mathcal{G}\} \in \mathcal{F}(z + \Box_{n+1})$, and there exist two positive constants K, s we have $\sup_{z \in 3^n \mathbb{Z}^d} \mathbb{P}[z + \Box_n \notin \mathcal{G}] \leq K \exp(-K^{-1}3^{ns})$. Then, \mathbb{P} -almost surely there exists $\mathcal{S} \subset \mathcal{T}$ a partition of \mathbb{Z}^d with the following properties:

- Cubes containing elements of S are good.
- In Neighbors of elements of S are comparable.
- **3** Estimate for the coarseness: we use $\Box_S(x)$ to represent the unique element in S containing a point $x \in \mathbb{Z}^d$, then its size has exponential tail.

Ingredient 3: Whitney decomposition

We treat

$$\begin{aligned} &(\partial_t - \nabla \cdot \mathbf{a} \nabla) u = 0 \qquad (0, \infty) \times \mathscr{C}_{\infty}, \\ &\left(\partial_t - \frac{1}{2} \bar{\sigma}^2 \Delta\right) \bar{u} = 0 \qquad (0, \infty) \times \mathbb{R}^d, \end{aligned}$$

with suitable coherent boundary condition. Here the first equation is defined on \mathscr{C}_{∞} and $-\nabla \cdot \mathbf{a}\nabla$ is a finite difference operator; the second equation is defined on \mathbb{R}^d and Δ is the standard Laplace operator. We also need the Whitney decomposition to overcome some technical obstacles here.

For Further Reading I

Bensoussan, A., Lions, J.L. and Papanicolaou, G., 2011. Asymptotic analysis for periodic structures (Vol. 374). American Mathematical Soc.

Armstrong, S., Kuusi, T. and Mourrat, J.C., 2019. Quantitative stochastic homogenization and large-scale regularity (Vol. 352). Springer.

Barlow, M.T., 2004. Random walks on supercritical percolation clusters. Annals of probability, 32(4), pp.3024-3084.

Mathieu, P. and Piatnitski, A., 2007. Quenched invariance principles for random walks on percolation clusters. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2085), pp.2287-2307.

Berger, N. and Biskup, M., 2007. Quenched invariance principle for simple random walk on percolation clusters. Probability theory and related fields, 137(1-2), pp.83-120.

For Further Reading II

Hambly, B. and Barlow, M., 2009. Parabolic Harnack inequality and local limit theorem for percolation clusters. Electronic Journal of Probability, 14, pp.1-26.

Armstrong, S. and Dario, P., 2018. Elliptic regularity and quantitative homogenization on percolation clusters. Communications on Pure and Applied Mathematics, 71(9), pp.1717-1849.

Dario, P. and Gu, C., 2021. Quantitative homogenization of the parabolic and elliptic Green's functions on percolation clusters. The Annals of Probability, 49(2), pp.556-636.

Thank you for your attention.

Chenlin Gu (DMA/ENS)

Heat Kernel on Percolation

April 27, 2021 50 / 50

Easter eggs

热传导方程发展简介

顾陈琳

学号: 10302010022

专业:数学类

摘要:热传导方程是数学物理方程中基本方程之一,和实际生活联 系紧密。本文旨在概括热传导方程发展历史和在现代社会的应用。

关键字: 热传导方程 傅里叶 数学物理方程 适定性 Tikhonov 方法 期权定价

第4节 总结

热传与力程和实际联系紧密, 诸加拉子才散, 物种迁独, 热量传播, 他机运 动都可以看作是这个模型的变形,因此运用广泛,在20世纪70年代,Fisher Black, Myron Scholes 和 Robert Metron 在两权定价频数束得了巨大突破,发展了 "Black-Scholes"力程,对近 30 年金融工程的发展起到了决定性作用。《赫尔 2009)他们在1997 年获得了说引尔经济学奖。其中"Black-Scholes"方程记录 一种物物发力器, 关于热传导方磁大值原理也可以发出适应用说证】。

另一点自示是。数学的发展和其他学科一直是紧密联系着的。现实问题可以 为数学是很研究课题。基本模型。数学可以为现实问题提供严谨。系统解述,而 现实又可以对数学理论进行初步的检验。这种在实践中学习的方法应当是我们追 来的。