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Background

Brownian motion

What is the definition of Brownian motion ?

Physics (before 20th): Brownian motion is the random motion of
particles suspended in a fluid (a liquid or a gas) resulting from their
collision with the fast-moving molecules in the fluid.

Mathematics: Brownian motion is a continuous stochastic processes
with stationary independent increments.

Figure: From left to right is Robert Brown, Albert Einstein, Nobert Wiener, Paul
Lévy and Kiyoshi Itô.

Question: What is the gap between the two definitions ?
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Background

Diffusion in random environment/with interactions

Random walk on random conductance: Invariant principle for random
walk on random conductance/supercritical percolation model. See the
survey Recent progress on the random conductance model (2011) by
M. Biskup.
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Background

Diffusion in random environment/with interactions

Simple symmetric exclusion process (SSEP): η ∈ {0, 1}Td
N , the

hydrodynamic limit of empirical measure µNt = 1
Nd

∑
x∈Td

N
ηN2t(x) is

the solution of heat equation. See the book Scaling limit of
interacting particle systems by C. Kipnis and C. Landim.

Chenlin GU (DMA/ENS) Heat kernel for particle systems July 30, 2020 5 / 36



Background

Diffusion in random environment/with interactions

Hard sphere model: In the system of N particles in Td following the
collision of Newton law, the trajectory of a tagged particle converges
to Brownian motion in [0, T ], under the dilute region of
Boltzmann-Grad scaling ε→ 0, N →∞, εd−1N → α. See the work
The Brownian motion as the limit of a deterministic system of
hard-spheres (2015) of T. Bodineau, I. Gallagher, L. Saint-Raymond.
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Diffusion on continuum configuration spaces

Diffusion on continuum configuration spaces

We want to define a continuum diffusion process, that every particle
evolves as a diffusion associated to the generator −∇ · a∇, where the
diffusion matrix depends on the local information.

Chenlin GU (DMA/ENS) Heat kernel for particle systems July 30, 2020 8 / 36



Diffusion on continuum configuration spaces

Configuration spaces

The continuum configuration space: introduced by S. Albeverio, Y.G.
Kondratiev and M. Röckner. We use the point measure to define the
configuration

Mδ(Rd) :=

{
µ =

∑
i∈I

δxi for some I finite or countable,

and xi ∈ Rd for any i ∈ I
}
. (2.1)

Filtration: for every Borel set U ⊆ Rd, we denote by FU the smallest
σ-algebra such that for every Borel subset V ⊆ U , the mapping
µ ∈Mδ(Rd) 7→ µ(V ) is measurable.

Probability: fix ρ > 0, and define Pρ a probability measure on
(Mδ(Rd),FRd), to be the Poisson measure on Rd with density ρ. We
denote by Eρ the expectation, Varρ the variance associated with the
law Pρ.
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Diffusion on continuum configuration spaces

Derivative on configuration spaces

Derivative: FRd-measurable function f :Mδ(Rd)→ R. Let
{ek}16k6n be d canonical directions, for x ∈ supp(µ), we define

∂kf(µ, x) := lim
h→0

1

h
(f(µ− δx + δx+hek)− f(µ)),

if the limit exists, and the gradient as a vector

∇f(µ, x) := (∂1f(µ, x), ∂2f(µ, x), · · · ∂df(µ, x)).

Function space:
C∞c (Mδ(Rd)): a function which is FU supported with U ⊆ Rd
compact Borel set. Conditioned µ(U) = N , the function is C∞ with
all the coordinates.
H1

0 (Mδ(Rd)): closure of C∞c (Mδ(Rd)) for the norm

‖f‖H1(Mδ(Rd)) :=

(
Eρ
[
f2
]

+ Eρ
[∫

Rd
|∇f |2 dµ

]) 1
2

.
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Diffusion on continuum configuration spaces

Derivative on configuration spaces

Example

F ∈ C∞c (RN ), ∀1 6 i 6 N, gi ∈ C∞c (Rd),

f(µ) := F (µ(g1), · · ·µ(gN )).

Then for its derivative at x ∈ supp(µ)

∇f(µ, x) =

N∑
i=1

∇xiF (µ(g1), · · ·µ(gN ))∇gi(x).
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Diffusion on continuum configuration spaces

Diffusion matrix

Diffusion matrix: a◦ :Mδ(Rd)→ Rd×dsym
locality: FB1 -measurable;
uniform ellipticity: ∃Λ ∈ [1,+∞) s.t ∀µ ∈Mδ(Rd), ∀ξ ∈ Rd,
|ξ|2 6 ξ · a◦(µ)ξ 6 Λ|ξ|2.
stationarity:a(µ, x) := τxa◦(µ) = a◦(τ−xµ).
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Diffusion on continuum configuration spaces

Diffusion on configuration spaces

Diffusion defined by Dirichlet form: we define Mδ(Rd)-valued Markov
process ((µt)t>0, (Ft)t>0, (Pt)t>0) by its Dirichlet form

Dirichlet form:

Ea(f, g) := Eρ
[∫

Rd
∇f(µ, x) · a(µ, x)∇g(µ, x) dµ(x)

]
.

Domain: D(Ea) := H1
0 (Mδ(Rd)).

Characterization: let ut = Ptu, for any v ∈ D(Ea)

Eρ[utv]− Eρ[uv] = −
∫ t

0

Ea(us, v) ds. (2.2)
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Diffusion on continuum configuration spaces

Main theorem

Theorem (Decay of variance)

There exists two finite positive constants γ := γ(ρ, d,Λ), C := C(ρ, d,Λ)
such that for any u ∈ C∞c (Mδ(Rd)) supported in Qlu , then we have

Varρ[ut] 6 C(1 + | log t|)γ
(

1 + lu√
t

)d
‖u‖2L∞ . (2.3)
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Diffusion on continuum configuration spaces

A solvable example

a = 1
2 : independent Brownian motion issued from Poisson point

process.

u(µ) :=
∫
Rd f dµ with f ∈ C∞c (Rd).

Φt(x) = 1

(2πt)
d
2

exp
(
− |x|

2

2t

)
, then ft(x) = Φt ? f(x)

ut(µ) = Eρ [u(µt)|F0] = Eρ

[∑
i∈N

f
(
B

(i)
t

)∣∣∣∣∣F0

]
=

∫
Rd

ft(x) dµ(x),

Under this case, the variance can be calculated

Varρ [u] = ρ

∫
Rd

f2(x) dx = ρ‖f‖2
L2(Rd),

Varρ [ut] = ρ

∫
Rd

f2t (x) dx = ρ‖ft‖2L2(Rd).
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Diffusion on continuum configuration spaces

A solvable example

By the heat kernel estimate for the standard heat equation, we known

that ‖ft‖2L2(Rd)
' C(d)t−

d
2 ‖f‖2

L2(Rd)
, thus the scale t−

d
2 is the best

one that we can obtain.

Moreover, if we take f = 1{Qr}, and t = r2(1−ε) for a small ε > 0,
then we see that the typical scale of diffusion is a ball of size r1−ε. So

for every x ∈ Q
r
(
1−r−

ε
2

), the value ft(x) ' 1− e−r
ε
2 and we have

Varρ [ut] = ρ

∫
Rd

f2t (x) dx > ρrd(1− r−
ε
2 ) = (1− r−

ε
2 )Varρ [u] .

It illustrates that before the scale t = r2, the decay is very slow so in

the Theorem 2 the factor
(
lu√
t

)d
is reasonable.

Remark: besides this case (linear functional + no interaction), I do
not know how to calculate exactly the variance.
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Main steps of proof

Zero range model

An analogue is proved in discrete case: Relaxation to Equilibrium of
Conservative Dynamics. I: Zero-Range Processes, (1999) by E.
Janvresse, C. Landim, J. Quastel, and H. T. Yau.

Our contributions:

Generalization to continuum configuration space without gradient
condition.

Correct scaling exponent
(
lu√
t

)d
and uniform for time.

Fix an error in the proof.
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Main steps of proof

Decomposition of approximation and variance

ZK := Zd ∩
[
−K

2 ,
K
2

]d
.

A decomposition of type “approximation - variance”.

ut = vt + wt

vt := ut −
1

|ZK |
∑
y∈ZK

τyut,

wt :=
1

|ZK |
∑
y∈ZK

τyut.
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Main steps of proof

Estimate of variance

Lemma

There exists a finite positive number C := C(d) such that for any
u ∈ C∞c (Mδ(Rd)) supported in Qlu and K > lu, we have

Varρ

 1

|ZK |
∑
y∈ZK

τyut

2 6 C(d)

(
lu
K

)d
Eρ[u2]. (3.1)
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Main steps of proof

Estimate of variance

Proof.

Then we can estimate the variance simply by L2 decay that

Eρ[(wt)2] = Eρ

Pt
 1

|ZK |
∑
y∈ZK

τyu

2
6 Eρ

 1

|ZK |
∑
y∈ZK

τyu

2 =
1

|ZK |2
∑

x,y∈ZK

Eρ [(τx−yu)u] .

We know that for |x− y| > lu, then the term τx−yu and u is independent
so Eρ [(τx−yu)u] = 0. This concludes eq. (3.1).
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Main steps of proof

Estimate of approximation

Recall that vt = ut − 1
|ZK |

∑
y∈ZK

τyut.

Lemma

There exists two finite positive numbers C := C(d, ρ), γ := γ(d, ρ) such
that for any u ∈ C∞c (Mδ(Rd)) supported in Qlu , K > lu and vt defined
above, for tn > max

{
l2u, 16Λ2

}
, tn+1 = Rtn with R > 1 we have

(tn+1)
d+2
2 Eρ[(vtn+1)2]− (tn)

d+2
2 Eρ[(vtn)2]

6 C(log(tn+1))
γK2(lu)d‖u‖2L∞ + Eρ[u2]. (3.2)
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Main steps of proof

Proof of the main theorem from two lemmas

Iteration using K :=
√
tn+1

Eρ[(utn+1)2]

62Eρ[(vtn+1)2] + 2Eρ[(wtn+1)2]

62

(
tn
tn+1

) d+2
2

Eρ[(vtn)2] + 2Eρ[(wtn+1)2]

+ 2(tn+1)
− d+2

2

(
C(log(tn+1))

γtn+1(lu)d‖u‖2L∞ + Eρ[u2]
)

64

(
tn
tn+1

) d+2
2

Eρ[(utn)2] + 4

(
tn
tn+1

) d+2
2

Eρ[(wtn)2] + 2Eρ[(wtn+1)2]

+ 2(tn+1)
− d+2

2

(
C(log(tn+1))

γtn+1(lu)d‖u‖2L∞ + Eρ[u2]
)
.

(3.3)
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Main steps of proof

Proof of the main theorem from two lemmas

Un = (tn)
d
2Eρ[(utn)2] and θ = 4R−1

Un+1 6 θUn + C2

(
(log(tn+1))

γ(lu)d‖u‖2L∞ + (tn+1)
−1Eρ[u2]

)
+ C3(lu)dEρ[u2]

By choose R large such that θ ∈ (0, 1) and t0 = (lu)2

Un+1

6
n∑
k=1

(
C2

(
(log(tn+1))

γ(lu)d‖u‖2L∞ + Eρ[u2]
)

+ C3(lu)dEρ[u2]
)
θn−k

+ U0θ
n+1

6
1

1− θ

(
C2

(
(log(tn+1))

γ(lu)d‖u‖2L∞ + Eρ[u2]
)

+ C3(lu)dEρ[u2]
)

+ (lu)dEρ[u2]

=⇒Eρ[(utn+1)2] 6 C4(log(tn+1))
γ

(
lu√
tn+1

)d
‖u‖2L∞ .
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Localization inequality

Localization inequality

Recall Asf = E [f |FQs ].

The local information is scale L >
√
t approximates ut.

Theorem (Localization inequality)

For u ∈ L2
(
Mδ(Rd)

)
of compact support that supp(u) ⊆ Qlu , any

t > max
{
l2u, 16Λ2

}
, K >

√
t, and ut the function associated to the

generator L at time t, then we have the estimate

Eρ
[
(ut −AKut)2

]
6 C(Λ) exp

(
−K√

t

)
Eρ
[
u2
]
. (4.1)

Remark: in application, we usually choose that K = γ log t
√
t, so that we

get Eρ
[
(ut −AKut)2

]
6 t−γEρ

[
u2
]
.
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Localization inequality

Proof: multiscale functional - outline (from JLQY)

Let αs = exp
(
s
β

)
, β > 0 to be fixed. The key is to consider a multiscale

functional

Sk,K,β(f) = αkEρ
[
(Akf)2

]
+

∫ K

k
αs dEρ

[
(Asf)2

]
+ αKEρ

[
(f −AKf)2

]
= αKEρ

[
f2
]
−
∫ K

k
α′sEρ

[
(Asf)2

]
ds,

and put ut in the place of f and do derivative (non-trivial)

d

dt
Sk,K,β(ut) 6

2Λ2

β2
Sk,K,β(ut),

we choose k =
√
t > lu and β =

√
t to obtain

αKEρ
[
(ut −AKut)2

]
6 Sk,K,β(ut)

6 exp

(
2Λ2t

β2

)
Sk,K,β(u0) = exp

(
2Λ2t

β2

)
αkEρ

[
(u0)

2
]
.
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Localization inequality

Proof: multiscale functional - a hidden trap

Warning: in the step of d
dtSk,K,β(ut)

d

dt
Eρ
[
−(Asut)2

]
=

d

dt
Eρ [− (Asut)ut] = 2Eρ [Asut(−Lut)] .

but Asut /∈ D(Ea). If we pretend it is the case, one may have

Eρ [Asut(−Lut)]

=Eρ

[∫
Qs−1

∇(Asf) · a∇f dµ

]
+ Eρ

[∫
Qs\Qs−1

∇(Asf) · a∇f dµ

]

6Eρ

[∫
Qs−1

∇f · a∇f dµ

]
+ ΛEρ

[∫
Qs\Qs−1

∇f · a∇f dµ

]
.
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Localization inequality

Proof: multiscale functional - counter example

Example

Let η ∈ C∞c (Rd) be a plateau function:

supp(η) ⊆ B1, 0 6 η 6 1, η ≡ 1 in B 1
2
,

η(x) = η(|x|) decreasing with respect to |x|.

and we define our function f(µ) =
(∫

Rd η(x) dµ(x)
)
∧ 3 .

We define the level set Br such that

Br :=

{
x ∈ Rd

∣∣∣∣12 6 η(x) 6 1

}
.

Then, we have Eρ[f |FBr ] /∈ C∞c (Mδ(Rd)).
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Localization inequality

Proof: multiscale functional - counter example

Figure: f(µ) =
(∫

Rd η(x) dµ(x)
)
∧ 3, then Eρ[f |FBr ] is not smooth in this

example.
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Localization inequality

Proof: multiscale functional - regularity of Asf

Recall that Asf = Eρ[f |FQs ], it is both a function and a martingale with

respect to (FQs)s>0. Note M f
s := Asf .

Lemma

With probability 1, for any 0 < s <∞, there is at most one particle one
the boundary ∂Qs.

Lemma

After a modification, for any f ∈ C∞c (Mδ(Rd)) the process
(
M f

s

)
s>0

is a

càdlàg L2-martingale with finite variation, and the discontinuity point
occurs for s such that µ(∂Qs) = 1.

Chenlin GU (DMA/ENS) Heat kernel for particle systems July 30, 2020 31 / 36



Localization inequality

Proof: multiscale functional - regularization

We do some regularization

As,εut :=
1

ε

∫ ε

0
As+rut dr.

We study the regularized multiscale functional Sk,K,β,ε(ut)

Sk,K,β,ε(ut) = αkEρ
[
(Ak,εut)2

]
+
∫K
k αs

(
d
dsEρ

[
(As,εut)2

])
ds+ αKEρ

[
f2 − (AK,εut)2

]
,

Then we focus on

d

dt
Sk,K,β,ε(ut) = 2αKEρ [ut(Lut)] +

∫ K

k
2α′sEρ

[
Ãs,εut(−Lut)

]
ds,

where

Ãs,εut :=
2

ε2

∫ ε

0
(ε− r)As+rut dr.
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Localization inequality

Proof: multiscale functional - regularization

Eρ
[
Ãs,εf(−Lf)

]
=Eρ

[∫
Qs−1

∇(Ãs,εf) · a∇f dµ

]
+ Eρ

[∫
Qs\Qs−1

∇(Ãs,εf) · a∇f dµ

]

+ Eρ

[∫
Qs+ε\Qs

∇(Ãs,εf) · a∇f dµ

]

6Eρ

[∫
Qs−1

∇f · a∇f dµ

]
+ ΛEρ

[∫
Qs\Qs−1

∇f · a∇f dµ

]

+

(
θΛ

ε
+ Λ

)
Eρ

[∫
Qs+ε\Qo

s

∇f · a∇f dµ

]
+

Λ

2θ

d

ds
Eρ
[
(As,εf)2

]
.

The term in red is the one finally contributes to the analysis. One
intermediate step will appear a miracle L2 martingale isometry.
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Discussions

Discussion

1 Can we reduce the term logarithm?

2 Can we identify the long time behavior like in the work of zero range
model that

Varρ[ut] =
[ũ′(ρ)]2χ(ρ)

[8πφ′(ρ)t]
d
2

+ o
(
t−

d
2

)
.

3 Long range interaction ?

4 Diffusion on other manifold rather than Rd?

5 Other type of dynamics?
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Discussions

Thank you for your attention.
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