Decay of semigroup for an infinite interacting particle system on continuum configuration spaces

Chenlin GU

DMA/ENS, PSL Research University

Seminar AMSS Online

July 30, 2020

Outline for section 1

(1) Background

(2) Diffusion on continuum configuration spaces
(3) Main steps of proof

4 Localization inequality
(5) Discussions

Brownian motion

What is the definition of Brownian motion ?

- Physics (before 20th): Brownian motion is the random motion of particles suspended in a fluid (a liquid or a gas) resulting from their collision with the fast-moving molecules in the fluid.
- Mathematics: Brownian motion is a continuous stochastic processes with stationary independent increments.

Figure: From left to right is Robert Brown, Albert Einstein, Nobert Wiener, Paul Lévy and Kiyoshi Itô.

Question: What is the gap between the two definitions ?

Diffusion in random environment/with interactions

- Random walk on random conductance: Invariant principle for random walk on random conductance/supercritical percolation model. See the survey Recent progress on the random conductance model (2011) by M. Biskup.

Diffusion in random environment/with interactions

- Simple symmetric exclusion process (SSEP): $\eta \in\{0,1\}^{\mathbb{T}_{N}^{d}}$, the hydrodynamic limit of empirical measure $\mu_{t}^{N}=\frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} \eta_{N^{2} t}(x)$ is the solution of heat equation. See the book Scaling limit of interacting particle systems by C. Kipnis and C. Landim.

Diffusion in random environment/with interactions

- Hard sphere model: In the system of N particles in \mathbb{T}^{d} following the collision of Newton law, the trajectory of a tagged particle converges to Brownian motion in $[0, T]$, under the dilute region of Boltzmann-Grad scaling $\varepsilon \rightarrow 0, N \rightarrow \infty, \varepsilon^{d-1} N \rightarrow \alpha$. See the work The Brownian motion as the limit of a deterministic system of hard-spheres (2015) of T. Bodineau, I. Gallagher, L. Saint-Raymond.

Outline for section 2

(1) Background

(2) Diffusion on continuum configuration spaces
(3) Main steps of proof

4 Localization inequality
(5) Discussions

Diffusion on continuum configuration spaces

We want to define a continuum diffusion process, that every particle evolves as a diffusion associated to the generator $-\nabla \cdot \mathbf{a} \nabla$, where the diffusion matrix depends on the local information.

Configuration spaces

- The continuum configuration space: introduced by S. Albeverio, Y.G. Kondratiev and M. Röckner. We use the point measure to define the configuration

$$
\begin{array}{r}
\mathcal{M}_{\delta}\left(\mathbb{R}^{d}\right):=\left\{\mu=\sum_{i \in I} \delta_{x_{i}} \text { for some } I\right. \text { finite or countable, } \\
\text { and } \left.x_{i} \in \mathbb{R}^{d} \text { for any } i \in I\right\} . \tag{2.1}
\end{array}
$$

- Filtration: for every Borel set $U \subseteq \mathbb{R}^{d}$, we denote by \mathcal{F}_{U} the smallest σ-algebra such that for every Borel subset $V \subseteq U$, the mapping $\mu \in \mathcal{M}_{\delta}\left(\mathbb{R}^{d}\right) \mapsto \mu(V)$ is measurable.
- Probability: fix $\rho>0$, and define \mathbb{P}_{ρ} a probability measure on $\left(\mathcal{M}_{\delta}\left(\mathbb{R}^{d}\right), \mathcal{F}_{\mathbb{R}^{d}}\right)$, to be the Poisson measure on \mathbb{R}^{d} with density ρ. We denote by \mathbb{E}_{ρ} the expectation, $\operatorname{Var}_{\rho}$ the variance associated with the law \mathbb{P}_{ρ}.

Derivative on configuration spaces

- Derivative: $\mathcal{F}_{\mathbb{R}^{d}}$-measurable function $f: \mathcal{M}_{\delta}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$. Let $\left\{\mathbf{e}_{k}\right\}_{1 \leqslant k \leqslant n}$ be d canonical directions, for $x \in \operatorname{supp}(\mu)$, we define

$$
\partial_{k} f(\mu, x):=\lim _{h \rightarrow 0} \frac{1}{h}\left(f\left(\mu-\delta_{x}+\delta_{x+h \mathbf{e}_{k}}\right)-f(\mu)\right)
$$

if the limit exists, and the gradient as a vector

$$
\nabla f(\mu, x):=\left(\partial_{1} f(\mu, x), \partial_{2} f(\mu, x), \cdots \partial_{d} f(\mu, x)\right)
$$

- Function space:
- $C_{c}^{\infty}\left(\mathcal{M}_{\delta}\left(\mathbb{R}^{d}\right)\right)$: a function which is \mathcal{F}_{U} supported with $U \subseteq \mathbb{R}^{d}$ compact Borel set. Conditioned $\mu(U)=N$, the function is C^{∞} with all the coordinates.
- $H_{0}^{1}\left(\mathcal{M}_{\delta}\left(\mathbb{R}^{d}\right)\right)$: closure of $C_{c}^{\infty}\left(\mathcal{M}_{\delta}\left(\mathbb{R}^{d}\right)\right)$ for the norm

$$
\|f\|_{H^{1}\left(\mathcal{M}_{\delta}\left(\mathbb{R}^{d}\right)\right)}:=\left(\mathbb{E}_{\rho}\left[f^{2}\right]+\mathbb{E}_{\rho}\left[\int_{\mathbb{R}^{d}}|\nabla f|^{2} \mathrm{~d} \mu\right]\right)^{\frac{1}{2}}
$$

Derivative on configuration spaces

Example

$F \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right), \forall 1 \leqslant i \leqslant N, g_{i} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$,

$$
f(\mu):=F\left(\mu\left(g_{1}\right), \cdots \mu\left(g_{N}\right)\right)
$$

Then for its derivative at $x \in \operatorname{supp}(\mu)$

$$
\nabla f(\mu, x)=\sum_{i=1}^{N} \nabla_{x_{i}} F\left(\mu\left(g_{1}\right), \cdots \mu\left(g_{N}\right)\right) \nabla g_{i}(x)
$$

Diffusion matrix

- Diffusion matrix: $\mathbf{a}_{\circ}: \mathcal{M}_{\delta}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}_{\text {sym }}^{d \times d}$
- locality: $\mathcal{F}_{B_{1}}$-measurable;
- uniform ellipticity: $\exists \Lambda \in[1,+\infty)$ s.t $\forall \mu \in \mathcal{M}_{\delta}\left(\mathbb{R}^{d}\right), \forall \xi \in \mathbb{R}^{d}$, $|\xi|^{2} \leqslant \xi \cdot \mathbf{a}_{\circ}(\mu) \xi \leqslant \Lambda|\xi|^{2}$.
- stationarity $: \mathbf{a}(\mu, x):=\tau_{x} \mathbf{a}_{\circ}(\mu)=\mathbf{a}_{\circ}\left(\tau_{-x} \mu\right)$.

Diffusion on configuration spaces

- Diffusion defined by Dirichlet form: we define $\mathcal{M}_{\delta}\left(\mathbb{R}^{d}\right)$-valued Markov process $\left(\left(\mu_{t}\right)_{t \geqslant 0},\left(\mathscr{F}_{t}\right)_{t \geqslant 0},\left(P_{t}\right)_{t \geqslant 0}\right)$ by its Dirichlet form
- Dirichlet form:

$$
\mathcal{E}^{\mathbf{a}}(f, g):=\mathbb{E}_{\rho}\left[\int_{\mathbb{R}^{d}} \nabla f(\mu, x) \cdot \mathbf{a}(\mu, x) \nabla g(\mu, x) \mathrm{d} \mu(x)\right] .
$$

- Domain: $\mathcal{D}\left(\mathcal{E}^{\mathbf{a}}\right):=H_{0}^{1}\left(\mathcal{M}_{\delta}\left(\mathbb{R}^{d}\right)\right)$.
- Characterization: let $u_{t}=P_{t} u$, for any $v \in \mathcal{D}\left(\mathcal{E}^{\mathbf{a}}\right)$

$$
\begin{equation*}
\mathbb{E}_{\rho}\left[u_{t} v\right]-\mathbb{E}_{\rho}[u v]=-\int_{0}^{t} \mathcal{E}^{\mathbf{a}}\left(u_{s}, v\right) \mathrm{d} s \tag{2.2}
\end{equation*}
$$

Main theorem

Theorem (Decay of variance)
There exists two finite positive constants $\gamma:=\gamma(\rho, d, \Lambda), C:=C(\rho, d, \Lambda)$ such that for any $u \in C_{c}^{\infty}\left(\mathcal{M}_{\delta}\left(\mathbb{R}^{d}\right)\right)$ supported in $Q_{l_{u}}$, then we have

$$
\begin{equation*}
\operatorname{Var}_{\rho}\left[u_{t}\right] \leqslant C(1+|\log t|)^{\gamma}\left(\frac{1+l_{u}}{\sqrt{t}}\right)^{d}\|u\|_{L^{\infty}}^{2} \tag{2.3}
\end{equation*}
$$

A solvable example

- $\mathbf{a}=\frac{1}{2}$: independent Brownian motion issued from Poisson point process.
- $u(\mu):=\int_{\mathbb{R}^{d}} f \mathrm{~d} \mu$ with $f \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.
- $\Phi_{t}(x)=\frac{1}{(2 \pi t)^{\frac{d}{2}}} \exp \left(-\frac{|x|^{2}}{2 t}\right)$, then $f_{t}(x)=\Phi_{t} \star f(x)$

$$
u_{t}(\mu)=\mathbb{E}_{\rho}\left[u\left(\mu_{t}\right) \mid \mathscr{F}_{0}\right]=\mathbb{E}_{\rho}\left[\sum_{i \in \mathbb{N}} f\left(B_{t}^{(i)}\right) \mid \mathscr{F}_{0}\right]=\int_{\mathbb{R}^{d}} f_{t}(x) \mathrm{d} \mu(x),
$$

- Under this case, the variance can be calculated

$$
\begin{aligned}
\operatorname{Var}_{\rho}[u] & =\rho \int_{\mathbb{R}^{d}} f^{2}(x) \mathrm{d} x=\rho\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} \\
\operatorname{Var}_{\rho}\left[u_{t}\right] & =\rho \int_{\mathbb{R}^{d}} f_{t}^{2}(x) \mathrm{d} x=\rho\left\|f_{t}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}
\end{aligned}
$$

A solvable example

- By the heat kernel estimate for the standard heat equation, we known that $\left\|f_{t}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} \simeq C(d) t^{-\frac{d}{2}}\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}$, thus the scale $t^{-\frac{d}{2}}$ is the best one that we can obtain.
- Moreover, if we take $f=\mathbf{1}_{\left\{Q_{r}\right\}}$, and $t=r^{2(1-\varepsilon)}$ for a small $\varepsilon>0$, then we see that the typical scale of diffusion is a ball of size $r^{1-\varepsilon}$. So for every $x \in Q_{r\left(1-r^{-\frac{\varepsilon}{2}}\right)}$, the value $f_{t}(x) \simeq 1-e^{-r^{\frac{\varepsilon}{2}}}$ and we have

$$
\operatorname{Var}_{\rho}\left[u_{t}\right]=\rho \int_{\mathbb{R}^{d}} f_{t}^{2}(x) \mathrm{d} x \geqslant \rho r^{d}\left(1-r^{-\frac{\varepsilon}{2}}\right)=\left(1-r^{-\frac{\varepsilon}{2}}\right) \operatorname{Var}_{\rho}[u]
$$

It illustrates that before the scale $t=r^{2}$, the decay is very slow so in the Theorem 2 the factor $\left(\frac{l_{u}}{\sqrt{t}}\right)^{d}$ is reasonable.

- Remark: besides this case (linear functional + no interaction), I do not know how to calculate exactly the variance.

Outline for section 3

(1) Background

(2) Diffusion on continuum configuration spaces
(3) Main steps of proof
(4) Localization inequality
(5) Discussions

Zero range model

- An analogue is proved in discrete case: Relaxation to Equilibrium of Conservative Dynamics. I: Zero-Range Processes, (1999) by E. Janvresse, C. Landim, J. Quastel, and H. T. Yau.
- Our contributions:
- Generalization to continuum configuration space without gradient condition.
- Correct scaling exponent $\left(\frac{l_{u}}{\sqrt{ } t}\right)^{d}$ and uniform for time.
- Fix an error in the proof.

Decomposition of approximation and variance

- $\mathcal{Z}_{K}:=\mathbb{Z}^{d} \cap\left[-\frac{K}{2}, \frac{K}{2}\right]^{d}$.
- A decomposition of type "approximation - variance".
- $u_{t}=v_{t}+w_{t}$

$$
\begin{aligned}
v_{t} & :=u_{t}-\frac{1}{\left|\mathcal{Z}_{K}\right|} \sum_{y \in \mathcal{Z}_{K}} \tau_{y} u_{t}, \\
w_{t} & :=\frac{1}{\left|\mathcal{Z}_{K}\right|} \sum_{y \in \mathcal{Z}_{K}} \tau_{y} u_{t} .
\end{aligned}
$$

Estimate of variance

Lemma

There exists a finite positive number $C:=C(d)$ such that for any $u \in C_{c}^{\infty}\left(\mathcal{M}_{\delta}\left(\mathbb{R}^{d}\right)\right)$ supported in $Q_{l_{u}}$ and $K \geqslant l_{u}$, we have

$$
\begin{equation*}
\operatorname{Var}_{\rho}\left[\left(\frac{1}{\left|\mathcal{Z}_{K}\right|} \sum_{y \in \mathcal{Z}_{K}} \tau_{y} u_{t}\right)^{2}\right] \leqslant C(d)\left(\frac{l_{u}}{K}\right)^{d} \mathbb{E}_{\rho}\left[u^{2}\right] \tag{3.1}
\end{equation*}
$$

Estimate of variance

Proof.

Then we can estimate the variance simply by L^{2} decay that

$$
\begin{aligned}
\mathbb{E}_{\rho}\left[\left(w_{t}\right)^{2}\right] & =\mathbb{E}_{\rho}\left[\left(P_{t}\left(\frac{1}{\left|\mathcal{Z}_{K}\right|} \sum_{y \in \mathcal{Z}_{K}} \tau_{y} u\right)\right)^{2}\right] \\
& \leqslant \mathbb{E}_{\rho}\left[\left(\frac{1}{\left|\mathcal{Z}_{K}\right|} \sum_{y \in \mathcal{Z}_{K}} \tau_{y} u\right)^{2}\right]=\frac{1}{\left|\mathcal{Z}_{K}\right|^{2}} \sum_{x, y \in \mathcal{Z}_{K}} \mathbb{E}_{\rho}\left[\left(\tau_{x-y} u\right) u\right]
\end{aligned}
$$

We know that for $|x-y| \geqslant l_{u}$, then the term $\tau_{x-y} u$ and u is independent so $\mathbb{E}_{\rho}\left[\left(\tau_{x-y} u\right) u\right]=0$. This concludes eq. (3.1).

Estimate of approximation

Recall that $v_{t}=u_{t}-\frac{1}{\left|\mathcal{Z}_{K}\right|} \sum_{y \in \mathcal{Z}_{K}} \tau_{y} u_{t}$.

Lemma

There exists two finite positive numbers $C:=C(d, \rho), \gamma:=\gamma(d, \rho)$ such that for any $u \in C_{c}^{\infty}\left(\mathcal{M}_{\delta}\left(\mathbb{R}^{d}\right)\right)$ supported in $Q_{l_{u}}, K \geqslant l_{u}$ and v_{t} defined above, for $t_{n} \geqslant \max \left\{l_{u}^{2}, 16 \Lambda^{2}\right\}, t_{n+1}=R t_{n}$ with $R>1$ we have

$$
\begin{align*}
\left(t_{n+1}\right)^{\frac{d+2}{2}} \mathbb{E}_{\rho}\left[\left(v_{t_{n+1}}\right)^{2}\right]- & \left(t_{n}\right)^{\frac{d+2}{2}} \mathbb{E}_{\rho}\left[\left(v_{t_{n}}\right)^{2}\right] \\
& \leqslant C\left(\log \left(t_{n+1}\right)\right)^{\gamma} K^{2}\left(l_{u}\right)^{d}\|u\|_{L^{\infty}}^{2}+\mathbb{E}_{\rho}\left[u^{2}\right] \tag{3.2}
\end{align*}
$$

Proof of the main theorem from two lemmas

Iteration using $K:=\sqrt{t_{n+1}}$

$$
\begin{align*}
& \quad \mathbb{E}_{\rho}\left[\left(u_{t_{n+1}}\right)^{2}\right] \\
& \leqslant
\end{aligned} 2 \mathbb{E}_{\rho}\left[\left(v_{t_{n+1}}\right)^{2}\right]+2 \mathbb{E}_{\rho}\left[\left(w_{t_{n+1}}\right)^{2}\right] \quad \begin{aligned}
& \leqslant \\
& \leqslant 2\left(\frac{t_{n}}{t_{n+1}}\right)^{\frac{d+2}{2}} \mathbb{E}_{\rho}\left[\left(v_{t_{n}}\right)^{2}\right]+2 \mathbb{E}_{\rho}\left[\left(w_{t_{n+1}}\right)^{2}\right] \\
& \quad+2\left(t_{n+1}\right)^{-\frac{d+2}{2}}\left(C\left(\log \left(t_{n+1}\right)\right)^{\gamma} t_{n+1}\left(l_{u}\right)^{d}\|u\|_{L^{\infty}}^{2}+\mathbb{E}_{\rho}\left[u^{2}\right]\right) \\
& \leqslant
\end{aligned} \begin{aligned}
& \left(\frac{t_{n}}{t_{n+1}}\right)^{\frac{d+2}{2}} \mathbb{E}_{\rho}\left[\left(u_{t_{n}}\right)^{2}\right]+4\left(\frac{t_{n}}{t_{n+1}}\right)^{\frac{d+2}{2}} \mathbb{E}_{\rho}\left[\left(w_{t_{n}}\right)^{2}\right]+2 \mathbb{E}_{\rho}\left[\left(w_{t_{n+1}}\right)^{2}\right] \\
& \quad \quad+2\left(t_{n+1}\right)^{-\frac{d+2}{2}}\left(C\left(\log \left(t_{n+1}\right)\right)^{\gamma} t_{n+1}\left(l_{u}\right)^{d}\|u\|_{L^{\infty}}^{2}+\mathbb{E}_{\rho}\left[u^{2}\right]\right) . \tag{3.3}
\end{align*}
$$

Proof of the main theorem from two lemmas

- $U_{n}=\left(t_{n}\right)^{\frac{d}{2}} \mathbb{E}_{\rho}\left[\left(u_{t_{n}}\right)^{2}\right]$ and $\theta=4 R^{-1}$

$$
U_{n+1} \leqslant \theta U_{n}+C_{2}\left(\left(\log \left(t_{n+1}\right)\right)^{\gamma}\left(l_{u}\right)^{d}\|u\|_{L^{\infty}}^{2}+\left(t_{n+1}\right)^{-1} \mathbb{E}_{\rho}\left[u^{2}\right]\right)+C_{3}\left(l_{u}\right)^{d} \mathbb{E}_{\rho}\left[u^{2}\right]
$$

- By choose R large such that $\theta \in(0,1)$ and $t_{0}=\left(l_{u}\right)^{2}$

$$
\begin{aligned}
& U_{n+1} \\
& \leqslant \sum_{k=1}^{n}\left(C_{2}\left(\left(\log \left(t_{n+1}\right)\right)^{\gamma}\left(l_{u}\right)^{d}\|u\|_{L^{\infty}}^{2}+\mathbb{E}_{\rho}\left[u^{2}\right]\right)+C_{3}\left(l_{u}\right)^{d} \mathbb{E}_{\rho}\left[u^{2}\right]\right) \theta^{n-k} \\
& \quad+U_{0} \theta^{n+1} \\
& \leqslant \frac{1}{1-\theta}\left(C_{2}\left(\left(\log \left(t_{n+1}\right)\right)^{\gamma}\left(l_{u}\right)^{d}\|u\|_{L^{\infty}}^{2}+\mathbb{E}_{\rho}\left[u^{2}\right]\right)+C_{3}\left(l_{u}\right)^{d} \mathbb{E}_{\rho}\left[u^{2}\right]\right) \\
& \quad \quad+\left(l_{u}\right)^{d} \mathbb{E}_{\rho}\left[u^{2}\right] \\
& \Longrightarrow \mathbb{E}_{\rho}\left[\left(u_{t_{n+1}}\right)^{2}\right] \leqslant C_{4}\left(\log \left(t_{n+1}\right)\right)^{\gamma}\left(\frac{l_{u}}{\sqrt{t_{n+1}}}\right)^{d}\|u\|_{L^{\infty}}^{2} .
\end{aligned}
$$

Outline for section 4

(1) Background

(2) Diffusion on continuum configuration spaces

(3) Main steps of proof
(4) Localization inequality

(5) Discussions

Localization inequality

- Recall $\mathcal{A}_{s} f=\mathbb{E}\left[f \mid \mathcal{F}_{Q_{s}}\right]$.
- The local information is scale $L>\sqrt{t}$ approximates u_{t}.

Theorem (Localization inequality)
For $u \in L^{2}\left(\mathcal{M}_{\delta}\left(\mathbb{R}^{d}\right)\right)$ of compact support that $\operatorname{supp}(u) \subseteq Q_{l_{u}}$, any $t \geqslant \max \left\{l_{u}^{2}, 16 \Lambda^{2}\right\}, K \geqslant \sqrt{t}$, and u_{t} the function associated to the generator \mathcal{L} at time t, then we have the estimate

$$
\begin{equation*}
\mathbb{E}_{\rho}\left[\left(u_{t}-\mathcal{A}_{K} u_{t}\right)^{2}\right] \leqslant C(\Lambda) \exp \left(-\frac{K}{\sqrt{t}}\right) \mathbb{E}_{\rho}\left[u^{2}\right] \tag{4.1}
\end{equation*}
$$

Remark: in application, we usually choose that $K=\gamma \log t \sqrt{t}$, so that we get $\mathbb{E}_{\rho}\left[\left(u_{t}-\mathcal{A}_{K} u_{t}\right)^{2}\right] \leqslant t^{-\gamma} \mathbb{E}_{\rho}\left[u^{2}\right]$.

Proof: multiscale functional - outline (from JLQY)

 Let $\alpha_{s}=\exp \left(\frac{s}{\beta}\right), \beta>0$ to be fixed. The key is to consider a multiscale functional$$
\begin{aligned}
S_{k, K, \beta}(f) & =\alpha_{k} \mathbb{E}_{\rho}\left[\left(\mathcal{A}_{k} f\right)^{2}\right]+\int_{k}^{K} \alpha_{s} d \mathbb{E}_{\rho}\left[\left(\mathcal{A}_{s} f\right)^{2}\right]+\alpha_{K} \mathbb{E}_{\rho}\left[\left(f-\mathcal{A}_{K} f\right)^{2}\right] \\
& =\alpha_{K} \mathbb{E}_{\rho}\left[f^{2}\right]-\int_{k}^{K} \alpha_{s}^{\prime} \mathbb{E}_{\rho}\left[\left(\mathcal{A}_{s} f\right)^{2}\right] d s
\end{aligned}
$$

and put u_{t} in the place of f and do derivative (non-trivial)

$$
\frac{d}{d t} S_{k, K, \beta}\left(u_{t}\right) \leqslant \frac{2 \Lambda^{2}}{\beta^{2}} S_{k, K, \beta}\left(u_{t}\right)
$$

we choose $k=\sqrt{t} \geqslant l_{u}$ and $\beta=\sqrt{t}$ to obtain

$$
\begin{aligned}
\alpha_{K} \mathbb{E}_{\rho}\left[\left(u_{t}-\right.\right. & \left.\left.\mathcal{A}_{K} u_{t}\right)^{2}\right] \leqslant S_{k, K, \beta}\left(u_{t}\right) \\
& \leqslant \exp \left(\frac{2 \Lambda^{2} t}{\beta^{2}}\right) S_{k, K, \beta}\left(u_{0}\right)=\exp \left(\frac{2 \Lambda^{2} t}{\beta^{2}}\right) \alpha_{k} \mathbb{E}_{\rho}\left[\left(u_{0}\right)^{2}\right]
\end{aligned}
$$

Proof: multiscale functional - a hidden trap

- Warning: in the step of $\frac{d}{d t} S_{k, K, \beta}\left(u_{t}\right)$

$$
\frac{d}{d t} \mathbb{E}_{\rho}\left[-\left(\mathcal{A}_{s} u_{t}\right)^{2}\right]=\frac{d}{d t} \mathbb{E}_{\rho}\left[-\left(\mathcal{A}_{s} u_{t}\right) u_{t}\right]=2 \mathbb{E}_{\rho}\left[\mathcal{A}_{s} u_{t}\left(-\mathcal{L} u_{t}\right)\right]
$$

but $\mathcal{A}_{s} u_{t} \notin \mathcal{D}\left(\mathcal{E}^{\mathbf{a}}\right)$. If we pretend it is the case, one may have

$$
\begin{aligned}
& \mathbb{E}_{\rho}\left[\mathcal{A}_{s} u_{t}\left(-\mathcal{L} u_{t}\right)\right] \\
= & \mathbb{E}_{\rho}\left[\int_{Q_{s-1}} \nabla\left(\mathcal{A}_{s} f\right) \cdot \mathbf{a} \nabla f \mathrm{~d} \mu\right]+\mathbb{E}_{\rho}\left[\int_{Q_{s} \backslash Q_{s-1}} \nabla\left(\mathcal{A}_{s} f\right) \cdot \mathbf{a} \nabla f \mathrm{~d} \mu\right] \\
\leqslant & \mathbb{E}_{\rho}\left[\int_{Q_{s-1}} \nabla f \cdot \mathbf{a} \nabla f \mathrm{~d} \mu\right]+\Lambda \mathbb{E}_{\rho}\left[\int_{Q_{s} \backslash Q_{s-1}} \nabla f \cdot \mathbf{a} \nabla f \mathrm{~d} \mu\right]
\end{aligned}
$$

Proof: multiscale functional - counter example

Example

Let $\eta \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ be a plateau function:

$$
\operatorname{supp}(\eta) \subseteq B_{1}, 0 \leqslant \eta \leqslant 1, \eta \equiv 1 \text { in } B_{\frac{1}{2}}
$$

$$
\eta(x)=\eta(|x|) \text { decreasing with respect to }|x| .
$$

and we define our function $f(\mu)=\left(\int_{\mathbb{R}^{d}} \eta(x) \mathrm{d} \mu(x)\right) \wedge 3$.
We define the level set B_{r} such that

$$
B_{r}:=\left\{x \in \mathbb{R}^{d} \left\lvert\, \frac{1}{2} \leqslant \eta(x) \leqslant 1\right.\right\} .
$$

Then, we have $\mathbb{E}_{\rho}\left[f \mid \mathcal{F}_{B_{r}}\right] \notin C_{c}^{\infty}\left(\mathcal{M}_{\delta}\left(\mathbb{R}^{d}\right)\right)$.

Proof: multiscale functional - counter example

Figure: $f(\mu)=\left(\int_{\mathbb{R}^{d}} \eta(x) \mathrm{d} \mu(x)\right) \wedge 3$, then $\mathbb{E}_{\rho}\left[f \mid \mathcal{F}_{B_{r}}\right]$ is not smooth in this example.

Proof: multiscale functional - regularity of $\mathcal{A}_{s} f$

Recall that $\mathcal{A}_{s} f=\mathbb{E}_{\rho}\left[f \mid \mathcal{F}_{Q_{s}}\right]$, it is both a function and a martingale with respect to $\left(\mathcal{F}_{Q_{s}}\right)_{s \geqslant 0}$. Note $\mathscr{M}_{s}^{f}:=\mathcal{A}_{s} f$.

Lemma
With probability 1 , for any $0<s<\infty$, there is at most one particle one the boundary ∂Q_{s}.

Lemma

After a modification, for any $f \in C_{c}^{\infty}\left(\mathcal{M}_{\delta}\left(\mathbb{R}^{d}\right)\right)$ the process $\left(\mathscr{M}_{s}^{f}\right)_{s \geqslant 0}$ is a càdlàg L^{2}-martingale with finite variation, and the discontinuity point occurs for s such that $\mu\left(\partial Q_{s}\right)=1$.

Proof: multiscale functional - regularization

- We do some regularization

$$
\mathcal{A}_{s, \varepsilon} u_{t}:=\frac{1}{\varepsilon} \int_{0}^{\varepsilon} \mathcal{A}_{s+r} u_{t} d r
$$

- We study the regularized multiscale functional $S_{k, K, \beta, \varepsilon}\left(u_{t}\right)$

$$
S_{k, K, \beta, \varepsilon}\left(u_{t}\right)=\alpha_{k} \mathbb{E}_{\rho}\left[\left(\mathcal{A}_{k, \varepsilon} u_{t}\right)^{2}\right]+\int_{k}^{K} \alpha_{s}\left(\frac{d}{d s} \mathbb{E}_{\rho}\left[\left(\mathcal{A}_{s, \varepsilon} u_{t}\right)^{2}\right]\right) d s+\alpha_{K} \mathbb{E}_{\rho}\left[f^{2}-\left(\mathcal{A}_{K, \varepsilon} u_{t}\right)^{2}\right]
$$

- Then we focus on

$$
\frac{d}{d t} S_{k, K, \beta, \varepsilon}\left(u_{t}\right)=2 \alpha_{K} \mathbb{E}_{\rho}\left[u_{t}\left(\mathcal{L} u_{t}\right)\right]+\int_{k}^{K} 2 \alpha_{s}^{\prime} \mathbb{E}_{\rho}\left[\widetilde{\mathcal{A}_{s, \varepsilon}} u_{t}\left(-\mathcal{L} u_{t}\right)\right] d s
$$

where

$$
\widetilde{\mathcal{A}_{s, \varepsilon}} u_{t}:=\frac{2}{\varepsilon^{2}} \int_{0}^{\varepsilon}(\varepsilon-r) \mathcal{A}_{s+r} u_{t} \mathrm{~d} r .
$$

Proof: multiscale functional - regularization

$$
\begin{aligned}
\mathbb{E}_{\rho} & {\left[\widetilde{\mathcal{A}_{s, \varepsilon}} f(-\mathcal{L} f)\right] } \\
=\mathbb{E}_{\rho} & {\left[\int_{Q_{s-1}} \nabla\left(\widetilde{\mathcal{A}_{s, \varepsilon}} f\right) \cdot \mathbf{a} \nabla f \mathrm{~d} \mu\right]+\mathbb{E}_{\rho}\left[\int_{Q_{s} \backslash Q_{s-1}} \nabla\left(\widetilde{\mathcal{A}_{s, \varepsilon}} f\right) \cdot \mathbf{a} \nabla f \mathrm{~d} \mu\right] } \\
& +\mathbb{E}_{\rho}\left[\int_{Q_{s+\varepsilon} \backslash Q_{s}} \nabla\left(\widetilde{\mathcal{A}_{s, \varepsilon}} f\right) \cdot \mathrm{a} \nabla f \mathrm{~d} \mu\right] \\
\leqslant \mathbb{E}_{\rho} & {\left[\int_{Q_{s-1}} \nabla f \cdot \mathbf{a} \nabla f \mathrm{~d} \mu\right]+\Lambda \mathbb{E}_{\rho}\left[\int_{Q_{s} \backslash Q_{s-1}} \nabla f \cdot \mathbf{a} \nabla f \mathrm{~d} \mu\right] } \\
& +\left(\frac{\theta \Lambda}{\varepsilon}+\Lambda\right) \mathbb{E}_{\rho}\left[\int_{Q_{s+\varepsilon} \backslash Q_{s}^{\circ}} \nabla f \cdot \mathbf{a} \nabla f \mathrm{~d} \mu\right]+\frac{\Lambda}{2 \theta} \frac{d}{d s} \mathbb{E}_{\rho}\left[\left(\mathcal{A}_{s, \varepsilon} f\right)^{2}\right] .
\end{aligned}
$$

The term in red is the one finally contributes to the analysis. One intermediate step will appear a miracle L^{2} martingale isometry.

Outline for section 5

(1) Background

(2) Diffusion on continuum configuration spaces
(3) Main steps of proof
4. Localization inequality
(5) Discussions

Discussion

(1) Can we reduce the term logarithm?
(2) Can we identify the long time behavior like in the work of zero range model that

$$
\operatorname{Var}_{\rho}\left[u_{t}\right]=\frac{\left[\widetilde{u}^{\prime}(\rho)\right]^{2} \chi(\rho)}{\left[8 \pi \phi^{\prime}(\rho) t\right]^{\frac{d}{2}}}+o\left(t^{-\frac{d}{2}}\right) .
$$

(3) Long range interaction ?
(9) Diffusion on other manifold rather than \mathbb{R}^{d} ?
(3) Other type of dynamics?

PSL \star

Thank you for your attention.

