

Decay of semigroup for an infinite interacting particle system on continuum configuration spaces

Chenlin GU

DMA/ENS, PSL Research University

Seminar AMSS Online

July 30, 2020

Outline for section 1

2 Diffusion on continuum configuration spaces

- 3 Main steps of proof
- 4 Localization inequality

5 Discussions

Brownian motion

What is the definition of Brownian motion ?

- Physics (before 20th): Brownian motion is the random motion of particles suspended in a fluid (a liquid or a gas) resulting from their collision with the fast-moving molecules in the fluid.
- Mathematics: Brownian motion is a continuous stochastic processes with stationary independent increments.

Figure: From left to right is Robert Brown, Albert Einstein, Nobert Wiener, Paul Lévy and Kiyoshi Itô.

Question: What is the gap between the two definitions ?

Chenlin GU (DMA/ENS)

Diffusion in random environment/with interactions

 Random walk on random conductance: Invariant principle for random walk on random conductance/supercritical percolation model. See the survey *Recent progress on the random conductance model (2011)* by M. Biskup.

Diffusion in random environment/with interactions

Simple symmetric exclusion process (SSEP): η ∈ {0,1}^{T^d}, the hydrodynamic limit of empirical measure μ^N_t = 1/N^d Σ_{x∈T^d_N} η_{N²t}(x) is the solution of heat equation. See the book *Scaling limit of interacting particle systems* by C. Kipnis and C. Landim.

Background

Diffusion in random environment/with interactions

Hard sphere model: In the system of N particles in T^d following the collision of Newton law, the trajectory of a tagged particle converges to Brownian motion in [0, T], under the dilute region of Boltzmann-Grad scaling ε → 0, N → ∞, ε^{d-1}N → α. See the work The Brownian motion as the limit of a deterministic system of hard-spheres (2015) of T. Bodineau, I. Gallagher, L. Saint-Raymond.

Outline for section 2

2 Diffusion on continuum configuration spaces

- 3 Main steps of proof
- 4 Localization inequality

5 Discussions

Diffusion on continuum configuration spaces

We want to define a continuum diffusion process, that every particle evolves as a diffusion associated to the generator $-\nabla \cdot \mathbf{a}\nabla$, where the diffusion matrix depends on the local information.

Configuration spaces

• The continuum configuration space: introduced by S. Albeverio, Y.G. Kondratiev and M. Röckner. We use the point measure to define the configuration

$$\mathcal{M}_{\delta}(\mathbb{R}^d) := \left\{ \mu = \sum_{i \in I} \delta_{x_i} \text{ for some } I \text{ finite or countable,} \\ \text{and } x_i \in \mathbb{R}^d \text{ for any } i \in I \right\}.$$
(2.1)

- Filtration: for every Borel set $U \subseteq \mathbb{R}^d$, we denote by \mathcal{F}_U the smallest σ -algebra such that for every Borel subset $V \subseteq U$, the mapping $\mu \in \mathcal{M}_{\delta}(\mathbb{R}^d) \mapsto \mu(V)$ is measurable.
- Probability: fix $\rho > 0$, and define \mathbb{P}_{ρ} a probability measure on $(\mathcal{M}_{\delta}(\mathbb{R}^d), \mathcal{F}_{\mathbb{R}^d})$, to be the Poisson measure on \mathbb{R}^d with density ρ . We denote by \mathbb{E}_{ρ} the expectation, $\mathbb{V}ar_{\rho}$ the variance associated with the law \mathbb{P}_{ρ} .

Chenlin GU (DMA/ENS)

Derivative on configuration spaces

• Derivative: $\mathcal{F}_{\mathbb{R}^d}$ -measurable function $f : \mathcal{M}_{\delta}(\mathbb{R}^d) \to \mathbb{R}$. Let $\{\mathbf{e}_k\}_{1 \leq k \leq n}$ be d canonical directions, for $x \in \operatorname{supp}(\mu)$, we define

$$\partial_k f(\mu, x) := \lim_{h \to 0} \frac{1}{h} (f(\mu - \delta_x + \delta_{x+h\mathbf{e}_k}) - f(\mu)),$$

if the limit exists, and the gradient as a vector

$$\nabla f(\mu, x) := (\partial_1 f(\mu, x), \partial_2 f(\mu, x), \cdots \partial_d f(\mu, x)).$$

• Function space:

• $C_c^{\infty}(\mathcal{M}_{\delta}(\mathbb{R}^d))$: a function which is \mathcal{F}_U supported with $U \subseteq \mathbb{R}^d$ compact Borel set. Conditioned $\mu(U) = N$, the function is C^{∞} with all the coordinates.

• $H^1_0(\mathcal{M}_\delta(\mathbb{R}^d))$: closure of $C^\infty_c(\mathcal{M}_\delta(\mathbb{R}^d))$ for the norm

$$\|f\|_{H^1(\mathcal{M}_{\delta}(\mathbb{R}^d))} := \left(\mathbb{E}_{\rho}\left[f^2\right] + \mathbb{E}_{\rho}\left[\int_{\mathbb{R}^d} |\nabla f|^2 \,\mathrm{d}\mu\right]\right)^{\frac{1}{2}}$$

Derivative on configuration spaces

Example

$$F\in C^\infty_c(\mathbb{R}^N), orall \leqslant i \leqslant N, g_i\in C^\infty_c(\mathbb{R}^d)$$
,

$$f(\mu) := F(\mu(g_1), \cdots \mu(g_N)).$$

Then for its derivative at $x \in \operatorname{supp}(\mu)$

$$\nabla f(\mu, x) = \sum_{i=1}^{N} \nabla_{x_i} F(\mu(g_1), \cdots \mu(g_N)) \nabla g_i(x).$$

Diffusion matrix

- Diffusion matrix: $\mathbf{a}_{\circ}: \mathcal{M}_{\delta}(\mathbb{R}^d) \to \mathbb{R}^{d \times d}_{sym}$
 - locality: \mathcal{F}_{B_1} -measurable;
 - uniform ellipticity: $\exists \Lambda \in [1, +\infty)$ s.t $\forall \mu \in \mathcal{M}_{\delta}(\mathbb{R}^d)$, $\forall \xi \in \mathbb{R}^d$, $|\xi|^2 \leq \xi \cdot \mathbf{a}_{\circ}(\mu)\xi \leq \Lambda |\xi|^2$.
 - stationarity: $\mathbf{a}(\mu, x) := \tau_x \mathbf{a}_\circ(\mu) = \mathbf{a}_\circ(\tau_{-x}\mu).$

Chenlin GU (DMA/ENS)

Diffusion on configuration spaces

Diffusion defined by Dirichlet form: we define M_δ(ℝ^d)-valued Markov process ((μ_t)_{t≥0}, (𝔅_t)_{t≥0}, (P_t)_{t≥0}) by its Dirichlet form
 Dirichlet form:

$$\mathcal{E}^{\mathbf{a}}(f,g) := \mathbb{E}_{\rho}\left[\int_{\mathbb{R}^d} \nabla f(\mu, x) \cdot \mathbf{a}(\mu, x) \nabla g(\mu, x) \, \mathrm{d}\mu(x)\right]$$

- Domain: $\mathcal{D}(\mathcal{E}^{\mathbf{a}}) := H_0^1(\mathcal{M}_{\delta}(\mathbb{R}^d)).$
- Characterization: let $u_t = P_t u$, for any $v \in \mathcal{D}(\mathcal{E}^{\mathbf{a}})$

$$\mathbb{E}_{\rho}[u_t v] - \mathbb{E}_{\rho}[uv] = -\int_0^t \mathcal{E}^{\mathbf{a}}(u_s, v) \,\mathrm{d}s.$$
(2.2)

Main theorem

Theorem (Decay of variance)

There exists two finite positive constants $\gamma := \gamma(\rho, d, \Lambda)$, $C := C(\rho, d, \Lambda)$ such that for any $u \in C_c^{\infty}(\mathcal{M}_{\delta}(\mathbb{R}^d))$ supported in Q_{l_u} , then we have

$$\operatorname{Var}_{\rho}[u_t] \leqslant C(1+|\log t|)^{\gamma} \left(\frac{1+l_u}{\sqrt{t}}\right)^d \|u\|_{L^{\infty}}^2.$$
(2.3)

Chenlin GU (DMA/ENS)

A solvable example

a = ¹/₂: independent Brownian motion issued from Poisson point process.

•
$$u(\mu) := \int_{\mathbb{R}^d} f \, \mathrm{d}\mu$$
 with $f \in C_c^{\infty}(\mathbb{R}^d)$.
• $\Phi_t(x) = \frac{1}{(2\pi t)^{\frac{d}{2}}} \exp\left(-\frac{|x|^2}{2t}\right)$, then $f_t(x) = \Phi_t \star f(x)$

$$u_t(\mu) = \mathbb{E}_{\rho}\left[u(\mu_t)|\mathscr{F}_0\right] = \mathbb{E}_{\rho}\left[\left|\sum_{i\in\mathbb{N}} f\left(B_t^{(i)}\right)\right|\mathscr{F}_0\right] = \int_{\mathbb{R}^d} f_t(x) \,\mathrm{d}\mu(x),$$

• Under this case, the variance can be calculated

$$\operatorname{Var}_{\rho}\left[u\right] = \rho \int_{\mathbb{R}^{d}} f^{2}(x) \, \mathrm{d}x = \rho \|f\|_{L^{2}(\mathbb{R}^{d})}^{2},$$
$$\operatorname{Var}_{\rho}\left[u_{t}\right] = \rho \int_{\mathbb{R}^{d}} f_{t}^{2}(x) \, \mathrm{d}x = \rho \|f_{t}\|_{L^{2}(\mathbb{R}^{d})}^{2}.$$

Chenlin GU (DMA/ENS)

A solvable example

- By the heat kernel estimate for the standard heat equation, we known that $||f_t||_{L^2(\mathbb{R}^d)}^2 \simeq C(d)t^{-\frac{d}{2}}||f||_{L^2(\mathbb{R}^d)}^2$, thus the scale $t^{-\frac{d}{2}}$ is the best one that we can obtain.
- Moreover, if we take $f = \mathbf{1}_{\{Q_r\}}$, and $t = r^{2(1-\varepsilon)}$ for a small $\varepsilon > 0$, then we see that the typical scale of diffusion is a ball of size $r^{1-\varepsilon}$. So for every $x \in Q_{r\left(1-r^{-\frac{\varepsilon}{2}}\right)}$, the value $f_t(x) \simeq 1 e^{-r^{\frac{\varepsilon}{2}}}$ and we have

$$\operatorname{Var}_{\rho}\left[u_{t}\right] = \rho \int_{\mathbb{R}^{d}} f_{t}^{2}(x) \, \mathrm{d}x \ge \rho r^{d} (1 - r^{-\frac{\varepsilon}{2}}) = (1 - r^{-\frac{\varepsilon}{2}}) \operatorname{Var}_{\rho}\left[u\right].$$

It illustrates that before the scale $t = r^2$, the decay is very slow so in the Theorem 2 the factor $\left(\frac{l_u}{\sqrt{t}}\right)^d$ is reasonable.

• Remark: besides this case (linear functional + no interaction), I do not know how to calculate exactly the variance.

Chenlin GU (DMA/ENS)

Outline for section 3

2 Diffusion on continuum configuration spaces

3 Main steps of proof

4 Localization inequality

5 Discussions

Zero range model

- An analogue is proved in discrete case: *Relaxation to Equilibrium of Conservative Dynamics. I: Zero-Range Processes, (1999)* by E. Janvresse, C. Landim, J. Quastel, and H. T. Yau.
- Our contributions:
 - Generalization to continuum configuration space without gradient condition.
 - Correct scaling exponent $\left(\frac{l_u}{\sqrt{t}} \right)^d$ and uniform for time.
 - Fix an error in the proof.

Decomposition of approximation and variance

- $\mathcal{Z}_K := \mathbb{Z}^d \cap \left[-\frac{K}{2}, \frac{K}{2}\right]^d$.
- A decomposition of type "approximation variance".
- $u_t = v_t + w_t$

$$\begin{aligned} v_t &:= u_t - \frac{1}{|\mathcal{Z}_K|} \sum_{y \in \mathcal{Z}_K} \tau_y u_t, \\ w_t &:= \frac{1}{|\mathcal{Z}_K|} \sum_{y \in \mathcal{Z}_K} \tau_y u_t. \end{aligned}$$

Estimate of variance

Lemma

There exists a finite positive number C := C(d) such that for any $u \in C_c^{\infty}(\mathcal{M}_{\delta}(\mathbb{R}^d))$ supported in Q_{l_u} and $K \ge l_u$, we have

$$\operatorname{Var}_{\rho}\left[\left(\frac{1}{|\mathcal{Z}_{K}|}\sum_{y\in\mathcal{Z}_{K}}\tau_{y}u_{t}\right)^{2}\right] \leqslant C(d)\left(\frac{l_{u}}{K}\right)^{d}\mathbb{E}_{\rho}[u^{2}].$$
(3.1)

Estimate of variance

Proof.

Then we can estimate the variance simply by L^2 decay that

$$\mathbb{E}_{\rho}[(w_{t})^{2}] = \mathbb{E}_{\rho}\left[\left(P_{t}\left(\frac{1}{|\mathcal{Z}_{K}|}\sum_{y\in\mathcal{Z}_{K}}\tau_{y}u\right)\right)^{2}\right]$$
$$\leq \mathbb{E}_{\rho}\left[\left(\frac{1}{|\mathcal{Z}_{K}|}\sum_{y\in\mathcal{Z}_{K}}\tau_{y}u\right)^{2}\right] = \frac{1}{|\mathcal{Z}_{K}|^{2}}\sum_{x,y\in\mathcal{Z}_{K}}\mathbb{E}_{\rho}\left[(\tau_{x-y}u)u\right].$$

We know that for $|x - y| \ge l_u$, then the term $\tau_{x-y}u$ and u is independent so $\mathbb{E}_{\rho}[(\tau_{x-y}u)u] = 0$. This concludes eq. (3.1).

Estimate of approximation

Recall that
$$v_t = u_t - \frac{1}{|\mathcal{Z}_K|} \sum_{y \in \mathcal{Z}_K} \tau_y u_t$$
.

Lemma

There exists two finite positive numbers $C := C(d, \rho), \gamma := \gamma(d, \rho)$ such that for any $u \in C_c^{\infty}(\mathcal{M}_{\delta}(\mathbb{R}^d))$ supported in Q_{l_u} , $K \ge l_u$ and v_t defined above, for $t_n \ge \max \{l_u^2, 16\Lambda^2\}, t_{n+1} = Rt_n$ with R > 1 we have

$$(t_{n+1})^{\frac{d+2}{2}} \mathbb{E}_{\rho}[(v_{t_{n+1}})^2] - (t_n)^{\frac{d+2}{2}} \mathbb{E}_{\rho}[(v_{t_n})^2] \leq C(\log(t_{n+1}))^{\gamma} K^2(l_u)^d ||u||_{L^{\infty}}^2 + \mathbb{E}_{\rho}[u^2].$$
(3.2)

Proof of the main theorem from two lemmas

Iteration using
$$K := \sqrt{t_{n+1}}$$

$$\mathbb{E}_{\rho}[(u_{t_{n+1}})^{2}]$$

$$\leqslant 2\mathbb{E}_{\rho}[(v_{t_{n+1}})^{2}] + 2\mathbb{E}_{\rho}[(w_{t_{n+1}})^{2}]$$

$$\leqslant 2\left(\frac{t_{n}}{t_{n+1}}\right)^{\frac{d+2}{2}} \mathbb{E}_{\rho}[(v_{t_{n}})^{2}] + 2\mathbb{E}_{\rho}[(w_{t_{n+1}})^{2}]$$

$$+ 2(t_{n+1})^{-\frac{d+2}{2}} \left(C(\log(t_{n+1}))^{\gamma}t_{n+1}(l_{u})^{d}||u||_{L^{\infty}}^{2} + \mathbb{E}_{\rho}[u^{2}]\right)$$

$$\leqslant 4\left(\frac{t_{n}}{t_{n+1}}\right)^{\frac{d+2}{2}} \mathbb{E}_{\rho}[(u_{t_{n}})^{2}] + 4\left(\frac{t_{n}}{t_{n+1}}\right)^{\frac{d+2}{2}} \mathbb{E}_{\rho}[(w_{t_{n}})^{2}] + 2\mathbb{E}_{\rho}[(w_{t_{n+1}})^{2}]$$

$$+ 2(t_{n+1})^{-\frac{d+2}{2}} \left(C(\log(t_{n+1}))^{\gamma}t_{n+1}(l_{u})^{d}||u||_{L^{\infty}}^{2} + \mathbb{E}_{\rho}[u^{2}]\right).$$
(3.3)

Proof of the main theorem from two lemmas

•
$$U_n = (t_n)^{\frac{d}{2}} \mathbb{E}_{\rho}[(u_{t_n})^2]$$
 and $\theta = 4R^{-1}$
 $U_{n+1} \leq \theta U_n + C_2 \left((\log(t_{n+1}))^{\gamma} (l_u)^d ||u||_{L^{\infty}}^2 + (t_{n+1})^{-1} \mathbb{E}_{\rho}[u^2] \right) + C_3 (l_u)^d \mathbb{E}_{\rho}[u^2]$

• By choose R large such that $\theta \in (0,1)$ and $t_0 = (l_u)^2$

$$\begin{aligned} & U_{n+1} \\ \leqslant \sum_{k=1}^{n} \left(C_2 \left((\log(t_{n+1}))^{\gamma}(l_u)^d \| u \|_{L^{\infty}}^2 + \mathbb{E}_{\rho}[u^2] \right) + C_3(l_u)^d \mathbb{E}_{\rho}[u^2] \right) \theta^{n-k} \\ & + U_0 \theta^{n+1} \\ \leqslant \frac{1}{1-\theta} \left(C_2 \left((\log(t_{n+1}))^{\gamma}(l_u)^d \| u \|_{L^{\infty}}^2 + \mathbb{E}_{\rho}[u^2] \right) + C_3(l_u)^d \mathbb{E}_{\rho}[u^2] \right) \\ & + (l_u)^d \mathbb{E}_{\rho}[u^2] \\ \Longrightarrow \mathbb{E}_{\rho}[(u_{t_{n+1}})^2] \leqslant C_4 (\log(t_{n+1}))^{\gamma} \left(\frac{l_u}{\sqrt{t_{n+1}}} \right)^d \| u \|_{L^{\infty}}^2. \end{aligned}$$

Outline for section 4

2 Diffusion on continuum configuration spaces

3 Main steps of proof

4 Localization inequality

5 Discussions

Localization inequality

• Recall $\mathcal{A}_s f = \mathbb{E}[f|\mathcal{F}_{Q_s}].$

• The local information is scale $L > \sqrt{t}$ approximates u_t .

Theorem (Localization inequality)

For $u \in L^2(\mathcal{M}_{\delta}(\mathbb{R}^d))$ of compact support that $\operatorname{supp}(u) \subseteq Q_{l_u}$, any $t \ge \max\{l_u^2, 16\Lambda^2\}$, $K \ge \sqrt{t}$, and u_t the function associated to the generator \mathcal{L} at time t, then we have the estimate

$$\mathbb{E}_{\rho}\left[(u_t - \mathcal{A}_K u_t)^2\right] \leqslant C(\Lambda) \exp\left(-\frac{K}{\sqrt{t}}\right) \mathbb{E}_{\rho}\left[u^2\right].$$
(4.1)

Remark: in application, we usually choose that $K = \gamma \log t \sqrt{t}$, so that we get $\mathbb{E}_{\rho} \left[(u_t - \mathcal{A}_K u_t)^2 \right] \leq t^{-\gamma} \mathbb{E}_{\rho} \left[u^2 \right]$.

Proof: multiscale functional - outline (from JLQY)

Let $\alpha_s = \exp\left(\frac{s}{\beta}\right), \beta > 0$ to be fixed. The key is to consider a multiscale functional

$$S_{k,K,\beta}(f) = \alpha_k \mathbb{E}_{\rho} \left[(\mathcal{A}_k f)^2 \right] + \int_k^K \alpha_s \, d\mathbb{E}_{\rho} \left[(\mathcal{A}_s f)^2 \right] + \alpha_K \mathbb{E}_{\rho} \left[(f - \mathcal{A}_K f)^2 \right]$$
$$= \alpha_K \mathbb{E}_{\rho} \left[f^2 \right] - \int_k^K \alpha'_s \mathbb{E}_{\rho} \left[(\mathcal{A}_s f)^2 \right] \, ds,$$

and put u_t in the place of f and do derivative (non-trivial)

$$\frac{d}{dt}S_{k,K,\beta}(u_t) \leqslant \frac{2\Lambda^2}{\beta^2}S_{k,K,\beta}(u_t),$$

we choose $k=\sqrt{t}\geqslant l_u$ and $\beta=\sqrt{t}$ to obtain

$$\alpha_{K} \mathbb{E}_{\rho} \left[(u_{t} - \mathcal{A}_{K} u_{t})^{2} \right] \leqslant S_{k,K,\beta}(u_{t})$$
$$\leqslant \exp\left(\frac{2\Lambda^{2} t}{\beta^{2}}\right) S_{k,K,\beta}(u_{0}) = \exp\left(\frac{2\Lambda^{2} t}{\beta^{2}}\right) \alpha_{k} \mathbb{E}_{\rho} \left[(u_{0})^{2} \right].$$

Chenlin GU (DMA/ENS)

Proof: multiscale functional - a hidden trap

• Warning: in the step of $\frac{d}{dt}S_{k,K,\beta}(u_t)$

$$\frac{d}{dt}\mathbb{E}_{\rho}\left[-(\mathcal{A}_{s}u_{t})^{2}\right] = \frac{d}{dt}\mathbb{E}_{\rho}\left[-\left(\mathcal{A}_{s}u_{t}\right)u_{t}\right] = 2\mathbb{E}_{\rho}\left[\mathcal{A}_{s}u_{t}(-\mathcal{L}u_{t})\right].$$

but $\mathcal{A}_s u_t \notin \mathcal{D}(\mathcal{E}^{\mathbf{a}})$. If we pretend it is the case, one may have

$$\mathbb{E}_{\rho} \left[\mathcal{A}_{s} u_{t}(-\mathcal{L} u_{t}) \right] \\= \mathbb{E}_{\rho} \left[\int_{Q_{s-1}} \nabla(\mathcal{A}_{s} f) \cdot \mathbf{a} \nabla f \, \mathrm{d}\mu \right] + \mathbb{E}_{\rho} \left[\int_{Q_{s} \setminus Q_{s-1}} \nabla(\mathcal{A}_{s} f) \cdot \mathbf{a} \nabla f \, \mathrm{d}\mu \right] \\ \leqslant \mathbb{E}_{\rho} \left[\int_{Q_{s-1}} \nabla f \cdot \mathbf{a} \nabla f \, \mathrm{d}\mu \right] + \Lambda \mathbb{E}_{\rho} \left[\int_{Q_{s} \setminus Q_{s-1}} \nabla f \cdot \mathbf{a} \nabla f \, \mathrm{d}\mu \right].$$

Proof: multiscale functional - counter example

Example

Let $\eta \in C_c^{\infty}(\mathbb{R}^d)$ be a plateau function:

$$\begin{split} \mathrm{supp}(\eta) \subseteq B_1, 0 \leqslant \eta \leqslant 1, \eta \equiv 1 \text{ in } B_{\frac{1}{2}}, \\ \eta(x) = \eta(|x|) \text{ decreasing with respect to } |x|. \end{split}$$

and we define our function $f(\mu) = \left(\int_{\mathbb{R}^d} \eta(x) \, \mathrm{d}\mu(x)\right) \wedge 3$. We define the level set B_r such that

$$B_r := \left\{ x \in \mathbb{R}^d \left| \frac{1}{2} \leqslant \eta(x) \leqslant 1 \right. \right\}.$$

Then, we have $\mathbb{E}_{\rho}[f|\mathcal{F}_{B_r}] \notin C_c^{\infty}(\mathcal{M}_{\delta}(\mathbb{R}^d)).$

Proof: multiscale functional - counter example

Figure: $f(\mu) = (\int_{\mathbb{R}^d} \eta(x) d\mu(x)) \wedge 3$, then $\mathbb{E}_{\rho}[f|\mathcal{F}_{B_r}]$ is not smooth in this example.

Chenlin GU (DMA/ENS)

Proof: multiscale functional - regularity of $\mathcal{A}_s f$

Recall that $\mathcal{A}_s f = \mathbb{E}_{\rho}[f|\mathcal{F}_{Q_s}]$, it is both a function and a martingale with respect to $(\mathcal{F}_{Q_s})_{s \ge 0}$. Note $\mathscr{M}_s^f := \mathcal{A}_s f$.

Lemma

With probability 1, for any $0 < s < \infty$, there is at most one particle one the boundary ∂Q_s .

Lemma

After a modification, for any $f \in C_c^{\infty}(\mathcal{M}_{\delta}(\mathbb{R}^d))$ the process $\left(\mathscr{M}_s^f\right)_{s \ge 0}$ is a càdlàg L^2 -martingale with finite variation, and the discontinuity point occurs for s such that $\mu(\partial Q_s) = 1$.

Proof: multiscale functional - regularization

• We do some regularization

$$\mathcal{A}_{s,\varepsilon}u_t := \frac{1}{\varepsilon} \int_0^\varepsilon \mathcal{A}_{s+r}u_t \, dr.$$

ullet We study the regularized multiscale functional $S_{k,K,\beta,\varepsilon}(u_t)$

$$S_{k,K,\beta,\varepsilon}(u_t) = \alpha_k \mathbb{E}_\rho \left[(\mathcal{A}_{k,\varepsilon} u_t)^2 \right] + \int_k^K \alpha_s \left(\frac{d}{ds} \mathbb{E}_\rho \left[(\mathcal{A}_{s,\varepsilon} u_t)^2 \right] \right) \, ds + \alpha_K \mathbb{E}_\rho \left[f^2 - (\mathcal{A}_{K,\varepsilon} u_t)^2 \right]$$

• Then we focus on

$$\frac{d}{dt}S_{k,K,\beta,\varepsilon}(u_t) = 2\alpha_K \mathbb{E}_{\rho}\left[u_t(\mathcal{L}u_t)\right] + \int_k^K 2\alpha'_s \mathbb{E}_{\rho}\left[\widetilde{\mathcal{A}_{s,\varepsilon}}u_t(-\mathcal{L}u_t)\right] \, ds,$$

where

$$\widetilde{\mathcal{A}_{s,\varepsilon}} u_t := \frac{2}{\varepsilon^2} \int_0^\varepsilon (\varepsilon - r) \mathcal{A}_{s+r} u_t \, \mathrm{d}r.$$

Chenlin GU (DMA/ENS)

Proof: multiscale functional - regularization

$$\begin{split} \mathbb{E}_{\rho} \left[\widetilde{\mathcal{A}_{s,\varepsilon}} f(-\mathcal{L}f) \right] \\ = \mathbb{E}_{\rho} \left[\int_{Q_{s-1}} \nabla(\widetilde{\mathcal{A}_{s,\varepsilon}} f) \cdot \mathbf{a} \nabla f \, \mathrm{d}\mu \right] + \mathbb{E}_{\rho} \left[\int_{Q_s \setminus Q_{s-1}} \nabla(\widetilde{\mathcal{A}_{s,\varepsilon}} f) \cdot \mathbf{a} \nabla f \, \mathrm{d}\mu \right] \\ &+ \mathbb{E}_{\rho} \left[\int_{Q_{s+\varepsilon} \setminus Q_s} \nabla(\widetilde{\mathcal{A}_{s,\varepsilon}} f) \cdot \mathbf{a} \nabla f \, \mathrm{d}\mu \right] \\ \leqslant \mathbb{E}_{\rho} \left[\int_{Q_{s-1}} \nabla f \cdot \mathbf{a} \nabla f \, \mathrm{d}\mu \right] + \Lambda \mathbb{E}_{\rho} \left[\int_{Q_s \setminus Q_{s-1}} \nabla f \cdot \mathbf{a} \nabla f \, \mathrm{d}\mu \right] \\ &+ \left(\frac{\theta \Lambda}{\varepsilon} + \Lambda \right) \mathbb{E}_{\rho} \left[\int_{Q_{s+\varepsilon} \setminus Q_s^{\circ}} \nabla f \cdot \mathbf{a} \nabla f \, \mathrm{d}\mu \right] + \frac{\Lambda}{2\theta} \frac{d}{ds} \mathbb{E}_{\rho} \left[(\mathcal{A}_{s,\varepsilon} f)^2 \right] \end{split}$$

The term in red is the one finally contributes to the analysis. One intermediate step will appear a miracle L^2 martingale isometry.

Chenlin GU (DMA/ENS)

Outline for section 5

Background

2 Diffusion on continuum configuration spaces

- 3 Main steps of proof
- 4 Localization inequality

Discussion

- O Can we reduce the term logarithm?
- Can we identify the long time behavior like in the work of zero range model that

$$\operatorname{Var}_{\rho}[u_t] = \frac{[\widetilde{u}'(\rho)]^2 \chi(\rho)}{[8\pi\phi'(\rho)t]^{\frac{d}{2}}} + o\left(t^{-\frac{d}{2}}\right).$$

- Icong range interaction ?
- Diffusion on other manifold rather than \mathbb{R}^d ?
- Other type of dynamics?

Thank you for your attention.

Chenlin GU (DMA/ENS)

Heat kernel for particle systems

July 30, 2020 36 / 36