Homework 2: Differential, Lagrange multiplier, Taylor expansion

Due: 02/26/2020
Lecturer: Chenlin GU

Exercise 1. Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and differentiable, and we recall the definition of the gradient $\nabla f=\left(\partial_{x_{1}} f, \partial_{x_{2}} f, \cdots \partial_{x_{n}} f\right)$. Show that

1. $\nabla(f+g)=\nabla f+\nabla g$,
2. $\nabla(f g)=f \nabla g+g \nabla f$,
3. $\nabla\left(f^{n}\right)=n f^{n-1} \nabla f$.

Exercise 2. Apply Taylor expansion for $f(x, y)=e^{2 x} \sin (3 y)$ until a precision o $\left((|x|+|y|)^{3}\right)$.
Exercise 3. Calculate the eigenvalues and the associated eigenvectors for the matrix

$$
A=\left(\begin{array}{ccc}
0 & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0
\end{array}\right)
$$

Exercise 4 (Arithmetic-Geometric inequality). Let $\left(x_{i}\right)_{1 \leqslant i \leqslant n}$ be n positive number. We define the arithmetic mean and the geometric mean

$$
A\left(x_{1}, \cdots x_{n}\right):=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad G\left(x_{1}, \cdots x_{n}\right):=\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}
$$

1. Prove that we have

$$
\begin{equation*}
G\left(x_{1}, \cdots x_{n}\right) \leqslant A\left(x_{1}, \cdots x_{n}\right) . \tag{1}
\end{equation*}
$$

(Indication: We can use Lagrange multiplier method.)
2. Application: Prove that, the cube of edge 10 is the rectangular solid of volume 1000 which has the least total surface area. That is, we fix $x y z=1000$, and the minimiser of

$$
f(x, y, z)=2(x y+y z+z x)
$$

is attained at $x=y=z=10$.
Exercise 5. Find the points of the ellipsoid $x^{2}+2 y^{2}+3 z^{2}=1$ which are the closest or the farthest from the plane $x+y+z=10$.

Exercise 6 (d'Alembert's solution of wave equation). Let $t \in \mathbb{R}^{+}$be time, $x \in \mathbb{R}$ be the position, and $f: \mathbb{R}^{+} \times \mathbb{R} \rightarrow \mathbb{R}$ a differentiable function which describes the displacement of a string. The physical consideration suggests that f satisfies one-dimensional wave equation

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{a^{2}} \frac{\partial^{2} f}{\partial t^{2}} \tag{2}
\end{equation*}
$$

where a is a certain positive constant. In this question, we study a solution of eq. (2).

1. We suggest a change of variable: $(u, v) \mapsto(x, y)$ such that $x=A u+B v, y=C u+D v$, then prove that $g(u, v):=f(A u+B v, C u+D v)$ satisfies

$$
\begin{equation*}
\frac{\partial^{2} g}{\partial v \partial u}=A B \frac{\partial^{2} f}{\partial x^{2}}+(A D+B C) \frac{\partial^{2} f}{\partial x \partial t}+C D \frac{\partial^{2} f}{\partial t^{2}} \tag{3}
\end{equation*}
$$

2. Determine the good parameters A, B, C, D so that we have $\frac{\partial^{2} g}{\partial v \partial u}=0$.
3. Prove that, under the parameters A, B, C, D above, there exist functions $\phi, \psi: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
g(u, v)=\phi(u)+\psi(v) \tag{4}
\end{equation*}
$$

4. Write down the expression of $f(x, t)$ with respect to the function ϕ, ψ.
5. To obtain the solution of f, we should also pose an initial condition. We suppose that

$$
\begin{equation*}
f(0, x)=F(x), \quad \partial_{t} f(0, x)=G(x), \tag{5}
\end{equation*}
$$

prove that under the condition eq. (5) we have a solution for eq. (2)

$$
\begin{equation*}
f(t, x)=\frac{F(x+a t)+F(x-a t)}{2}+\frac{1}{2 a} \int_{x-a t}^{x+a t} G(s) d s . \tag{6}
\end{equation*}
$$

6. Revisit the step 1): Why we propose this change of variable? (For this question, you can write down your ideas without mathematical arguments.)
